
Improving Authenticated Dynamic Dictionaries,

with Applications to Cryptocurrencies

Leonid Reyzin∗ Dmitry Meshkov† Alexander Chepurnoy‡ Sasha Ivanov§

October 14, 2016

Abstract

We improve the design and implementation of two-party and three-party authenticated dy-
namic dictionaries and apply these dictionaries to cryptocurrency ledgers.

A public ledger (blockchain) in a cryptocurrency needs to be easily verifiable. However,
maintaining a data structure of all account balances, in order to verify whether a transaction
is valid, can be quite burdensome: a verifier who does not have the large amount of RAM
required for the data structure will perform slowly because of the need to continually access
secondary storage. We use experiments to demonstrate that authenticated dynamic dictionaries
can considerably reduce verifier load. On the other hand, per-transaction proofs generated
by authenticated dictionaries increase the size of the blockchain, which motivates us to find a
solution with most compact proofs.

Our improvements to the design of authenticated dictionaries reduce proof size and speed
up verification by 1.4–2.5 times, making them better suited for the cryptocurrency application.
We further show that proofs for multiple transactions in a single block can compressed together,
reducing their total length by approximately an additional factor of 2.

1 Introduction

The Motivating Application A variety of cryptocurrencies, starting with Bitcoin [Nak08],
are based on a public ledger of the entire sequence of all transactions that have ever taken place.
Transactions are verified and added to this ledger by nodes called miners. Multiple transactions are
grouped into blocks before being added, and the ledger becomes a chain of such blocks, commonly
known as a blockchain.

If a miner adds a block of transactions to the blockchain, other miners verify that every trans-
action is valid and correctly recorded before accepting the new block. (Miners also perform other
work to ensure universal agreement on the blockchain, which we do not address here.) However, not
only miners participate in a cryptocurrency; others watch the blockchain and/or perform partial
verification (e.g., Bitcoin’s SPV nodes [Nak08, Section 8]). It is desirable that these other partic-
ipants are able to check a blockchain with full security guarantees on commodity hardware, both

∗Boston University, http://www.cs.bu.edu/faculty/reyzin. Research supported by the Waves platform.
†IOHK Research and N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, dmitry.

meshkov@iohk.io
‡IOHK Research, alex.chepurnoy@iohk.io
§Waves platform, sasha@wavesplatform.com

1

http://www.cs.bu.edu/faculty/reyzin
dmitry.meshkov@iohk.io
dmitry.meshkov@iohk.io
alex.chepurnoy@iohk.io
sasha@wavesplatform.com

for their own benefit and because maintaining a large number of nodes performing full validation
is important for the health of the cryptocurrency [Par15]. To verify each transactions, they need
to know the balance of the payer’s account.

The simple solution is to have every verifier maintain a dynamic dictionary data structure of
(key, value) pairs, where keys are account addresses (typically, public keys) and values are account
balances. Unfortunately, as this data structure grows, verifiers need to invest into more RAM (and
thus can no longer operate with commodity hardware), or accept significant slowdowns that come
with storing data structures in secondary storage.

Authenticated Dictionaries to the Rescue We propose using cryptographically authenti-
cated data structures to make verifying transactions in the blockchain much cheaper than adding
them to the blockchain. Cheaper verification benefits not only verifiers, but also miners: in a
multi-token blockchain system (where tokens may represent, for example, different currencies or
commodities), such as Nxt [nxt], miners may choose to process transactions only for some types of
tokens, but still need to verify all transactions.

Specifically, we propose storing balance information in a dynamic authenticated dictionary. In
such a data structure, provers (who are, in our case, miners) hold the entire data structure and
modify it as transactions are processed, publishing proofs that each transaction resulted in the
correct modification of the data structure (these proofs will be included with the block that records
the transaction). In contrast, verifiers, who hold only a short digest of the data structure, verify a
proof and compute the new digest that corresponds to the new state of the data structure, without
ever having to store the structure itself. We emphasize that with authenticated data structures,
the verifier can perform these checks and updates without trusting the prover: the verification
algorithm will reject any attempt by a malicious prover or man-in-the-middle who tries to fool
the verifier into accepting incorrect results or making incorrect modifications. In contrast to the
unauthenticated case discussed above, where the verifier must store the entire data structure, here
verifier storage is minimal: 32 bytes suffice for a digest (at 128-bit security level), while each proof
is only a few hundred bytes long and can be discarded immediately upon verification.

1.1 Our Contributions

A Better Authenticated Dictionary Data Structure Because reducing block size a central
concern for blockchain systems [CDE+16, DW13], we focus on reducing the length of a modification
proof, which must be included into the block for each transaction. Moreover, because there is no
central arbiter in a blockchain network, we require an authenticated data structure that can work
without any assumptions about the existence of a trusted author or setup and without any secret
keys (unlike, for example, [PTT16, BGV11, CF13, CLH+15, MWMS16, CLW+16]). And, because
miners may have incentives to make verification more time-consuming for others, we prefer data
structures whose performance is independent of the choices made by provers.

We design and implement an authenticated dictionary data structure requiring no trusted setup
or authorship whose proofs are, on average, 1.4 times shorter than authenticated skip lists of [PT07]
and 2.5 times shorter than the red-black trees of [CW11]. Moreover, our prover and verifier times
are faster by the same factor than corresponding times for authenticated skip lists, and, unlike the
work of [PT07], our data structure is deterministic, not permitting the prover to bias supposedly
random choices in order to make performance worse for the verifier. In fact, our data structure’s
worst-case performance is comparable to the expected-case performance of [PT07]. Our work was

2

inspired by the dynamic Merkle [Mer89] trees of [NN00, AGT01, CW11, MHKS14] in combination
with the classic tree-balancing algorithm of [AVL62].

Our improvement to authenticated data structures improves not only the aforementioned so-
called two-party case (where there is no trusted author to make modifications), but also the three-
party case [Mer89, NN00, GT00, GTS01, AGT01, MND+04, GPT07, CW11]. Our design can
be used as a replacement for authenticated skip lists of [GTS01] in both two-party and three-
party applications that rely on them (e.g., [BP07, GPTT08, HPPT08, EK13] and many others),
improving performance and removing the need for randomization. We further reduce proof length
per operation when putting together proofs for multiple operations.

Application to Blockchains We consider a multi-token blockchain system (unlike Bitcoin,
which has bitcoins as the only tokens) with accounts in which balances can grow or shrink over
time (again, unlike Bitcoin, in which a transaction output must be spent all at once). One example
of such a system is Nxt [nxt]. For each token type t, there is an authenticated data structure St
maintaining balances of all accounts, locally stored by miners who are interested in the ability to
add transactions for that token type. All miners, regardless of interest, maintain a local copy of
the short digest of St.

In order to publish a block with a number of transactions, a miner adds to the block the proof
of validity of these transactions, including the proofs of correct updates to St, and also includes
the new digest of St into the block header. All miners, as well as verifiers, verify the proof with
respect to the digest they know and check that the new digest in the block header is correct. (It
is important to note that verification of transactions includes other steps that have nothing to do
with the data structure, such as verifying the signature of the payer on the transaction; these steps
do not change.) In contrast to simple payment verification nodes [Nak08, Section 8] in Bitcoin, who
cannot fully verify the validity of a new block because they do not store all unspent outputs, our
verifiers can do so without storing any balance information. At a high level, our approach is similar
to (but considerably more efficient than) the proposal by White [Whi15], who suggests building a
trie-based authenticated data structure for Bitcoin (although he does not use those terms).

Because of our improved authenticated data structure, provers1 and verifiers are more efficient,
and proofs are shorter, than they would be with previous solutions.We show that whenever a block
includes multiple transactions for a given token, their proofs can be combined, further reducing the
amount of space used per transaction, by about a factor of 2 for realistic conditions. We benchmark
block verification and demonstrate that verifying the authenticated data structure can be an order
of magnitude faster than maintaining a full on-disk unauthenticated data structure.

Reducing the Cost of a Miner’s Initial Setup A new miner Molly wishing to join the network
has to download the entire blockchain and verify the validity of every block starting from the first
(so-called “genesis”) block. It is not necessary to verify the validity of every transaction, because
the presence of the block in the blockchain assures Molly that each transaction was verified by
other miners when the block was added. However, without authenticated data structures, Molly

1How much efficiency of proof generation matters depends on the cryptocurrency design. In those cryptocurrencies
for which every miner attempts to generate a block (such as Bitcoin), it matters a lot, because every miner has to
run the proof generation procedure. On the other hand, in those cryptocurrencies for which the miner wins a right
to generate a block before the block is produced (such as ones based on proof of stake [BGM16, KKR+16]), only one
miner per block will generate proofs.

3

still needs to download and replay all the transactions in order to establish the up-to-date amount
held in each account and be able to validate future transactions.

Our solution allows Molly to reduce communication, computation, and memory costs of joining
the network, by permitting her to download not entire blocks with their long lists of transactions,
but only the block headers, which, in addition to demonstrating that the block has been correctly
generated and linked to the chain, contain the digest of all the transactions processed and digests of
every authenticated data structure St that has changed since the previous block. This information
is enough to start validating future transactions. If Molly wants to not only validate, but also
process transactions for tokens of type t, she needs to obtain the full St; importantly, however, she
does not need a trusted source for this data, because she can verify the correctness of St against
the digest.2

2 The Model for Two-Party Authenticated Dictionaries

Given the variety of security models for authenticated data structures, let us briefly explain ours
(to the best of our knowledge, it was first implicitly introduced in [BEG+91] and more explicitly
in [GSTW03, PT07]; it is commonly called the two-party model; see [Pap11] for an overview of the
relevant literature).

Each state of the data structure is associated with an efficiently computable digest ; it is com-
putationally infeasible to find two different states of the data structure that correspond to the
same digest. There are two types of parties: provers and verifiers. The provers possess the data
structure, perform operations on it, and send proofs of these operations to verifiers, who, possessing
only the digest of the current state of the data structure, can use a proof to obtain the result of
the operation and update their digests when the data structure is modified. The security goal is to
ensure that malicious provers can never fool verifiers into accepting incorrect results or computing
incorrect digests. Importantly, neither side generates or possesses any secrets.

A secondary security goal (to prevent denial of service attacks by provers who may have more
computing resources than verifiers) is to ensure that a malicious prover cannot create a valid state
of the data structure that causes operations to take longer than a prespecified upper bound (for
instance, by creating a highly unbalanced trees).

Importantly, the model assumes that the verifiers and the provers agree on which data struc-
ture operations need to be performed (in our cryptocurrency application, whether performing the
operation is a valid choice will be verified separately, for example by checking the signature of the
payer). The model also assumes that the verifier initially has the correct digest (for example, by
maintaining it continuously starting with the initial empty state of the data structure).

The specific data structure we wish to implement is a dictionary (also known as a map): it
allows insertion of (key, value) pairs (for a new key), lookup of a value by key, modification of a
value for a given key, and deletion by key.

We provide formal security definitions in Appedix A.

2We note that Ethereum [Woo14] adds the digest of the current state of the system to each block, but, because it
does not have a dynamic dictionary data structure, this digest cannot be used unless the miner downloads the entire
state of the system—although, importantly, this state may be downloaded from an untrusted source and verified
against the digest. We also note that Miller et al. [MHKS14, Appendix A] suggested using authenticated data
structures to improve memory usage, but not communication or computation time, of Bitcoin’s initial setup.

4

3 Our Construction

Despite a large body of work on authenticated data structures, to the best of our knowledge, only
two prior constructions—those of [PT07] (based on skip lists) and [MHKS14] (based on skip lists
and red-black trees)—address our exact setting. As mentioned in the introduction, many other
works address the three-party setting in which modifications are performed by a trusted author
and only lookups are performed by the provers (which we also improve), and/or propose solutions
requiring a secret key that remains unknown to the prover.

We will explain our construction from the viewpoint of unifying prior work and applying a
number of optimizations to existing ideas.

Starting Point: Merkle Tree We start with the classic Merkle tree [Mer89]. Let H be
a collision-resistant hash function. The leaves of the Merkle tree store the values we wish to
authenticate—in our case, (key, value) pairs. The label of each leaf is defined as the hash of its
content (preceded by a special symbol—for example, a 0 byte—indicating that it’s a leaf), and
the value of each internal node defined (recursively) as the hash of the labels of its two children
(preceded by a special symbol—for example, a 1 byte—indicating that it’s an internal node). The
digest is the label of the root. The proof that a given key is in the data structure and has a given
value consists of the labels of siblings of nodes on the path from the root to the leaf, together
with information on whether the path goes left or right at each step. The proof can be verified by
recomputing the alleged root label and checking that it matches the digest. This proof is known as
the authenticating path.

Incorporating a Binary Search Tree To make searches possible, we turn the tree into a slight
variant of the standard binary search tree, the same way as in [NN00, AGT01, MHKS14]. First, we
sort the leaves by key. Each internal node stores a key y that is the minimum of its right subtree:
that way, the left subtree contains exactly the leaves with keys less than y. (This description breaks
ties in the opposite way of [AGT01] and [MHKS14], but is more intuitive given our improvements
described below.) Unlike the standard binary search tree, this binary search tree has internal nodes
only for helping the search rather than for storing values, which are only at the leaves. The proof
is still the same authenticating path. (We note that the approach based on standard binary search
trees, where internal nodes also store keys and values, is explored in [CW11]; as we demonstrate
below in Section 4, it results in longer proofs, because the slight savings in tree height are more than
negated by the fact that internal nodes must also include their keys and values into the computation
of their label and therefore into the proof.)

Furthermore, we make sure that every non-leaf node has exactly two children. To insert a new
(key value) pair, go down to the correct leaf ` like in the standard binary search tree, and replace
` with a new internal node that has ` and a new leaf containing the new (key, value) pair as its
two children. To simplify insertions, we can make sure that the key being inserted always goes to
the right of `, and the new internal node gets the same key as the one being inserted, by simply
initializing the empty tree with a single leaf containing −∞ as the key (when keys are long random
values, such as public keys, setting −∞ to an all 0s string is reasonable). (It is easy to prove that
then every insertion goes to the right at the last step: if a search for an insertion never took a step
to the right, then it reached −∞; and if it did take a step to the right, then consider the key of
the last node that caused the search to take a right step, and observe that the key in ` is the same

5

and therefore less than the key being inserted). This approach saves us from having special cases
in the code and reduces by one the number of comparisons needed during the insert operation.

Proving Absence of a Key There are two approaches for proving nonmembership of a key
k (which is needed, in particular, during insertion). The first approach (used in [NN00, AGT01,
CW11, MHKS14]) is to show proofs for two neighboring leaves with keys k1 < k < k2. The second
approach (used in [GT00] and other works based on skip lists, such as [PT07]) is to add a next

pointer to every leaf and modify the way a label of a leaf is computed, by hashing not only the key
and the value stored at the leaf, but also the key of the next leaf (and +∞ when there is no next
leaf).

We adopt the second approach for its simplicity: it unifies the code for successful and unsuc-
cessful lookups, in both cases giving us a proof that consists of a single authenticating path. (While
this second approach lengthens the proof of every successful lookup by the length of a key, it slightly
shortens the proof of an average unsuccessful lookup by about the length of a label.). Moreover,
our creation of a −∞ sentinel, which makes sure that insertions always go to the right of an existing
leaf, makes maintaining the pointer to the next leaf trivial: when a leaf `new is inserted to the right
of a leaf `old, just set `new.next = `old.next and `old.next = `new.

Modifying the Value for an Existing Key If the prover modifies the value stored at a leaf
(for example, subtracting from it money used for a transaction), the label of that leaf and all the
nodes above it need to be recomputed, but no other information in the tree changes. Observe
that this recomputation of labels needs only the new value at the leaf and information that is
already present in the authenticating path. Therefore, the verifier has all the information needed
to compute the new digest after checking that the authenticating path is correct. Thus, the proof
for a modification is the same as the proof for a search.

Simple Insertions Insertions into our Merkle binary search tree, like insertions into ordinary
binary search tree, may require some rebalancing in order to make sure that the paths to the leaves
do not grow too long, increasing the computation and communication time per operation. However,
we will discuss rebalancing in the next section. For now, consider an insertion without rebalancing.
Such an insertion simply replaces an old leaf (that was found by performing a search for the key
being inserted) with a new internal node, linked to two leaves. Therefore, knowledge of the contents
of these two leaves and the authenticating path is enough to be able to compute the new digest.
Thus, the proof for such a simple insertion is the same as before: the authenticating path to the
leaf that is found during the search for the key that was being inserted. This proof is enough for
the verifier to check that the key does not exist and to perform the insertion operation.

3.1 Our Improvements

Observation 1: For Insertions, Use Tree-Balancing Operations that Stay on Path A
variety of algorithms for balancing binary search trees exist. Here we focus on AVL trees [AVL62],
red-black trees [GS78] and their left-leaning variant [Sed08], treaps [SA96] (and their equivalent
randomly-balanced binary search trees [MR98]). They all maintain some extra information in the
nodes that enables the insertion algorithm to make a decision as to whether, and how, to perform
tree rotations in order to maintain a reasonably balanced tree. They can be easily adapted to work

6

with our slightly modified trees that have values only at the leaves (simply don’t apply any of the
balancing procedures to the leaves), and all maintain our invariant that the key of an internal node
is the minimum of its right subtree.

The extra information they maintain for balancing is usually not large (just one bit for “color”
per node for red-black trees; one trit for “balance” per node for AVL trees; and roughly log n bits
for “priority” per node for treaps, where n is the number of nodes). This information should be
added as an input to the hash computation for the label of each internal node. This information,
for each node on the path from the root to the leaf, should also be included into the proof (as it
has to be input by the verifier into the hash function).

We observe that if the tree balancing operation rotates only ancestors of the newly inserted
leaf, and does not use or modify information in any other nodes, then the proof we already provide
has sufficient information for the verifier to perform the tree-balancing operation. This is the case
for AVL trees3 and treaps. Red-black trees, depending on the variant, may access information in
children and grandchildren of ancestors in order to decide on rotations, and are therefore less well
suited for our application, because the contents of those children and grandchildren will need to be
proven, lengthening the proofs. (It may be possible to modify red-black trees by storing colors of
nodes with the parents and/or grandparents, but we do not explore this option, because we find a
better solution.)

However, of these options, only red-black trees have been implemented in our setting [MHKS14],
and this implementation sometimes must access the color of a node that is not an ancestor of
the newly inserted leaf. Therefore, the proofs of [MHKS14] must be longer, in order to include
authenticating paths to additional nodes. Thus, the balanced trees that are better suited for our
setting have not been implemented before (we should note that treaps were implemented in the
three-party setting of [CW11]; see our comparison in Section 4).

Observation 2: Do Not Hash Internal Keys To verify that a particular leaf is present (which
is all we need for both positive and negative answers), the verifier does not need to know how the
leaf was found—only that it is connected to the root via an appropriate hash chain. Therefore,
like the authors of [PT07] (and many works in the three-party setting), we do not add the keys
of internal nodes into the hash input, and do not put them into the proof. This is in contrast to
the work of [MHKS14], whose general approach requires the label to depend on the entire contents
of a node, and therefore requires keys of internal nodes to be sent to the verifier, so that the
verifier can compute the labels. When keys do not take up much space (as in [MHKS14]), the
difference between sending the key of an internal node and sending the direction (left or right)
that the search path took is small. However, when keys are comparable in length to labels (as in
the cryptocurrency application, because they are account identifiers, computed as hash function
outputs or public keys), this difference can mean nearly a factor of two in the proof length.

Observation 3: Skip Lists are Just a Variant of Treaps Dean and Jones [DJ07] observed
that a binary search tree can be built on the tops of towers of a skip list [Pug90], and the nodes
encountered in a search will be the same in both cases, as long as the tree follows the rule that a

3For those familiar with AVL trees, we note that this is the case when AVL trees are implemented with every node
maintaining the different of heights between right and left children, rather than its own height, because if a node
maintains height, then it needs to compute its balance in order to decide whether to rotate, and this computation
requires the heights of both children, while our proof contains contains only the height of one child.

7

child’s level is less than (or equal to, if the child is right) than the parent’s. They show that tree
insertions can be accomplished by inserting at the bottom and then rotating with the parent until
the above rule is satisfied.

We observe that skip lists viewed this way are just a variant of treaps, with “level” in a tree-
based skip list corresponding to “priority” in a treap. Heights in a skip list are sampled so that
value h has probability 1/2h+1, while priorities in a treap are sampled uniformly, but otherwise
they are equivalent. Of course, we further convert this treap-based view of skips lists to have values
only at leaves, as already described above. This view enables us to test the performance of skip
lists and treaps with essentially the same implementation.

In prior work, in order to make them authenticated, skip lists were essentially converted to
binary trees by [GT00]; this conversion was made explicit in [CW11]. Our binary tree, which
results in combining the observation of [DJ07] with the transformation of putting values only at
leaves, ends up being almost exactly the same, with the following main difference: each internal
node in our data structure stores the minimum of its right subtree, while each internal node in the
data structure of [GT00] stores the minimum of its entire subtree. (To see the equivalence, note
that our data structure can be obtained from the data structure of [PT07] by having every parent
replace its key with the key of its right child; the only remaining difference is nonstandard chaining
of leaves in skip lists.) No prior implementation, however, treated skip lists the same way as other
binary trees.

Observation 4: Deterministic is Better Treaps and skip lists perform well in expectation
(and also with very high probability), when the priorities (for treaps) and levels (for skip lists) are
chosen at random, independently of the keys in the data structure. However, if an adversary is able
to influence or predict the random choices, performance guarantees no longer hold. In our setting,
the problem is that the provers and verifiers need to somehow agree on the randomness used. (This
is not a problem for the three-party setting, where the randomness can be supplied by the trusted
author.)

Prior work in the three-party model suggested choosing priorities and levels by applying hash
functions to the keys [CW11, Section 3.1.1]. However, since inserted keys may be influenced by
the adversary, this method of generating randomness may give an attacker the ability to make the
data structure very slow and the proofs very long, effectively enabling a denial of service attack. To
eliminate this attack by an external adversary, we could salt the hash function after the transactions
are chosen for incorporation into the data structure (for example, including a fresh random salt
into each the block header). However, an internal adversary still presents a problem: the prover
choosing this salt and transactions would have the power to make the data structure less efficient
for everyone by choosing a bad salt, violating our secondary security goal stated in Section 2.

Observation 5: AVL Trees Outperform on the Most Relevant Parameters Regardless
of the tree balancing method (as long as it satisfies observations 1 and 2), costs of lookups, modifi-
cations, and insertions are determined simply by the depth of the relevant leaf, because the amount
of nodes traversed, the size of the proof, and the number of hashes performed by both provers and
verifiers is directly proportional to this depth. Of course, different tree balancing methods may
use slightly different logic and cause a different number of rotations, but the amount of time spent
on those is negligible compared to the cost of hash function evaluation (note that a tree rotation
changes only two pointers and does not change the number of hashes that need to be computed).

8

Therefore, our goal is to choose a tree in which leaves are as close as possible to the root. We are
concerned mostly with the average case but also, because operations can be adversarially chosen,
with the worst case.

The average-case distance between the root and a random leaf for both AVL and red-black trees
after the insertion of n random keys is very close to the optimal log2 n [Knu98, p. 468], [Sed08]. The
worst-case distance for red-black trees is twice the optimal [Sed08], while the worst-case distance
for AVL trees is 1.44 times the optimal [Knu98, p. 460]. In contrast, the expected (not worst-case!)
distance for treaps and skip lists is 1.5 times the optimal [Pug90]. Thus, AVL trees, even the worst
case, are better than treaps and skip lists in expectation.

Putting these observations together, we obtain the data structure to implement: an AVL tree
with values stored only at the leaves, sometimes known as an AVL+ tree. We implement this
data structure and compare it against other options in the next section. We prove its security in
Appedix B.

4 Implementation and Evaluation

We implemented our AVL+ trees, as well as treaps and our tree-based skip lists, in the Scala [sca]
programming language using the Blake2b [ANWOW13] hash function with 256-bit (32-byte) out-
puts. Our implementation is available at [cod]. For the AVL+ implementation, we used the
textbook description [Wei06] with the same balance computation procedure as in [Pfa02, Chapter
5.4.4]. We ran experiments by measuring the cost of 1000 random insertions (with 26-byte keys
and 8-byte values), into the data structure that already had size n = 0, 1000, 2000, . . . , 999000 keys
in it.

As expected, the length of the path from the root to a random leaf in the n-leaf AVL+ tree was
only 2 − 3% worse than the optimal log2 n. In contrast, the length of the path in a skip list was
typically about 44% worse than optimal, and in a treap about 32% worse than optimal.

Proof length The average length of our proof for inserting a new key into a 106-node tree with
32-byte hashes, 26-byte keys, and 8-byte values, is 753 bytes (positive lookups and modifications
of existing keys are 26 bytes shorter). We now explain this number and compare it to prior work.

Note that for a path of length k, the proof consists of:

• k labels (which are hash values),

• k + 1 symbols indicating whether the next step is right or left, or we are at a leaf with no
next step (these fit into two bits each),

• k pieces of balance or level information (these fit into two bits for an AVL+ tree, but require
a byte for skip lists and three or four bytes for treaps),

• the leaf key, the next leaf key, and the value stored in the leaf node (the leaf key is not needed
in the proof for lookups and modifications of an existing key)

Thus, the proof length is almost directly proportional to the path length: with the 32-byte hashes,
26-byte keys, and 8-byte values, the proof takes 34k+61 bytes assuming we don’t optimize at bit
level, or about k bytes fewer if we do (our implementation currently does not). Note that the

9

1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0

1 0 0 0
Pro

of s
ize

(byt
es)

l o g 2 t r e e s i z e

 T r e a p
 S k i p l i s t
 A V L t r e e

1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

Inse
rt ti

me
(mic

rose
con

ds)

l o g 2 t r e e s i z e

 T r e a p
 S k i p l i s t
 A V L t r e e

1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

Ver
ify

time
 (mi

cros
eco

nds
)

l o g 2 t r e e s i z e

 T r e a p
 S k i p l i s t
 A V L t r e e

value of k for n = 106 is about 20 for AVL+ trees and about 29 for skip lists, which means that
AVL-tree-based proofs are about 1.4 times shorter than skip-list-based ones. Treap proofs have
slightly smaller k, but this advantage is completely negated in our experiments by the extra bytes
needed to write down the level.

Our numbers are consistent with those reported by Papamanthou and Tamassia [PT07, Section
4], who also report paths of length 30 for skip lists with 106 entries. (They use a less secure hash
function whose output length is half of ours, resulting in shorter proofs; if they transitioned to
a more secure hash function, their proofs would be about the same length as our skip-list-based
proofs.) There is insufficient information provided in [MHKS14] to do a proof length comparison,
but ours should be shorter by about a factor of 2, because we do not include internal keys in the
proof, and our rotations do not require information about off-path nodes.

We can also compare our work with work on three-party authenticated data structures, because
our data structure also works in the three-party model (and some three-party data structures will
also work in our model). Work based on skip lists, such as [AGT01, GTS01, GPT07], has proof
sizes that are the same as the already-mentioned [PT07], and therefore our improvement is about
the same factor of 1.4.

For three-party work based on red-black trees, there are two variants. The variant that stores
values only at leaves, like we do, was implemented by Anagnostopoulos et al. [AGT01], who do not
report proof length; however, we can deduce it approximately from the number of hashes reported
in [AGT01, Figure 6, “hashes per insertion”] and conclude that it is about 10-20% worse than
ours. The variant that uses a standard binary search tree, with keys and values in every node, was
implemented by [CW11] and had the shortest proofs among the data structures tested in [CW11].
The average proof length (for a positive answer) in [CW11] is about 1500 bytes when searching for
a random key in a tree that starts empty and grows to 105 nodes, with 28-byte keys, values, and
hashes. In contrast, our average proof size in such a scenario is only 593 bytes (an improvement of
2.5 times), justifying our decision to put all the values in the leaves.

Prover and Verifier Running times Our benchmarks were run on an Intel(R) Core(TM) i7-
5820K CPU @ 3.30GHz Linux machine with 8GB of RAM running in 64-bit mode and using only one
core. We used Java 8.0.51 and compiled our Scala code with scalac 2.11.8. The Java implementation
of Blake2b hash function was obtained from the official Blake website https://blake2.net/. The
average prover time for inserting a random key into our AVL+ tree with 106 random keys was
31 µs, while the average verifier time for the same operation was 47 µs.

It is difficult to make comparisons of running times across implementations due the variations in
hardware environments, programming language used, etc. Note, however, that regardless of those

10

https://blake2.net/

variables, the running times of the prover and verifier are closely correlated with path length k:
the prover performs k key comparisons (to find the place to insert) and computes k+ 1 hash values
(to obtain the label of two new nodes and k − 1 existing nodes whose labels change), while the
verifier performs two comparisons (with the keys of two neighboring leaves) and computes 2k + 1
hash values (k to verify the proof and k + 1 to compute the new digest). Tree rotations do not
change these numbers.

We therefore expect our AVL+ trees to perform about 1.4 times faster than skip lists, which is,
indeed, what our benchmarks show.

Compressing Proofs for Multiple Transactions When multiple transactions are included in
a single block, their proofs can be compressed. Verifiers will not need the label of any node more
than once, the label of any node that lies on the path to a leaf used during a proof (because it can
be computed), or the label of a node that is created by the verifier during the block verification.
Our preliminary investigation (to be made more precise by conference time) indicates that we can
eliminate about half the labels from the proofs when combining, into a single block, proofs for 1000
transactions (this number is realistic—see [tbp]) for uniformly chosen keys, for a data structure of
with 106 total keys. (Note that these savings are not particularly sensitive to the exact parameters
chosen, because they depend on the logarithms of the number of transactions in a block and the
total number of keys; note also that they improve if the distribution of accounts is not uniform,
because there are more repeat labels.) We can thus obtain proofs of under 800 bytes per transaction
(since each transaction modifies two accounts, at under 400 bytes for each proof), remaining at
128-bit security level. Prover and verifier times are not significantly affected.

Simulated Blockchain Verification We simulated two blockchain verifiers: a “full verifier”
that simply maintains a full on-disk data structure of (key, value) pairs (with a 1MB application-
level cache in addition to OS and disk-hardware caches) and a “light verifier” who maintains only
digests and verifies proofs instead, using very little RAM. The data structure was populated with
5,000,000 random 32-byte keys (with 8-byte values) at the start. Our simulated blocks contained
2000 modifications and 200 insertions each, for random keys. We ran the simulation for 28,000
blocks (thus ending with about 10,600,000 keys). The light verifier consistently verified each block
in about 110-165 ms, while verification times for the full verifier grew as the data structure grew,
from 128ms to 2061ms per block—giving our authenticated data structures a 12x speed advantage
once the size gets large.

5 Acknowledgements

We thank Andrew Miller for helpful explanations of his work [MHKS14].

References

[AGT01] Aris Anagnostopoulos, Michael T. Goodrich, and Roberto Tamassia. Persistent
authenticated dictionaries and their applications. In George I. Davida and Yair
Frankel, editors, Information Security, 4th International Conference, ISC 2001,
Malaga, Spain, October 1-3, 2001, Proceedings, volume 2200 of Lecture Notes in

11

Computer Science, pages 379–393. Springer, 2001. Available at http://aris.me/

pubs/pad.pdf.

[ANWOW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-OHearn, and Christian Win-
nerlein. Blake2: simpler, smaller, fast as md5. In International Conference on
Applied Cryptography and Network Security, pages 119–135. Springer, 2013.

[AVL62] Adel’son-Vel’skii and Landis. An algorithm for the organization of information.
Dokladi Akademia Nauk SSSR, 146(2), 1962. English translation in Soviet Math.
Doklay 3, 1962, 1259–1263.

[BEG+91] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories. In 32nd Annual Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 90–99. IEEE
Computer Society, 1991. Later appears as [BEG+94], which is available at http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991.

[BEG+94] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories. Algorithmica, 12(2/3):225–244, 1994. Avail-
able at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991.

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of
work. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael
Brenner, and Kurt Rohloff, editors, Financial Cryptography and Data Security - FC
2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ Church,
Barbados, February 26, 2016, Revised Selected Papers, volume 9604 of Lecture Notes
in Computer Science, pages 142–157. Springer, 2016. Available at http://arxiv.

org/abs/1406.5694.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of
computation over large datasets. In Phillip Rogaway, editor, Advances in Cryptology
- CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer Science,
pages 111–131. Springer, 2011. Available at http://eprint.iacr.org/2011/132.

[BP07] Giuseppe Di Battista and Bernardo Palazzi. Authenticated relational tables and
authenticated skip lists. In Steve Barker and Gail-Joon Ahn, editors, Data
and Applications Security XXI, 21st Annual IFIP WG 11.3 Working Confer-
ence on Data and Applications Security, Redondo Beach, CA, USA, July 8-11,
2007, Proceedings, volume 4602 of Lecture Notes in Computer Science, pages 31–
46. Springer, 2007. Available at http://www.ece.umd.edu/~cpap/published/

alex-ber-cpap-rt-08b.pdf.

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, and Emin Gün. On scaling de-
centralized blockchains. In Proc. 3rd Workshop on Bitcoin and Blockchain Research,
2016.

12

http://aris.me/pubs/pad.pdf
http://aris.me/pubs/pad.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2991
http://arxiv.org/abs/1406.5694
http://arxiv.org/abs/1406.5694
http://eprint.iacr.org/2011/132
http://www.ece.umd.edu/~cpap/published/alex-ber-cpap-rt-08b.pdf
http://www.ece.umd.edu/~cpap/published/alex-ber-cpap-rt-08b.pdf

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In
Kaoru Kurosawa and Goichiro Hanaoka, editors, Public-Key Cryptography - PKC
2013 - 16th International Conference on Practice and Theory in Public-Key Cryp-
tography, Nara, Japan, February 26 - March 1, 2013. Proceedings, volume 7778
of Lecture Notes in Computer Science, pages 55–72. Springer, 2013. Available at
http://eprint.iacr.org/2011/495.

[CLH+15] Xiaofeng Chen, Jin Li, Xinyi Huang, Jianfeng Ma, and Wenjing Lou. New publicly
verifiable databases with efficient updates. IEEE Trans. Dependable Sec. Comput.,
12(5):546–556, 2015.

[CLW+16] Xiaofeng Chen, Jin Li, Jian Weng, Jianfeng Ma, and Wenjing Lou. Verifiable com-
putation over large database with incremental updates. IEEE Trans. Computers,
65(10):3184–3195, 2016.

[cod] Implementation of authenticated data structures within scorex. https://github.

com/input-output-hk/scrypto/.

[CW11] Scott A. Crosby and Dan S. Wallach. Authenticated dictionaries: Real-world costs
and trade-offs. ACM Trans. Inf. Syst. Secur., 14(2):17, 2011. Available at http:

//tamperevident.cs.rice.edu/Storage.html.

[DJ07] Brian C. Dean and Zachary H. Jones. Exploring the duality between skip lists
and binary search trees. In David John and Sandria N. Kerr, editors, Proceedings
of the 45th Annual Southeast Regional Conference, 2007, Winston-Salem, North
Carolina, USA, March 23-24, 2007, pages 395–399. ACM, 2007. Available at https:
//people.cs.clemson.edu/~bcdean/skip_bst.pdf.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin
network. In IEEE P2P 2013 Proceedings, pages 1–10. IEEE, 2013.

[EK13] Mohammad Etemad and Alptekin Küpçü. Database outsourcing with hierarchical
authenticated data structures. In Hyang-Sook Lee and Dong-Guk Han, editors,
Information Security and Cryptology - ICISC 2013 - 16th International Conference,
Seoul, Korea, November 27-29, 2013, Revised Selected Papers, volume 8565 of Lecture
Notes in Computer Science, pages 381–399. Springer, 2013. Available at http:

//eprint.iacr.org/2015/351.

[GPT07] Michael T. Goodrich, Charalampos Papamanthou, and Roberto Tamassia. On the
cost of persistence and authentication in skip lists. In Camil Demetrescu, editor, Ex-
perimental Algorithms, 6th International Workshop, WEA 2007, Rome, Italy, June
6-8, 2007, Proceedings, volume 4525 of Lecture Notes in Computer Science, pages
94–107. Springer, 2007. Available at http://cs.brown.edu/cgc/stms/papers/

pers-auth.pdf.

[GPTT08] Michael T. Goodrich, Charalampos Papamanthou, Roberto Tamassia, and Nikos
Triandopoulos. Athos: Efficient authentication of outsourced file systems. In Tzong-
Chen Wu, Chin-Laung Lei, Vincent Rijmen, and Der-Tsai Lee, editors, Information

13

http://eprint.iacr.org/2011/495
https://github.com/input-output-hk/scrypto/
https://github.com/input-output-hk/scrypto/
http://tamperevident.cs.rice.edu/Storage.html
http://tamperevident.cs.rice.edu/Storage.html
https://people.cs.clemson.edu/~bcdean/skip_bst.pdf
https://people.cs.clemson.edu/~bcdean/skip_bst.pdf
http://eprint.iacr.org/2015/351
http://eprint.iacr.org/2015/351
http://cs.brown.edu/cgc/stms/papers/pers-auth.pdf
http://cs.brown.edu/cgc/stms/papers/pers-auth.pdf

Security, 11th International Conference, ISC 2008, Taipei, Taiwan, September 15-
18, 2008. Proceedings, volume 5222 of Lecture Notes in Computer Science, pages
80–96. Springer, 2008. Available at http://www.ece.umd.edu/~cpap/published/

mtg-cpap-rt-nikos-08.pdf.

[GS78] Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for balanced
trees. In 19th Annual Symposium on Foundations of Computer Science, Ann Ar-
bor, Michigan, USA, 16-18 October 1978, pages 8–21. IEEE Computer Society,
1978. Available from http://professor.ufabc.edu.br/~jesus.mena/courses/

mc3305-2q-2015/AED2-13-redblack-paper.pdf.

[GSTW03] Michael T. Goodrich, Michael Shin, Roberto Tamassia, and William H. Winsbor-
ough. Authenticated dictionaries for fresh attribute credentials. In Paddy Nixon
and Sotirios Terzis, editors, Trust Management, First International Conference,
iTrust 2003, Heraklion, Crete, Greece, May 28-30, 2002, Proceedings, volume 2692
of Lecture Notes in Computer Science, pages 332–347. Springer, 2003. Available at
http://cs.brown.edu/cgc/stms/papers/itrust2003.pdf.

[GT00] M. T. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip lists
and commutative hashing. Technical Report, Johns Hopkins Information Security In-
stitute; available at http://cs.brown.edu/cgc/stms/papers/hashskip.pdf, 2000.

[GTS01] M.T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated
dictionary with skip lists and commutative hashing. Available at http://cs.brown.
edu/cgc/stms/papers/discex2001.pdf; also presented in Proc. DARPA Informa-
tion Survivability Conference & Exposition II (DISCEX II), 2001.

[HPPT08] Alexander Heitzmann, Bernardo Palazzi, Charalampos Papamanthou, and Roberto
Tamassia. Efficient integrity checking of untrusted network storage. In Yongdae
Kim and William Yurcik, editors, Proceedings of the 2008 ACM Workshop On Stor-
age Security And Survivability, StorageSS 2008, Alexandria, VA, USA, October 31,
2008, pages 43–54. ACM, 2008. Available at http://www.ece.umd.edu/~cpap/

published/alex-ber-cpap-rt-08b.pdf.

[KKR+16] Aggelos Kiayias, Ioannis Konstantinou, Alexander Russell, Bernardo David, and
Roman Oliynykov. A provably secure proof-of-stake blockchain protocol. Cryptology
ePrint Archive, Report 2016/889, 2016. http://eprint.iacr.org/2016/889.

[Knu98] Donald Knuth. The Art of Computer Programming: Volume 3: Sorting and Search-
ing. Addison-Wesley, 2nd edition, 1998.

[Mer89] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture
Notes in Computer Science, pages 218–238. Springer, 1989. Available at http:

//www.merkle.com/papers/Certified1979.pdf.

[MHKS14] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated data
structures, generically. In Suresh Jagannathan and Peter Sewell, editors, The 41st

14

http://www.ece.umd.edu/~cpap/published/mtg-cpap-rt-nikos-08.pdf
http://www.ece.umd.edu/~cpap/published/mtg-cpap-rt-nikos-08.pdf
http://professor.ufabc.edu.br/~jesus.mena/courses/mc3305-2q-2015/AED2-13-redblack-paper.pdf
http://professor.ufabc.edu.br/~jesus.mena/courses/mc3305-2q-2015/AED2-13-redblack-paper.pdf
http://cs.brown.edu/cgc/stms/papers/itrust2003.pdf
http://cs.brown.edu/cgc/stms/papers/hashskip.pdf
http://cs.brown.edu/cgc/stms/papers/discex2001.pdf
http://cs.brown.edu/cgc/stms/papers/discex2001.pdf
http://www.ece.umd.edu/~cpap/published/alex-ber-cpap-rt-08b.pdf
http://www.ece.umd.edu/~cpap/published/alex-ber-cpap-rt-08b.pdf
http://eprint.iacr.org/2016/889
http://www.merkle.com/papers/Certified1979.pdf
http://www.merkle.com/papers/Certified1979.pdf

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 411–424. ACM,
2014. Project page and full version at http://amiller.github.io/lambda-auth/

paper.html.

[MND+04] Charles U. Martel, Glen Nuckolls, Premkumar T. Devanbu, Michael Gertz, April
Kwong, and Stuart G. Stubblebine. A general model for authenticated data struc-
tures. Algorithmica, 39(1):21–41, 2004. Available at http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.75.3658.

[MR98] Conrado Mart́ınez and Salvador Roura. Randomized binary search trees. J.
ACM, 45(2):288–323, 1998. Availabel at http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.17.243.

[MWMS16] Meixia Miao, Jianfeng Wang, Jianfeng Ma, and Willy Susilo. Publicly verifiable
databases with efficient insertion/deletion operations. Journal of Computer and
System Sciences, 2016. Available on-line at http://dx.doi.org/10.1016/j.jcss.
2016.07.005. To appearn in print.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:

//bitcoin.org/bitcoin.pdf, 2008.

[NN00] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. IEEE
Journal on Selected Areas in Communications, 18(4):561–570, 2000. Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7072.

[nxt] The nxt cryptocurrency. https://nxt.org/.

[Pap11] Charalampos Papamanthou. Cryptography for Efficiency: New Directions in Au-
thenticated Data Structures. PhD thesis, Brown University, 2011. Available at
http://www.ece.umd.edu/~cpap/published/theses/cpap-phd.pdf.

[Par15] Luke Parker. The decline in bitcoin full nodes, 2015. Available at http://

bravenewcoin.com/news/the-decline-in-bitcoins-full-nodes/.

[Pfa02] Ben Pfaff. GNU libavl 2.0.2, 2002.

[PT07] Charalampos Papamanthou and Roberto Tamassia. Time and space efficient algo-
rithms for two-party authenticated data structures. In Sihan Qing, Hideki Imai, and
Guilin Wang, editors, Information and Communications Security, 9th International
Conference, ICICS 2007, Zhengzhou, China, December 12-15, 2007, Proceedings,
volume 4861 of Lecture Notes in Computer Science, pages 1–15. Springer, 2007.
Available at http://www.ece.umd.edu/~cpap/published/cpap-rt-07.pdf.

[PTT16] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Authenti-
cated hash tables based on cryptographic accumulators. Algorithmica, 74(2):664–712,
2016.

[Pug90] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Com-
mun. ACM, 33(6):668–676, 1990. Available from http://citeseer.ist.psu.edu/

viewdoc/summary?doi=10.1.1.15.9072.

15

http://amiller.github.io/lambda-auth/paper.html
http://amiller.github.io/lambda-auth/paper.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.3658
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.3658
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.243
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.243
http://dx.doi.org/10.1016/j.jcss.2016.07.005
http://dx.doi.org/10.1016/j.jcss.2016.07.005
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7072
https://nxt.org/
http://www.ece.umd.edu/~cpap/published/theses/cpap-phd.pdf
http://bravenewcoin.com/news/the-decline-in-bitcoins-full-nodes/
http://bravenewcoin.com/news/the-decline-in-bitcoins-full-nodes/
http://www.ece.umd.edu/~cpap/published/cpap-rt-07.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9072
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9072

[Rog06] Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor,
Progress in Cryptology - VIETCRYPT 2006, First International Conferenceon Cryp-
tology in Vietnam, Hanoi, Vietnam, September 25-28, 2006, Revised Selected Papers,
volume 4341 of Lecture Notes in Computer Science, pages 211–228. Springer, 2006.
Available at https://eprint.iacr.org/2006/281.pdf.

[SA96] Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Algorithmica,
16(4/5):464–497, 1996. Available at https://faculty.washington.edu/aragon/

pubs/rst96.pdf.

[sca] The scala programming language. http://www.scala-lang.org/.

[Sed08] Robert Sedgewick. Left-leaning red-black trees, 2008. Available at http://www.cs.
princeton.edu/~rs/talks/LLRB/LLRB.pdf.

[tbp] Transactions per block. https://blockchain.info/charts/

n-transactions-per-block.

[Wei06] Mark Allen Weiss. Data Structures and Algorithm Analysis in Java (Second Edition).
Pearson, 2006.

[Whi15] Bill White. A theory for lightweight cryptocurrency ledgers. Available at http:

//qeditas.org/lightcrypto.pdf, 2015.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Avail-
able at http://gavwood.com/Paper.pdf, 2014.

A Definition of Security

Notation and Functionality We assume that a data structure goes through a succession of
states S0, S1, . . . , where Si is a result of applying some operation opi to the state Si−1. The state
S0 (e.g., a tree with a single −∞ sentinel) is known to everyone. A data structure state is valid if
it can be obtained from S0 by a sequence of operations (e.g., an unbalanced AVL tree is not valid);
we should never start with an invalid data structure, and our security and functionality definitions
provide no guarantees in such a case. If an operation does not change the state, then Si = Si−1.
In addition to possibly changing the state, the operation may also return a value reti. We assume
that the change in the state and the return value are deterministic; randomized data structures
are modeled by explicitly specifying the randomness used as part of op. There is an efficient
deterministic function D that takes a state S and computes the digest D(S); let D0 = D(S0).

The honest prover has Si−1 (plus other information—e.g., labels of nodes—needed to make the
data structure authenticated, which we do not include explicitly to avoid overburdening notation),
and, in addition to performing the operation opi, outputs a proof πi, which goes to the verifier.
Let the prover’s algorithm be denoted by P(Sold, op) → (π, Snew, ret) and the verifier’s algorithm
be denoted by V(Dold, op, π) → (“accept”/“reject”, D′, ret′). Formally completeness (also known
as correctness) requirement is that for any valid data structure state Sold and any operation op,
if Dold = D(Sold), the algorithm P(Sold, op) outputs (π, Snew, ret) such that V(Dold, op, π) accepts
and outputs D′ = D(Snew) and ret′ = ret.

16

https://eprint.iacr.org/2006/281.pdf
https://faculty.washington.edu/aragon/pubs/rst96.pdf
https://faculty.washington.edu/aragon/pubs/rst96.pdf
http://www.scala-lang.org/
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
https://blockchain.info/charts/n-transactions-per-block
https://blockchain.info/charts/n-transactions-per-block
http://qeditas.org/lightcrypto.pdf
http://qeditas.org/lightcrypto.pdf
http://gavwood.com/Paper.pdf

Primary Security Goal: Soundness The primary security requirement, called soundness, is
that no computationally bounded adversary can make a proof π′ that causes the verifier to accept
and output incorrect D′new or ret′.

Because we base our security on the security of collision-resistant hashing for a fixed hash
function, we cannot talk of a “nonexistence” of such an adversary, because once the function is
fixed, an adversary who knows a collision exists in a mathematical sense (even if no one knows how
to build one). Instead, we talk about an efficient algorithm that transforms such an adversary into
a hash collision, in the style of [Rog06].

Formally, the security requirement is formulated in terms of a collision-resistant hash function
H, which is used in the algorithms of the prover and the verifier, and the algorithm D. Call a triple
(S, op, π∗) malicious if S is a valid data structure state but V(D(S), op, π∗) outputs (“accept”,
D′new, ret′), and either D′new 6= D(Snew) or ret′ 6= ret. The security requirement is that there
exists an efficient algorithm R that, given any malicious triple as input, outputs x 6= y such that
H(x) = H(y).

Secondary Security Goal: Verifier Efficiency Our secondary security goal, to reduce the
possibility of denial of service attacks on verifiers, is that a verifier is efficient regardless of what
an honest or a malicious prover does. Specifically, we require that for a data structure with n
elements, the verifier running time is guaranteed O(log n) regardless of the input. That is, if S is
a valid data structure with n elements and D(S) is its digest, then V(D(S), op, π∗) completes its
operation in O(log n) time for any op and π∗ (in particular, this implies that V will not even read
π∗ that is too long, and that honest proofs π will always have length O(log n)).

B Proof of Security

Our Algorithms The exact structure of π and the exact verifier algorithm are not important
for the security proof. Here are the salient features that we use to prove security.
V creates a partial tree T using the information in op and in π. This tree starts at the same root,

but some branches terminate earlier than the corresponding branches in S. Every node in T can
be either a label-only node, containing no children and no information other than the label (such a
node terminates a branch), or a content node, containing all the same fields as the corresponding
node in S (including a bit indicating whether it is a leaf or not), except omitting the key in the
case of an internal node. Every content node in T is either a leaf or has both children (thus, every
node in T has its sibling). The labels of label-only nodes are read from the proof, while the labels
of content nodes are obtained by V via an application of H (and are never read from the proof).
V checks that the label of the root of T matches the label of the root of S contained in D(S).
V performs the same operation on T as P performs on S to compute ret and D(Snew), with

the following important difference: when search for a key key requires a comparison between key
and t.key for some non-leaf node t in T in order to decide whether to go left or right, V does
not perform the comparison, but reads the left-or-right direction from the proof. Then, when the
search reaches a leaf f (and every such search must reach a leaf, or else V rejects), V checks that
f.key ≤ key < f.nextKey (in particular, if this inequality is strict, then V determines that the key is
not found). V also rejects if T does not contain enough content nodes to compute the values ret
and D(Snew).

We do not address completeness here, as it is easy to see.

17

Soundness We now need to show the collision-finding algorithm R(S, op, π∗). R will run the
verifier V(D(S), op, π∗) to get the partial verifier tree T ∗. We will say that a node t∗ in the verifier
tree T ∗ does not match a node t in S if the nodes are in the same position (defined by the path
from the root), but some information in t∗ contradicts corresponding information in t. (Note that
a verifier node may not have all of the information of the prover node—it may contain only a label,
or not contain a key—but this alone is not reason to call the nodes “not matching.” Information
that is present in both nodes must be different in order for nodes to be considered not matching.)

If t∗ exists in T ∗, but a node t in the same position either does not exist in S or does not match
t∗, then R can easily find a hash collision, as follows. First, find a highest t∗ in T ∗ for which this
is true (breaking ties arbitrarily). A node in the same position must exist in S for the following
reason: if t∗ is the root of T ∗, then a node in the same position exists in S because S is never
empty, because S has a sentinel. Else, the parent p∗ of t∗ is a higher node and a content node and
a non-leaf, which means a node p matching p∗ must exist in S and must also be a non-leaf (because
the leaf-indicator bits of p and p∗ must match), and every non-leaf in S has both children.

Now consider t∗ and t. If the labels of these two nodes do not match, they are not roots (because
V checks that the label of the root of T ∗ matches the label of the root of S contained in the digest
D(S)). Therefore, the labels of their parents match (because t∗ and t are a highest non-matching
pair), and thus we find a hash collision in the computation of the parent labels (recall that the
verifier tree T ∗ has every node’s sibling, and thus the label of the sibling of t∗ is available to R in
order to create the input to H). If the labels of t∗ and t match, then some other content does not;
therefore, t∗ is a content node, and all the contents needed to compute its label is in T ∗ and thus
available to R. Thus R can output a hash collision on the contents of these two nodes.

It remains to consider the case when every node in T ∗ has a corresponding node in S and
matches it. In this case, we will derive a contradiction to the statement that either ret′ 6= ret or
D′ 6= Snew. Let key be the the key specified in op. In order for V to accept, the search path indicated
in the proof must lead to a leaf f∗ in T ∗ with f.key ≤ key < f.nextKey. Let f be the matching leaf in
S. Because S is valid, there is only one leaf in S such that f.key ≤ key < f.nextKey, and therefore
the honest prover’s search path would lead to f. Thus, the search path of the V is the same as the
search path of the honest prover P would be. All the other steps of V are also the same on T ∗ as
the corresponding steps of the honest P on S, by design. Therefore, they perform the same steps
on the same tree, and V will compute the same ret and D(Snew) as P.

Verifier Efficiency Our AVL+ plus trees also satisfy our secondary security goal of verifier
efficiency. We add the maximum tree depth D(S) to the digest of S. In AVL+ trees, this depth
is guaranteed to be at most 1.4405 log2(n + 2) [Knu98, p. 460]. V will reject as soon as π leads
V down a path that is deeper than this depth. Since honest π is proportional in length to this
path (in fact, honest π contains only one path, except in case of deletions, when it contains up to
two paths and some children/grandchildren of nodes on the paths), V can immediately reject any
longer π. Thus, the longest possible π that V will read has length O(log n). The size of the partial
tree T is bounded by the size of the proof π, and running time of V is linear in T .

18

	Introduction
	Our Contributions

	The Model for Two-Party Authenticated Dictionaries
	Our Construction
	Our Improvements

	Implementation and Evaluation
	Acknowledgements
	Definition of Security
	Proof of Security

