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Abstract. Probabilistic MAC (message authentication code) is an al-
ternative choice for a stateful MAC where maintaining internal state may
be difficult or unsafe. Usually tag of a probabilistic MAC consists of an
m-bit random coin (also called salt) and an n-bit core-tag depending on
the salt. In terms of the security, probabilistic MAC falls under birthday
collision of salts which is absent in stateful MAC. XMACR is an example
of probabilistic MAC which remains secure up to o(2m/2) tag generation
queries. To achieve security beyond birthday in n, one can naturally use
a large salt. For example, MACRX3 sets m = 3n and provides security
up to o(2n) tag-generation queries. Large salt may restrict its applicabil-
ity as it increases the cost of random string generation as well as the size
of the overall tag. RWMAC (randomized version of WMAC) provides
similar security with m = n but it uses a PRF (pseudorandom function)
over 2n-bit inputs which is naturally more costlier than those over n-bit
inputs. Achieving beyond birthday security using n-bit PRF and n-bit
salt is a practical and challenging problem. Minematsu in FSE 2010 pro-
posed Enhanced Hash-then-Mask (EHtM) using n-bit salt and showed
its security up to o(22n/3) tag-generation queries. In this paper we re-
visit this construction and we provide exact security analysis of EHtM.
In particular, we show that it has higher security, namely up to o(23n/4)
queries, than what claimed by the designer. Moreover, we demonstrate
a single attempt forgery attack which makes about 23n/4 tag genera-
tion queries. XMACR and EHtM follow the hash-then-mask paradigm
due to Carter-Wegman. We revisit six possible constructions following
hash-then-mask paradigm and we provide exact security analysis for all
of these constructions, some of which however were known before.
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1 Introduction

Nowadays, it is desirable that every transmitted message or packet will use
cryptographic means to ensure authenticity. As a solution of this, a MAC (mes-
sage authentication code) enables two parties sharing a key to authenticate their
transmissions. It is very popular in symmetric key cryptography. PRF [12] (pseu-
dorandom function) is also an essential tool in many cryptographic solutions.



2 Avijit Dutta, Ashwin Jha and Mridul Nandi

They can also be used to generate a pseudorandom pad for symmetric encryp-
tion, and to mask a universal hash function for producing a secure hash-then-
mask [11] types of MAC. The security of PRF based constructions can be com-
promised if one applies the PRF twice to the same input. A natural way to avoid
repetition is for the sender to use an increasing counter, or other form of varying,
non-repeating state (also called nonce), which is updated with each application
of the function. This method has been adopted to XMACC [4], WMAC [8] etc.
However, this can have various drawbacks, especially it involves management of
nonce which might in some settings be impractical or unsafe. This can happen,
for example, whenever maintaining a synchronized nonce across different appli-
cations of the function, which is unsafe or impossible. A possibility of having a
stateless scheme is to use random values (also called salt) as those on which to
evaluate the pseudorandom function. In this paper our main focus is to analyze
the security of some of the probabilistic MAC candidates.

A MAC is defined by a pair of algorithms, tag generation and verification
algorithm. The verification algorithm must verify any tag generated by the tag
generation algorithm. Usually tag of a probabilistic MAC consists of an m-bit
random coin (also called salt) and an n-bit core-tag depending on the salt. A
forgery algorithm makes queries to both algorithms. We say that it forges if it can
submit a non-trivial message tag pair to the verification algorithm which verifies
the queries. By non-trivial we mean that it should not be obtained through a
tag generation query. Informally speaking, a MAC is said to have q-security if
for any forgery making up to o(q) queries (tag-generation), it can forge with
probability at most qv/2

n + o(1) where qv is the number of verification queries
and n is the size of the core-tag. Note that o(1) is a very small quantity and
goes to 0 as n increases. Also note that qv/2

n forging probability can always be
achieved by making random qv forgery attempts.

A Brief History on Probabilistic Stateless MAC.

XMACR [4], EHtM [18] are some known examples of probabilistic MAC which
follow hash-then-mask paradigm due to Carter-Wegman [8]. The core-tag of
XMACR [4] is computed by masking hash output by the output of a pseudoran-
dom function applied to the salt. More formally,

HtMf,H(x) = (r,H(x)⊕ f(r))

where r is the salt for this construction, H is an AXU hash [24] and f is an
n-bit pseudorandom function. The hash function of XOR-MAC is a parallel con-
struction of counter based AXU-hash. This construction has o(2m/2) unforgeable
security for an m-bit salt due to the birthday phenomenon that the salt can also
repeat. Some natural choices are known to obtain beyond birthday security or
amplify the security. A trivial solution is to use a larger sized salt, e.g. m = 2n.
However, this has the following drawbacks.

1. It uses larger salt forcing increased communication cost as well as sender’s
effort for generating randomness, and

2. it needs 2n-bit-input PRF instead of n-bit-input PRF.



Title Suppressed Due to Excessive Length 3

The second issue has been resolved by the construction MACRX3 [3] which still
uses salt of size m = 3n to compute the mask based on n-bit pseudorandom func-
tion. Whereas RWMAC [18], a randomized version of nonce based WMAC can
provide o(2n) security using n-bit salt. However, it uses pseudorandom function
mapping from 2n bits to n bits. As a solution to both of the problems, RMAC [14]
and FRMAC [15] are known which provide o(2n) security. However, their secu-
rity proofs are based on ideal assumption on the underlying primitive [[14], [15]].
Minematsu [18] proposed a simple variant of hash-then-mask (called EHtM or
Enhanced Hash-then-Mask) and showed its security for o(22n/3) tag gener-
ation queries [18]. It uses only n-bit salt and n-bit PRF. Thus, an appropriate
usage of salt can enhance the security to go beyond birthday barrier without
requiring larger domain PRF.

Different Types of Hash-then-MAC or HtM. In this paper, we consider
six possibilities of hash-then-mask types constructions as shown in Fig. 1.1. We
recall that C2 is the one which was introduced by Carter and Wegman and
also adopted in many constructions like XOR-MAC [4], poly1305 [7] etc. with a
specific choice of hash function H and the pseudorandom function f . Let r be
n-bit salt and m denote the message. We note that EHtM is same as C6.
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Fig. 1.1: Probabilistic MAC Schemes. `, n ∈ N and ` ≥ n, denote the input and
output size, respectively. We simply denote the size by n when ` = n. Blocks with
labels f and g represent two independent n-bit to n-bit PRF, and blocks with label
H represent an n-bit universal hash. Schemes C1, C3, and C5 take fixed length n bit
message m and n bit salt r as input, and return n bit tag t as output. Schemes C2, C4
and C6 take an arbitrary length (depending on H) ` bit message m and a fixed length
n bit salt as input, and return n bit tag as output.

1.1 Our Contributions

The main contribution of the paper is to show the tight bounds for all of these
constructions as shown in Fig. 1.1. Some of the bounds are already known and
rest of the bounds are proved in this paper. Most importantly the security of
EHtM [18] is shown to have higher security, namely 23n/4, compared to what
known before. In addition to the MAC security of these constructions, we also
study pseudorandom function or PRF property of the core-tag generation algo-
rithm. Like deterministic MAC, bounding PRF advantage of the core-tag gener-
ation would essentially bound the forging probability. However, the PRF might
be very stronger assumption in probabilistic MAC as the adversary can control
the random coin in PRF game. We see that all constructions except C6 are not
PRF. Moreover, the PRF bound for C6 is also much less compared to what we
have in case of forging. Moreover, we introduce a new security notion, called
pPRF or probabilistic PRF, which is a weaker version of PRF and may be
more appropriate in this probabilistic setting. Definition of pPRF can be found
in Sect. 2. Here adversary has no control on the random coin but can observe
once he makes a query. This notion is somewhere in-between PRF (in which
adversary has control on both message and random coin) and weak-PRF [20] (in
which adversary has no control on both). The following table provides the exact
security analysis of all six constructions in terms of the PRF, pPRF and forging
or MAC security.

C1 C2 C3 C4 C5 C6

PRF Θ(1)∗ Θ(1)∗ Θ(1)∗ Θ(1)∗ Θ(1)∗ Θ(2n/2)∗

pPRF Θ(2n/2) Θ(2n/2) Θ(2n/2) Θ(2n/2) Θ(23n/4) Θ(23n/4)

MAC Θ(1)∗ Θ(2n/2)∗ Θ(2n/2)∗ Θ(2n/2)∗ Θ(22n/3) Θ(23n/4)

Table 1: Summary of security bounds for probabilistic MAC candidates
following hash-then-mask paradigm. The columns correspond to the probabilistic
MAC candidates illustrated in figure 1.1. All values are in terms of optimal number of
adversial tag generation queries. The specified results appear as direct consequence of
results discussed in Sect. 6 and Sect. 7. By * we mean the results were known or it is
not difficult to observe.

As a side result, we have also shown that pPRF is used to prove an impossibility
result that unlike random function in deterministic MAC, there is no idealized
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version of unforgeable security of a probabilistic MAC. In fact, pPRF does not
imply secure probabilistic MAC in general. The intuitive reason is that, one can
have few number of random coins at which the core-tag generation algorithm
becomes completely forgeable. In a distinguishing game, observing those weak
random coins from tag generation queries will have negligible probability. We
discuss this issue in Sect. 4. Moreover, we show that for some constructions
(e.g C5) pPRF advantage (i.e Θ(23n/4)) is better than its corresponding MAC
advantage (i.e Θ(22n/3)).

2 Basic Definitions

2.1 Notation

Let ⊥ and > be two special symbols meaning reject and accept respectively. We

define x
?
= t to be > if x = t, otherwise it is defined to be ⊥. For a set X , X

$←− X
means that X is chosen uniformly from the set X and it is independent to all
random variables defined so far.

2.2 (Almost-XOR) Universal Hash Functions

An n-bit hash function H is a (K,D)-family of functions {Hk := H(k, ·) : D →
{0, 1}n}k∈K defined on its domain or message space D and indexed by the key
space K.

Definition 1 (ε-AXU hash function [24]). A (K,D)-family H is called ε-
Almost-XOR Universal (or AXU, in short) hash function, if for any two
distinct x and x′ in D and a δ ∈ {0, 1}n, the δ-differential probability

diffH,δ[x, x
′] := PrK [HK(x)⊕HK(x′) = δ] ≤ ε

where the random variable K is uniformly distributed over the set K.

Unless mentioned explicitly, we always mean key K to be chosen uniformly from
its key space K. The maximum δ-differential probability over all possible of two
distinct inputs x, x′ is denoted by ∆H,δ. The maximum differential probability
∆H := maxδ∆H,δ. If ∆H ≤ ε then we call the hash function to be a ε-AXU
Hash function. Multi-linear hash [13, 25], pseudo-dot-product or PDP hash [28,
13, 9, 16], PHASH [19] etc. are some examples of AXU hash functions.

Universal Hash Function. When δ = 0, the 0-differential event is equiv-
alent to collision. So we write diffH,0[x, x′] and ∆H,0 by collH [x, x′] and collH
respectively and we call them collision probabilities.

Definition 2 (ε-universal hash function). A hash family H is called ε-
universal (or ε-U) if collH := maxx 6=x′ PrK [HK(x) = HK(x′)] ≤ ε.
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2.3 Message Authentication Code or MAC

Informally a message authentication code or MAC allows parties to share a secret
common key k (chosen uniformly from the key space) to authenticate the data
they send to each other. MAC in principle works as follows: The sender applies a
tag generation algorithm TG to key k and a message m to generate a tag t, and
send (m, t) to the receiver. Bob upon receiving the message-tag pair (m, t) applies
verification algorithm VF to the key k and the received (m, t) pair. Verification
algorithm returns > or ⊥ to indicate whether the received message-tag pair is
considered to be authentic or not. Formally, we define MAC as follows.

Definition 3 (MAC or Message Authentication Code). A MAC scheme
Π defined over a message space M, a key space K and a tag space T is a pair
(TG,VF) of algorithms.

1. Tag generation algorithm: TG is a (possibly probabilistic) algorithm
from K×M to T . A pair (m, t) is called valid for a key k if Pr[TG(k,m) =
t] > 0, otherwise it is said to be invalid.1

2. Verification algorithm: VF is a deterministic algorithm from K×M×T
to {>,⊥} such that for all valid pair (m, t) for a key k, VF(k,m, t) = >.

We say that a MAC is complete if it satisfies the completeness condition - for all
invalid pair (m, t) for k, VF(k,m, t) = ⊥. A MAC algorithm is called determin-
istic if its tag generation algorithm is deterministic. In this case, one can always
define a complete MAC by defining verification algorithm as

TG(k,m)
?
= t.

A probabilistic MAC, on the other hand, returns a probability distribution on the
tag space T for every pair (k,m) ∈ K×M. To distinguish it from a deterministic

MAC, we sometimes denote a probabilistic MAC as a pair Π$ = (TG$,VF). A
probabilistic algorithm chooses a random coin R uniformly from a coin space
R and then apply some deterministic algorithm. We also write a probabilistic
tag-generation algorithm, abusing notation, as TG$(k,m;R) where TG$(·, ·; ·) is

the underlying deterministic algorithm of TG$(·, ·).
We say that a probabilistic MAC is coin-explicit MAC if there is a deter-

ministic algorithm, called core-tag generation, cTG : K ×M × R → T ′ such
that

TG$(k,m; r) = (r, cTG(k,m, r)).

Similar to a deterministic MAC, one can define a verification algorithm appro-
priately to convert a coin-explicit MAC into a complete MAC. For example, a

verification algorithm on input (k,m, (r, t′)), returns (cTG(k,m, r)
?
= t′).

Security Definitions of MAC. We define two types of security notions - (a)

1 Here the probability is computed under randomness, if any, of the tag-generation
algorithm. In case of deterministic algorithm, we can ignore probability and simply
write it as TG(k,m) = t.



Title Suppressed Due to Excessive Length 7

weak unforgeable or UF and (b) strong unforgeable or SUF. To define
these security notions, let us first define an experiment Exptype

A,Π where type ∈
{UF,SUF}. The experiment basically runs an adversary A interacting with the
tag generation TGk(·) = TG(k, ·) and verification oracle VFk(·, ·) = VF(k, ·, ·)
where k is sampled uniformly from the key space in the very beginning of the
experiment and remains fixed throughout. We say that a verification query (m, t)
is trivial if t is obtained in a previous tag generation oracle with m as a query. In
this case, clearly verification oracle returns >. In case of a deterministic MAC,
a tag generation query m is trivial if it is queried before. Conventionally, we
assume that all adversaries in this paper make no trivial queries. When
type = UF, the adversary is not allowed to make verification query (m, t) where
m has been queried to the tag generation oracle. However, this constraint is
not present for SUF experiment. Finally, the experiment returns 1 if A obtains
> from any one of the verification oracle call, otherwise it returns zero. The
advantage of A in forging the MAC Π is defined as

Advtype
Π (A) := Pr[Exptype

Π,A = 1].

The maximum advantage of forging Π is defined as

Advtype
Π (qm, qv, t) := max

A
Advtype

Π (A)

where maximum is taken over allA which makes at most qm many tag generation
oracle and qv many verification oracle queries and runs in time at most time t.
A MAC algorithm Π is called (ε, qm, qv, t)-type MAC if Advtype

Π (qm, qv, t) ≤ ε.
For an unbounded adversary, we may skip the time parameter t.

Experiment Exptype
A,Π

1. initialize k
$←− K; f ← 0; list L = ∅;

2. run A;
-(responses of queries described below)

3. return f ;

On a non-trivial verification
query (M,T )

1. b← VF(M,T );
2. if b = > then

if type = SUF or M 6∈ L
then f = 1;

3. return b;

On tag-generation query
M

1. T
$←− TG(M);

2. L = L ∪ {M};
3. return T ;

Fig. 2.1: The experiment describes interaction between A and a MAC Π.
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2.4 Pseudo-Random Function or PRF and its Variants

Let F := {fk : k ∈ K} be a finite function family in which each function is

indexed by a key k ∈ K and ∀k ∈ K, fk : X → Y . By f
$←− F , we mean f = fk

where the key k
$←− K. We write Func[X,Y ] to denote the set of all functions from

a finite set X to a finite set Y . A function RF is said to be a random function if
RF is sampled uniformly from the set Func[X,Y ].

Distinguishing Game. Consider two classes of functions C0 and C1. In a
simple distinguishing game, the oracles O0 and O1 behave as follows: for

b ∈ {0, 1}, Ob samples fb
$←− Cb and simulates it. The challenger chooses a

b ∈ {0, 1}, and the adversary A is allowed to make q queries x1, . . . , xq to Ob,
which simply returns fb(x

1), . . . , fb(x
q), respectively. Note that A is allowed to

make these queries adaptively, i.e., for 2 ≤ i ≤ q, he can choose xi after observ-
ing fb(x

1), . . . , fb(x
i−1). A finally returns a b′ ∈ {0, 1}, and wins if b′ = b. In

this paper, we’ll only be concerned with simple distinguishing games. Conven-
tionally, O0 imitates a random function RF, and is called the ideal oracle, and
O1 imitates a certain construction, and is called the real oracle.

For an adversary A interacting with oracles either O0 or O1, we define the
distinguishing advantage of A as

AdvO0

O1
(A) := |Pr[AO0 returns 1]− Pr[AO1 returns 1]|.

The above definition of advantages can be similarly extended for two or more
oracles.

PRF Advantage. Given an oracle adversary A, we define prf-advantage of A
against a keyed function FK as

Advprf
F (A) = AdvRF

F (A) = |Pr[AFK = 1]− Pr[ARF = 1]|.

Let Advprf
F (q, t) denote maxAAdvprf

F (A) where maximum is taken over all ad-
versaries A running in time t, making at most q queries.

Weak-PRF [20]. Let F be a finite function family and Func[X,Y ] be the set
of all functions from X to Y . Given an oracle adversary A that cannot choose
and submit the domain point of the oracle but pings the oracle. Real oracle
will choose the domain point x at random and evaluates the function at that
point and return it to the adversary. We define weak-prf or wprf advantage of
A against a keyed function FK as Advwprf

F (A) = |Pr[AFK = 1]− Pr[ARF = 1]|.
Let Advwprf

F (t, q) denote maxAAdvprf
F (A) where maximum is taken over all

adversaries A running in time t, making query at most q.
Weak-prf plays important role defining one-time padding based encryption.

Given that FK is a weak-prf, one can define an encryption of a message m as
(r, FK(r)⊕m). The same idea has been also used for computing hash-then-mask
based probabilistic MAC.

Probabilistic PRF (pPRF). In this paper we consider a little bit stronger
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version of weak PRF in which adversary has control on a part of the input. Let
FK be a keyed function which has a pair of inputs from R×X and returns an
element from Y . Informally, the first input represents the random coin whereas
the second one is some message or message-dependent part. So we allow adver-
sary to choose only the second input while making queries to this keyed function.
More precisely, let $ denote a random source that on every query, returns a ran-
domly chosen element from R. Let F $

K(m) = (R,FK(R,m)) where R is chosen

randomly fromR. The corresponding ideal oracle is RF$ := $‖RF which on query
m returns (R,RF(R,m)) where RF is the random function from R × X to Y .
Then we define the pPRF-advantage of an adversary A as

AdvpPRF
F $ (A) := AdvRF$

F $ (A).

Let AdvpPRF
F $ (q, t) denote maxAAdvpPRF

F $ (A) where maximum is taken over all
adversaries A running in time t, making at most q queries.

2.5 Coefficients H Technique

In this section we briefly discuss coefficients H technique [23] due to Patarin.
It is also known as Decorrelation Theorem due to Vaudenay [27]. Suppose an
adversaryA interacts with one of the two oracles - real oracleOre and ideal oracle
Oid. For notational simplicity we write Xre (resp. Xid) to denote the random
variable representing real transcript τOre

A and ideal transcript τOid

A respectively
whenever the adversary as well as the real and ideal oracles are well understood.
A transcript τ is said to be attainable w.r.t. ideal if the probability of realizing
τ is positive in the ideal world i.e., Pr[Xid = τ ] > 0. Let Θ be the set of all
attainable transcripts w.r.t. ideal. Following these notations we state coefficients
H technique.

Theorem 1 (Coefficients H Technique). Let Θ = Θgood t Θbad (disjoint
union) be some partition of the set of attainable transcripts. Suppose there exists
εratio ≥ 0 such that for any τ ∈ Θgood,

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Xid ∈ Θbad] ≤ εbad. Then,

AdvOid

Ore
(A) ≤ εratio + εbad. (1)

When Oid is the random function RFX and Ore is some keyed construction in our
interest defined over the domain X then the above Eq. 1 says that Advprf

Ore
(A) ≤

εratio + εbad.

For any fixed transcript τ , we also say the probabilities Pr[Xre = τ ] and Pr[Xid =
τ ] are real and ideal interpolation probabilities respectively. The proof of the
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theorem can be found in [23] and so we skip the proof. To apply Coefficients H
technique,

(A) we need to identify a set of bad transcripts Θbad which is realized with
negligible probability while interacting with ideal oracle, and

(B) we have to show that for any fixed good (attainable) transcript τ , the
ratio of real and ideal interpolation probabilities is at least a number which is
very close one.

2.6 Result on the connection between Unforgeability and
Pseudorandomness

We first describe some tools which would be used to prove the rest of results. We
first show how to bound SUF advantage in terms of distinguishing advantages
of two pairs of oracles. By abusing notation, let ⊥ be an oracle which returns
⊥ on every verification query. Note that we assume all adversaries make only
nontrivial queries. We recall that RF$ returns (R,RF(R,m)) on a query m where
R is chosen randomly on every query (i.e. it is a salt).

Lemma 1. Let Π$ = (TG$
k,VFk) a probabilistic MAC. Then,

AdvSUF
Π$ (qm, qv, t) ≤ AdvRF$,⊥

TG$
K,VFK

(qm, qv, t).

Proof. Let A be a forgery which makes qm and qv queries to left and right
oracle respectively. Here the left oracle is the tag generation oracle and the right
oracle is the verification oracle. Moreover, it runs in time t. Suppose the SUF-
advantage of A in forging the MAC Π$ is at least ε. We construct the oracle
algorithm B, having access to a pair of oracles. It first runs A. The responses of
A is computed by forwarding its queries to B’s oracles. At the end of the game
B returns a bit b′ where b′ is 1 if ∃1 ≤ i ≤ qv such that bi = >, else b′ = 0 and
bi denotes the response of ith verification query. Having defined the interactive
game, we now calculate the distinguishing advantage of B as follows

AdvRF$,⊥
TG$

K,VFK
(qm, qv, t) = Pr[ATG,VF = 1]− Pr[ARF$,⊥ = 1]

= Advmac(A)− 0

≥ ε

Note that, Pr[ARF$,⊥ = 1] = 0 as the ideal oracle does always return ⊥. The
result follows by taking maximum over all adversaries A. ut

We would like to note that this result does not contradict our impossibility result
described in Sect. 4. Due to this lemma, it is sufficient to bound the distinguishing
advantage of distinguishing two random system i.e (TG$

k,VFk) and (RF$,⊥) to
derive the bound on the advantage of the probabilistic MAC Π$. To bound the
distinguishing advantage we use Coefficients H technique [21].
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2.7 Results on Alternating Cycle

In this section we discuss some useful lemmas which will be used to bound the
PRF/pPRF/MAC advantage of six constructions that we have shown in Sect. 5.

Definition 4 ([1], [22]). Let us consider a sequence of pair of values τ from
the set {0, 1}n where

τ := {(x1, y1), (x2, y2), . . . , (xq, yq)},

such that each xi, yi ∈ {0, 1}n. We will say that we have an alternating-cycle in
τ of length k where k ≥ 2 and k is an even integer, if we have k pairwise distinct
indices i1, i2, . . . , ik such that xi1 = xi2 , yi2 = yi3 , xi3 = xi4 , ..., xik1 = xik , yik =
yi1 .
We will say that we have an alternating-line in τ of length k if we have k + 1
pairwise distinct indices such that xi1 = xi2 , yi2 = yi3 , xi3 = xi4 , . . . , yik1 =
yik , xik = xik+1

, when k is odd. If k is even, then the alternating-line of length
k exists if there exists k + 1 pairwise distinct indices such that xi1 = xi2 , yi2 =
yi3 , xi3 = xi4 , . . . , xik1 = xik , yik = yik+1

(x1, y1) (x2, y2)

(x3, y3) (x4, y4)

Fig. 2.2: Alternating Cycle of length 4. Red line indicates first coordinate matches.
Green line indicates second coordinates matches

Lemma 2 ([22]). Let f and g be two n-bit independent and uniformly dis-
tributed random functions. Let us consider a transcript τ = {(xi, yi, ti)1≤i≤q}
which does not contain any alternating cycle. Then

Pr[f(xi)⊕ g(yi) = ti, 1 ≤ i ≤ q] =
1

2nq
.

The proof of this can be found in [22]. As a corollary of the above lemma we
have the following result.

Lemma 3. Let SUMf,g := f(x) ⊕ g(y) then for any adversary A that queries
the oracle SUMf,g such that the queries to the oracle do not form an alternating
cycle (we call such an adversary NAC-restricted adversary), we have

Advprf
SUM(A) = 0.
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The above lemma says that if C is a construction that uses the SUM function,
then any adversary A that wants to break the prf-security of C, then we have

Advprf
C ≤ Pr[Alt-Cycle in the input to SUM function].

We shall use this implicitly later in this section, to bound the pPRF and MAC
advantage of constructions C5 and C6.

3 Paradigm of Constructing a Secure MAC

In this section, we briefly recall some of the well known paradigm for constructing
a secure MAC. The first basic result concerning to construct a secure MAC is
that a secure PRF is a secure deterministic MAC. It has been shown [5], if Fk
is a secure PRF, then one can use Fk as a secure MAC. Let F : K×M→ T be
a ε-PRF. Then we define a deterministic MAC ΠF = (TG = F,VF) (where VF
is defined naturally to make it complete MAC as described before). It is shown
in [5] that ΠF is also MAC. More formally, we have the following result.

AdvSUF
ΠF (qm, qv, t) ≤ Advprf

F (qm + qv, t
′) +

qv
T
, t′ ≈ t. (2)

From the above lemma, if a construction Fk is proven to be a secure PRF then
ΠF is also a MAC. This is true only for a deterministic MAC. In this regard,
we would like to mention here that for a probabilistic MAC we do not know any
such example of ideal object such that the distinguishing advantage can be used
to bound the MAC advantage. In the following section, we will show an impos-
sibility result showing that no such ideal system exists so that indistinguishable
to this would imply secure probabilistic MAC.

Composition Result. Composition Result is one of the approaches to con-
struct a variable input length PRF from a fixed input length PRF and a universal
hash function as shown in [26]. More formally,

Theorem 2 ([26]). Let GK1,K2
:= FK2

◦ HK1
: D → {0, 1}n where H is an

m-bit ε-universal hash defined over D and F be a keyed function family from
{0, 1}m to {0, 1}n. Then,

Advprf
G (t, q) ≤ Advprf

F (t′, q) +

(
q

2

)
× ε,

where t′ = t+O(qTh) and Th denotes the maximum time for computing H.

Hash-then-Mask Result. A common approach for building an IV based MAC
is due to Carter and Wegman [11] construction called Hash-then-Mask. It
uses an ε-AXU hash function H : {0, 1}∗ → {0, 1}n and a n-bit pseudo random
function F : {0, 1}n → {0, 1}n.
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Theorem 3 ([18]). Let GK1,K2 := FK2⊕HK1 : IV×{0, 1}∗ → {0, 1}n which is
defined as GK1,K2

(IV,m) := FK2
(IV )⊕HK1

(m). We denote GK1,K2
as G$

K1,K2

when IV is chosen uniformly at random from a random source. Similarly, we
denote GK1,K2

as Gctr
K1,K2

when IV is a nonce or counter. Then we have the
following

1. Advmac
G$
K1,K2

(qm, qv) ≤ Advprf
FK2

(qm + qv) +
q2m
2n + qv

2n

2. Advmac
Gctr
K1,K2

(qm, qv) ≤ Advprf
FK2

(qm + qv) + qv
2n

3.1 Categories of MAC

We have seen in the last section that a MAC could be deterministic or probabilis-
tic depending on whether the tag generation algorithm being deterministic or
probabilistic. Apart from these two categories of MAC, we have a stateful-MAC
in which the signer maintains a state across each consecutive signing requests.
The main reason of introducing state is purely for achieving higher security from
efficient constructions. The internal state is maintained in such a manner so that
the inputs of underlying ideal object are not getting repeated. Probabilistic MAC
also tries to do same, however, at the cost of some probability the inputs can
remain distinct. Here are some examples of different MAC categorized according
to the presence of random salt or counter.

1. Stateless Deterministic MAC (e.g, CBC-MAC [5], PMAC [10], HMAC [2],
LightMAC [17], PCS-MAC [6] etc.).

2. Stateless and Probabilistic MAC (e.g, MACRXt[3], XMACR [4], EhtM [18],
RWMAC [18], RMAC [14], FRMAC [15] etc.).

3. Stateful and Deterministic MAC (e.g XMACC [4], WMAC [8] etc.).

There can be one more possibility, namely stateful and probabilistic MAC. How-
ever, this is not useful in practice as it costs both the randomness and internal
state.

3.2 Some Known Constructions of Probabilistic MAC

XOR-MAC. XOR-MAC [4] is a simple, parallelizable and incremental MAC
scheme, proposed by Bellare et al, which is proven to be more secure than pop-
ularly used CBC-MAC. Two versions of the XOR-MAC have been proposed,
namely (a) stateless probabilistic XOR-MAC (or XMACR) and (b) stateful
XOR-MAC (or XMACC). As our main focus is to study probabilistic MAC,
we only describe XMACR (the details of XMACC can be found in [4]).

XMACR. XMACR is a probabilistic XOR-MAC in which a delta universal
hash function H is applied on the message which is xor-ed with the output of
f(r) where f is a pseudo-random function and r is a uniformly chosen string.
More formally, let f be a keyed function with input length d and output length
n. Fix a parameter b ≤ d − 1 where b is called the block-length. It is assumed
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that the maximum length of the message that can be processed is up to b2d−b−1.
To process a message m, first m is padded to make the length of m multiple of b.
Then m is parsed as m1||m2|| . . . ||mL such that for each i, |mi| = b. Tag genera-
tion algorithm chooses a d−1 bit string r uniformly at random from a coin space
R. We define H(m) as follows : H(m) = ⊕Li=1fk(1||〈i〉d−b−1||mi) where 〈i〉c is
the c-bit binary representation of i. By following hash-then-mask paradigm, tag
t is computed as (r, f(0||r)⊕H(m)) and send it to the receiver with the corre-
sponding message m. Note that this is a counter based MAC algorithm in which
each message block mi is appended with a fixed length encoding of the counter
value 〈i〉c. In [4], the following result has been proved.

AdvSUF
XMACR(qm, qv, t) ≤ Advprf

f (qm + qv, t
′) +

2q2
m

2d
+
qv
2n

where t′ = t+O(qm + qv).
It is to be noted that using counter has a positive side in terms of pro-

viding better security than probabilistic MAC scheme. But in contrary to this
fact, we also have discussed the possible disadvantages and infeasibility of using
counter in implementing stateful MAC scheme. Using a random input instead
of a nonce makes the degradation of the security to birthday bound. Thus the
general question arises to what extent counter is to be used to beat the birthday
bound security of the MAC. One possible approach is to use the pseudo random
function with larger domain. For example instead of using f : {0, 1}n → {0, 1}m,
we use g : {0, 1}2n → {0, 1}m. Using input length doubling transformation in
general is inefficient. Bellare et al. in [3] have suggested a parity method in which
the pseudo random function f is evaluated at several distinct random points and
take the parity of result.

Finally, Minematsu in [18] proposed a probabilistic MAC scheme known as
Enhanced-Hash-then-Mask (EHtM) which has been proven secure up to q ≈ 22n/3

tag generation queries and still it uses only n-bit salt.

Enhanced Hash then Mask (EHtM). Let f1 and f2 be two n-bit pseduorandom
function i.e. fi : {0, 1}n → {0, 1}n, i = 1, 2 and let H : {0, 1}∗ → {0, 1}n be an
ε(`)-almost xor-universal (AXU) hash function. EHtM works as follows : Given
a message m, it first samples a n-bit string r uniformly at random from the
coin space R, and then pads the message m to make its length multiple of b.
To generate the n-bit tag, it applies the hash function H to m and the output
is xor-ed with r. f2 is applied on the result r ⊕ H(m) which is again xor-ed
with the output of f1(r). Then it sends the tuple (r,m, t) to the receiver where
t = f1(r)⊕ f2(r ⊕H(m)). Therefore,

EHtM(r,m) := f1(r)⊕ f2(r ⊕H(m)),

where r ∈ R is independent and uniformly sampled. In [18] it has been proved
that the construction is secure up to q � 22n/3 queries. We note that the security
proof is not tight as it has not been supported by any 22n/3 query complexity
attack.
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4 Impossibility Result on Probabilistic MAC

We know that pseudorandom function implies unforgeable MAC for a determin-
istic tag generation algorithm. In this section we ask the same question for a
probabilistic MAC.

Let us first consider a coin-explicit probabilistic MAC defined as (r, cTG(r,m)).
As deterministic MAC, one can similarly prove the security of MAC given that
cTG is a PRF. More formally, we have the following result, for the sake of com-
pleteness proof of which can be found in Sec. A of the supporting material.

Theorem 4. For any construction cTGk, let TG denote the coin-explicit tag
generation algorithm. Let Π be the probabilistic the complete MAC corresponding
to this tag generation algorithm. Then,

AdvSUF
Π (qm, qv, t) ≤ Advprf

cTG(qm + qv, t
′) +

qv
2n
,

where t′ ≈ t.

If we use a PRF core tag generation algorithm, then there is no need to use
probabilistic MAC. We can simply use it with a fixed random coin as a deter-
ministic MAC and we still achieve same security bound as guaranteed by the
above result. Moreover, we can have better SUF-security than what is ensured
by PRF security. Consider the following example.

Example 1. It is easy to see that the core-tag generation algorithm of XMACR
is not PRF. In fact one can make four queries (r,m), (r,m′), (r′,m) and (r′,m′).
The sum of the output of these queries must be zero for the core-tag generation
algorithm of XMACR. However, this can happen with probability 2−n for ideal
oracle. Similarly, Enhanced Hash-then-Mask or EHtM is shown to have at least
22n/3 security. However, the core-tag generation algorithm can have at most 2n/2

PRF security (make 2n/2 queries with same r and so expect collision more than
the ideal case). We see all these attacks later in Sect. 6.

Now we come back to our original question of the section :

Do we have any ideal system, indistinguishable to which ensure SUF
or UF security?

Let us consider the ideal system RF$(m) = (r,RF(r,m)) which has been con-

sidered to define probabilistic PRF, where r
$←− R. It is easy to see that this is

indeed a SUF secure MAC. In fact, for any qm and qv, we have

AdvSUF
RF$ (qm, qv, t) ≤

qv
2n
.

To prove it, one can directly apply the theorem 4. Even though it is a perfectly
secure MAC, we can define an UF-insecure construction indistinguishable to
this ideal construction. Basically, we can modify the definition of the core-tag
generation part for exactly one choice of r and m. For example, let F (m) is same
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as before except that when r = m = 0, it returns (0, 0). In other words, (0, 0)
is a valid tag for the message 0. As it behaves exactly same as the ideal system
except at the point r = 0, the maximum distinguishing advantage of this system
would be at most q/2n where q is the number of queries. The same argument
can be applied for any other ideal system we can imagine. Thus, we have the
following result.

Theorem 5. Let Imac = (Ik,Vk) be a mac construction (a candidate choice for
an ideal system) based on a tag generation construction I. Suppose for all k, there
exists tk such that Pr[Ik(m) = tk] ≤ 2−s for some s > 0. Here the probability is
computed under random coin of I. Then there exists I′mac = (I ′k,V ′k) such that

AdvSUF
I′ (0, 1, t) = 1 and AdvII′(q) ≤ 2−s.

Proof. We follow exactly the same idea used for the ideal candidate to define
probabilistic PRF. Fix any t∗. We modify the probability distribution on the
output of the tag generation algorithm as follows. Whenever tk 6= t∗, we define
Pr[I ′k(m) = t∗] = Pr[Ik(m) = t∗] + Pr[Ik(m) = tk]. Since the second term
is small we are actually changing negligible amount on the probability at t∗.
To make I ′ probability mass function, we define Pr[I ′k(m) = tk] = 0. We can
define the verification function V ′ accordingly. It can be checked that information
theoretically, the distribution of I and I ′ is at most 2−s, i.e. AdvII′(q) ≤ 2−s.
Now we can construct a forgery which returns (m, t∗). As it is valid for all key
k, it forges with probability one. ut

Any ideal system capturing a probabilistic MAC with random coin of size d
must have s ≈ d. Thus, the above result says that no such ideal system for tag
generation can exist to bound the SUF security.

5 Hash-then-Mask Probabilistic MAC: Candidate
Schemes

In this section we explore the general constructions for hash-then mask prob-
abilistic MAC. We start with some basic and trivially insecure schemes and
gradually build towards a secure probabilistic MAC. To understand the effect
of an AXU-hash, for every choice of hash-then-mask, we also consider a variant
without applying hash. Here we need to assume that the message size is n. The
simplest approach to get a MAC is: mask the message m (or H(m)) with f(r)
where f is a random function. These schemes are illustrated as C1 and C2 in
Fig. 1.1. Obviously these simple schemes are not secure PRF. But is there any
scope of getting adequate pPRF or MAC security? The answer is a partial yes.
It is not hard to observe that C1 and C2 have birthday bound pPRF security.
This is solely based on the randomness of f . In terms of the MAC security we
can have trivial forgery attack on C1 with probability 1. Construction C2, is
a generalization of XMACR [4]. Bellare et al. proved that the MAC advantage
of XMACR has birthday bound security in terms of number of tag generation
queries. We show that the bound is tight by virtue of our results on C2. In
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order to improve the security one might think of applying an independent uni-
form random function on the message input. This is illustrated as C3 and C4 in
Fig. 1.1. But as it turns out this will not elevate the security, rather the same
attacks will work as in the case of C2 which is discussed in Sect. 6. In order
to achieve beyond the birthday bound security, somehow we must have some
interdependency between inputs of f(·) and g(·) which will make it harder to
detect some pattern in the output. Mixing the two inputs might be a plausible
approach to achieve this dependency. This approach is followed in C5 and C6
as illustrated in Fig. 1.1. C6 scheme was originally presented by Minematsu [18]
and C5 is the variant of C6 in which hash function H is not applied. Among
all these six constructions, C6 has PRF security. Both C5 and C6 have beyond
birthday bound pPRF security in terms of the number of queries. We show that
C6 carry forwards its pPRF security to MAC security. Quantitatively, we show
that C6 is a beyond the birthday secure MAC till 23n/4 tag generation queries
which is a significant improvement over 22n/3 bound shown by Minematsu [18].
Furthermore, all our bounds are tight as we give supporting attack strategies
(see Sect. 6) that achieve the claimed advantages.

C1: f(r)⊕m

1. Input: m ∈ {0, 1}n.
2. Output: t ∈ {0, 1}n.

3. Choose r
$←− R.

4. Set x⇐ f(r).
5. Set t⇐ x⊕m.
6. return (r, t).

C3: f(r)⊕ g(m)

1. Input: m ∈ {0, 1}n.
2. Output: t ∈ {0, 1}n.

3. Choose r
$←− R.

4. Set x⇐ f(r).
5. Set y ⇐ g(m).
6. Set t⇐ x⊕ y.
7. return (r, t).

C5: f(r)⊕ g(r ⊕m)

1. Input: m ∈ {0, 1}n.
2. Output: t ∈ {0, 1}n.

3. Choose r
$←− R.

4. Set x⇐ f(r).
5. Set y ⇐ r ⊕m.
6. Set z ⇐ g(y).
7. Set t⇐ x⊕ z.
8. return (r, t).

C2: f(r)⊕H(m)

1. Input: m ∈ {0, 1}`.
2. Output: t ∈ {0, 1}n.

3. Choose r
$←− R.

4. Set x⇐ f(r).
5. Set y ⇐ H(m).
6. Set t⇐ x⊕ y.
7. return (r, t).

C4: f(r)⊕ g(H(m))

1. Input: m ∈ {0, 1}`.
2. Output: t ∈ {0, 1}n.

3. Choose r
$←− R.

4. Set x⇐ f(r).
5. Set y ⇐ H(m).
6. Set z ⇐ g(y).
7. Set t⇐ x⊕ z.
8. return (r, t).

C6: f(r)⊕ g(r ⊕H(m))

1. Input: m ∈ {0, 1}`.
2. Output: t ∈ {0, 1}n.

3. Choose r
$←− R.

4. Set u⇐ f(r).
5. Set v ⇐ H(m).
6. Set w ⇐ r ⊕ v.
7. Set x⇐ g(w).
8. Set t⇐ u⊕ x.
9. return (r, t).

Table 2: Candidate Tag Generation Algorithms Based on Hash-then-Mask
Paradigm. The algorithms correspond to the illustrations in Fig. 1.1. f and g are two
independent n-bit to n-bit random functions and H is a ε-AXU hash function with n
bit output. Scheme C1, C3 and C5 take fixed length n bit message as input, where as
schemes C2, C4 and C6 take messages of arbitrary length which is at most ` as input.

6 Attack Complexity

In earlier sections we defined 6 candidate schemes for hash-then-mask type prob-
abilistic MAC constructions. In this section we provide some attack algorithms
on these constructions. This would provide lower bounds of advantage for these
schemes with respect to PRF, pPRF and MAC security.
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6.1 PRF, MAC and pPRF Attack on C1

Let us first start with the simplest construction C1 whose core-tag is defined as
m⊕f(r). Clearly, it is neither PRF nor MAC. A PRF distinguisher simply queries
with (r1,m1) and (r1,m2) and checks whether t1 ⊕ t2 = m1 ⊕m2 where t1 and
t2 is the response obtained from the first query and second query respectively.
Similarly, a forgery attacks works as follows: make a query m and then forge
with (r,m⊕∆, t⊕∆) where (r, t) is the response obtained from the first query
and ∆ is some non zero constant. A pPRF distinguisher makes q = 2n/2 distinct
queries m1, . . . ,mq and observes (r1, t1), . . . , (rq, tq). We expect a collision on
the observed salts ri’s. Suppose ri = rj , i 6= j. Then the event ti⊕ tj = mi⊕mj

must hold whenever it interacts with the real construction. However, in case of
the ideal oracle, ti’s are uniformly and independently distributed with ri’s and
so the above event can happen with probability 2−n.

6.2 PRF Attack on C2-C6

In this section we discuss the general PRF attack idea for construction C2,C3,C4,C5
and C6. The PRF attack idea for C2,C3,C4 and C5 is based on the formation
of an alternating cycle of length 4 and requires 4 queries to distinguish it from
the ideal oracle with probability 1 whereas for C6, we need at least 2n/2 many
queries to distinguish it from ideal oracle with high probability.
medskip
Formation of Alternating Cycle of Length 4. The core-tag of rest of the
constructions (C2-C6) can be viewed as SUMf,g(r, y) = f(r)⊕g(y) where f and
g are some functions (sometimes g is an identity function) and y can be message
m or hash output h of the message or it could be these two values masked by
r. (e.g for construction C2 : g is identity function and y is the hash output of
message. For consruction C3 : y is the message, for C4 : y is hash output of
the message, for C5 : y is the message masked by the random string and for
C6 : y is the hash output of the message masked by the random string). When
y = m or y = m ⊕ r, the adversary knows immediately the values of y after
it observes the output. However, for other cases, it does not know directly the
value of y. The basic idea behind the most of the attacks is the following: Ad-
versary will try to establish an alternating square which is a four tuple of the
form ((r1, y1), (r1, y2), (r2, y1), (r2, y2)). This is shown in the following figure:

(r1, y1) (r1, y2)

(r2, y1) (r2, y2)

Fig. 6.1: An alternating square or cycle of length 4.
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In general we draw a continuous (or dotted) line between two nodes whenever r
(or y respectively) values are equal. Whenever an alternating square is formed,
we have

4∑
i=1

SUMf,g(ri, yi) = 0n.

This event can be used as a distinguishing event whenever the values of ri, yi’s
present in the alternating cycle (definition can be found in Def. 4) are indepen-
dent of the final outputs. In this case, the above event happens for ideal oracle
with probability 2−n as the final outputs ti’s are chosen independently.

The idea of forming an alternating cycle of length 4 is directly applied to the
construction C2, C3 and C4 to launch PRF attack by just making only 4 distinct
queries (r1,m1), (r1,m2), (r2,m1) and (r2,m2) to form an alternating square on
the values of (ri, yi).

However for C4, we do not have to know the value of yi as yi = H(mi). However,
we know that the alternating square is formed.

PRF Attack on C6. In C6 the adversary can observe for collisions in the
underlying H function. The adversary fixes the r value and uses q random mes-
sages. With high probability there will be a collision in the tag values, say ti
and tj . Therefore either H(mi) = H(mj) or there is a collision in g. The ad-
versary can detect the first case by querying (r′,mi) and (r′,mj). If t′i = t′j ,
then the adversary is interacting with C6. The adversary can eliminate any false
positives arising due to collisions in g, by constant number of repeatitions of the
experiment. Clearly the adversary’s advantage is lower bounded by the collision
probability on ti values, i.e., Ω(q2/2n).

6.3 pPRF Attack on C2,C3 and C4

We try to ensure alternating square by finding collision on ri values by querying
2n/2 pair of messages m and m′. Once we observe two collision pairs, say ri = ri′

and rj = rj′ such that ri, rj are random coins for m and ri′ , rj′ are random coins
of m′, we know that alternating square is formed for these four queries. Sum of
the tag-output for these four queries would be zero with probability one (or 2−n)
for real construction (or the ideal respectively).

6.4 Forging Attack on C2, C3 and C4

Forging attacks for C2, C3 and C4 are same as the attack described in [4] for
XOR-MAC construction (i.e. C2). For the sake of completeness we briefly de-
scribe the attack for C2. We make q = 2n/2 distinct queries m1, . . . ,mq and
observe ri = rj with i 6= j. This would leak the value of H(mi) ⊕ H(mj),
say δ. Now we make one more query mi and obtain response (r, t). We can forge
(mj , (r, t⊕δ)). The exactly same attack can be carried for C3 and C4. In terms of
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A:

1. for fix m1 and i = 1 to q/2 do
(a) m1 ⇒ O

(ri, ti)⇐ O.
(b) add (ri,m1, ti) to L1 indexed on ri and ti.

2. for fix m2 and i = 1 to q/2 do
(a) m2 ⇒ O

(ri, ti)⇐ O.
(b) add (ri,m2, ti) to L2 indexed on ri and ti.

3. for ri ∈ L1 do
(a) if ri ∈ L2 then let (rj ,m2, tj) be that entry.
(b) add (ri, ti, tj) to C as (r, tα, tβ).

4. if |C| > 2 then
(a) for each pair of ci, cj ∈ C

check tαci ⊕ t
β
ci = tαcj ⊕ t

β
cj

(b) if equal for at least two such pairs return 1.
5. return 0.

Fig. 6.2: pPRF adversary A for C5.

the alternating square, we make three sides of an alternating square (also called
alternating path) by making tag generation queries and then we construct a
forging attempt which completes the alternating square.

6.5 pPRF Attack on C5 and C6

Suppose the adversary is interacting with an oracle O. We describe an adversary
A in Fig. 6.2 that distinguishes C5 in q queries with high probability. For tαci ⊕
tβci = tαcj ⊕ t

β
cj we have either rci ⊕ rcj = m1 ⊕m2 or a collision on g. The false

positives due to collisions on g can be eliminated by repeating the experiment a
constant number of times. For the other case we need two r collisions between
L1 and L2 and for those r values rα and rβ we must have rα ⊕ rβ = m1 ⊕m2.
The probability of getting such r values is then bounded by q4/23n. One can
similarly construct an adversary for C6 with similar advantage as in C5.

6.6 Forging Attack on C5 and C6

Forging Attack on C5. Suppose the adversary is interacting with an oracle
O. We describe an adversary A1 in Fig. 6.4 that strongly forges C5 in qm tag
generation queries with high probability. We also show the basic idea of forgery
in Fig. 6.5. Forging requires a colliding r pair (ri, rj) such that ∃ rd ∈ L1 for
which ri ⊕ rd = m1 ⊕m2. This can happen with probability to q3

m/2
2n.

Forging Attack on C6. Suppose the adversary is interacting with an oracle
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r m
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n

C5 : t := f(r)⊕ g(r ⊕m)

m0 m1 (m0 ⊕m1 = δ)

.

.

.
.
.
.

ri rj

rk rl,

ri ⊕ rk = δ

Fig. 6.3: pPRF Attack on C5; Distinguishing Event : If ti⊕ tj ⊕ tk ⊕ tl = 0, output 1.

O. We describe an adversary A2 in Fig, 6.4 that strongly forges C6 in qm tag
generation queries with high probability. The SUF adversary is essentially an
extension of the pPRF adversary that tries to create a new alternating cycle
(and hence a valid forge) using an earlier alternating cycle (from pPRF). The
advantage can be bounded similarly.

7 Security Proof

In this section we show upper bounds of constructions C5 and C6 in terms of
three security notions (PRF/ pPRF/ MAC) we consider. We have already seen
in Sect. 5 that C5 is not a PRF, therefore, we will show the pPRF and MAC
bound of C5 and PRF, pPRF and MAC bound of C6. In this regard, we would
like to mention that as the security bound of some of the constructions are
already known and the security bound of some of the constructions are easy to
observe, those results are shown in Sec. C of the supporting material. In specific,
we show the pPRF and MAC security proof of constructions C1-C4 in Sec. C
of the supporting material. We first observe that except C6, no construction
provides PRF security. So we provide brief sketch of the PRF proof of C6 as its
main idea is similar to that of hash-then-prf result.

7.1 pPRF and MAC Security Proof of Construction C5

We have seen in Sect. 6 with q ≈ 22n/3( ≈ 23n/4) queries, any efficient proba-
bilistic adversary can forge the MAC (break the pPPRF security) respectively of
the construction Ff,g(m) = f(r)⊕g(r⊕m) where f and g are two n-bit random
functions.

In this section we will show that the MAC and pPRF security bound of the
construction is tight by proving the advantage of the MAC is upper bounded by
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A1:

1. choose m1,m2 ∈ {0, 1}n.
2. set δ := m1 ⊕m2.
3. for fix m1 and i = 1 to qm/2 do

(a) m1 ⇒ O
(ri, ti)⇐ O.

(b) add (ri,m1, ti) to L1 indexed on ri
and ti.

4. for fix m2 and i = 1 to qm/2 do
(a) m2 ⇒ O

(ri, ti)⇐ O.
(b) add (ri,m2, ti) to L2 indexed on ri

and ti.
5. for each ri ∈ L1 do

(a) if ri ∈ L2 then let (rj ,m2, tj) be
that entry.

(b) store (ri, ti, tj) in C as (r, tα, tβ).
6. for each rc ∈ C do

(a) search for (rd,m1, td) ∈ L1 such
that rd /∈ L2 ∧ rc ⊕ rd = δ.

(b) if no such rd is found repeat the
experiment.

(c) return (m2, (rd, td ⊕ tαc ⊕ t
β
c )).

A2:

1. for fix m1 and i = 1 to q/2 do
(a) m1 ⇒ O

(ri, ti)⇐ O.
(b) add (ri,m1, ti) to L1 indexed on ri and

ti.
2. for fix m2 and i = 1 to q/2 do

(a) m2 ⇒ O
(ri, ti)⇐ O.

(b) add (ri,m2, ti) to L2 indexed on ri and
ti.

3. for ri ∈ L1 do
(a) if ri ∈ L2 then let (rj ,m2, tj) be that

entry.
(b) add (ri, ti, tj) to C as (r, tα, tβ).

4. if |C| > 2 then
(a) for each pair of ci, cj ∈ C

check tαci
⊕ tβci = tαcj

⊕ tβcj .

(b) if equal compute δ = rci ⊕ rcj .

(c) if all δ’s are distinct then repeat the ex-
periment.

(d) if a δ repeats at least twice
i. for each rc ∈ C do

A. search for (rd,m1, td) ∈ L1

such that rd /∈ L2∧rd⊕rc = δ.
B. if no such rd is found repeat

the experiment.
C. return (m2, (rd, td⊕ tαc ⊕ t

β
c )).

Fig. 6.4: SUF adversary A1 for C5 and A2 for C6.

q3m
22n and advantage of pPRF is upper bounded by q4

23n . The proof for bounding
both the advantage is same, only difference will occur in their corresponding bad
event.

(A) Bounding MAC Advantage of Construction C5. For bounding MAC
advantage we have the following result

Theorem 6. Let fk1 and fk2 be two independently keyed functions. Then we
have

AdvRF$,⊥
C5

(qm, qv, t) ≤ Advprf
fk1

(qm + qv, t) + Advprf
fk2

(qm + qv, t) +
q3
m

22n
+
qv
2n
.

Proof. We prove the theorem using Coefficients H technique. By using hybrid
argument, we can simply assume that C5 is based on two independent random
functions f and g instead of keyed PRF at the cost of Advprf

fk1
(qm + qv, t) +

Advprf
fk2

(qm + qv, t). We apply Coefficients H technique on this hybrid construc-

tion.
We first define a transcript which is equivalent to the definition of view men-

tioned in the discussion related to Coefficient H technique. A transcript is defined
as a pair of input and output that the adversary obtains during the interaction
with the real oracle.
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r m

t
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n

C5 : t := f(r)⊕ g(r ⊕m)

m0 m1 (m0 ⊕m1 = δ)

.

.

.
.
.
.

ri rj

rk

ri ⊕ rk = δ

Forge: (rk,m1, ti ⊕ tj ⊕ tk)

(∵ ti ⊕ tj ⊕ tk = f(rk)⊕ g(m1 ⊕ rk))

Fig. 6.5: Forging Attack on C5

Let τ be a transcript where τ := {(ri,mi, ti)1≤i≤qm , (r̃j , m̃j , t̃j , 0)1≤j≤qv}. A
transcript τ is said to be valid if Pr[τ is realized ] > 0 in real world. Regard to
our construction, a transcript τ is said to be valid if the following conditions hold

1. (ri,mi) = (rj ,mj)⇒ ti = tj , 1 ≤ i ≤ qm
2. (r̃j , m̃j , t̃j) is non-trivial, 1 ≤ j ≤ qv

Clearly, for an invalid transcript τ , Pr[τ is realized ] = 0. Let Θ be the set of all
valid transcripts. Having defined the set of valid transcripts, we identify a set of
good transcripts.

Step I. Identifying Good Transcripts. We identify a set of good transcripts.
A valid transcript τ is said to be bad if the following condition hold:
∃i, j, k such that ri = rj and ri ⊕ rk = mi ⊕mk. Let Θbad ⊆ Θ be the set of all
bad transcripts. Therefore, Θgood := Θ \Θbad be the set of all good transcripts.
Now we make a following claim.

Claim 1 Let τ be a good transcript. We define a set τ
′

corresponding to τ as
follows τ

′
:= {(ri, (ri ⊕mi)}1≤i≤qm . Then τ

′
does not contain any alternating

cycle.

Proof. For the sake of contradiction, let us assume that there is an alternating
cycle in τ

′
, i.e. r1 = r2, r2 ⊕ r3 = m2 ⊕ m3, . . . , rq ⊕ r1 = mq ⊕ m1. But this

shows that we have r1 = r2, r2 ⊕ r3 = m2 ⊕m3 which is not allowed in a good
transcript. Therefore, there exists no alternating cycle in τ

′
. ut

Step II. Probability of Bad Transcript in Ideal World. We bound the
probability of the identified bad transcript in the ideal world. We calculate the
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probability of realizing bad transcript in ideal world as follows.

Pr[Xid ∈ Θbad] =
∑
i,j,k

Pr[ri = rj , ri ⊕ rk = mi ⊕mk]

=
∑
i,j,k

Pr[rj ⊕ rk = mi ⊕mk] · Pr[ri = ri]

≤ q3
m

22n

Therefore, εbad ≤ q3m
22n .

Let us fix a good transcript τ ∈ Θgood where

τ := {(ri,mi, ti)1≤i≤qm , (r̃j , m̃j , t̃j , 0)1≤j≤qv}.

We show that the real interpolation probability for τ is almost as high as the
ideal interpolation probability for the corresponding transcript. To show that,
we first derive the ideal interpolation probability of a good transcript. That is
we bound the probability that a good transcript is realized in ideal world.

Step III. Probability of Good Transcript in Ideal World. Let τ ∈ Θgood

be a fixed good transcript. Then we have the following

Pr[Xid = τ ] = Pr[ri
$←− R, $rf(ri,mi) = ti,∀1 ≤ i ≤ qm]

= Pr[ri
$←− R,∀‘1 ≤ i ≤ qm] · Pr[$rf(ri,mi) = ti,∀1 ≤ i ≤ qm]

=
1

2n(qm+q′m)

where q
′

m be the distinct number of ti in the transcript τ .

Step IV. Probability of Good Transcript in Real World. The last
step is to calculate the real interpolation probability of a good transcript τ :=
{(ri,mi, ti)1≤i≤qm , (r̃j , m̃j , t̃j , 0)1≤j≤qv}. We bound the probability of τ realized
in real world. Let us denote Xi = f(ri) and Yi = g(ri ⊕mi), 1 ≤ i ≤ qm. We

also denote X̃j = f(r̃j) and Ỹj = g(r̃j ⊕ m̃j), 1 ≤ j ≤ qv. We also denote the

event Xi ⊕ Yi = ti, 1 ≤ i ≤ qm by E and X̃j ⊕ Ỹj 6= tj by Fj

Pr[Xre = τ ] = Pr[ri
$←− R, Xi ⊕ Yi = ti, 1 ≤ i ≤ qm, X̃j ⊕ Ỹj 6= tj , 1 ≤ j ≤ qv]

= Pr[ri
$←− R1 ≤ i ≤ qm] · Pr[E ∧ (∧jFj)]

≥ 1

2nqm
· (Pr[E]−

∑
j

Pr[E ∧ ¬Fj ])

≥ 1

2nqm
· ( 1

2nq
′
m

− qv
2n

2−nq
′
m)

≥ 1

2n(qm+q′m)
· (1− qv

2n
)
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Therefore, εratio = qv
2n . To finish the proof we just need to argue that Pr[E] =

1

2nq
′
m

and Pr[E∧Fj ] ≤ 1

2(q′m+1) . We have already seen in Claim 1 that being a good

transcript τ , the set {ri, (ri⊕mi)}1≤i≤q′m does not contain an alternating cycle.
Therefore, from Lemma 2 we have, Pr[E] = 1

2nq
′
m

. With the same argument one

can show that Pr[E ∧ Fj ] ≤ 1

2(q′m+1) . Therefore, we have εbad =
q3m
22n and εratio =

qv
2n . Therefore from Theorem of Coefficients H technique our result follows. ut

Corollary 1. Let fk1 and fk2 be two independently keyed functions. Then we
have

AdvSUF
C5 (qm, qv, t) ≤ Advprf

fk1
(qm + qv, t) + Advprf

fk2
(qm + qv, t) +

q3
m

22n
+
qv
2n
.

The proof of the corollary follows from Theorem 6 and Lemma 1.

(B) Bounding pPRF Advantage of Construction C5. The proof for
bounding the pPRF advantage for C5 would be exactly the same as that of
MAC advantage for C5, the only difference will be in the corresponding bad
event. Thus we have the following.

Theorem 7. Let fk1 and fk2 be two independently keyed functions. Then we
have

Advpprf
C5 (q, t) ≤ Advprf

fk1
(q, t) + Advprf

fk2
(q, t) +

q4

23n
.

Proof. By using hybrid argument, we can simply assume that C5 is based on
two independent random functions f and g instead of keyed PRF at the cost of
Advprf

fk1
(qm + qv, t) + Advprf

fk2
(qm + qv, t). We apply Coefficients H technique on

this hybrid construction.
As before, we consider a transcript τ := {(ri,mi, ti)1≤i≤q}. Regard to our

construction, τ is said to be valid if the following condition holds :

1. (ri,mi) = (rj ,mj)⇒ ti = tj , 1 ≤ i ≤ q.

Θ be the set of all valid transcripts. Having defined the set of valid transcripts,
we identify a set of bad transcripts Θbad. τ ∈ Θbad is said to be a bad transcript
if ∃i, j, k, l such that ri = rj , rk = rl and ri ⊕ rk = mi ⊕ mk. Bounding the

probability of realizing bad transcript in ideal world is q4

23n as we choose four
distinct indices and we have three independent events each of which holds with
probability 1

2n . Let Θgood := Θ \Θbad be the set of good ranscripts. It is easy to
see that for a good transcript τ ∈ Θgood, the set {ri, (ri ⊕mi)}1≤i≤q does not
contain any alternating cycle proof of which follows exactly in the same way as
the proof of Claim 1.

Let τ ∈ Θgood. Then the probability of realizing τ in ideal world is exactly
1

2n(q+q′) where q′ be the distinct number of ti in the transcript τ . Now we cal-

culate the probability of realizing a good transcript in real world as follows

Probability of Good Transcript in Real World. We bound the probability
that a good transcript τ is realized in real world. Let us denote Xi = f(ri) and
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Yi = g(ri ⊕mi), 1 ≤ i ≤ q. We also denote the event Xi ⊕ Yi = ti, 1 ≤ i ≤ q by
E.

Pr[Xre = τ ] = Pr[ri
$←− R, Xi ⊕ Yi = ti, 1 ≤ i ≤ q]

= Pr[ri
$←− R1 ≤ i ≤ q] · Pr[E]

≥ 1

2nq
· Pr[E]

≥ 1

2n(q+q′ )

To finish the proof we need to show that Pr[E] = 1

2nq
′
m

. We have argued that

for a good transcript τ , the set {ri, (ri ⊕mi) : 1 ≤ i ≤ q} does not contain any
alternating cycle and therefore from Lemma 2 we have Pr[E] = 1

2nq
′
m

. Therefore,

according to Theorem of Coefficients H technique, our result follows. ut

7.2 PRF Security Bound of Construction C6.

We have shown that none of the constructions from C1 to C5 is secure PRF
and we argued a 2n/2 PRF attack for construction C6. Here we show the PRF
security bound of C6 is tight by proving the security bound of C6 is upper
bounded by O(q2/2n).

Theorem 8. Let fk1 and fk2 be two n bit pseudo-random functions and H be
a ε-AXU Universal hash function. Then we have

Advprf
C6 (q, `, t) ≤ Advprf

fk1
(q, t′) + Advprf

fk2
(q, t′) +

(
q

2

)
× ε,

where t = t′ +O(qTh)

Proof. By using hybrid argument, we can simply assume that C6 is based on
two independent random functions f and g instead of keyed PRF at the cost of
Advprf

fk1
(q, t′)+Advprf

fk2
(q, t′). Now this hybrid construction will behave perfectly

random as long as there is no collision in the input of g. Note that for any query
(r,m), the input of g is H(m)⊕ r. As H is ε-AXU, the function mapping (r,m)
to r⊕H(m) is ε-universal. Hence by using the composition result for hash-then-
prf we get our desired bound. Here we note that the effect of f(r) would be
completely masked by the independent random function output of g. ut

7.3 pPRF and MAC Security Proof of Construction C6 : Enhanced
Hash then Mask (EHtM)

We have seen in Sect. 6 that there is a 2n/2 prf-attack, 23n/4 pPRF and MAC
attack on the construction Ff,g(m) = f(r)⊕ g(r ⊕H(m)). We have also shown
in Sect. 7, Theorem 8 the PRF security of C6. In this section we will show that
the pPRF and MAC security bound of the construction C6 is tight by proving

the advantage of the pPRF and MAC is upper bounded by
q4m
23n .
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To bound the pPRF and MAC advantage, we show the distinguishing ad-
vantage to distinguish the real oracle (C6) from the ideal one (RF$,⊥) is upper
bounded by O(q4

m/2
3n) using Coefficients H technique as a tool.

(A) Bounding MAC Advantage of Construction C6.

Theorem 9. Let fk1 and fk2 be two independently keyed functions and H :
{0, 1}∗ → {0, 1}n be a ε-AXU hash function. Then we have

AdvRF$,⊥
C6 (qm, qv, `, t) ≤ Advprf

fk1
(qm+qv, t

′)+Advprf
fk2

(qm+qv, t
′)+

q4
m

23n
+

10qv
2n

,

where t = t′ +O(qTh)

Proof. By using hybrid argument, we can simply assume that C6 is based on
two independent random functions f and g instead of keyed PRF at the cost of
Advprf

fk1
(qm+ qv, t

′)+Advprf
fk2

(qm+ qv, t
′). We apply Coefficients H technique on

this hybrid construction.

To apply the Coefficients H technique, we need to

1. Identify a set of good views Θgood which is realized with high probability
while interacting with the ideal oracle.

2. Show that for any fixed good view τ ∈ Θgood, the real interpolation proba-
bility is almost as high as the ideal interpolation probability.

As before we define a transcipt τ which is defined as the input-output pair
that the adversary obtains during the interaction with the real oracle. Moreover,
we also assume that after interaction with the oracle it releases the values of
hi := H(mi). Thus after interaction, adversary obtains an extended transcript

τ = {(ri,mi, ti, hi)1≤i≤qm , (r̃j , m̃j , t̃j , h̃j , 0)1≤j≤qv}. For a valid transcript τ the
following conditions must hold

1. mi = mj ⇒ hi = hj , m̃i = m̃j ⇒ h̃i = h̃j . Morover, mi = m̃j ⇒ hi = h̃j ,
1 ≤ i, j ≤ qm.

2. (ri,mi) = (rj ,mj)⇒ ti = tj , 1 ≤ i, j ≤ qm.
3. (r̃j , m̃j , t̃j) is fresh, 1 ≤ j ≤ qv.
4. ti = EHtM(ri,mi), 1 ≤ i ≤ qm.

5. hi = H(mi) and h̃j = H(m̃j), 1 ≤ i ≤ qm, 1 ≤ j ≤ qv.

For any valid transcript τ , Pr[Xre = τ ] > 0. Let Θ be the set of all valid
transcripts. Having defined the valid transcript, we now identify a set of good
transcripts.

Step I. Identifying Good Transcripts. In order to identify the set of good
transcripts, we identify the set of bad transcripts Θbad. A transcript τ is said to
be a bad transcript if either of the following conditions hold :

(C.1) ∃1 ≤ i, j ≤ qm such that (ri, hi) = (rj , hj)
(C.2) ∃1 ≤ i, j, k, l ≤ qm such that ri = rj , rj ⊕ rk = hj ⊕ hk, rk = rl
(C.3) mc(r) ≥ 4
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(C.4) mc{ti + tj : ri = rj} ≥ 4
(C.5) ∃1 ≤ i, j, k, l ≤ qm such that tk ⊕ tl = tj ⊕ t̃i, rk = rl, r̃i = rj

A transcript τ is said to be good if none of the above conditions hold. Let Θgood

denotes the set of all good transcripts which is Θgood := Θ\Θbad and Θgood ⊆ Θ.
Now we make the following claim

Claim 2 Let τ be a good transcript. We define a set τ ′ corresponding to τ as
follows τ ′ := {(ri, (ri ⊕ hi)}1≤i≤qm . Then τ ′ does not contain any alternating

cycle. Moreover τ ′j := {(ri, (ri ⊕ hi)}1≤i≤qm ∪ {r̃j , (r̃j ⊕ h̃j)} does not contain
any alternating cycle.

Proof. For the sake of contradiction, let us assume that τ ′ contains an alternat-
ing cycle. That implies r1 = r2, r2⊕r3 = h2⊕h3, . . . , rqm⊕r1 = hqm⊕h1. There-
fore, we will get three equations r1 = r2, rqm−1 = rqm and rqm ⊕ r1 = hqm ⊕ h1,
but it violates the assumption that τ is a good transcript. Thus, τ ′ does not
contain any alternating cycle. Following the same argument one can show that
if τ ′j contains an alternating cycle then the assumption of τ being valid would
have been violated. Therefore, τ ′j does not contain any alternating cycle. ut
Therefore, being a good transcript τ , the set {ri, (ri ⊕ hi)}1≤i≤qm and the set
{ri, (ri ⊕ hi)}1≤i≤qm ∪ {r̃j , (r̃j ⊕ m̃j} does not contain any alternating cycle.

Step II. Probability of Bad Transcript in Ideal World. Let Θibad be the
set of all transcripts that satisfies condition (C.i). Therefore, we want to compute
εbad = Pr[Xid ∈ Θbad] ≤

∑
i

Pr[Xid ∈ Θibad]. We have bound the probability of

realizing bad transcripts in ideal world in the following lemma, proof of which
is postponed to the following section.

Lemma 4. Let Θbad be the set of all valid and bad transcripts. Let Xid be the
probability distribution of transcript realized in ideal world. Then,

Pr[Xid ∈ Θbad] ≤ q4
m

23n
+

9qv
2n

.

Due to Lemma 4 we have, εbad ≤ q4m
23n + 9qv

2n .

Step III. Probability of Good Transcript in Ideal World. Let us fix
any good transcript τ ∈ Θgood. We bound the probability of realizing a good
transcript in ideal world as follows.

Pr[Xid = τ ] = Pr[ri
$←− R, $rf(ri,mi) = ti, H(mi) = hi, H(m̃j) = h̃j ]

= Pr[ri
$←− R] · Pr[$rf(ri,mi) = ti] · pH

≤ 1

2n(qm+q′m)
· pH

where pH := Pr[H(mi) = hi, H(m̃j) = h̃j , 1 ≤ i ≤ qm, 1 ≤ j ≤ qv] is the

joint probability of the hash output and q
′

m be the distinct number of ti in the
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transcript τ .

Step IV. Probability of Good Transcript in Real World. The last step is
to calculate the real interpolation probability of a good transcript τ . We bound
the probability that a good trancript is realized in real world. Let us denote
Xi = f(ri) and Yi = g(ri ⊕ hi), 1 ≤ i ≤ qm. We also denote X̃j = f(r̃j) and

Ỹj = g(r̃j ⊕ h̃j), 1 ≤ j ≤ qv. We also denote the event Xi ⊕ Yi = ti, 1 ≤ i ≤ qm
by E and X̃j ⊕ Ỹj 6= tj by Fj

Pr[Xre = τ ]

= Pr[ri
$←− R, Xi ⊕ Yi = ti, H(mi) = hi, X̃j ⊕ Ỹj 6= tj , H(m̃j) = h̃j ]

= Pr[ri
$←− R1 ≤ i ≤ qm] · Pr[E ∧ (∧jFj)] · pH

≥ 1

2nqm
· (Pr[E]−

∑
j

Pr[E ∧ ¬Fj ]) · pH

≥ 1

2nqm
· ( 1

2nq
′
m

− qv
2n

2−nq
′
m) · pH

≥ 1

2n(qm+q′m)
· (1− qv

2n
) · pH

To finish the proof we just need to argue that Pr[E] = 1

2nq
′
m

and Pr[E ∧ Fj ] =
1

2n(q′m+1) . This is easy to follow due to the good transncript τ , we have already

argued that {ri, (ri⊕hi)}1≤i≤q′m comtains no alternating cycle and therefore due
to Lemma 2 we have Pr[E] = 1

2nq
′
m

. Moreover, using the same argument one can

see that Pr[E∧Fj ] = 1

2n(q′m+1) follows. This concludes that εratio ≤ qv
2n . Therefore,

according to Theorem of Coefficient H technniques, AdvRF$,⊥
C6 (qm, qv, `) ≤ q4m

23n +
10qv
2n which proves the result. ut

7.4 Proof of Lemma 4

Recall that Pr[Xid ∈ Θbad] ≤
∑
i

Pr[Xid ∈ Θibad]. Therefore, to bound εbad, we

separately bound Pr[Xid ∈ Θibad] for each i.

It is easy to see that Pr[Xbad ∈ Θ1
bad] ≤ q2m

22n as the distrbution of r and the hash
value h is independent in ideal world and we assume ε ≤ 1

2n .
Moreover, we have Pr[Xid ∈ Θ3

bad] ≤ Pr[Xid ∈ Θ3
bad ∧Xid /∈ Θ2

bad ∧Xid /∈ Θ1
bad]

and it is also easy to observe that

Pr[Xid ∈ Θ3
bad ∧Xid /∈ Θ2

bad ∧Xid /∈ Θ1
bad] ≤

∑
i,j,k,l

Pr[ri = rj = rk = rl] ≤
q4
m

23n
,

as ri are distributed uniformly and independent.

Proposition 1. Pr[Xid ∈ Θ2
bad] ≤ Pr[Xid ∈ Θ2

bad ∧Xid /∈ Θ1
bad] ≤ q4m

23n .
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Proof. We recall that Θ2
bad is the set of all transcripts such that ∃i, j, k, l such

that ri = rj , rk = rl, hj ⊕ hk = rj ⊕ rk. Therefore,

Pr[Xid ∈ Θ2
bad ∧Xid /∈ Θ1

bad] ≤
∑
i,j,k,l

Pr[ri = rj , rk = rl, hj ⊕ hk = rj ⊕ rk]

≤
∑
i,j,k,l

Pr[hj ⊕ hk = rj ⊕ rk|ri = rj , rk = rl] · Pr[ri = rj , rk = rl]

Since ri’s are distributed uniformly and independently, Pr[ri = rj , rk = rl] =
Pr[ri = rj ] ·Pr[rk = rl] ≤ 1

22n . Moreover, we can write Pr[hj ⊕ hk = rj ⊕ rk|ri =
rj , rk = rl] as Pr[hj ⊕ hk = ri ⊕ rl]. Note that the distribution of hj and hk is
not affected by ri and rl and thus Pr[hj ⊕ hk = ri ⊕ rl] ≤ 1

2n as H is a ε-AXU
hash function and we assume ε ≤ 1

2n . Therefore, Pr[Xid ∈ Θ2
bad ∧Xid /∈ Θ1

bad] ≤∑
i,j,k,l

1
23n ≤ q4m

23n . ut

Proposition 2. Pr[Xid ∈ Θ4
bad] ≤ Pr[Xid ∈ Θ4

bad ∧ (∧j<4Xid /∈ Θjbad)] ≤ q4m
23n

Proof. To bound Pr[Xid ∈ Θ4
bad ∧ (∧j<4Xid /∈ Θjbad)], is equivalent to bound

Pr[mc{ti + tj : ri = rj} ≥ 4]. To compute this probability we need to select
four pair of distinct indices: (i1, i2), . . . , (i7, i8) such that we have the following
linear equations : (1) Ti1 ⊕ Ti2 = Ti3 ⊕ Ti4 , (2) Ti3 ⊕ Ti4 = Ti5 ⊕ Ti6 and (3)
Ti5 ⊕ Ti6 = Ti7 ⊕ Ti8 and four additional linearly independent restrictions on r,
i.e. ri1 = ri2 , ri3 = ri4 , ri5 = ri6 and ri7 = ri8 . It is easy to see that the equations
involving Ti’s can not have rank one. So we have at least 6 independent events
each of which holds with probability 1

2n . Therefore, Pr[Xid ∈ Θ4
bad ∧ (∧j<4Xid /∈

Θjbad)] ≤ q8m
26n ≤ q4m

23n when q ≤ 2n. ut

Proposition 3. Pr[Xid ∈ Θ5
bad] ≤ Pr[Xid ∈ Θ5

bad ∧Xid /∈ Θ4
bad ∧Xid /∈ Θ3

bad] ≤
9qv
2n

Proof. To compute Pr[Xid ∈ Θ5
bad ∧ Xid /∈ Θ4

bad], we need
∑
i,j,k,l

Pr[T ′i ⊕ Tj ⊕

Tk ⊕ Tl = 0, rk = rl, r
′
i = rj , hk ⊕ hj = rj ⊕ rk]. Now we fix an index i and

define a set S = {(j, k, l) : r′i = rj , T
′
i ⊕ Tj ∈ {Tk ⊕ Tl : rk = rl}}. Now we

claim that |S| ≤ 9. To argue this, for a fix j, T ′i ⊕ Tj becomes fixed. Moreover
T ′i ⊕ Tj ∈ {Tk ⊕ Tl : rk = rl} implies at most three elements are there in the set
{Tk ⊕ Tl : rk = rl} as we are considering the event Xid ∈ Θ5

bad ∧Xid /∈ Θ4
bad.

Moreover, r′i can collide to at most three elements which implies that for a
fix i, there exists at most three j such that r′i collides to all these three rj ’s.
This justifies the maximum size of set S to be 9. Moreover, there are qv many
i’s such that this happens. Now for each such set S whose size is at most 9, the
event hk ⊕ hj = rj ⊕ rk holds with probability 1

2n (as we assume ε ≤ 1
2n ). Hence

our result follows. ut

Corollary 2. Let fk1 and fk2 be two independently keyed functions and H :
{0, 1}∗ → {0, 1}n be a ε-AXU hash function. Then we have
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1. AdvSUFC6 (qm, qv, `, t) ≤ Advprf
fk1

(qm+qv, t
′)+Advprf

fk2
(qm+qv, t

′)+
q4m
23n + 10qv

2n .

2. AdvpprfC6 (qm, `, t) ≤ Advprf
fk1

(qm, t
′) + Advprf

fk2
(qm, t

′) +
q4m
23n .

where t = t′ +O(qTh)

The proof of the first corollary follows from Theorem 9 and Lemma 1 and the
proof of the second corollary follows the same argument as that in proof of
Theorem 9 except that we skip the bad condition (C.5).

8 Conclusion

In this paper we revisit different hash then mask paradigm probabilistic MAC
constructions. We study different security notions (PRF/ pPRF/ MAC) of these
constructions and show a tight security analysis for each of them. In particular
we study the Enhanced Hash then Mask probabilistic MAC construction and lifts
its security to Θ(23n/4), which is shown to be tight and better than the previous
non-tight security bound of O(22n/3). We have also studied that unlike random
function in deterministic MAC, there is no idealized version of unforgeable se-
curity of a probabilistic MAC. We also have introduced a new security notion
pPRF which is used to prove the impossibility result of probabilistic MAC, but
it does not imply secure probabilistic MAC in general and we have not studied
its practical application in this paper.

Acknowledgement: The authors are thankful to all the anonymous reviewers
of ASIACRYPT, 2016 for their useful comments towards this research work.
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APPENDIX

A Reduction from SUF to cTG

Theorem A.1 For any construction cTGk, let TG denote the coin-explicit tag
generation algorithm. Let Π be the probabilistic the complete MAC correspond-
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ing to this tag generation algorithm. Then,

AdvSUF
Π (qm, qv, t) ≤ Advprf

cTG(qm + qv, t
′) +

qv
2n
,

where t′ ≈ t.
Proof. Let A be an adversary that asks at most qm many tag generation queries
and qv many verification queries and breaks the SUF security of MAC Π. We
construct an adversary B that asks total qm + qv many queries to its oracle such
that it breaks the prf security of core-tag generation. We define the game as
follows : B will simulate the challenger for A. When A asks tag generation query
m, B first samples r uniformly at random from R and then submits (r,m) to
its oracle O. A will obtain O(r,m). For a verification query (r̃, m̃, t̃) by A, B
will ask the oracle O with (r̃, m̃) and then checks whether t̃ = O(r̃, m̃). If they
match then B stops and returns 1. If A is executed completely, B will return 0.
Therefore,

Advprf
cTG(B) = Pr[BcTGk(·,·) = 1]− Pr[BRF = 1].

Note that Pr[BcTGk(·,·) = 1] ≥ AdvSUF
Π (qm, qv, t) and Pr[BcTGk(·,·) = 1] = qv

2n .
Hence the result follows. ut


