
Bootstrapping the Blockchain, with Applications to Consensus

and Fast PKI Setup

Juan A. Garay

Texas A&M University

garay@cse.tamu.edu

Aggelos Kiayias*

University of Edinburgh

akiayias@inf.ed.ac.uk

Nikos Leonardos?

University of Athens

nikos.leonardos@gmail.com

Giorgos Panagiotakos?

University of Edinburgh

giorgos.pan@ed.ac.uk

March 23, 2018

Abstract

The Bitcoin backbone protocol [Eurocrypt 2015] extracts basic properties of Bitcoin's un-
derlying blockchain data structure, such as �common pre�x� and �chain quality,� and shows how
fundamental applications including consensus and a robust public transaction ledger can be
built on top of them. The underlying assumptions are �proofs of work� (POWs), adversarial
hashing power strictly less than 1/2 and no adversarial pre-computation�or, alternatively, the
existence of an unpredictable �genesis� block.

In this paper we �rst show how to remove the latter assumption, presenting a �bootstrapped�
Bitcoin-like blockchain protocol relying on POWs that builds genesis blocks �from scratch� in
the presence of adversarial pre-computation. Importantly, the round complexity of the genesis
block generation process is independent of the number of participants.

Next, we consider applications of our construction, including a PKI generation protocol and
a consensus protocol without trusted setup assuming an honest majority (in terms of computa-
tional power). Previous results in the same setting (unauthenticated parties, no trusted setup,
POWs) required a round complexity linear in the number of participants.

1 Introduction

As the �rst decentralized cryptocurrency, Bitcoin [33] has ignited much excitment, not only for its
novel realization of a central bank-free �nancial instrument, but also as an alternative approach to
classical distributed computing problems, such as reaching agreement distributedly in the presence
of misbehaving parties. Formally capturing such reach has been the intent of several recent works,
notably [21], where the core of the Bitcoin protocol, called the Bitcoin backbone, is extracted and an-
alyzed. The analysis includes the formulation of fundamental properties of its underlying blockchain
data structure, which parties (�miners�) maintain and try to extend by generating �proofs of work�
(POW, aka �cryptographic puzzle� [16, 37, 3, 24])1, called common pre�x and chain quality. It is
then shown in [21] how applications such as consensus (aka Byzantine agreement) [36, 31] and a

*Research partly supported by ERC project CODAMODA, No. 259152, and Horizon 2020 project PANORAMIX,
No. 653497.

1In Bitcoin, solving a proof of work essentially amounts to brute-forcing a hash inequality based on SHA-256.

1

robust public transaction ledger (i.e., Bitcoin) can be built �on top� of such properties, assuming
that the hashing power of an adversary controlling a fraction of the parties is strictly less than 1/2.

Importantly, those properties hold assuming that all parties�honest and adversarial��wake
up� and start computing at the same time, or, alternatively, that they compute on a common
random string only made available at the exact time when the protocol execution is to begin (see
further discussion under related work below). Indeed, the coinbase parameter in Bitcoin's �genesis�
block, hardcoded into the software, contains text from The Times 03/Jan/2009 issue [5], arguably
unpredictable.

While satisfactory in some cases, such a trusted setup/behavioral assumption might be unrealis-
tic in other POW-based systems where details may have been released a lot earlier than the actual
time when the system starts to run. A case in point is Ethereum, which was discussed for over a
year before the system o�cially kicked o�. That's from a practical point of view. At a foundational
level, one would in addition like to understand what kind of cryptographic primitives can be realized
without any trusted setup assumption and based on POWs, and whether that is in particular the
case for the Bitcoin backbone functionality and its enabling properties mentioned above.

The former question was recently considered by Andrychowicz and Dziembowski [1], who, build-
ing on previous suggestions by Aspnes et al. [2] of using POWs as an identity-assignment tool and
constructions by Fitzi et al. [19, 12] showing how to morph �graded� consistency into global con-
sistency, showed how to create a consistent PKI using POWs and no other trusted setup, which
can then be used to run secure computation protocols (e.g., [38, 23]) and realize any cryptographic
functionality assuming an honest majority among parties. While this in principle addresses the
foundational concerns, it leaves open the questions of doing it in scalable way�i.e., with round
complexity independent of the number of parties, and in the context of blockchain protocols in
particular, designing one that is provably secure without a trusted setup.

Our contributions. In this paper we answer the above questions. First, we present a Bitcoin-like
protocol that neither assumes a simultaneous start nor the existence of an unpredictable genesis
block, and has round complexity essentially independent of the number of participants2. E�ec-
tively, the protocol, starting �from scratch,� enables the coexistence of multiple genesis blocks with
blockchains stemming from them, eventually enabling the players to converge to a single blockchain.
This takes place despite the adversary being allowed (polynomial in the security parameter) pre-
computation time. We work in the same model as [21] and we assume a 1/2 bound on adversarial
hashing power. We call this protocol the bootstrapped (Bitcoin) backbone protocol. A pictorial
overview of the protocol's phases, preceded by a period of potential precomputation by the corrupt
players, is given in Figure 1.

Figure 1: Timeline and phases of the bootstrapped Bitcoin backbone protocol.
Second, we present applications of our bootstrapped construction, starting with its original one:

a distributed ledger, i.e., a public and permanent summary of all transactions that honest parties can
agree on as well as add their own, despite the potentially disruptive behavior of parties harnessing

2�Essentially� because even though there will be a dependency of the round complexity of the setup phase on the
probability of computing POWs, which in turn depends on the number of parties, this dependency can be made small
enough so as to be considered a constant. See Remark 3.

2

less than 1/2 of the hashing power. This entails proving that the ledger's required security properties
(Persistence and Liveness � cf. [21]) hold in a genesis block-less setting.

Next, we consider the problem of setting up a PKI in our unauthenticated network setting from
scratch. As mentioned above, the idea of using POWs as an identity-assignment tool was put forth by
Aspnes et al. [2]. Here we build on this idea as well as on the �2-for-1 POWs� technique from [21] to
use our bootstrapped protocol to assign identities to parties. The assignment relation will possibly
assign more than one identity to the same party, while guaranteeing that the majority of them
is assigned to honest parties. Such an identity infrastructure/�pseudonymous PKI� has numerous
applications, including the bootstrapping of a proof-of-stake protocol [28, 30], and the election
of honest-majority �subcommittees,� which would enable the application of traditional Byzantine
fault-tolerant techniques for ledger creation and maintenance (cf. [7]) to permissionless (as opposed
to permissioned) networks.

Finally, applying the 2-for-1 POWs technique we can also solve the consensus (aka Byzantine
agreement) problem [36, 31] probabilistically and from scratch, even if the adversary has almost the
same hashing power as the honest parties3, and with round complexity independent of the number
of parties. Indeed, all our protocols have round complexity linear in the security parameter, and
enjoy simultaneous termination. We conclude with an additional modi�cation to the protocol that
reduces (by a factor of n) the protocol's communication costs.

Related work. Nakamoto [32] proposed Bitcoin, the �rst decentralized currency system based on
POWs while relaxing the anonymity property of a digital currency to mere pseudonymity. This
work was followed by a multitude of other related proposals including Litecoin, Primecoin [29], and
Zerocash [4], and further analysis improvements (e.g., [18, 17]), to mention a few.

As mentioned above, we work in a model that generalizes the model put forth by Garay et

al. [21], who abstracted out and formalized the core of the Bitcoin protocol�the Bitcoin backbone.
As presented in [21], however, the protocol considers as valid any chain that extends the empty
chain, which is not going to work in our model. Indeed, if the adversary is allowed polynomial-time
pre-computation, he can prepare a very long, private chain; then, by revealing blocks of this chain at
the rate that honest players compute new blocks, he can break security. As also mentioned above,
to overcome this problem one can assume that at the time honest parties start the computation,
they have access to a fresh common random string (a �genesis� block). Then, if we consider as valid
only the chains that extend this block, all results proved in [21] follow, since the probability that
the adversary can use blocks mined before honest players �woke up� is negligible in the security
parameter. In this paper we show how to establish such genesis block directly, and in a number of
rounds essentially independent of the number of participants.

To our knowledge, the idea of using POWs to distributedly agree on something (speci�cally, a
PKI) in an unauthenticated setting with no trusted setup was �rst put forth by Aspnes et al. [2],
who suggested to use them as an identity-assignment tool as a way to combat Sybil attacks [14], and
in such a way that the number of identities assigned to the honest and adversarial parties can be
made proportional to their aggregate computational power, respectively. For example, by assuming
that the adversary's computational power is less than 50%, one of the algorithms in [2] results in a
number of adversarial identities less than half of that obtained by the honest parties. By running
this procedure in a pre-processing stage, it is then suggested in [2] that a standard authenticated
broadcast protocol (speci�cally, the one by Dolev and Strong [13]) could be run. Such protocols,
however, would require that the PKI be consistent, details of which are not laid out in [2].

They are in [1], where Andrychowicz and Dziembowski address the more general goal of secure

3Thus marking a contrast with the 2
3
lower bound for consensus on the number of honest parties in the traditional

network setting with no setup [6].

3

computation in this setting based on POWs, as mentioned earlier; the POWs are used to build a
�graded� PKI, where keys have �ranks.� The graded PKI is an instance of a �graded agreement,� or
�partial consistency� problem [19, 12, 20], where honest parties do not disagree �by much,� according
to some metric. In [19], Fitzi calls this the b-set-neighboring problem (�proxcast� in [12]), with b
the number of possible �grades,� and shows how to achieve global consistency by running the b-set-
neighboring protocol multiple times. In [1], the fact is used that an unreliable broadcast is available
among honest parties to achieve the same�global consistency on a PKI, where the number of
identities each party gets is proportional to its hashing power, as suggested in [2].

The protocol in [1], however, su�ers from a total running time that depends on the number of
parties, because of two factors: (1) the way in which it uses POWs, and (2) the use of the Dolev-
Strong authenticated broadcast protocol (run multiple times in parallel based on the graded PKI),
which takes a linear number of rounds. Regarding (1), and in more detail, in order to assign exactly
one key per party, a low variance POW scheme is used. This implies that the time needed by an
honest party to mine a POW is going to be proportional to the ratio of the adversarial hashing power
to the hashing power of the weakest honest party. Otherwise, the �rushing� adversary would be able
to compute more identities in the additional time she has due to the latency of the communication
infrastructure.4 Regarding (2), we note that potentially an expected-constant-round protocol could
be used instead of Dolev-Strong, although the parallel composition of n instances would require
more involved techniques [11].

Furthermore, having a PKI allows parties to generate an unpredictable beacon (in the ran-
dom oracle model), which is then suggested in [1] as a genesis block-generation method for a new
cryptocurrency. Yet, no formal treatment of the security of the resulting blockchain protocol is pre-
sented, and�as already mentioned�the round complexity of the suggested genesis block generation
procedure is linear in the number of participants, both in contrast to our work.

As in [1], Katz et al. [26] also consider achieving pseudonymous broadcast and secure compu-
tation from POWs (�cryptographic puzzles�) and the existence of digital signatures without prior
PKI setup, but under the assumption of an existing unpredictable beacon. Finally, Pass et al.
[35] consider a partially synchronous model of communication where parties are not guaranteed to
receive messages at the end of each round but rather after a speci�ed delay ∆ (cf. [15]), and show
that the backbone protocol can be proven secure in this setting. In principle, our results about the
bootstrapped backbone protocol can be extended to their setting as shown in [22].

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we describe
the network and adversarial model, introduce some basic blockchain notation, and enumerate the
various security properties. In Section 3 we present the bootstrapped Bitcoin backbone protocol
and its analysis. Applications are presented in Section 4: a robust public transaction ledger, and
PKI generation and consensus without trusted setup and with round complexity independent of the
number of parties. Finally, some of the proofs and further details are presented in the Appendix.

2 Model and De�nitions

We describe our protocols in a model that extends the synchronous communication network model
presented in [21] for the analysis of the Bitcoin backbone protocol (which in turn is based on
Canetti's formulation of �real world� execution for multi-party cryptographic protocols [8, 9]). As

4On the �ip side, the bene�t of the approach in [1] is that when all honest parties have the same hashing power,
a PKI that maps each party to exactly one identity and preserves an honest majority on the keys can be achieved.
However, in today's environments where even small devices (e.g., mobile phones, smart watches) have powerful CPUs
with di�erent clock frequencies, this assumption is arguably weak.

4

in [21], the protocol execution proceeds in rounds with inputs provided by an environment program
denoted by Z to parties that execute the protocol.

Next we provide a high level overview of the model, focusing on the di�erences that are intrinsic
to our setting where the adversary has a precomputation advantage. The adversarial model in
the network is actively malicious following the standard cryptographic approach. The adversary is
rushing, meaning that in any given round it gets to see all honest players's messages before deciding
its strategy. Message delivery is provided by a �di�usion� mechanism that is guaranteed to deliver
all messages, without however preserving their order and allowing the adversary to arbitrarily inject
its own messages. Importantly, the honest parties are not guaranteed to have the same view of the
messages delivered in each round, except for the fact that all honest messages from the previous
round are delivered. Furthermore, the adversary is allowed to change the source information on
every message (i.e., communication is not authenticated). In the protocol description, we will use
Diffuse as the message transmission command to capture the �send-to-all� functionality that is
available in our setting.5 Note that, as in [21], an adversarial sender may abuse Diffuse and
attempt to confuse honest parties by sending and delivering inconsistent messages to them.

In contrast to [21], where all parties (the honest ones and the ones controlled by the adversary),
are activated for the �rst time in the execution of the protocol in the same round6, in our model the
environment will choose the round at which all the honest parties will become active; the corrupted
parties, on the other hand, are activated in the �rst round. Once honest parties become active they
will remain active until the end of the execution. In each round, after the honest parties become
active, the environment activates each one by providing input to the party and receives the party's
output when it terminates. When activated, parties are able to read their input tape Input()
and communication tape Receive(), perform some computation that will be suitably restricted
(see below) and issue a Diffuse message that is guaranteed to be delivered to all parties at the
beginning of the next round.

In more detail, we model the execution in the following manner. We employ the parameterized
system of ITM's from [9] (2013 version) that is comprised of an initial ITM Z, called the environ-
ment, and C, a control function that is speci�ed below. We remark that our control function C
is suitably restricted compared to that of [9, 10] to take into account restrictions in the order of
execution that are relevant to our setting.

The execution is de�ned with respect to a protocol Π, a set of parties P1, . . . , Pn and an adversary
A. The adversary is allowed to corrupt parties adaptively up to a number of t < n. The protocol Π
has access to two resources or �ideal functionalities,� the random oracle, and the di�usion channel.
Initially, the environment may pass input to either the adversary A or spawn an instance running
the protocol Π which will be restricted to be assigned to the lexicographically smallest honest
party (such restrictions are imposed by the control function [9]). After a party Pi is activated,
the environment is restricted to activate the lexicographically next honest party, except in the case
when no such party is left, in which case the next program to be activated is the adversary A;
subsequently, the round-robin execution order between the honest parties will be repeated.

Whenever a party is activated the control function allows for q queries to be made to the random
oracle while in the case of an activation of A a number of t · q queries are allowed where t is the
number of corrupted parties. Honest parties are also allowed to annotate their queries to the random
oracle for veri�cation purposes, in which case an unlimited amount of queries is permitted (that
still counts towards the overall running time of the system execution). Note that the adversary is
not permitted to take advantage of this feature of the execution. With foresight, this asymmetry

5In [21] the command name Broadcast is used for this functionality, which we sometimes also will use informally.
6After their �rst-time activation, the environment keeps activating parties in every round (cf. [8]).

5

will be necessary, since otherwise it would be trivial for the adversary to break the properties of
our protocols by simply �jamming� the incoming communication tape of the honest parties with
messages whose veri�cation would deplete their access quota to the random oracle per activation.
Furthermore, for each party a single invocation to the di�usion channel is permitted. The di�usion
channel maintains the list of messages di�used by each party, and permits the adversary A to
perform a �fetch� operation so that it obtains the messages that were sent. When the adversary A
is activated, the adversary will interact with the di�usion channel, preparing the messages to be
delivered to the parties and performing a fetch operation. This write and fetch mode of operation
with the communication channel enables the channel to enforce synchrony among the parties running
the protocol (cf. [25]).

The term {viewP
Π,A,Z(κ, z)}κ∈N,z∈{0,1}∗ denotes the random variable ensemble describing the

view of party P after the completion of an execution with environment Z, running protocol Π, and
adversary A, on auxiliary input z ∈ {0, 1}∗. We often drop the parameters κ and z and simply refer
to the ensemble by viewP

Π,A,Z if the meaning is clear from the context. Following the resource-
bounded computation model of [9], it holds that the total length of the execution is bounded by
a polynomial in the security parameter κ and the length of the auxiliary string |z|, provided that
the environment is locally bounded by a polynomial (cf. Proposition 3 in [9]). Note that the above
execution model captures adversarial precomputation since it permits the environment to activate
the adversary an arbitrary number of times (bounded by a polynomial in the security parameter κ
of course) before the round-robin execution of the honest parties commences.

We note that the above modeling obviates the need for a strict upper bound on the number of
messages that may be transmitted by the adversary in each activation (as imposed by [1]). In our
setting, honest parties, at the discretion of the environment, will be given su�cient time to process
all the messages delivered via the di�usion channel including all messages that are injected by the
adversary.

The concatenation of the view of all parties ever activated in the execution, say, P1, . . . , Pn, is
denoted by viewΠ,A,Z . As in [21], we are interested in protocols Π that do not make explicit use of
the number of parties n or their identities. Further, note that because of the unauthenticated nature
of the communication model the parties may never be certain about the number of participants in
a protocol execution.

In our correctness and security statements we will be concerned with properties of protocols Π
running in the above setting (as opposed to simulation-based notions of security). Such properties
will be de�ned as predicates over the random variable viewΠ,A,Z(κ, q, z) by quantifying over all
locally polynomial-bounded adversaries A and environments Z (in the sense of [9]). Note that
all our protocols will only satisfy properties with a small probability of error in κ as well as in a
parameter k that is selected from {1, . . . , κ}. (Note that, in practice, one may choose k to be much
smaller than κ, e.g., k = 6.)

2.1 Blockchain notation

Next, we introduce some basic blockchain notation, following [21]. A block is any triple of the form
B = 〈s, x, ctr〉 where s ∈ {0, 1}κ, x ∈ {0, 1}∗, ctr ∈ N are such that satisfy predicate validblockDq (B)
de�ned as

(H(ctr,G(s, x)) < D) ∧ (ctr ≤ q),
where H,G are cryptographic hash functions (e.g., SHA-256) modelled as random oracles. The
parameter D ∈ N is also called the block's di�culty level. The parameter q ∈ N is a bound that in
the Bitcoin implementation determines the size of the register ctr; in our treatment we allow this
to be arbitrary, and use it to denote the maximum allowed number of hash queries in a round. We

6

do this for convenience and our analysis applies in a straightforward manner to the case that ctr is
restricted to the range 0 ≤ ctr < 232 and q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block is the head of
the chain, denoted head(C). Note that the empty string ε is also a chain; by convention we set
head(ε) = ε. A chain C with head(C) = 〈s′, x′, ctr′〉 can be extended to a longer chain by appending
a valid block B = 〈s, x, ctr〉 that satis�es s = H(ctr′, G(s′, x′)). In case C = ε, by convention
any valid block of the form 〈s, x, ctr〉 may extend it. In either case we have an extended chain
Cnew = CB that satis�es head(Cnew) = B. Consider a chain C of length m and any nonnegative
integer k. We denote by Cdk the chain resulting from the �pruning� of the k rightmost blocks. Note
that for k ≥ len(C), Cdk = ε. If C1 is a pre�x of C2 we write C1 � C2.

2.2 Basic security properties of the blockchain

We are going to show that the blockchain data structure built by our protocol satis�es a number
of basic properties, as formulated in [21, 27]. At a high level, the �rst property, called common

pre�x, has to do with the existence, as well as persistence in time, of a common pre�x of blocks
among the chains of honest players [21]. Here we will consider a stronger variant of the property,
presented in [27, 34], which allows for the black-box proof of application-level properties (such as
the persistence of transactions entered in a public transaction ledger built on top of the Bitcoin
backbone�cf. Section 4).

De�nition 1 ((Strong) Common Pre�x Property). The strong common pre�x property Qcp with
parameter k ∈ N states that the chains C1, C2 reported by two, not necessarily distinct honest parties

P1, P2, at rounds r1, r2, with r1 ≤ r2, satisfy Cdk1 � C2.

The next property relates to the proportion of honest blocks in any portion of some honest
player's chain.

De�nition 2 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R
and k, k0 ∈ N states that for any honest party P with chain C in viewΠ,A,Z(κ, z), it holds that for
any k consecutive blocks of C, excluding the �rst k0 blocks, the ratio of adversarial blocks is at most
µ.

Further, in the derivations in [21] an important lemma was established relating to the rate at
which the chains of honest players were increasing as the Bitcoin backbone protocol was run. This
was explicitly considered in [27] as a property under the name chain growth. Similarly to the variant
of the common pre�x property above, this property along with chain quality were shown su�cient
for the black-box proof of application-level properties (in this case, transaction ledger liveness; see
Section 4).

De�nition 3 (Chain Growth Property). The chain growth property Qcg with parameters τ ∈ R
(the �chain speed� coe�cient) and s, r0 ∈ N states that for any round r > r0, where honest party P
has chain C1 at round r and chain C2 at round r+s in viewΠ,A,Z(κ, z), it holds that |C2|−|C1| ≥ τ ·s.

3 The Bootstrapped Backbone Protocol

We begin this section by presenting the �bootstrapped� Bitcoin backbone protocol, followed by its
security analysis. In a nutshell, the protocol is a generalization of the protocol in [21], which is
enhanced in two ways: (1) an initial challenge-exchange phase, in which parties contribute random
values, towards the establishment of an unpredictable genesis block, despite the precomputation

7

e�orts of corrupt players, and (2) a ranking process and chain-validation predicate that, in addition
to its basic function (checking the validity of a chain's content), enables the identi�cation of �fresh�
candidate genesis blocks. The ranking process yields a graded list of genesis blocks and is inpired
by the �key ranking� protocol in [1], where it is used to produce a �graded� PKI, as mentioned in
Section 1.

Before describing the bootstrapped backbone protocol in detail, we highlight its unique features.

No trusted setup and individual genesis block mining. Parties start without any prior coordina-
tion and enter an initial challenge-exchange phase, where they will exchange random values that
will be used to construct �freshness� proofs for candidate genesis blocks. The parties will run
the initial challenge-exchange phase for a small number of rounds, and subsequently will try to
mine their own genesis blocks individually. Once they mine or accept a genesis block from the
network they will engage in mining further blocks and exchanging blockchains as in Bitcoin's
blockchain protocol. On occasion they might switch to a chain with a di�erent genesis block.
Nevertheless, as we will show, quite soon they will stabilize in a common pre�x and a single
genesis block.

Freshness of genesis block impacts chains' total weight. Chains rooted at a genesis block will
incorporate its weight in their total valuation. Genesis blocks can be quite �heavy� compared
to regular blocks and their total valuation will depend on how fresh they are. Their weight
in general might be as much as a linear number of regular blocks in the security parameter.
Furthermore, each regular block in a chain accounts for 3 units in terms of the total weight
of the chain, something that, as we show, will be crucial to account for di�erences in terms of
weight that are assigned to the same genesis block by di�erent parties running the protocol (cf.
Remark 1).

Personalized chain selection rule. Given the co-existence of multiple genesis blocks, a ranking
process is incorporated into the chain selection rule that, in addition to its basic function (check-
ing the validity of a chain's content) and picking the longest chain, it now also takes into account
the freshness degree of a genesis block from the perspective of each player running the protocol.
The ranking process e�ectively yields a graded list of genesis blocks and is inspired by the �key
ranking� protocol in [1], where it is used to produce a �graded� PKI (see further discussion
below). The weight value for each genesis block will be thus proportional to its perceived �fresh-
ness� by each party running the protocol (the fresher the block the higher its weight). It follows
that honest players use di�erent chain selection procedures since each predicate is �keyed� with
the random coins that were contributed by each player in the challenge-exchange phase (and
thus guaranteed to be fresh from the player's perspective). This has the side e�ect that the
same genesis block might be weighed di�erently by di�erent parties. Despite these di�erences,
we show that eventually all parties accept the same chains as valid and hence will unify their
chain selection rule in the course of the protocol.

Robustness is achieved after an initial period of protocol stabilization. All our modi�cations
integrate seamlessly with the Bitcoin backbone protocol [21], and we are able to show that our
blockchain protocol is a robust transaction ledger, in the sense of satisfying the properties of
persistence and liveness. Nevertheless, contrary to [21], the properties are satis�ed only after an
initial period of rounds where persistence is uncertain and liveness might be slower; this is the
period where the parties still stabilize the genesis block and they might be more susceptible to
attacks. Despite this, a ledger built on top of our blockchain will be available immediately after
the challenges exchange phase. Furthermore, once the stabilization period is over the robust
transaction ledger behavior is guaranteed with overwhelming probability (in the length of the
security parameter).

8

3.1 Protocol Description

The bootstrapped Bitcoin backbone protocol is executed by an arbitrary number of parties over an
unauthenticated network (cf. Section 2). For concreteness, we assume that the number of parties
running the protocol is n; however, parties need not be aware of this number when they execute
the protocol. Communication over the network is achieved by utilizing a send-to-all Diffuse
functionality that is available to all parties (and may be abused by the adversary in the sense of
delivering di�erent messages to di�erent parties). After an initial (�challenge�) phase, each party
is to maintain a data structure called a �blockchain,� as de�ned above. Each party's chain may be
di�erent, but, as we will prove, under certain well-de�ned conditions, the chains of honest parties
will share a large common pre�x.

The protocol description intentionally avoids specifying the type of values that parties try to
insert in the chain, the type of chain validation they perform (beyond checking for its structural
properties with respect to the hash functions G(·), H(·)), and the way they interpret the chain. In
the protocol description, these actions are abstracted by the external functions V (·), I(·), R(·) which
are speci�ed by the application that runs �on top� of the backbone protocol.

Algorithm 1 The bootstrapped backbone protocol, parameterized by the input contribution function

I(·), the chain reading function R(·), and parameter l.

1: C ← ε
2: st← ε
3: round← 1 . Global variable round
4: Gen← ∅ . Set of candidate genesis blocks
5: Rank ← 〈ε〉
6: (c,A, c)← exchangeChallenges(1κ)
7: while True do

8: k ← round− l − 2
9: MGen ← {(〈s′, x′, ctr′〉, 〈A′l+1, . . . , A

′
l+1−k〉)} from Receive()

10: MChain ← chains C′ found in Receive()
11: (Gen,Rank)← updateValidate(c,A,MGen, Gen,Rank)
12: C̃ ← maxvalid(C,MChain, Gen,Rank)
13: 〈st, x〉 ← I(st, C̃, round, Input(),Receive())
14: Cnew ← pow(x, C̃, c)
15: if C 6= Cnew then

16: if C = ε then . New genesis block has been produced
17: Diffuse((Cnew, 〈Al+1, . . . , Al+1−(k+1)〉))
18: C ← Cnew
19: Diffuse(C)
20: round← round+ 1
21: if Input() contains Read then

22: write R(xC) to Output()

The protocol is speci�ed as Algorithm 1. At a high level, the protocol �rst executes a challenge-
exchange phase for l+1 rounds (l will be determined later), followed by the basic backbone functions,
i.e., mining and broadcasting blocks; a crucial di�erence here with respect to the original backbone

9

Algorithm 2 The challenge-exchange function. Note that variable round is global, and originally
set to 1.

1: function exchangeChallenges(1κ)

2: c1
R← {0, 1}κ

3: Diffuse(c1)
4: round← round+ 1
5: while round ≤ l + 1 do
6: Around ← κ-bit messages found in Receive()

7: rround
R← {0, 1}κ

8: Around ← Around||rround
9: cround ← H(Around) . Compute challenge
10: Diffuse(cround)
11: round← round+ 1

12: return (〈c1, . . . cl〉, 〈A2, . . . Al+1〉, cl+1)

Algorithm 3 The validation predicate update function.

1: function updateValidate(c,A,MGen, Gen,Rank)
2: k ← round− l − 2
3: if k ≥ l then
4: return Gen,Rank . No updates after round 2l + 2

5: for each (〈s′, x′, ctr′〉, 〈A′l+1, . . . , A
′
l+1−k〉) in MGen do

6: if validblockDq (〈s, x, ctr〉) ∧ 〈s, x, ctr〉 6∈ Gen then
7: flag ← (H(A′l+1) = s) ∧ (cl−k ∈ A′l+1−k)
8: for i = l + 1− k to l do
9: if H(A′i) 6∈ A′i+1 then

10: flag ← False

11: if flag = True then

12: Gen← Gen ∪ 〈s, x, ctr〉
13: Rank[〈s, x, ctr〉]← l − k
14: Diffuse(〈s, x, ctr〉, 〈A′l+1, . . . , A

′
l+1−k, Al−k〉) . Augment A′ sequence with own

A value.
15: return Gen,Rank

protocol is that the chain validation process must also verify candidate genesis blocks, which in turn
requires updating the validation function as the protocol proceeds. (This, however, only happens
in the next l rounds after the challenge phase.) The protocol's supporting algorithms are speci�ed
next.

The challenge-exchange phase. In order to generate an unpredictable genesis block, players �rst
execute a �challenge-exchange� phase, where they broadcast, for a given number of rounds (l + 1),
randomly generated challenges that depend on the challenges received in the previous rounds. The

10

property that is assured is that an honest player's k-round challenge, 1 ≤ k ≤ l, depends on the
(k−1)-round challenges of all honest players. This dependence is made explicit through the random
oracle. The code of the challenge-exchange phase is shown in Algorithm 2.

Validation predicate update. In the original backbone protocol [21], the chain validation func-
tion (called validate�see below) performs a validation of the structural properties of a given chain
C, and remains unchanged throughout the protocol. In our case, however, where there is no initial
fresh common random string, the function plays the additional role of checking for valid genesis
blocks, and players have to update their validation predicate as the protocol advances (for the �rst
l rounds after the challenge phase).

Indeed, using the challenges distributed in the challenge-exchange phase of the protocol, players
are able to identify fresh candidate genesis blocks that have been shared during that phase and
are accompanied by a valid proof. In addition, the valid genesis blocks are ranked with a negative
dependence on the round they were received. In order to help other players to also identify the
same genesis blocks, players broadcast the valid genesis blocks they have accepted together with
the additional information needed by the other players for veri�cation. The validation predicate
update function is shown in Algorithm 3. Recall that Gen is the set of candidate genesis blocks.

Chain validation. A chain is considered valid if in addition to the checks performed by the basic
backbone protocol regarding the chain's structural properties, its genesis block is in the Gen list,
which is updated by the updateValidate function (Algorithm 3). The chain validation function is
shown in Algorithm 4.

Chain selection. The objective of the next algorithm in Algorithm 1, called maxvalid, is to �nd
the �best possible� chain. The accepted genesis blocks have di�erent weights depending on when
a player received them. It is possible that the same genesis block is received by honest players in
two di�erent rounds (as we show later, those rounds have to be consecutive). In order to take into
account the �slack� introduced by the di�erent views honest players may have regarding the same
block, as well as the di�erent weights di�erent blocks may have, we let the weight of a chain C be
equal to the weight of its genesis block plus three times its length minus one. The chain selection
function is shown in Algorithm 5.

Algorithm 5 The function that �nds the �best� chain. The input is a set of chains and the list of
genesis blocks.

1: function maxvalid(C1, . . . , Ck, Gen)
2: temp← ε
3: maxweight← 0
4: for i = 1 to k do
5: if validate(Ci, Gen) then

6: weight← Rank(tail(Ci)) + 3(|Ci| − 1)
7: if maxweight < weight then
8: maxweight← weight
9: temp← Ci
10: return temp

The proof-of-work function. Finally, we need to modify the proof-of-work function in [21], so
that when a genesis block is mined, the challenge computed in the last round of the challenge-
exchange phase will be included in the block. This, in addition to the proof of genesis information

11

Algorithm 4 The chain validation predicate, parameterized by q,D, the hash functions G(·), H(·),
and the content validation predicate V (·). The input is C.
1: function validate(C, Gen)
2: b← V (xC) ∧ (C 6= ε) ∧ (tail(C) ∈ Gen)
3: if b = True then
4: 〈s, x, ctr〉 ← head(C)
5: s′ ← H(ctr,G(s, x))
6: repeat

7: 〈s, x, ctr〉 ← head(C)
8: if validblockDq (〈s, x, ctr〉) ∧ (H(ctr,G(s, x)) = s′) then

9: (s′, C)← (s, Cd1) . Retain hash value and remove the head from C
10: else

11: b← False
12: until (C = ε) ∨ (b = False)

13: return b

sent in the backbone protocol, is required so that other honest players accept this block as valid
and rank it accordingly. The code is presented in Algorithm 6.

Algorithm 6 The proof of work function, parameterized by q, D and hash functions H(·), G(·).
The input is (x, C, c).
1: function pow(x, C, c)
2: if C = ε then
3: s← c . c is required to prove freshness
4: else

5: 〈s′, x′, ctr′〉 ← head(C)
6: s← H(ctr′, G(s′, x′))

7: ctr ← 1
8: B ← ε
9: h← G(s, x)
10: while (ctr ≤ q) do
11: if (H(ctr, h) < D) then . Proof of work found
12: B ← 〈s, x, ctr〉
13: break

14: ctr ← ctr + 1

15: return CB . Extend chain

Figure 2 presents the overall structure (phases and corresponding rounds) of the bootstrapped
backbone protocol. Next, we turn to its analysis.

Remark 1. To understand some of our design choices we brie�y give some examples of simpler
protocols that don't work. For the �rst example, assume that we only have one round of challenge
exchange i.e. l equal to 1. With some non-negligible probability, the adversary can send one block
to half of the honest players and another block to the other half. By splitting the honest players in

12

Figure 2: The di�erent phases of the bootstrapped backbone protocol.

two groups such that no one in the �rst group will choose the chain of the second and vice versa,
agreement becomes impossible. Moreover, l must be large enough so that at least one honest party
computes a genesis block with overwhelming probability. Otherwise the adversary can choose to
remain silent and no genesis block will be mined with non-negligible probability.

For the second example assume that blocks weigh less than 3 units, as in the original protocol.
Also, assume that somehow the problem of the �rst example was avoided and honest parties only
adopted chains with genesis blocks that everyone had in their genesis block list. In this case,
uniquely successful rounds would not imply agreement on a single chain (see Figure 3), as the
adversary would have been able to take advantage of the di�erent views that honest players have
regarding the weight of genesis blocks. However, if we set the block weight to 3, this event becomes
impossible and makes the analysis a lot easier.

G1

G2

G1

G2

P1 P2

G1 6 5

G2 4 5

C1 10 9

C2 8 9

C ′2 10 11

C1

C2

C1

C ′2 +2

Figure 3: An example where blocks weigh 2 units. In the table the weights of the respective chains

are depicted. Initially player P1 has adopted chain C1 and player P2 chain C2. Then a uniquely

successful round happens and C2 is extended to C′2. Notice that, P1 will not adopt C′2 since it has

the same weight as C1. If the new block weighted 3 units, all players would have adopted chain C′2.

3.2 Analysis of the Bootstrapped Backbone Protocol

First, some additional de�nitions that will become handy in the analysis. We saw in the previous
section that genesis blocks are assigned weights, and, further, that a single genesis block may have
di�erent weights for di�erent parties depending on when they received it. We extend this notion to
chains of blocks.

13

De�nition 4. Let wP (B) be the weight that P assigned to genesis block B. We de�ne the weight
of a chain C with genesis block B (with respect to party P)to be:

wP (C) = wP (B) + 3(|C| − 1).

If block B was not received by P until round 2l + 1, or if C = ε, then wP (C) = −1.

In [21], all parties assign the same weight to the same chain, i.e., the length of the chain; thus,
for all parties Pi, Pj we have that wPi(C) = wPj (C). In contrast, in our case the genesis block of
each chain may have di�erent weight for di�erent parties, akin to some bounded amount of �noise�
that is party-dependent being added to the chain weights. We are going to show that if the amount
of noise is at most 1, then by letting each new block weigh 3 units our protocol satis�es the chain
growth, common pre�x and chain quality properties.

De�nition 5. Regarding chains and their weight:

De�ne hC = maxP {wP (C)} and `C = minP {wP (C)}.
Let C(B) denote the truncation of chain C after its block B.
For a block B of a chain C, de�ne hC(B) = hC(B) and similarly for `C(B). (Sometimes we will
abuse notation and write `(B) instead of `C(B). As long as no collision happens `(B) is well
de�ned. The same holds for h(B).)

For chains C1 and C2, de�ne C1 ∩ C2 to be the chain formed by their common pre�x.

The following are important concepts introduced in [21], which we are also going to use in our
analysis:

De�nition 6. A round is called:

successful if at least one honest party computes a solution;

uniquely successful if exactly one honest party computes a solution.

De�nition 7. In an execution blocks are called:

honest, if mined by an honest party,

adversarial, if mined by the adversary, and

u.s. blocks, if mined in a uniquely successful round by an honest player.

Recall that our model is ��at� in terms of computational power in the sense that all honest
parties are assumed to have the same computational power while the adversary has computational
power proportional to the number of players that it controls. The total number of parties is n
and the adversary is assumed to control up to t of them (honest parties do not know any of these
parameters). Obtaining a new block is achieved by �nding a hash value that is smaller than the
di�culty parameter D. Thus, the success probability that a single hash query produces a solution
is p = D

2κ , where κ is the length of the hash. The total hashing power of the honest players is
α = pq(n − t), the hashing power of the adversary is β = pqt, and the total hashing power is
f = α+ β. Moreover, in [21], a lower bound on the probability that a round is uniquely successful
was established; denoted by γ and equal to α−α2. Notice that γ is also a bound for the probability
of a round being just successful.

For each round j, we de�ne the Boolean random variables Xj and Yj as follows. Let Xj = 1 i�
j was a successful round, i.e., at least one honest party computed a POW at round j, and let Yj = 1
i� j was a uniquely successful round, i.e., exactly one honest party computed a POW at round j.
With respect to a set of rounds S, let Z(S) denote the number of POWs obtained by the adversary
during the rounds in S (i.e., in qt|S| queries). Also, let X(S) =

∑
j∈S Xj and de�ne Y (S) similarly.

Note that γ|S| ≤ E[Y (S)] ≤ E[X(S)] ≤ α|S| and E[Z(S)] = β|S|.

14

Lemma 8. If |S| = k and γ ≥ (1 + δ)β for some δ ∈ (0, 1), then

Pr[Y (S) > (1 +
5δ

9
)Z(S)] > 1− e−Ω(δ2k).

Proof. By the Cherno� bound we have that:

Pr[Y (S) ≤ (1− δ

8
)E[Y (S)]] ≤ e− δ

2γk
128 and Pr[Z(S) ≥ (1− δ

9
)E[Z(S)] ≤ e− δ

2βk
243 .

Suppose none of the above events happens. Then, from the union bound, we get that with proba-

bility 1− e−(2 min(β
243

, γ
128

)δ2k−ln(2)) it holds that

Y (S) > (1− δ

8
)γk ≥ (1− δ

8
)(1 + δ)βk ≥ (1 +

5δ

9
)(1 +

δ

9
)βk > (1 +

5δ

9
)Z(S).

Remark 2. For ease of exposition, in our analysis we will assume that there are no collisions; that
is, for any two di�erent queries to the random oracle, always a di�erent response is returned. This
would generally be a problem since for example it would break independence of Xi, Xj , for i 6= j,
and we would not be able to apply the Cherno� bound in the previous lemma. However, since the
probability of a collision happening, as well as all other events we consider, is at most e−Ω(κ), we can
always use the union bound to include the event of no collision occurring to our other assumptions.
In addition, we assume that no two queries to the oracle are the same, as formalized by the Input
Entropy condition in [21].

Properties of the genesis block generation process. We now establish a number of properties
of the genesis block generation process.

Lemma 9 (Graded Consistency). If any honest party Pi accepts genesis block B with rank wPi(B) >
1, then all honest parties accept B with rank at least wPi(B)− 1.

Proof. Let wPi(B) = k > 1. Since Pi accepted B with rank k at some round r, he must have
received a message of the form (B,El+1, .., Ek+1), where

B is a valid block that contains H(El+1);

Ek+1 contains ck and for k + 2 < j ≤ l + 1, Ej contains H(Ej−1); and

ck is the challenge computed by Pi at round k.

Since k > 0, according to Algorithm 3, Pi is going to broadcast (B,El+1, .., Ek+1, Ak), where
H(Ak) = ck is contained in Ek+1 and Ak contains all the messages received by Pi at round k. All
honest-party challenges of round k−1 were received in this round; therefore, all honest parties have
accepted or will accept block B by the next round and the lemma follows.

Lemma 10 (Validity). Genesis blocks computed by honest parties before round 2l+2, will be accepted
by all honest parties in the next round.

Proof. Suppose honest party Pi mined genesis block B at round m. According to Algorithm 1,
B contains the challenge he has computed at the last round of the challenge-exchange phase. In
addition, when the party broadcasts it, it includes the message sets Al+1, . . . , Ar, where Aj contains
the messages received by Pi at round j and r = 2l + 2−m. Since Pi is honest, the following hold:

B is a valid block that contains H(Al+1);

for r + 1 < j ≤ l + 1, Aj contains H(Aj−1);

15

if cr is the challenge sent by some honest party at round r, then cr is contained in Ar+1; and

all honest parties are going to receive the message.

Thus, all honest parties are going to accept B at round m+ 1 and the lemma follows.

Lemma 11 (Freshness). Let r ≤ l + 2. Every block computed before round r cannot be part of

some chain with genesis block B, where wP (B) ≥ r−1 for some honest party P , with overwhelming

probability in the security parameter κ.

Proof. We �rst look into the case where the block in the statement is a genesis block. So for the
sake of contradiction, suppose the adversary mines some genesis block B before round r, and this
block is accepted by some honest party P with a value greater or equal to r− 1. In the worst case,
that means that the adversary also created sets Al+1, . . . , Ar such that:

B is a valid block that contains H(Al+1);

for r + 1 < j ≤ l + 1, Aj contains H(Aj−1); and

if cr−1 is the r − 1 round challenge of P , cr−1 is in Ar.

Due to the random nonce honest parties add to their challenges at every round, the probability
that the adversary can guess cr−1 before round r is negligible in κ. Hence, to put it more simply,
the adversary must compute sets Al+1, . . . , Ar such that H(Al+1||H(. . . H(Ar||cr))) is equal to c,
where c is the value in some of the blocks he has precomputed. Assuming his precomputation time
is bounded by a polynomial in κ, say p1(κ), and that he also has p2(κ) steps in order to compute
these sets, by the union bound the probability of success is

Pr[success] ≤p1(κ) + p2(κ)

2κ
(p1(κ) + p2(κ)) ≤ negl(κ)

where p1(κ)+p2(κ)
2κ is an upper bound on the probability that a query made to the oracle by the ad-

versary satis�es the conditions described before, and p1(κ)+p2(κ) is an upper bound on the number
of queries he makes. Hence, the adversary cannot create such a genesis block with overwhelming
probability in κ.

Otherwise, suppose that there exists some non-genesis adversarial block B′, that has been mined
before round r and is part of a chain with genesis block B, where for some honest party P , wp(B) ≥
r−1. If no collision has occurred, B must have been mined before B′, and thus as we proved for the
�rst case, the probability that a genesis block with these properties exists is negligible in κ. Hence,
the lemma follows.

Weak chain growth. We now turn our attention to the weight of chains and prove a weak chain-
growth property. In the original Bitcoin backbone protocol [21], it was proved that chains grow
at least at the rate of successful rounds, independently of the adversary's behavior. Here, at least
initially, the chains of honest parties grow in a �weak� manner, in the sense that the adversary is
able to slow down this growth by using his own blocks. Later on, we will show that after some
speci�c round our protocol also achieves optimal chain growth.

Lemma 12. Let round r such that l+ 2 ≤ r < 2l+ 2, and suppose that at round r an honest party,

say, P1 has a chain C such that wP1(C) = d. Then, by round s, where r ≤ s < 2l + 2, every honest

party P will have received a chain C′ of weight at least wP (C′) = d− 2 + 3
∑s−1

i=r Yi −
∑s−1

i=r Zi.

Proof. Since r < 2l + 2, the genesis blocks of the chains that honest players have at this or any
previous round, must have weight at least 1. Hence, by Lemma 9, for any chain C′ of these chains,

16

it should hold that hC′ ≤ `C′ + 1. Let `(r) = d i� d is the minimum value of the set {`C |P is honest
and at round r has chain C}. Then we can show the following:

Claim 1. Suppose round r is uniquely successful and `(r) = d. Then for any round s > r it holds
that `(s) ≥ d+2. Moreover, if the adversary has not broadcast by round s any chain C that contains
an adversarial block B = head(C) such that `C(B) = d+ 2, it holds that `(s) ≥ d+ 3.

Proof of Claim. The proof is quite straightforward. For the �rst part, since `(r) = d and r is
uniquely successful, an honest party will broadcast a chain C at round r where `C ≥ d + 3. Thus,
at round r+ 1 all parties will receive a chain that has weight at least d+ 3 according to their view.
This implies that, at worst, they may adopt a chain of the same weight, hence in any case it holds
that `(s) ≥ d+ 2.

Suppose that by round s, the adversary has not broadcast any block B′ = head(C′) such that
`C′(B

′) = d+ 2 and C′ is valid. For the sake of contradiction, suppose that there exists some round
s > r such that `(s) < d + 3. Since at round r + 1 honest parties receive C, they will all adopt a
chain that weighs in their view at least d+ 3. Otherwise, they would adopt C. Moreover, they will
never adopt a chain with smaller weight. Hence, the only way `(r+ 1) = d+ 2 is if a chain that has
weight d + 2 for some honest party was broadcast at some round. By our assumption, an honest
party has mined the head of this chain. Since `(r) = d, he must have done that before round r,
otherwise the chain would weigh at least d+3 for any honest party. However, if he mined this chain
before round r, at round r all honest parties would have received this chain and `(r) = d+ 2, which
is a contradiction. Hence, the claim follows. a

Observe that if at round r P1 has a chain C of weight wP1(C) = d, then he broadcast C at an
earlier round. It follows that every honest party P will receive C by round r and wP (C) ≥ d− 1. It
is easy to see that if each honest party P at some round r′ has received a chain C where wP (C) ≥ k,
then for every round s′ ≥ r′ it holds that `(s′) ≥ k − 1. Thus for every round s′ ≥ r it holds that
`(s′) ≥ d− 2.

We now have two cases. In the �rst case,
∑s−1

i=r Yi ≤
∑s−1

i=r Zi. The claim above guarantees
that every time a uniquely successful round r′ happens, `(r′ + 1) ≥ `(r′) + 2. Thus, by repeatedly
applying this argument we immediately get that:

`(s) ≥ d− 2 + 2
s−1∑
i=r

Yi ≥ d− 2 + 3
s−1∑
i=r

Yi −
s−1∑
i=r

Yi

≥ d− 2 + 3

s−1∑
i=r

Yi −
s−1∑
i=r

Zi,

which implies that at round s all honest parties have received a chain that has su�cient weight
according to the lemma.

Otherwise,
∑s−1

i=r Yi >
∑s−1

i=r Zi. Note that for every uniquely successful round, in order for the
condition of the claim above to hold, the adversary must broadcast di�erent blocks that have weight
at least `(r) + 2 = d. Thus, for at least

∑s−1
i=r Yi−

∑s−1
i=r Zi uniquely successful rounds the condition

of the claim will not hold and for any such round r′, `(r′ + 1) ≥ `(r′) + 3. Thus,

`(s) ≥ d− 2 + 3(

s−1∑
i=r

Yi −
s−1∑
i=r

Zi) + 2
s−1∑
i=r

Zi

≥ d− 2 + 3

s−1∑
i=r

Yi −
s−1∑
i=r

Zi.

17

Universal chain validity. A novelty of our construction is that the same genesis block may
have di�erent weight for di�erent parties. Unfortunately, it could be the case that due to the
adversary's in�uence, a genesis block is valid for one party but invalid for another. This could lead
to disagreement, in the sense that some honest parties may adopt a chain that others don't because
it is not valid for them. We will show that with overwhelming probability such an event cannot
occur for our protocol; as such, chain validity is a �universal� property; if some honest party accepts
a chain C as valid, then C will also be valid for all other parties.

Notice, that in order to prove the following lemma we need l to be greater than a value that
depends on 1/γ, i.e. the expected time it takes for honest parties to mine a block, and the security
parameter κ (see also Remark 1). Intuitively l should be large enough so that (i) honest parties mine
at least one block at this time interval, and (ii) any adversarial chain that is based on a genesis block
broadcast at the end of the bootstraping phase will never be adopted by honest parties (because
such genesis block will have too small weight in comparison).

Lemma 13. Suppose that for some δ ∈ (0, 1), 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , and γ ≥ (1 + δ)β, and

that at round r an honest party P has chain C. Then C will also be valid for all other parties from

this round on with probability 1− e−Ω(δ2k).

Proof. For the sake of contradiction, suppose there exists some honest party P ′ such that P ′ has
received chain C at round r and it is not valid for him. The only reason this may happen is that
P ′ has not accepted C's genesis block B. By Lemma 10 all honest parties know the genesis blocks
mined by other honest parties, thus B must have been computed by the adversary. We have two
cases. In the �rst case, round r is before round 2l+ 2. Recall that 2l+ 1 is the last round where the
validation predicate is updated. Then, since P has adopted C in the previous round, he must have
also broadcast B in the previous round. Thus, all honest parties will accept B as a valid genesis
block at round r and will also accept C as valid, which is a contradiction.

Otherwise, suppose r = 2l + 2. Again, if B was received before round 2l + 1 by some honest
party, C will look valid to all parties. So B must have been received for the �rst time at round
2l + 1 by P ; no honest party accepts new genesis blocks after this round. We will show that with
overwhelming probability in k, no honest party will ever accept a chain based on B.

Without loss of generality, suppose that P is the �rst honest party that accepts a chain based
on B at round r. Let E1 be the event where the honest parties mine a genesis block after round
l+2+((1−δ)k/γ−1) for the �rst time. It holds that the probability of E1 is at most (1−γ)(1−δ)k/γ <
e−(1−δ)k. So suppose that E1 does not happen and at round l+2+((1−δ)k/γ−1) (< r) the honest
parties have computed at least one genesis block that has weight at least l− (1− δ)k/γ. Hence, in
this case, it follows from Lemma 12 that every honest party at round r will have a chain of weight
at least l − (1− δ)k/γ − 2 + 3(Y (S′)− 1)− Z1(S′), where S′ = {l + 2, . . . , r} and Z1(S′) is the set
of blocks the adversary has broadcast to slow down chain growth during rounds in S′.

On the other hand, since block B is adversarial, and chain C is accepted for the �rst time by
an honest party at round r, all of its blocks must be adversarial; possibly C contains just B. By
de�nition block B weighs 1 for P . Thus, by Lemma 11 the adversary can start extending C at
round 2. However, the blocks that the adversary uses to slow down chain growth cannot also be
used for C, because they belong to chains whose genesis block has been announced earlier. So let
Z2(S) denote the blocks mined by the adversary in S = {2, . . . , r} that are not in Z1(S′). In order
for C to be accepted by some honest party, it must hold that

1 + 3(Z2(S)− 1) ≥ l − (1− δ)k/γ − 2 + 3(Y (S′)− 1)− Z1(S′).

18

Since Z1(S) and Z2(S′) are disjoint and S′ ⊆ S, the above implies:

3Z(S) ≥ l − (1− δ)k/γ + 3Y (S′)− 3. (1)

Let E2 be the event that

Y (S′) ≤ Z(S′). (2)

From Lemma 8, if |S′| > k, which is the case here, Pr(E2) ≤ e−Ω(δ2k). Also, let E3 be the
event that Z(S \ S′) ≥ (1 + δ)lβ. Again, by an application of the Cherno� bound we have that
Pr(E3) ≤ e−Ω(δ2kβ), since |S \ S′| = l ≥ k. Suppose now that none of E2 or E3 holds. Then, since
by our assumptions we have that

3(1 + δ)lβ < l − (1− δ)k/γ − 3, (3)

it follows that inequality 1 cannot hold and thus no honest party will ever accept a chain based on
B. By an application of the union bound the event E1 ∨ E2 ∨ E3 has probability at most e−Ω(δ2k)

and the lemma follows.
A subtle point here is that since the lemma holds for r = 2l+2, it follows that Lemma 12 should

hold for r = 2l+2. The same proof then can be applied for r = 2l+3 in this lemma, and inductively
it follows that both lemmas hold for any round of the execution. However, since we have to apply
repeatedly the universal validity proof for di�erent r, we must argue about the probability that the
statement holds for any r. Let E2(r) be the parameterized version of E2, where E2(r) is the event
where Y (S′) ≤ Z(S′) for S′ = {l + 2, . . . , r}. Then, for some ε > 0 it holds that∨

i≥2l+2

E2(i) ≤
∑

i≥2l+2

e−(εδ2k−ln(2)) ≤ e−(εδ2k−ln(2)+ln(1−e−εδ2)) ≤ e−Ω(δ2k)

Thus, again by the union bound, the event E1∨
∨
i≥2l+2E2(i)∨E3 has probability at most e−Ω(δ2k).

If this event does not occur, as we have argued universal validity holds for any r. Hence, the lemma
follows.

The complete version of the weak chain growth lemma follows from the argument we've made
above.

Corollary 14. Suppose that for some δ ∈ (0, 1), 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , and γ ≥ (1 + δ)β.

Let round r such that r ≥ l + 2, and suppose that at round r an honest party, say, P1 has a chain

C such that wP1(C) = d. Then, by round s, where r ≤ s, every honest party P will have received a

chain C′ of weight at least wP (C′) = d−2+3
∑s−1

i=r Yi−
∑s−1

i=r Zi with probability at most 1−e−Ω(δ2k).

Remark 3. Note further that the dependency of γ on n does not undermine the scalability of the
round complexity of our protocol. This claim is argued on the basis that the di�culty level D can be
set proportional to 1/n, so that γ can be treated as a constant and then l is in essence independent
of n (note that both parameters would be polynomials in κ).

A bound on adversarially precomputed blocks. The honest parties begin mining right after
the challenge-exchange phase. Note that it does not help the adversary to precompute blocks before
the challenge-exchange phase, except for the small probability of the event that some of his blocks
happen to extend future blocks. We have shown that the adversary cannot create a private chain
that honest parties will adopt if he starts mining at the �rst round of the challenge-exchange phase.
It is though possible to start mining after the �rst round in order to gain some advantage over the
honest parties. The following lemma provides a bound on the number of blocks mined during the
challenge-exchange phase with su�cient weight so that they can be later used by the adversary.

19

Lemma 15 (Precomputed blocks). Assume 3(1 + δ)f < 1 and l > (1−δ)k/γ+3
1−3(1+δ)f , for some δ ∈ (0, 1).

Let R be the set that contains any adversarial block B mined before round l + 2, where h(B) >
l − 1− (1− δ)δ2k. Then Pr[|R| > 5δ

9 kβ] ≤ e−Ω(δ4k).

Proof. Let B = head(C) be a block that is contained in R and B′ be the genesis block of C. First, we
are going to show that if B′ was computed before round l+ 1− 2(1− δ)δ2k, then B must have been
computed after round l+ 1− (1− δ)δ2k. Suppose that block B′ was computed at round l+ 1− r∗
of the challenges phase, for r∗ > 2(1− δ)δ2k; thus, by Lemma 11 it holds that hC(B

′) < l − r∗. In
order for C to have the required weight, the adversary must have mined at least

d(l − (1− δ)δ2k − 1− (l − r∗ − 1))/3e = d(r∗ − (1− δ)δ2k)/3e

blocks, starting from round l+ 1− r∗. Let E1 be the event that the adversary after r∗ − (1− δ)δ2k
rounds has computed more than (1 + δ)(r∗− (1− δ)δ2k)β blocks. By an application of the Cherno�
bound, Pr(E1) ≤ e−Ω(δ4k). By our assumptions, this number of blocks is not su�cient to get a
chain of the required weight, that is

(1 + δ)(r∗ − (1− δ)δ2k)β < d(r∗ − (1− δ)δ2k)/3e.

Therefore, if E1 does not hold, then the adversary will start mining B after round l+1− (1−δ)δ2k,
for any B in R.

Next, we are going to bound the number of blocks the adversary can compute in 2(1 − δ)δ2k
rounds; recall that we are interested in blocks that were mined after round l−2(1−δ)δ2k and before
round l + 2. Let E2 be the event that the adversary mines at least 2(1 + δ/8)(1− δ)δ2kβ(< 5δ

9 kβ)

blocks in 2(1−δ)δ2k rounds. By an application of the Cherno� bound, Pr(E2) ≤ e−Ω(δ4k). Since by
an application of the union bound E1 ∨ E2 happens with probability at most e−Ω(δ4k), the lemma
follows.

We are now ready to prove the security properties listed in Section 2.2.

Common Pre�x. Every time a uniquely successful round happens all honest players converge to
one chain, unless the adversary broadcasts some new block. This turns out to be a very important
fact and a consequence of it is described in the next lemma.

Lemma 16. Suppose block B in chain C is a u.s. block and consider a chain C′ such that B 6∈ C′.
If `C′ ≥ `C(B) − 1 then there exists a unique adversarial block B′ such that `C′(B

′) ∈ [`C(B) −
1, `C(B) + 1]. Moreover, if B is not a genesis block, then B′ will also not be a genesis block.

Proof. Assume block B was mined at some round r. If B is not a genesis block, then for any honest
block B′′ mined before round r it should hold that `(B′′) ≤ `(B) − 2. Otherwise, at round r no
honest party would choose the parent of B to mine new blocks. If B is a genesis block, then no
other honest party has mined a block in some previous round. On the other hand, for any honest
block B′′ mined after round r it must hold that `(B′′) ≥ `(B) − 1 + 3 = `(B) + 2, since honest
parties will only extend chains of length at least `(B) − 1 after this round. Thus, if a block with
weight in the given interval exists, it must be adversarial.

For the sake of contradiction, suppose B is not a genesis block while B′ is a genesis block and let
B′′ be the parent of B. Then hC(B

′′) < `C′(B
′) since hC(B

′′) ≤ `C(B)− 2. This implies than every
honest party received B′ before block B′′. But then, no honest party would mine on the parent of
B, because he would have lower weight than B′, which leads to a contradiction. Hence, the lemma
follows.

20

We use Lemma 16 in order to show that the existence of a fork implies that the adversary has
mined blocks proportional in number to the time the fork started.

Theorem 17. Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). Let

S be the set of the chains of the honest parties from round 2l + 2 and onwards of the bootstrapped

backbone protocol. Then the probability that S does not satisfy the strong common-pre�x property

with parameter k is at most e−Ω(δ4k).

We �rst prove a weaker lemma, called common-pre�x lemma in [21]. After proving this lemma
for our own model, we can apply the same ideas as in [21] to get a proof for the theorem.

Lemma 18. Let 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β for some δ ∈ (0, 1), anc consider

two chains C1 and C2 such that `C2 ≥ `C1. If C1 is adopted by an honest party at a round not before

round 2l + 2, and C2 is either adopted by an honest party or di�used at the same round, then the

probability that Cdk1 6� C2 or Cdk2 6� C1 is at most e−Ω(δ4k).

Proof. We �rst show that a fork between two chains implies that the adversary must have mined a
number of blocks proportional to the uniquely successful blocks associated with these chains.

Claim 2. Let C1, C2 be chains at some round r and B′0, . . . , B
′
k be u.s. blocks in chains C′0, . . . , C′k

in increasing order of round mined. Then, if `C1∩C2 < `(B′0) − 1 and for all C ∈ {C1, C2} \ C′k:
`C ≥ `(B′k) − 1, there exist di�erent adversarial blocks B0, . . . , Bk such that for i ∈ {0, . . . , k}:
`(Bi) ∈ [`(B′0)− 1, `(B′k) + 1] and Bi ∈ {C′0, . . . , C′k} ∪ {C1, C2}.

Proof of Claim. We iterate over U = {(B′0, C′0), . . . , (B′k, C′k)} in the order of increasing index. Note
that by the Claim in Lemma 12, if (B, C) and (B′, C′) are two consecutive elements of U , then

`C′(B
′)− `C(B) ≥ 2 (4)

Consider (B, C) ∈ U and suppose all the previous elements have been associated with a distinct
adversarial block. In particular, let (B̄, C̄) be the previous one associated to (B̄′, C̄′). To choose
the adversarial block (B′, C′) to associate with (B, C) we consider the following cases (an example
is presented in Figure 4 covering most of the cases). In each case B′ is determined by C′ and
Lemma 16.

� If C /∈ {C1, C2} and C̄ ∈ {C1, C2}, then we have two cases. If B̄ 6∈ C and B̄′ 6∈ C, then let
C′ = {C1, C2} \ C̄′ and let B∗ in chain C∗ = C be the block guaranteed from Lemma 16 for
block B̄ in chain C. This block will be used in a subsequent step. Otherwise, B̄ ∈ C or B̄′ ∈ C.
Then C′ should be chosen appropriately from {C1, C2}, so that in the next transition from a
chain not in {C1, C2} to a chain in {C1, C2}, the corresponding block from Lemma 16 does not
intersect with the previously chosen block. This is always possible since any of the two chains
can be selected.

� If C ∈ {C1, C2} and C̄ /∈ {C1, C2}, then C′ ∈ {C1, C2} \ C. If C∗ is de�ned from a previous
application of the �rst rule, we match B with B∗.

� If C ∈ {C1, C2} and C̄ ∈ {C1, C2}, then let C′ ∈ {C1, C2} \ C.

� If C /∈ {C1, C2} and C̄ /∈ {C1, C2}, then {C1, C2} \ C̄′. The adversarial block guaranteed by
Lemma 16 for C′ is no common to C1, C2 due to `C1∩C2 < l(B′0)− 1.

� If B = B0, then if C ∈ {C1, C2}, C′ ∈ {C1, C2} \ C. Otherwise, as in the �rst case, C′ should be
chosen appropriately from {C1, C2}.

21

We need to verify that the above procedure does not assign the same block to two distinct
elements of U , (Bu, Cu) and (Bv, Cv).

Note �rst that this is not possible if

|`Cu(Bu)− `Cv(Bv)| ≥ 3.

For example, by Equation (4), this is true if they are not consecutive in U . To see this, observe
that by Lemma 16,

`C′u(B′u) ∈ [`Cu(Bu)− 1, `Cu(Bu) + 1],

while
`C′v(B

′
v) ∈ [`Cv(Bv)− 1, `Cv(Bv) + 1].

Since these intervals are disjoint due to the inequality above, it follows that B′u 6= B′v.
Thus, we only need to consider the case

`Cu+1(Bu+1)− `Cu(Bu) = 2.

It is not hard to see that this situation cannot occur when Bu+1 is a descendant of Bu. Moreover,
when the blocks assigned are on di�erent chains, it is guaranteed that they are di�erent. These
covers all di�erent cases, except two. The �rst one, is when the �rst rule is applied and B̄′ is in C.
Then, B′ will be di�erent than B̄′ because, either is on a di�erent chain ({C1, C2} \ C) or they are
on the same chain and `C(B)− `C(B̄′) ≥ 3. The other case is when C∗ has been de�ned by the �rst
rule and the second rule is applied. In this case however, the honest block is matched to B∗, so we
can safely ignore the matched block and still have a complete matching. Note that, B∗ is unique
since no block consecutive to the one matched on B∗ is matched in chain C∗. Hence, again it is
impossible that these two blocks are the same.

a

Now we can proceed to the core of the proof. The idea is that if a fork exists, we will use the
previous claim multiple times and get a matching between a su�ciently large amount of uniquely
successful blocks and adversarial blocks. Then, we will show that it is only with small probability
that the adversary has mined this number of blocks. For the rest of this proof assume that C1 was
adopted by an honest party at round r and it diverges from C2 at some round r′.

We start by de�ning a �bad� event that will only happen with negligible probability. Afterwards,
we will show that if this event does not occur, then there cannot be a fork as described on the
statement of the Lemma. Let BAD be the event where at least one of the following events happens:

� a successful rounds happens for the �rst time after round l + 1 + (1− δ)δ2(r − r′)

� the event of Lemma 15 does happen

� for any s ≤ r − r′, for the set of rounds S = {s, . . . , r}:

Y (S) ≤ (1 +
5δ

9
)Z(S)

The probability that any of these events happens is at most e−Ω(δ4β(r−r′)). It follows from an
application of the union bound to the disjunction of these events, that the probability that BAD
happens is at most e−Ω(δ4β(r−r′)).

Suppose C1, C2 diverge at round r′ and assume BAD does not occur. Let block B′0 ∈ C1 ∩ C2 be
the most recently mined u.s. block where all subsequently mined u.s. blocks are descendants of B′0.

22

If no such block exists, assume there exists a block B′0, mined in round 0, that is the parent of all
genesis blocks, as in Figure 5, but does not a�ect the weight of the chains it belongs too. Thus, in
this case, whenever we write for example C1 we mean C1 augmented with B′0. In any case, any u.s.
block mined after B′0 will be a descendant of B′0 and B′0 ∈ C1 ∩ C2.

+3

+3

C1

C2

C3

C4

B0 B1

B2

B3

B4

B5

B7

B6

Figure 4: An example of the matching described in the claim in Lemma 18. B0, . . . , B7 are u.s.
blocks and the dashed triangles point to the places where according to Lemma 16 there should exist
an adversarial block. In this example we can use Lemma 16 two times for block B5. The �extra�
block is matched to B7.

Now let B′1 be the most recently mined u.s. block in some chain C′1 where (1) the last block in
C1 ∩ C′1 is in C1 ∩ C2 and (2) for any u.s. block B′ in chain C′ mined after B′0 it holds that the last
block in C1 ∩C′1 is the same or an ancestor of the last block in C1 ∩C′. Note that B′1 6∈ C1, otherwise
it would satisfy the de�nition of B′0 which is a contradiction. Moreover, for the same reason, the
last block of C1 ∩ C′1 either is B′0 or it is not a u.s. block. Hence, if B′ is the �rst u.s. block mined
after B′0 that is in some chain C ′, it follows that `C1∩C′1 ≤ `C′(B

′) − 3 < `C′(B
′) − 1. Additionally,

since some honest party has chain C1 at round r, it holds that `C1 ≥ `C′(B
′
1) − 1. Thus, we can

apply Claim 2 for the chains C1 and C′1 from the �rst u.s. block mined after B′0 up to block B′1.
We apply this process as many times as possible. So B′2 would be the most recently mined u.s.

block in some chain C′2 where (1) the last block in C1 ∩ C′2 is in C1 ∩ C2 and (2) for any u.s. block
B′ in chain C′ mined after B′1 it holds that the last block in C1 ∩ C′2 is the same or an ancestor of
the last block in C1 ∩ C′. Then we can again apply Claim 2 for the chains C1 and C′2, from the �rst
honest block mined in a u.s. round after B′1 up to block B′2. We will argue that the adversarial
blocks matched in the two applications of Claim 2 so far will be di�erent. Let B′ be the next u.s.
block mined after B′1. Notice that in the worst case B′1 has been matched to a block B′′ in C1.
Also, B′ will be a descendant of the (real) genesis block of C1. Hence, l(B

′)− l(B′′) = 3k since they
share the same genesis block. If l(B′) − l(B′′) = 0 then if follows that l(B′) − l(B′1) < 2 which is
impossible. Otherwise, l(B′)− l(B′′) ≥ 3, and thus the block that is going to be matched to B′ by
Lemma 16 cannot be B′′. This process ends when no block B′i, for some positive i, with the desired
properties exists. Notice that it may be the case that the process ends for i = 0, no block matching
the speci�cation of B′1 exists.

So for any remaining u.s. block B in some chain C, mined after B′i, it holds that the last block
of C ∩ C1 is not in C1 ∩ C2. Note, that if B′ is that last block mined up to round r − 1, and since
C1 has been adopted by an honest party, it holds that `C2 ≥ `C1 ≥ `(B′)− 1. Hence, we can apply
Claim 2 for chains C1, C2 and for all remaining u.s. blocks. Thus, there exists a mapping between
all u.s. blocks mined after B′0 and distinct adversarial blocks that are descendants of B′0.

23

B′0

C1

C2
B′1

B′2

B′3

C1

C2B′2

B′3B′1

B′0

G1

G2

Figure 5: An example of two scenarios for the matching described by Lemma 18. Notice that in the
second one an arti�cial block B′0 has been introduced to aid our analysis.

Now we have two cases. If B′0 actually exists, all adversarial blocks of the matching must have
been mined after the round B′0 was mined. Also, since B′0 ∈ C1∩C2, it must have been mined before
round r′. Therefore, there exists a set of rounds S = {r0, . . . , r

′, . . . , r} such that Z(S) ≥ Y (S).
This implies that BAD does occur, which is a contradiction.

Otherwise, the adversary may use blocks that he has precomputed. Since BAD does not hold,
the honest parties have computed at least one genesis block that weighs at least l− (1−δ)δ2(r−r′).
Then, all adversarial blocks in the matching must weigh at least l − (1 − δ)δ2(r − r′) − 1, and by
Lemma 15 there are at most 5δ/9 such blocks. This implies that for S = {1, . . . , r} it holds that
Y (S) ≤ (1 + 5δ

9)Z(S), which is a contradiction.
Thus, ¬BAD implies that C1 and C2 diverge at some round greater or equal to r′. By con-

traposition we get that if C1 and C2 diverge at some round before r′, BAD is implied. Thus, the
probability of this event is at most the probability of BAD happening, and the lemma follows.

As a �nal note, if P2 has chain C2 at the beginning of round r and head(C1) is a u.s. block, it may
not have a corresponding adversarial block in our matching. In this case, there exist players P ′1, P

′
2

that adopted the chain ending in the parent of head(C1) and C2 at round r−1, and these two chains
diverge at round r − r′. Hence, again the proof holds with probability at most e−Ω(δ4β(r−r′−1)) =
e−Ω(δ4β(r−r′)).

Finally, by an application of the Cherno� bound for r′ > r − k/(1 + δ)f , it follows that the
probability that there exists a fork longer than k blocks is less than 1 − e−Ω(δ4k). The lemma
follows.

Next, using the common-pre�x lemma we can prove that our protocol satis�es the strong

24

common-pre�x property.

Proof of Theorem 17. The proof is similar to that of [21]. Essentially, we proved the common-pre�x
lemma and now we want a proof for the common-pre�x theorem in their terms. We give a brief
sketch of the proof noting any di�erences that arise in our model. Assume that there exist chains

C1, C2 adopted by parties P1, P2 at rounds r1, r2 such that r1 ≤ r2 and Cdk1 6� C2. Let r ∈ [r1, r2]
be the smallest round such that there exists an honest party P ′ that adopts a chain C′2 such that

Cdk1 6� C2. If r = r1, then by it holds that either `C1 ≤ `C′2 or `C′2 ≤ `C1 and by lemma 18 this event
happens with negligible probability in k.

Otherwise, if r > r1, let C′1 be the chain that party P ′ adopted at round r − 1. Then, it holds
that

(C′2
dk � C′1) ∧ (Cdk1 � C′1) ∧ (`(C′2

dk
) ≥ `(Cdk1)) =⇒ Cdk1 � C′2

dk

The �rst conjunct follows from the fact that C′2 was di�used at round r − 1 and lemma 18. The
second one follows by the de�nition of r. The last one follows from the fact that P ′ selected chain C′2
despite knowing C1, hence it must hold that `C′2 is greater than hC1 which implies the third conjunct.

The implication comes from the fact that Cdk1 and C′2dk are part of the pre�x of C′1, and C1 is shorter
of equal length to C′2 (remember that they both share the same genesis block). The theorem follows.

Chain Growth. We proved that after round 2l+ 1 the strong common-pre�x property is satis�ed.
This implies that all players share a common genesis block after this round. The next lemma shows
that this is su�cient in order to get chain growth at the same level as in the original Backbone
protocol.

Lemma 19. Suppose that at round r an honest party P1 has a chain C of weight wP1(C) = d and all

honest parties after round r − 1 adopt chains that share the same genesis block B. Then, by round

s ≥ r, every honest party P will have received a chain C′ of weight at least wP (C′) = d−1+3
∑s−1

i=r Xi.

Proof. Since all parties adopt chains with the same genesis block after round r − 1, and P1 has
adopted a chain C of weight d, there are two cases: either (1) `C = d− 1 and any chain that honest
parties adopt after round r− 1 has a weight that is congruent to d or d− 1 modulo 3, or (2) `C = d
and the weight is congruent to d or d+ 1 modulo 3. This observation is implied from the fact that
each extra block adds 3 units of weight to the chain and B can only have two di�erent weights
under the views of honest parties.

It is su�cient to study only one of the two cases so w.l.o.g. suppose that the weight of the chains
is congruent to d or d− 1 modulo 3. The proof is by induction on s− r ≥ 0. For the basis (s = r),
observe that if at round r P1 has a chain C of weight wP1(C) = d, then he broadcast C at an earlier
round (than r). It follows that every honest party P will receive C by round r and wP (C) ≥ d− 1.

For the inductive step, note that by the inductive hypothesis every honest party P has received
a chain C′ of weight at least wP (C′) = d′ = d− 1 + 3

∑s−2
i=r Xi by round s− 1. When Xs−1 = 0 the

statement follows directly, so assume Xs−1 = 1. Observe that every honest party queried the oracle
with a chain of weight at least d′ at round s − 1. It follows that every honest party P successful
at round s− 1 broadcast a chain C′ of weight at least wP (C′) = d′ + 3. For every other party P ′ it
holds that wP ′(C′) ≥ d′+2 ≥ d−1+3

∑s−1
i=r Xi−1. However, no chain that an honest party adopts

can have length d′+ 2, because d′+ 2 is congruent to d− 2 modulo 3. Thus all honest parties adopt
chains that have length at least d′ + 3 and the lemma follows.

It can be easily shown that Lemma 19 implies the chain growth property after round 2l + 1.

25

Theorem 20. Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). The

bootstrapped Bitcoin protocol satis�es the chain growth property for r0 = 2l+ 2 with speed coe�cient

(1− δ)γ and probability at least 1− e−Ω(δ4s).

Chain Quality. We �rst observe a consequence of Theorem 17.

Lemma 21. Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1). From

round 2l+2 and onwards of the bootstrapped backbone protocol, the probability that the adversary has

a chain which is more than k blocks longer than the chain of some honest party is at most e−Ω(δ4k).

Proof. Given any execution and an adversary that at a round r has a chain C which is k blocks
longer than the chain C′ of an honest party P , we can de�ne an adversary such that at round r+ 1
the common-pre�x property does not hold for parameter k. The adversary simply sends C to P ′ 6= P
at round r.

Theorem 22. Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1/2).

Suppose C belongs to an honest party and consider any k consecutive blocks of C computed after

round 2l+2 of the bootstrapped backbone protocol. The probability that the adversary has contributed

more than (1 + δ
2)βγ · k ≤ (1− δ

3)k of these blocks is less than e−Ω(δ5k).

Proof. The proof idea is as follows. Suppose that in a chain C a large number of consecutive blocks
exist, such that a large fraction of them were computed by the adversary. Then it must be that the
honest parties have contributed their blocks to other chains. Since we are at a round su�ciently
away from the beginning of the protocol (at least 2l + 2), we know (by Lemma 19) that the chains
of the honest parties advance analogously to their power. We obtain then a contradiction by setting
up the parameters so that C is shorter than what Lemma 19 implies.

Let us denote by Bi the i-th block of the chain C of an honest party P at some round r and
consider any k consecutive blocks Bu, . . . , Bv. De�ne K as the least number of consecutive blocks
Bu, . . . , Bw that include the k given ones (i.e., v ≤ w) and have the property that there exists a
round at which an honest party was trying to extend the chain ending at block Bw. Observe that K
is well de�ned since C belongs to an honest party. De�ne also r1 as the round that Bu was created,
r2 as the �rst round that an honest party attempts to extend Bw, and let S = {r : r1 ≤ r ≤ r2}.

Now let x denote the number of blocks from honest parties that are included in the k blocks
and�towards a contradiction�assume that

x ≤
[
1−

(
1 +

δ

2

)β
γ

]
k ≤

[
1−

(
1 +

δ

2

)β
γ

]
K.

Let Z be the random variable that corresponds to the POWs obtained by the adversary during the
rounds in S and X the successful rounds of the honest players in the same sequence of rounds.

Suppose �rst that all the K blocks {Bj : u ≤ j ≤ w} have been computed during the rounds in
the set S. Then,

Z ≥ K − x ≥
(

1 +
δ

2

)β
γ
K ≥

(
1 +

δ

2

)β
γ

(
X − γδk

8f

)
The �rst inequality comes from the fact that the adversary computed K − x of the K blocks, since
by the de�nition of Bw all blocks from Bv up to the last block before Bw must be adversarial. The
second one comes from the postulated relation between x and K. To see the last inequality, assume
X − γδk

8f > K. Note �rst, that by Lemma 21 all honest parties at round r1 have chains with weight

at most 3γδk
8f less than the weight up to Bu. Next, note that by Theorem 17 after round r1 all

26

honest parties have chains starting with the same genesis block. Thus, assuming X − γδk
8f > K, the

assumption that an honest party is on Bw at r2 contradicts Lemma 19.
To obtain the stated bound, note that if |S| < (1− δ)K/f , then, since f is bounded away from

1 by a constant, the Cherno� bound implies that in |S| rounds the total number of solutions is at
least K with probability at most e−Ω(δ2k). Otherwise, |S| ≥ (1−δ)K/f ≥ (1−δ)k/f and the bound
follows from an application of the Cherno� bound, since E[Z] = β|S|, while (using E[X] ≥ γ|S|,
E[X] ≥ (1− δ)γk/f > γk/2f , and (1 + δ

2)(1− δ
4) ≥ (1 + δ

8))

E
[(

1 +
δ

2

)β
γ

(
X − γδk

8f

)]
≥
(

1 +
δ

2

)β
γ
· E
[
X − δ

4
· E[X]

]
≥
(

1 +
δ

8

)
β|S|.

To �nish the proof we need to consider the case in which these K blocks contain blocks that the
adversary computed in rounds outside S. To manage this for a block he computed before the rounds
in S implies he predicted the hash of a block in {Bj : u′ ≤ j ≤ v′}; this occurs with probability
negligible in logD. If the block was computed after the rounds in S, then it was inserted between
two existing blocks; this implies a collision.

Corollary 23. Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1/2).

The bootstrapped Bitcoin protocol satis�es the chain-quality property with parameters µ = (1 + δ
2)βγ ,

k0 = 2f(1 + δ)(l + 1), and k, with probability at least 1− eΩ(δ5k).

Proof. Note that the next two events occur with probability at least 1− eΩ(δ2l), for any δ ∈ (0, 1).
The honest parties in the �rst l + 1 rounds have computed at most α(1 + δ)(l + 1) blocks. The
adversary, who might have been mining also during the challenges phase, has computed at most
2β(1+δ)(l+1). The statement then follows from Theorem 22, since α(1+δ)(l+1)+2β(1+δ)(l+1) <
2f(1 + δ)(l + 1).

4 Applications of the Bootstrapped Backbone Protocol

In this section we present applications of our construction, starting with its primary/original one: a
distributed ledger, i.e., a public and permanent summary of all transactions that honest parties can
agree on as well as add their own, despite the potentially disruptive behavior of parties harnessing
less than 1/2 of the hashing power. This entails proving that the ledger's required security properties
(Persistence and Liveness � cf. [21]) hold in a genesis block-less setting.

Next, we consider the problem of setting up a PKI in our unauthenticated network setting from
scratch, i.e., without any trusted setup. As mentioned in Section 1, the idea of using POWs as an
identity-assignment tool was put forth by Aspnes et al. [2]. Here we build on this idea as well as
on the �2-for-1 POWs� technique from [21] to use our bootstrapped protocol to assign identities to
parties. The assignment relation will possibly assign more than one identities to the same party,
while guaranteeing that the majority of them is assigned to honest parties.

Finally, applying the 2-for-1 POWs technique we can also solve the consensus (aka Byzantine
agreement) problem [36, 31] without any trusted setup, even if the adversary has almost the same
hashing power as the honest parties, and in a number of rounds independent of the number of
parties. Indeed, all our protocols have round complexity linear in the security parameter, and enjoy
simultaneous termination.

Compared to other works, most notably [1], our approach is di�erent in the order in which it sets
up a �bulletin board� and assigns identities to parties. We choose to �rst establish the former�i.e.,
the ledger�and then assign the identities; in contrast, in [1] identities are established �rst in a
graded manner, and then using that infrastructure the parties can implement a broadcast channel.

27

We now turn to the applications in detail.

Robust public transaction ledger. A public transaction ledger is de�ned with respect to a set
of valid ledgers L and a set of valid transactions T , each one possessing an e�cient membership
test. A ledger x ∈ L is a vector of sequences of transactions tx ∈ T . Each transaction tx may be
associated with one or more accounts. Ledgers correspond to chains in the backbone protocol. In
the protocol execution there also exists an oracle Txgen that generates valid transactions. Note,
that it is possible for the adversary to create two transactions that are con�icting; valid ledgers
must not contain con�icting transaction. We will assume that the oracle is unambiguous, i.e., that
the adversary cannot create transactions that come in `con�ict' with the transactions generated by
the oracle. A transaction is called neutral if there does not exist any transactions that comes in
con�ict with it.

In order to turn the backbone protocol into a protocol realizing a public transaction ledger
suitable de�nitions were given for functions V (·), R(·), I(·) in [21]. Namely, V (〈x1, . . . , xm) is true
if its input is a valid ledger. Function R(C) returns the contents of the chain if they constitute
a valid ledger, otherwise it is unde�ned. Finally, I(st, C, round, INPUT(), RECEIVE()) returns the
largest subsequence of transactions in the input and receive tapes that constitute a valid ledger,
with respect to the contents of the chain the party already has, together with a randomly generated
neutral transaction. We denote the instantiation of our protocol with these functions by ΠBoot

PL . For
more details we refer to [21].

De�nition 24. A protocol Π implements a robust public transaction ledger in the q-bounded syn-
chronous setting without trusted setup if there is a round r0 so that the following two properties
are satis�ed:

Persistence: Parameterized by k ∈ N (the �depth� parameter), if in a certain round after r0 an
honest player reports a ledger that contains a transaction tx in a block more than k blocks away
from the end of the ledger, then tx will always be reported in the same position in the ledger
by any honest player from this round on.

Liveness: Parameterized by u, k ∈ N (the �wait time� and �depth� parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds after round r0, then there exists an honest party
who will report this transaction at a block more than k blocks from the end of the ledger.

Chain quality, chain growth and the strong common pre�x property were shown in [27] to
be su�cient to implement such a ledger7 in a black-box manner. Our protocol satis�es all these
properties after a speci�c condition is met. Chain quality holds after the 2f(1 + δ)(l + 1) block in
the chain of any player, as Corollary 23 dictates, and common pre�x and chain growth hold after
round 2l + 2, according to Theorem 17. Finally, due to chain growth, after at most (2(1 + δ)(1 −
δ)f/γ+ 2)(l+ 1) ≤ 14(l+ 1) rounds all necessary conditions will have been met with overwhelming
probability.

Lemma 25 (Persistence). Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real

δ ∈ (0, 1/2). Then for all k ∈ N protocol ΠBoot
PL satis�es Persistence after round 2l+2 with probability

1− e−Ω(δ5k), where k is the depth parameter.

Lemma 26 (Liveness). Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real

δ ∈ (0, 1/2). Further, assume oracle Txgen is unambiguous. Then for all k ∈ N protocol ΠBoot
PL

7A similar de�nitional approach was pursued in [34].

28

satis�es Liveness after round 14(l + 1) with wait time u = 3
(1−δ)γ · max(k, 1

1−(1+ δ
2

)β
γ

) rounds and

depth parameter k with probability at least 1− e−Ω(δ5k).

Corollary 27. Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1/2).

Then protocol ΠBoot
PL implements a robust transaction ledger with parameter r0 = 14(l + 1).

Fast PKI setup. Next, we use the ledger to generate an honest majority PKI from scratch in a
number of rounds that is linear in the security parameter8.

The �rst idea that we are going to use is that of a 2-for-1 POW described in [21]. At a high
level, the technique allows to do combined mining for two POW schemes in the price of one. In more
detail, we can add additional information in the queries to the random oracle, and if the response
to the query is less than some value T1, then we consider it a valid POW of type 1; if it is greater
than some value T2 we consider it as a valid POW of type 2. T1 and T2 should be appropriately
chosen so that the events of success in either of these POWs are independent. The second POW is
used to �mine� transactions, in the same way blocks are mined. This guarantees that the number

of transactions is proportional to the hashing power of each player. By having parties broadcast
their transactions on one hand, and making sure that at least one honest block that contains these
transactions is in the chain of all honest parties due to liveness on the other hand, the protocol in
[21] manages to achieve consensus assuming an honest-majority hashing power.

In our case, transactions will contain the public keys, and in this way we will obtain an honest-
majority PKI. However, in contrast with [21], we cannot let parties start mining transactions from
the beginning of the execution, since the adversary would have some additional precomputation
time. Instead, we are going to wait for the public ledger to be established, and then use some of
the blocks added by honest parties to guarantee that all transactions where mined recently enough.
In more detail, any POW will be represented by a triple 〈w, ctr, label〉. The veri�cation procedure
for �block level� POWs (�block POWs� for short) will be of the form

H(ctr, 〈G(w), label〉) < T1,

while the veri�cation procedure for the �transaction level� POWs will be of the form

[H(ctr, 〈label, G(w)〉)]R < T2,

where [a]R denotes the reverse of the bitstring a. In w we are going to encode the information
needed for each application. For example, in block POWs, w will contain the transactions related
to this block as well as the hash of the previous block. Note that by making one hash query of the
form H(ctr, 〈G(w0), G(w1)〉) and only two comparisons, we will be mining POWs of both types at
the same time. Moreover, if dlog(T1)e + dlog(T2)e is less than κ, where κ is the size of the hash's
output, then the events of succeeding in any of the two POWs are independent, since they depend
on di�erent bits of the hash which are sampled independently and uniformly at random by the
random oracle.

Next, we describe our protocol ΠPKI
PL for an honest party P . L1, L2 are constants such that

L1 < L2.

Initialization. P runs ΠBoot
PL , as described so far, until she receives a chain of length at least L1.

We choose L1 so that it is guaranteed that all security properties hold, and about k new blocks
have been inserted in the common-pre�x of the chains of all honest players.

8For this subsection we assume that the adversary is static.

29

2-for-1 mining. Let C be P 's chain at the end of the initialization phase. From now on, she
is going to do 2-for-1 POW mining, and include in her transaction POWs (i) the hash of the
(L1 − k)-th block of C, and (ii) a randomly generated public key for which she has stored the
corresponding secret key. Obviously, a new key must be generated every time she starts mining
a new transaction. Whenever P mines a new transaction, she di�uses it to the network, and
whenever she receives one, she includes it in the transactions of the block she is mining.

The �rst time P receives a chain of length greater or equal to L2, she runs the Key extraction
procedure (below). The phase ends at round L2

(1−δ)γ , where P runs the Termination procedure.

Key extraction. P extracts and stores a set of keys from her current chain according to the
following rules: If chain C′ is her chain at this round, she stores any public key which belongs to
a transaction that (i) is in the �rst L2 − k blocks of C′, and (ii) the hash of the block contained
in the transaction matches the hash of the (L1 − k)-th block in her chain.

Termination. P outputs the keys from the key extraction phase and terminates.

Next, we prove that a consistent PKI with an honest majority is generated at the end of the
execution of protocol ΠPKI

PL . Two properties are guaranteed: (1) honest parties output the same set
of keys and (2) more than half of these keys have been generated by them. For the rest of this
section let α2, β2, f2 be the corresponding values of α, β, f for the di�culty level T2, e.g. f2 = nq T22κ .
The full proof of the theorem is provided in the Appendix.

Theorem 28. Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some real δ ∈ (0, 1/2)

and dlog(T1)e + dlog(T2)e ≤ κ. Then, for parameters L1 = 14(l + 1)(1 + δ)f + 2k and L2 =

L1 + 2k · (2 + 10
δ) (1+δ)f

(1−δ)γ the following hold for protocol ΠPKI
PL with probability 1− e−Ω(δ5k):

All honest players output the same set of public keys, the size of which is

k
α2

γ

20

δ
≤ N ≤ 60k

f2

γ
(1 +

10

δ
);

the majority of the keys are generated by honest parties; and

ΠPKI
PL has round complexity linear in κ.

Proof. First, due to the assumption that dlog(T1)e+ dlog(T2)e ≤ κ we prove that the events that a
party succeeds in mining a POW of any of the two types in a single query are independent.

Claim 3. The events that a party succeeds in mining a POW of any of the two types are independent.

Proof. Let A,B be the events where a party succeeds in mining a POW of type 1 and 2 respectively.
Let U be the result of the combined mining oracle query. Event A depends on the �rst dlog(T1)e bits
of U , while event B depends on the last dlog(T2)e bits. Since each bit of U is sampled independently
and uniformly at random, and dlog(T1)e+ dlog(T2)e ≤ κ it follows that A,B do not depend on the
same random bits and are thus independent.

Let chain C1, C2 be the chains that honest party P adopts at rounds r1, r2 when she starts the
2-for-1 POW mining phase and when she extracts the public keys respectively. We are going to
de�ne a Bad event that occurs with probability 1−e−Ω(δ5k) and do the rest of our analysis assuming
this event does not occur. Let Bad be the disjunction of the following events:

Less than L1 blocks are mined in total up to round L1
(1+δ)f

Less than L1 − 2k blocks are mined in total up to round L1−2k
(1+δ)f

Less than L2 blocks are mined in total up to round L2
(1+δ)f

30

honest parties mine less than Xtrans = (r2 − r1 − 2k
(1+δ)f)(1− δ

8)α2 transactions from round r1

up to round r2 − 2k
(1−δ)γ

the adversary mines more than Ztrans = (r2 − r1 + 2k
(1−δ)γ)(1 + δ

9)β2 transactions from round

r1 − 2k
(1−δ)γ up to round r2

all parties have chains of length less than L1 at round L1
(1−δ)γ

all parties have chains of length less than L2 at round L2
(1−δ)γ

the common pre�x property with parameter k doesn't hold for set of chains that honest parties
adopt at the rounds they start the 2-for-1 mining phase

the common pre�x property with parameter k doesn't hold for set of chains that honest parties
adopt at the respective extraction rounds

the chain quality property doesn't hold for the last k blocks of Cdk1

the chain quality property doesn't hold for the last k blocks of Cdk2

the chain growth property doesn't hold for P at rounds r1 − 2k
(1−δ)γ and r1

the chain growth property doesn't hold for P at rounds r2 − 2k
(1−δ)γ and r2

The �rst �ve events, happen with probability e−Ω(δ2k) by an application of the Cherno� bound.
As we have proven in the previous sections, the rest of the events happen with probability at most
e−Ω(δ5k). It follows that by an application of the union bound that Bad occurs with probability at
most e−Ω(δ5k).

Since Bad does not occur we notice the following about the di�erent phases of the protocol:

the 2-for-1 mining phase will start after round L1
(1+δ)f and before round L1

(1−δ)γ ;

all parties will receive a chain of length greater than L2 after round L2
(1+δ)f and before round

L2
(1−δ)γ
We �rst prove that all honest parties will output the same set of public keys. Due to the common

pre�x property the chains of all honest parties will be the same up to block L2 − k at the round
they extract the public keys. Moreover, if an honest party outputs a public key, it means that
the transaction that contains this key also contains the hash of the (L1 − k)-th block of its' chain.
Again, by the common-pre�x property, this block will be the same for all parties. Therefore, the
set of public keys output by all honest parties is exactly the same.

Next, we are going to prove that the majority of these keys have been generated by honest
parties. Since L1−2k

(1+δ)f ≥ 14(l+1) it follows that the last 2k blocks of C1 have been mined after round

14(l + 1), and thus the chain quality property holds for this sequence of blocks. Hence, in the last

k blocks of Cdk1 there exists at least one honest block. Moreover, this honest block must have been
mined after round r1− 2k

(1−δ)γ , otherwise P would have received a chain of length at least L1 before
round r1, which is a contradiction to the de�nition of r1. This implies that the adversary cannot
have started mining transactions before this round, due to the unpredictability of the hash of the
honest block.

Similarly, it holds that there exists at least one honest block in the last k blocks of Cdk2 and this
block must have been mined after round r2− 2k

(1+δ)f , otherwise P could not have received a chain of
length L2 at round r2. Hence, there are going to be at least Xtrans keys extracted from transactions
computed by the honest parties in their output, and at most Ztrans by the adversary. Furthermore,
it holds that:

r2 − r1 +
2k

(1− δ)γ ≥
L2 − L1 + k

(1 + δ)f
⇔ r2 − r1 ≥

2k

(1− δ)γ · (1 +
10

δ
) (5)

31

Hence, putting it all together:

Xtrans − Ztrans ≥ (r2 − r1 −
2k

(1 + δ)f
)(1− δ

8
)α2 − (r2 − r1 +

2k

(1− δ)γ)(1 +
δ

9
)β2

≥ (r2 − r1)((1− δ

8
)α2 − (1 +

δ

9
)β2)− 2k

(1− δ)γ ((1− δ

8
)α2 + (1 +

δ

9
)β2)

≥ 2k

(1− δ)γ · (1 +
10

δ
)((1− δ

8
)α2 − (1 +

δ

9
)β2)− 2k

(1− δ)γ ((1− δ

8
)α2 + (1 +

δ

9
)β2)

≥ 2k

(1− δ)γ · [(1 +
10

δ
)((1− δ

8
)α2 − (1 +

δ

9
)β2)− ((1− δ

8
)α2 + (1 +

δ

9
)β2)]

≥ 2k

(1− δ)γ > 0

Where the forth inequality is implied by Inequality 5, and the 6th one by the fact that 10
δ >

2(1+ δ
9

)β2

(1− δ
8

)α2−(1+ δ
9

)β2
. The theorem follows.

By an application of the Cherno� bound, the number of keys is less than

(r2 − r1 +
2k

(1− δ)γ) · (1 + δ)f2 ≤
2k

(1− δ)γ ·
(

(1 + δ)f

(1− δ)γ (1 +
10

δ
) + 1

)
· (1 + δ)f2

≤ 3
2k · f2

γ
(3 · 3(1 +

10

δ
) + 1) ≤ 60k

f2

γ
(1 +

10

δ
)

and greater than

(r2 − r1 −
2k

(1− δ)γ) · (1− δ)α2 ≥
2k

(1− δ)γ ·
10

δ
· (1− δ)α2 ≥ k

α2

γ

20

δ

Remark 4. To better understand ΠPKI
PL we compute di�erent parameters of the system for the Bitcoin

network parameters. Assume that f = 2%, α = 1.33%, γ = 1.31%, β = 0.6%, k = 10, and δ = 0.25.
The choice of f approximately corresponds to a rate of one block per 10 minutes with a round
duration of about 12 seconds; the adversary's hashing power is half of that of the honest parties.
Then, l ≈ 623, which corresponds in terms of rounds to about 2 hours. Moreover, if we set f2

to be equal to f/k we have that 80 < N < 600. We note that the parameters of Bitcoin are
quite conservative and that's why our runtime su�ers. In principle, by carefully analyzing and re-
engineering our protocol we can get tighter bounds; many of the design decisions we got here, were
made to aid the readability of our work.

Remark 5. The probability that some honest party succeeds in mining at least one transaction is:

Pr[≥ 1 key] = 1− Pr[0 keys] = 1− (1− T2

2κ
)
q 20k
(1−δ)γδ ≥ 1− e−

T2
2κ
·q 20k

(1−δ)γδ .

Hence, by setting T2 >
ln(1

ε
)2κ(1−δ)γδ
q·20k , each party will obtain at least one key with probability at least

1−ε, for any ε ∈ (0, 1). Note here that T2 and κ must be carefully chosen to retain the independence
of the 2 POWs. In case this is not possible, the 2-for-1 mining phase may be extended.

Consensus and other applications. Next, we describe how ΠPKI
PL can be used in other contexts.

First, a direct application of our protocol is in the context of proof of stake protocols. In this type

32

of protocols, blocks are mined by randomly selecting stake holders with probability proportional to
their stake. A typical requirement for bootstrapping such protocols (e.g. [28, 30]), is that in the
initial state of the economy the majority of the coins is controlled by honest parties. By assigning
one coin to each public key produced by our protocol, we can e�ciently and securely bootstrap a
proof of stake protocol.

A more general application of ΠPKI
PL is in solving consensus (aka Byzantine agreement) [36, 31],

with no trusted setup, and in a number of rounds independent of the number of parties. If parties
submit transactions containing their input instead of public keys, it follows that by taking the
majority of their output they are going to achieve Byzantine agreement. That is, everyone will
agree on the same value (the Agreement property), and if all honest parties have the same input v,
they are all going to output v (Validity).

Finally, our protocol for the establishment of an honest-majority PKI enables the application of
traditional Byzantine fault-tolerant techniques for ledger creation and maintenance based on �sub-
committees� as opposed to mining (cf. [7]) to permissionless networks. Instead of having arbitrary
membership authorities, these committees can be elected using our protocol with the guarantee of
an honest majority. Note that by changing the di�culty of the transaction-level POW we can force
the number of parties in the committee to be in a speci�c prede�ned interval.

Reducing the communication cost. While the round complexity of our protocol is independent
of the number of parties, this does not hold for its communication cost, measured by the number of
transmitted messages. The reason is that in the challenge-exchange phase, all parties have to di�use
their random challenges, thus increasing the communication cost of the protocol by an O(n) factor.
We can redesign the challenge-exchange phase so that the number of di�erent messages di�used
by honest parties is independent of their number, and only depends on the security parameter and
the precomputation time available to the adversary. 9 We do this in the following way: instead of
having all parties sent a random challenge in order to be sure that the genesis blocks that are later
mined are fresh, we demand that each random challenge be accompanied by a POW. This way,
all honest parties will be sure that at least one honest challenge is generated with high probability
every O(κ) rounds. Moreover, honest parties will only di�use random challenges that are tied to a
POW. Thus, the total number of di�erent messages sent will be upper-bounded by the number of
POWs that the adversary and the honest parties combined have generated. Also, again di�erent
honest parties will have received the same block with at most one round di�erence. By combining
the above ideas, we can again create a graded-agreement-type procedure for the genesis blocks and
in the same way achieve consensus. We defer further details to the journal version of the paper.

Acknowledgments

The authors are grateful to Lisa Eckey, Sebastian Faust and Julian Loss and for helpful comments
and discussion.

References

[1] M. Andrychowicz and S. Dziembowski. Pow-based distributed cryptography with no trusted setup. In
CRYPTO 2015, pages 379�399, 2015.

[2] J. Aspnes, C. Jackson, and A. Krishnamurthy. Exposing computationally-challenged Byzantine impos-
tors. Technical Report YALEU/DCS/TR-1332, 2005.

9Note, that each di�usion requires sending the same message at least O(n) times.

33

[3] A. Back. Hashcash. http://www.cypherspace.org/hashcash, 1997.

[4] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash:
Decentralized anonymous payments from bitcoin. IACR Cryptology ePrint Archive, 2014:349, 2014.

[5] Bitcoinwiki. Genesis block. https://en.bitcoin.it/\penalty\z@wiki/\penalty\z@Genesis_block.

[6] M. Borderding. Levels of authentication in distributed agreement. In Distributed Algorithms, 10th
International Workshop, WDAG '96, 1996.

[7] C. Cachin. Architecture of the hyperledger blockchain fabric. In Workshop on Distributed Cryptocur-
rencies and Consensus Ledgers, 2016.

[8] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143�
202, 2000.

[9] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. IACR
Cryptology ePrint Archive, 2000:67, 2000.

[10] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS
2001, pages 136�145. IEEE Computer Society, 2001.

[11] R. Cohen, S. Coretti, J. Garay, and V. Zikas. Probabilistic termination and composability of crypto-
graphic protocols. In CRYPTO, 2016.

[12] J. Considine, M. Fitzi, M. K. Franklin, L. A. Levin, U. M. Maurer, and D. Metcalf. Byzantine agreement
given partial broadcast. J. Cryptology, 18(3):191�217, 2005.

[13] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM J. Comput.,
12(4):656�666, 1983.

[14] J. R. Douceur. The sybil attack. IPTPS '01. Springer-Verlag, 2002.

[15] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence of partial synchrony. J. ACM,
35(2):288�323, 1988.

[16] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In CRYPTO 1992, pages
139�147, 1992.

[17] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-ng: A scalable blockchain protocol.
CoRR, abs/1510.02037, 2015.

[18] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial Cryptography,
2014.

[19] M. Fitzi. Generalized communication and security models in Byzantine agreement. PhD thesis, ETH
Zurich, Zürich, Switzerland, 2003.

[20] J. A. Garay, J. Katz, C. Koo, and R. Ostrovsky. Round complexity of authenticated broadcast with a
dishonest majority. In (FOCS 2007),, pages 658�668, 2007.

[21] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications.
In EUROCRYPT 2015, pages 281�310, 2015.

[22] J. A. Garay, A. Kiayias, N. Leonardos, and G. Panagiotakos. Bootstrapping the blockchain-directly.
IACR Cryptology ePrint Archive, 2016:991, 2016.

[23] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem
for protocols with honest majority. In STOC. ACM, 1987.

[24] A. Juels and J. G. Brainard. Client puzzles: A cryptographic countermeasure against connection
depletion attacks. In NDSS. The Internet Society, 1999.

[25] J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable synchronous computation.
IACR Cryptology ePrint Archive, 2011:310, 2011.

34

https://en.bitcoin.it/\penalty \z@ wiki/\penalty \z@ Genesis_block

[26] J. Katz, A. Miller, and E. Shi. Pseudonymous secure computation from time-lock puzzles. IACR
Cryptology ePrint Archive, 2014:857, 2014.

[27] A. Kiayias and G. Panagiotakos. Speed-security tradeo�s in blockchain protocols. Technical report,
IACR: Cryptology ePrint Archive, 2015.

[28] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake
blockchain protocol. In CRYPTO, pages 357�388. Springer, 2017.

[29] S. King. Primecoin: Cryptocurrency with prime number proof-of-work. http://primecoin.io/bin/
primecoin-paper.pdf, July 2013.

[30] S. King and S. Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-published paper,
August, 19, 2012.

[31] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382�401, 1982.

[32] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf, 2008.

[33] S. Nakamoto. Bitcoin open source implementation of P2P currency. http://p2pfoundation.ning.com/
forum/topics/bitcoin-open-source, February 2009.

[34] R. Pass, L. Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks.
Cryptology ePrint Archive, Report 2016/454, 2016.

[35] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. In
EUROCRYPT 2017, pages 643�673, 2017.

[36] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228�234, 1980.

[37] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. Technical
report, Cambridge, MA, USA, 1996.

[38] A. C.-C. Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160�164. IEEE,
1982.

35

	Introduction
	Model and Definitions
	Blockchain notation
	Basic security properties of the blockchain

	The Bootstrapped Backbone Protocol
	Protocol Description
	Analysis of the Bootstrapped Backbone Protocol

	Applications of the Bootstrapped Backbone Protocol

