
Universal Samplers with Fast Verification

Venkata Koppula
University of Texas at Austin
kvenkata@cs.utexas.edu

Andrew Poelstra
Blockstream

apoelstra@blockstream.com

Brent Waters
University of Texas at Austin
bwaters@cs.utexas.edu∗

January 9, 2017

Abstract

Recently, Hofheinz, Jager, Khurana, Sahai, Waters and Zhandry [9] proposed a new primitive called
universal samplers that allows oblivious sampling from arbitrary distributions, and showed how to con-
struct universal samplers using indistinguishability obfuscation (iO) in the ROM.

One important limitation for applying universal samplers in practice is that the constructions are
built upon indistinguishability obfuscation. The costs of using current iO constructions is prohibitively
large. We ask is whether the cost of a (universal) sampling could be paid by one party and then shared
(soundly) with all other users? We address this question by introducing the notion of universal samplers
with verification. Our notion follows the general path of [9], but has additional semantics that allows for
validation of a sample.

In this work we define and give a construction for universal samplers with verification. Our verification
procedure is simple and built upon one-time signatures, making verification of a sample much faster than
computing it. Security is proved under the sub exponential hardness of indistinguishability obfuscation,
puncturable pseudorandom functions, and one-time signatures.

1 Introduction

The Random Oracle Model (ROM), introduced by Bellare and Rogaway [3], is a widely used heuristic in
cryptography. In the random oracle model a hash function H is modeled as an oracle that when sampled with
an input x will output a sample of a fresh random string u. This functionality has been applied in numerous
cryptographic applications that have leveraged features of the model such programmability and rewinding.
However, one significant limitation of the model is that it can only be used to sample from random strings,
whereas in many applications we would like the ability of (obliviously) sample from arbitrary distributions.1

Recently, Hofheinz, Jager, Khurana, Sahai, Waters and Zhandry [9], addressed this problem. They pro-
posed a new primitive called universal samplers that allows oblivious sampling from arbitrary distributions,
and showed how to construct universal samplers using indistinguishability obfuscation (iO) in the ROM.

Hofheinz et al. argued that universal samplers can give way to a powerful notion of universal setup.
Several cryptographic schemes require the use of a trusted setup to generate common parameters. For
example, in an elliptic curve-based public key scheme we might want to generate a common set of curve
parameters for everyone to use. However, each such cryptographic scheme proposed will require its users to

∗Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare, Microsoft Faculty Fellowship, and Packard Foun-
dation Fellowship.

1One could define the random oracle model to provide samples from arbitrary distributions on arbitrary sets. However, such
a model no longer heuristically corresponds to real world hash functions.

1

agree on some trusted user or process for setting up the parameters for the specific scheme. In practice the
cost of executing such a setup for every single instance can be quite onerous and might serve as a barrier
to adoption. In particular, the effort to get everyone to agree on an authority or gather an acceptable set
of parties together to jointly perform (via multiparty computation) the setup process can be difficult. Such
“human overhead” is difficult to measure in terms of traditional computational metrics. Using universal
parameters, however, one can service several schemes with one universal trusted setup. Here the trusted
setup party (or parties) will create a universal sampler. Then if any particular scheme has a setup algorithm
described by circuit d, its users can simply universally sample from the distribution d to get a set of parameters
for that particular scheme.

In addition to the application of universal setup described above, Hofheinz et al. provided that sev-
eral applications of universal samplers, non-interactive key exchange and broadcast encryption. Subsequent
works [11, 10] used universal parameters to construct universal signature aggregators and constrained pseu-
dorandom functions respectively.

The costs of using universal samplers One important limitation for applying universal samplers in
practice is that the constructions are built upon indistinguishability obfuscation. The costs of using current
iO constructions is prohibitively large. Even so we might hope that efforts toward moving the performance of
iO to practice [1, 17, 2] will follow the path of other cryptographic primitives such as multiparty computation
and ORAM. Such primitives were once considered way too expensive to even consider, however, sustained
algorithmic and engineering efforts (see for example the references in [12]) have gotten reduced the costs by
several orders of magnitude and gotten them to the point where many interesting programs or computations
can be executed. A central concern though is that even if we assume that the performance costs of obfuscation
follow a similar trajectory to other works that the costs will still remain significantly above “traditional”
cryptographic primitives such as encryption, signing, etc. that have costs imperceptible to a human.

In the context of universal samplers and a trusted universal setup, it might be acceptable for a well
funded party to invest the computation needed to determine a parameter needed for a given scheme, but
not acceptable to assume that every single party using the scheme is willing to pay such a high cost.

We ask whether the cost of a (universal) sampling could be paid by one party and then shared (soundly)
with all other users. Returning to our elliptic curve example, one could imagine that NIST would run a
universal sampler for a particular setup scheme to obtain a set of curve parameters p. Could NIST then share
the parameters p with all other users in a manner that convinced them that they were sampled correctly,
but where the cost of verification was much smaller than repeating the sampling? We restate this question
in terms of universal samplers:

Is it possible to construct a universal sampler that allows for fast verification
(that is, verification that uses only traditional cryptography)?

We address this question by introducing the notion of universal samplers with verification. Our notion
follows the general path of [9], but has additional semantics that allows for validation of a sample. In our
system the Setup outputs a Universal Sampler parameter U as before, but also outputs a verification key
VK. 2

The sampling algorithm Sample as in [9] will maps the sampler parameters U and input circuit d(·) to
an element p sampled from d, but also output a certificate σ which can be thought of as a signature on
p. Finally, we include an additional algorithm, Check, that takes VK, σ, and the input circuit, and checks
whether these are consistent.

We can see now that there are two paths to obtaining a sample from the distribution d. One can call
Sample(U, d) and obtain p. Or one can let another party perform this step and receive p, σ and validate this
by calling Check(VK, d, p, σ).

2As in [9] there is a single trusted setup process that runs Setup to produces the sampler parameters. It is then expected to
erase the random coins it used. Also as noted by [9] one could employ multi-party computation to distribute this initial setup
task among multiple parties.

2

We require two security properties. The first is the prior indistinguishability of real world and ideal world
given in [9]. The second property we require is that it should be computationally infeasible for any poly-
time adversary A to produce a triple d∗, p∗, σ∗ such that Check(VK, d∗, p∗, σ∗) = 1 and Sample(U, d∗) 6= p∗.
Intuitively, it should be hard to produce a signature that convokes a third party of the “wrong” output.

The first thing we observe is that any standard universal sampler scheme implies one with verification, but
in an uninteresting way. To do this we can simply let VK = U and have the Check algorithm run Sample(U, d)
itself. This will clearly result in a secure universal sampler with verification if the base universal sampler is
secure, but not result in any of the savings that motivated our discussion above.

For this reason any scheme of interest must have a verification algorithm Check that is significantly more
efficient than running Sample. Ideally, the cost will be close to that of “traditional” cryptographic primitives.
We choose not to formalize this final requirement.

Our technical approach We begin our technical exposition by describing what we call prefix-restricted
signature scheme. This is specialized signature scheme that will we use to sign samples output from our
universal sampler. A prefix-restricted signature scheme is over a message space M1 ×M2 and differs from
an ordinary signature scheme in the following ways:

• A secret key can either be a “master secret key” or admit a “punctured” form at a message (m∗1,m
∗
2)

capable of signing any message (m1,m2) such that (a) m1 6= m∗1 or (b) (m1,m2) = (m∗1,m
∗
2).

• In our security game an attacker selectively gives (m∗1,m
∗
2) and receives back a corresponding punctured

signing key. No signing queries are allowed. The attacker should be unable to provide a signature on
any message (m1,m2) where m1 = m∗1 and m2 6= m∗2.

• The scheme is deterministic, even with respect to the master and punctured keys. Moreover, signatures
produced by punctured keys (on messages for which this is possible) must be equal to those produced
by unpunctured keys on the same messages.

This notion shares a similar flavor to earlier related concepts such as constrained signature[5]. It is
actually the last property of matching signature outputs between all key types that is critical for our use
and the most tricky to satisfy. Looking ahead, the reason we will need this is to be able to argue that two
programs are equivalent when we switch from using a master key to a punctured key in an experiment.

While achieving some form of signature delegation has been considered in other works and transforming a
standard signature scheme to a deterministic one can be done by a straightforward application of a PRF [8],
forcing such a constrained signature key to output the same signatures as a master key is somewhat more
tricky.

We construct a prefix-restricted signature scheme from a deterministic one-time signature scheme (on
arbitrary length messages) and a puncturable pseudo random function [4, 6, 13, 15]. Briefly recall that a
puncturable PRF is a PRF when one can create a punctured key that allows a keyed function F (K, ·) to be
evaluated at all but a small number of points.

Let the length of the first message piece, M1, be n and let mi be the i-bit prefix of m and mi be the
i-bit prefix of m with bit i flipped. To sign a message m = (m1,m2). We will first create a Naor-Yung [14]
style certificate tree of length n. To create a signature on m for each i = 1 to n we first generate a two verify
and signing key pairs (one as the 0 key and the other as the 1 key). We denote the keys output in step i as
(SKmi ,VKmi)← KeyGen1(1λ;F (K,mi)) and (SKmi ,VKmi)← KeyGen1(1λ;F (K,mi)). Importantly, notice
that instead of sampling these keys randomly we replace the setup random coins with the output of F (K,mi)
and F (K,mi). Next we create a signature chain by letting σi be the signature on (VKmi−1|0, (VKmi−1|1)
with key SKmi . Finally, at the bottom of the tree we sign the whole message m using the final key SKmi .
Verification is done by verifying the chain and then the signature on the final message.

A punctured key for (m∗1,m
∗
2) can be created by giving out (SKmi for i ∈ [1, n], a puncturable PRF key

that is punctured as all prefixes of m∗1, a signature on (m∗1,m
∗
2), and the signature certificates along the path.

The fact that the one-time signatures are deterministic coupled with the deterministic process for generating
one-time keys allows for corresponding signatures from the master and punctured keys to be the same.

3

The main construction Now that we have this tool in place we can get back to our universal sampler
construction. As mentioned in the work of [9], when using indistinguishability obfuscation in the random
oracle model, the hash function(s) modeled as a random oracle must be outside the obfuscated circuit(s).
Our approach for doing so is different from that of [9], and a remarkable feature of our scheme is its simplicity.
The sampler setup algorithm will first generate a prefix restricted signature scheme verification and signing
key pair. Next the universal sampler parameters are created as the obfuscation of a program that takes two
inputs x, d and outputs p = d(r), where r is computed using a puncturable PRF on input x||d. The program
also outputs a signature σ (using the signing key) on (x||d, p) using a prefix-restricted signature scheme. The
sampler parameters, U , are the obfuscated program and the verification key VK of the universal sampler is
the verification key of the prefix restricted signature.

To sample from a distribution d, one computes x = H(d) and runs the sampler output on inputs x, d.
Finally, the verification algorithm is used to check that p was the correct output sample for a circuit d when
given a prefix restricted signature σ. The verification algorithm first computes x = H(d). Then, it simply
checks that the signature σ verifies on the message m = (m1,m2) = (x||d, p).

We can now examine the overhead of verification in our sampler which is simply the prefix restricted
signature verification on (x||d, p). The cost of performing this will be ` one-time signature verifications where
` is the bit length of x||d. In our construction the bit length of x will be roughly the size of the output size
of samples plus a security parameter and the bit length of d corresponds to the string describing the circuit.
While the time to verify these ` one time signatures is significantly longer than a standard signature scheme,
the verification time will be much shorter than running the obfuscated program. Moreover, we would expect
it to remain so even as improvements in obfuscation move towards making it realizable.

Proving security The security of our universal sampler with verification is based on subexponential
hardness of the underlying building blocks of indistinguishability obfuscation, puncturable pseudorandom
functions, and prefix restricted signatures. In addition, the random oracle heuristic is used to prove security.

Let’s start by looking at verification security. At a high level our proof proceeds at as a sequence of
games. Assume there exists a PPT attacker A that makes at most q (unique) queries to the random oracle
and produces a forgery σ∗ of an output p∗ on d∗. Our proof starts by guessing both value of d∗ and which
random oracle query i ∈ [q] corresponds to d∗. The reduction will abort if the guess is incorrect. It is this
complexity leveraging step of guessing over all possible d∗ values that requires the use of sub exponential
hardness.

Next, suppose that the actual output of the Sample algorithm on input d is out and let H(d∗) = x∗).
We change the sampler parameters U to be an obfuscation of a program that uses a restricted key that
cannot sign a message (m1 = x∗||d∗,m2) if m2 6= out. This transition is indistinguishable to the attacker by
indistinguishability obfuscation. For this proof step to go through it is critical the signatures produced from
the master key and punctured keys are deterministic and consistent so that the corresponding programs are
equivalent. Finally, the proof can be completed by invoking the hardness of breaking the prefix restricted
signature.

We now turn to the proof of proving existing definition from [9] of the indistinguishability of real world
and ideal. Our proof proceeds in a similar manner to theirs in that we switch from generating samples from
the obfuscated program to receiving them via “delayed backdoor programming” from the random oracle.
One important difference is that our main obfuscated program computes the output of samples directly,
whereas the main program of Hofheinz et al. produces a one-time sampler program, which is then itself
invoked to produce the actual sample.

In doing things directly we benefit from a more direct construction at the expense of applying complexity
leveraging. Our proof will proceeds as a hybrid that programs the outputs of the random oracle one at a
time. At each step our reduction must guess the input to the random oracle. Thus, if D is the number
of possible circuits, we get a loss of D · q in the reduction. (We emphasize that we avoid a loss of Dq

which could not be overcome with complexity leveraging.) Again, this loss is balanced out by the use of sub
exponential hardness. We also made our proof steps more modular than those in [9]. One tool in doing so
is the introduction of a tool we call a puncturable pseudorandom deterministic encryption scheme.

4

Other applications of fast verification In addition, to the application of establishing a set of common
parameters for a cryptographic scheme [9] give mutliple other applications of universal samplers. Here we
sketch how some of these can benefit if the sampler has fast verification.

In the Identity-Based Encryption scheme given in [9] a user performs an encryption to an identity Id by
first running Sample(U, dID) where d is a circuit that samples and outputs a fresh public key pkID. This key
is then used to encrypt to the identity. Consider a scenario where more than one party wishes to perform an
IBE encryption to the same identity. Using a sampler with fast verification a single party can perform the
work of computing pkID and then share this with all other parties (sparing the rest of them from performing
the computation). The other parties will be convinced of the authenticity via the certificate and verification
procedure.

Another possibility is that instead of multiple parties wishing to perform the computation, there could
be a single party running on a machine that has a untrusted procesing environment that is coupled witha
trusted, but more expensive environment. Here it would make sense for the untrusted enviorment to perform
the sampling and pass on the answer to the more trusted environment to do the rest of the Identity-Based
Encryption.

In general these motivational examples will transcend to other applications of universal samplers ranging
from non-interactive key exchange [9] to new constructions of constrained PRFs [10]. In particular, adding
the fast verification property helps in any mutliparty scenario where multiple (untrusting) parties want to
share the output of a call to a sample algorithm. Or where a single party can move the Sample algorithm to
an untrusted environment.

1.1 Organization

In Section 2, we introduce some notations and preliminaries. Next, we define our primitive - universal sampler
with verification in Section 3. To construct a selectively secure universal sampler with (fast) verification,
we require the notion of prefix-restricted signature schemes defined in Section 4. For the construction, we
also require the notion of puncturable pseudorandom deterministic encryption scheme defined in Section 5.
Finally, in Section 6, we present our fast verification universal sampler scheme.

2 Preliminaries

2.1 Notations

For integers `ckt, `inp, `out, let C[`ckt, `inp, `out] be the set of circuits that have size at most `ckt bits, take `inp
bits as input and output `out bits.

2.2 Puncturable Pseudorandom Functions

The notion of constrained PRFs was introduced in the concurrent works of [4, 6, 13]. Punctured PRFs, first
termed by [15] are a special class of constrained PRFs.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is an additional key space Kp
and three polynomial time algorithms F.setup, F.eval and F.puncture as follows:

• F.setup(1λ) is a randomized algorithm that takes the security parameter λ as input and outputs a
description of the key space K, the punctured key space Kp and the PRF F .

• F.puncture(K,x) is a randomized algorithm that takes as input a PRF key K ∈ K and x ∈ X , and
outputs a key K{x} ∈ Kp.

• F.eval(K{x}, x′) is a deterministic algorithm that takes as input a punctured key K{x} ∈ Kp and
x′ ∈ X . Let K ∈ K, x ∈ X and K{x} ← F.puncture(K,x). For correctness, we need the following

5

property:

F.eval(K{x}, x′) =

{
F (K,x′) if x 6= x′

⊥ otherwise

We will now recall the selective security game for puncturable PRFs. The following definition is equivalent
to the one in [15]. Consider a challenger C and adversary A. The security game between C and A consists
of two phases.

Challenge Phase: The adversary A sends its challenge string x∗. The challenger chooses a uniformly
random PRF key K ← K. Next, it chooses a bit b ∈ {0, 1} and a uniformly random string y ← Y. It
computes K{x∗} ← F.puncture(K,x∗). If b = 0, the challenger outputs K{x∗} and (F (K,x∗), y). Else, the
challenger outputs K{x∗} and (y, F (K,x∗)).

Guess: A outputs a guess b′ of b.

A wins the security game if b = b′. The advantage of A in the security game against F is defined as
AdvFA = Pr[b = b′]− 1/2.

Definition 2.1. The PRF F is a selectively secure puncturable PRF if for all probabilistic polynomial time
adversaries A AdvFA(λ) is negligible in λ.

Remark 2.1. Note the difference between this definition and the one in previous works is in the challenge
phase. Here, we require that the challenger output a punctured PRF key and a pair (y0, y1) ∈ Y2. It chooses
a bit b. If b = 0, then y0 = F (K,x∗) and y1 is chosen uniformly at random. Else, y0 is chosen uniformly at
random and y1 = F (K,x∗).

Remark 2.2. This definition can be extended to handle multiple points being punctured. More formally,
we can define the notion of t-puncturable PRFs, where the PRF key K can be punctured at t points. In the
selective security game, the adversary chooses the t puncture points, sends them to the challenger. The chal-
lenger outputs a key punctured at the t points, along with t output strings, which are either PRF evaluations
at the t points or uniformly random strings.

2.3 Indistinguishability Obfuscation

We recall the definition of indistinguishability obfuscation from [7, 15].

Definition 2.2. (Indistinguishability Obfuscation) Let C = {Cλ}λ∈N be a family of polynomial-size circuits.
Let iO be a uniform PPT algorithm that takes as input the security parameter λ, a circuit C ∈ Cλ and
outputs a circuit C ′. iO is called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← iO(1λ, C).

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher B = (Samp,D),
there exists a negligible function negl(·) such that the following holds: if for all security parameters
λ ∈ N, ∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ), then

|Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ)← Samp(1λ)]|
≤ negl(λ).

In a recent work, [7] showed how indistinguishability obfuscators can be constructed for the circuit class
P/poly. We remark that (Samp,D) are two algorithms that pass state, which can be viewed equivalently
as a single stateful algorithm B. In our proofs we employ the latter approach, although here we state the
definition as it appears in prior work.

6

3 Universal Samplers with Verification

We will now define the syntax and security definitions for universal samplers with verification. In this
primitive, as in [9], there is an algorithm Setup which outputs a sampler parameter U as well as a sampling
algorithm Sample which maps the sampler parameters and input circuit to an element sampled from the
desired distribution. We modify this definition so that Setup also outputs a verification key VK, and Sample
also outputs a ‘certificate’ σ asserting that the sampler output matches the input circuit. An additional
algorithm, Check, takes VK, σ, and the input circuit, and checks whether these are consistent.

Syntax Let `ckt, `inp and `out be polynomials. An (`ckt, `inp, `out)-universal sampler scheme consists of
algorithms Setup, Sample and Check defined below.

• Setup(1λ) takes as input the security parameter λ and outputs the sampler parameters U and a veri-
fication key VK.

• Sample(U, d) takes as input the universal sampler U and a circuit d ∈ C[`ckt(λ), `inp(λ), `out(λ)]. The
output of the function is the induced parameters pd ∈ {0, 1}`out(λ) and a certificate σd.

• Check(VK, d, p, σ) takes as input the verification key VK, the circuit d ∈ C[`ckt(λ), `inp(λ), `out(λ)],
p ∈ {0, 1}`out(λ) and a certificate σ. It outputs either 0 or 1.

For simplicity of notation, we will drop the dependence of `ckt, `inp, `out on λ when the context is clear.

Correctness For correctness, we require that any honestly generated output and certificate must pass the
verification. More formally, for all security parameters λ, (U,VK)← Setup(1λ), circuit d ∈ C[`ckt, `inp, `out],

Check(VK, d,Sample(U, d)) = 1.

3.1 Security

For security, we require the primitive to satisfy the real vs ideal world definition from [9]. In addition to
that, we also need to ensure that no adversary can output ‘fake certificates’. This intuition is captured
by the following unforgeability definitions. Informally, we require that any PPT adversary should not be
able to output a tuple (d∗, p∗, σ∗) such that Sample(U, d∗) 6= p∗ but Check(U, d∗, p∗, σ∗) = 1. For clarity of
presentation, we chose to present the [9] definitions for real vs ideal world indistinguishability in Appendix
3.2.

The security definition given here is an adaptive game in the random oracle model. One could consider
presenting the definition in the standard model. However, as shown in [9], the simulation security definition
must involve the random oracle. As a result, we choose to have a random oracle based definition for
unforgeability as well.

Definition 3.1. An (`ckt, `inp, `out)-universal sampler scheme (Setup,Sample,Check) is said to be a adap-
tively secure against forgeries if every PPT adversary A, Pr[A wins in Expt] ≤ negl(λ), where Expt is defined
as follows.

1. The challenger sends (U,VK)← Setup(1λ) to A.
2. A sends random oracle queries (RO, x). For each unique query, the challenger chooses a uniformly

random string y and outputs y. It also adds the tuple (x, y) to its table.
3. A sends its output (p∗, σ∗) to the challenger.

A wins if Check(VK, d∗, p∗, σ∗) = 1 and Sample(U, d∗) 6= p∗.

7

3.2 Simulation Security - Real vs Ideal World Indistinguishability

In this part, we will recall the adaptive security definition for universal samplers from [9]. As in [9], an
admissible adversary is an interactive Turing Machine that outputs one bit, with the following input/output
behavior:

• A takes as input security parameter λ and sampler parameters U .
• A can send a random oracle query (RO, x), and receives the output of the random oracle on input x.
• A can send a message of the form (params, d) where d ∈ C[`ckt, `inp, `out]. Upon sending this message,
A is required to honestly compute pd = Sample(U, d), making use of any additional random oracle
queries, and A appends (d, pd) to an auxiliary tape.

Let SimUGen and SimRO be PPT algorithms. Consider the following two experiments:

RealA(1λ):

1. The random oracle RO is implemented by assigning random outputs to each unique query made to RO.
2. U ← SetupRO(1λ).
3. A(1λ, U) is executed, where every message of the form (RO, x) receives the response RO(x).
4. Upon termination of A, the output of the experiment is the final output of the execution of A.

IdealASimUGen,SimRO(1λ):

1. A truly random function F that maps `ckt bits to `inp bits is implemented by assigning random `inp-
bit outputs to each unique query made to F . Throughout this experiment, a Samples Oracle O is
implemented as follows: On input d, where d ∈ C[`ckt, `inp, `out], O outputs d(F (d)).

2. (U, τ)← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the Samples Oracle O.
3. A(1λ, U) and SimRO(τ) begin simultaneous execution.

- Whenever A sends a message of the form (RO, x), this is forwarded to SimRO, which produces a
response to be sent back to A.

- SimRO can make any number of queries to the Samples Oracle O.
- Finally, after A sends any message of the form (params, d), the auxiliary tape of A is examined

until an entry of the form (d, pd) is added to it. At this point, if pd is not equal to d(F (d)), then
experiment aborts, resulting in an Honest Sample Violation.

4. Upon termination of A, the output of the experiment is the final output of the execution of A.

Definition 3.2. A universal sampler scheme U = (Setup, Sample), parameterized by polynomials `ckt, `inp
and `out, is said to be adaptively secure in the random oracle model if there exist PPT algorithms SimUGen
and SimRO such that for all PPT adversaries A, the following hold:

Pr[IdealASimUGen,SimRO(1λ) aborts] = 03

and ∣∣∣Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1]
∣∣∣ ≤ negl(λ).

4 Prefix-Restricted Signatures

In this section we describe a primitive, prefix-restricted signature schemes. These are a form of constrained
signature[5] which will be used as a building block in the main construction. A prefix-restricted signature
schemes is over a message space M1 ×M2 and differs from an ordinary signature scheme in the following
ways:

3The definition in [9] only requires this probability to be negligible in λ. However, the construction actually achieves zero
probability of Honest Sample Violation. Hence, for the simplicity of our proof, we will use this definition

8

• A secret key can either be a “master secret key” or admit a “punctured” form at a message (m∗1,m
∗
2)

capable of signing any message (m1,m2) such that (a) m1 6= m∗1 or (b) (m1,m2) = (m∗1,m
∗
2).

• In our security game an attacker selectively gives (m∗1,m
∗
2) and receives back a corresponding punctured

signing key. No signing queries are allowed. The attacker should be unable to provide a signature on
any message (m1,m2) where m1 = m∗1 and m2 6= m∗2.

Our security property does not allow the adversary to make signing queries on any message; these are
not needed for our purposes.

• The scheme is deterministic, even with respect to punctured keys. That is, signatures produced by
punctured keys (on messages for which this is possible) must be equal to those produced by unpunctured
keys on the same messages.

This last point is the most important, since this strong determinism is required to obtain the functional
equivalence required by indistinguishability obfuscation; it is also the reason that we could not use an
existing primitive.

4.1 Definition

Let M1 and M2 be two message spaces. We define a prefix-restricted signature scheme for message space
M1 ×M2 as a collection of five algorithms:

• Pre.Setup(1λ) is a randomized algorithm that takes as input the security parameter λ and outputs a
master signing key MSK and verification key VK.

• Pre.Sign(MSK, (m1,m2)) is a deterministic algorithm that takes a master signing key MSK and message
pair (m1,m2), and outputs a signature σ.

• Pre.Verify(VK, (m1,m2), σ) is deterministic and takes a message pair (m1,m2), verification key VK
and signature σ, and outputs a bit.

• Pre.Restrict(MSK, (m∗1,m
∗
2)) (possibly randomized) takes a master signing key MSK and message pair

(m∗1,m
∗
2), and outputs a restricted key SK{m∗1,m∗2}.

• Pre.ResSign(SK{m∗1,m∗2}, (m1,m2)) is deterministic and takes a restricted signing key SK{m∗1,m∗2}, a
message pair (m1,m2), and outputs a signature σ.

Correctness We define correctness by the following conditions:

1. For all (MSK,VK)← Pre.Setup(1λ) and message pairs (m1,m2) ∈M1 ×M2,

Pre.Verify(VK, (m1,m2),Pre.Sign(MSK, (m1,m2))) = 1.

2. For all (MSK,VK)← Pre.Setup(1λ), (m∗1,m
∗
2) ∈M1×M2, SK{m∗1,m∗2} ← Pre.Restrict(MSK, (m∗1,m

∗
2)),

and messages (m1,m2) ∈M1 ×M2 such that either m1 6= m∗1 or (m1,m2) = (m∗1,m
∗
2),

Pre.Sign(MSK, (m1,m2)) = Pre.ResSign(SK{m∗1,m∗2}, (m1,m2)).

Security For security, we require that no polynomial time adversary can output a forgery, even after
receiving a restricted signing key.

Definition 4.1. A two message signature scheme is selectively secure if every PPT adversary A has at
most negligible advantage in the following security game:

1. A provides a message pair (m∗1,m
∗
2).

9

2. The challenger generates the keys (MSK,VK)← Pre.Setup(1λ) and SK{m∗1,m∗2} ← Pre.Restrict(MSK, (m∗1,m
∗
2))

and sends the tuple (SK{m∗1,m∗2},VK) to A.

3. A replies with a message pair (m1,m2) such that m1 = m∗1 but m2 6= m∗2, and signature σ and wins if
it verifies; that is, Pre.Verify(VK, (m1,m2), σ) = 1.

We define A’s advantage to be Pr[A wins].

4.2 Construction

Next, we construct a restricted-prefix signature scheme from a secure puncturable PRF F and secure deter-
ministic one-time signature scheme (KeyGen1, Sign1, Verify1). Deterministic one-time signature schemes can
be constructed using one-way functions.

We consider m = (m1,m2) to be a single message; let N be the total length |m| = |m1| + |m2| and
n = |m1|. Our message space is thus {0, 1}N = {0, 1}n×{0, 1}N−n. We further define ` to be the bit-length
of the verification keys produced by KeyGen1, and require the domain of F (K, ·) to be all bitstrings of length
at most n. Assume also that the message space of the one-time signature scheme is all bitstrings of length
at most max{N, 2`+ 1}. Finally, ε denotes the empty string.

For any message m and i ∈ {1, . . . , N} we define

mi = the i-bit prefix of m

mi = the i-bit prefix of m with bit i flipped

m[i] = the ith bit of m

m[i] = the opposite of the ith bit of m

Notice that with this notation, if m = (m1,m2) that m1 = mn.
Finally, we also define an operator switchb(x, y) as follows:

switchb(x, y) =

{
(x, y) if b = 0.

(y, x) otherwise

Our algorithms are defined as follows:

• Pre.Setup(1λ) first generates a puncturable PRF keyK ← F.setup(1λ), then (SKε,VKε)← KeyGen1(1λ;F (K, ε)).

The verification key is VKε; the secret key is (K,SKε).

• Pre.Sign((K,SKε),m) For each i from 1 to n compute

(SKmi ,VKmi) = KeyGen1(1λ;F (K,mi))

(SKmi ,VKmi) = KeyGen1(1λ;F (K,mi))

(VKi,VK′i) = switchm[i](VKmi ,VKmi)

σi = Sign(SKmi−1 , (VKi,VK′i))

Finally, compute
σ∗ = Sign(SKmn ,m)

and output
σ =

{
(VKi,VK′i, σi)

n
i=1, σ

∗}
• Pre.Verify(VKε,m, σ =

{
(VKi,VK′i, σi)

n
i=1, σ

∗}) checks that for each i from 0 to (n− 1), that

Verify1(VKi, σi+1, (VKi+1,VK′i+1)) = 1

10

Here we consider VK0 = VKε. We check also that

Verify1(VKn, σ
∗,m) = 1

We output 1 if the above checks passed; otherwise output 0.

• Pre.Restrict((K,SKε),m) computes, for each i from 1 to n,

(SKmi ,VKmi) = KeyGen1(1λ;F (K,mi))

(SKmi ,VKmi) = KeyGen1(1λ;F (K,mi))

(VKi,VK′i) = switchm[i](VKmi ,VKmi)

σi = Sign(SKmi−1 , (VKi,VK′i))

as well as
σ∗ = Sign(SKmn ,m)

It bundles these up into
σ =

{
(VKi,VK′i, σi)

n
i=1, σ

∗}
Next, it punctures the key K at {mi}ni=1∪{ε} to obtain a punctured key K ′. It outputs the punctured
key as

SK{m} = {σ, {SKmi}ni=1,K
′}

• Pre.ResSign(SK{m∗},m) First, expand SK{m∗} as

SK{m∗} =
{
σ =

{
(VKi,VK′i, σ

∗
i)ni=1, σ

∗} , {SK′i}ni=1,K
′}

We have three cases:

– If m = m∗ output σ.

– Otherwise, if mn = mn
∗ but m 6= m∗ output ⊥.

– Otherwise, there is some least bit position i∗, 1 ≤ i∗ < n such that m[i] 6= m∗[i]. For 1 ≤ i ≤ i∗

set (VKres
i ,VK′resi , σi) = (VKi,VK′i, σ

∗
i). For i∗ < i ≤ n compute

(SKmi ,VKmi) = KeyGen1(1λ;F (K ′,mi))

(SKmi ,VKmi) = KeyGen1(1λ;FK′(m
i))

(VKres
i ,VK′resi) = switchm[i](VKmi ,VKmi)

σi = Sign(SKmi−1 , (VKres
i ,VK′resi))

(Notice that since mi−1 6= mi−1
∗ for all i > i∗, we are not evaluating FK′ on any punctured points.)

Finally compute σ∗ = Sign(SKmn ,m) and output

σ =
{

(VKres
i ,VK′resi , σi)

n
i=1, σ

∗}
Correctness For correctness, we need to show that any signature computed using the master signing key
verifies, and any signature computed using the restricted key on an unrestricted message is same as the
signature computed using the master signing key. The first property is immediate, and follows from the
correctness of the one-time deterministic signature scheme.

To prove the second correctness condition, let m be any N bit message, and let (K, SKε) be any master
signing key output by Pre.Setup. The restricted key SK{m} consists of a signature σ = {(VKj ,VK′j , σj)j≤n, σ

∗},
n secret keys {SKmi}i≤n and a PRF key K ′ punctured at {ε ∪ {mi}}. The restricted secret key SK{m}

11

can be used to sign m and any message m̃ such that mn 6= m̃n. Clearly, Pre.ResSign(SK{m},m) =
Pre.Sign(SK,m) = σ.

Consider any message m̃ such that mn 6= m̃n. Let i ≤ n be the first index such that m[i] 6= m̃[i],

and let σ̃ = Sign(SK, m̃), σ̃res = ResSign(SK{m}, m̃), where σ̃ = {(ṼKj , ṼK′j , σ̃j)j≤n, σ̃
∗} and σ̃res =

{(ṼKres
j , ṼK′resj , σ̃res

j)j≤n, σ̃∗res}. We need to show that σ̃ = σ̃res.

From the definition of Pre.ResSign, it follows that for j ≤ i, (ṼKres
j , ṼK′resj , σ̃res

j) = (ṼKj , ṼK′j , σ̃j) for all

j ≤ i. Similarly, from the definition of Pre.Sign, it follows that (ṼKj , ṼK′j , σ̃j) = (ṼKj , ṼK′j , σ̃j) for all j ≤ i
(this is because for j < i,mj = m̃j , and for j = i, (VKj ,VK′j) = (ṼKj , ṼKj)).

Finally, for all j > i, the punctured PRF key K ′ can be used to compute the correct secret key/verification
key pair, since m̃j 6= mj for all j > i. Therefore, the signature components for j > i are same for both σ̃
and σ̃res. This concludes our correctness proof.

Security We prove security of this construction in the following theorem.

Theorem 4.1. Assuming F is a selectively secure puncturable PRF and (Setup1, KeyGen1, Sign1, Verify1) is
a secure one time signature scheme, the prefix-restricted signature scheme described above is secure against
forgeries as described in Definition 4.1.

Proof. To prove this theorem, we will first define a sequence of hybrid experiments.

Hybrid Hyb0 This is identical to the security game for the prefix-restricted signature scheme.

1. A sends a message m∗ of length N .
2. The challenger chooses a puncturable PRF K ← F.setup(1λ).

Next, it computes (SKε,VKε) = Setup1(1λ;F (K, ε)).
3. It computes a signature σ for message m∗. Let SK0 = SKε. For i = 1 to n, do the following:

(a) It computes the keys (SKm∗i ,VKm∗i) = Setup1(1λ;F (K,m∗i)), (SKm∗
i ,VKm∗

i) = Setup1(1λ;F (K,m∗
i
)).

(b) Next, it computes (VKi,VK′i) = switchm∗[i](VKm∗i ,VKm∗
i) and σi = Sign1(SKm∗(i−1) , (VKi,VK′i))

for 1 ≤ i ≤ n.
(c) Finally, it signs m∗ using SKm∗n , that is, it computes σ∗ = Sign1(SKm∗n ,m

∗). It sets σ =
{(VKi,VK′i, σi)}, σ∗}.

4. It computes a punctured keyK ′ ← F.puncture(K, {{m∗i}i≤n∪ ε}) and sets SK{m∗} = {σ, {SKm∗
i}i≤n,K ′}.

5. Finally, the challenger sends VKε,SK{m∗} to A.

6. A responds with a forgery σ̃ = {{(ṼKi, ṼK′i, σ̃i)}, σ̃∗} and wins if

(a) For all 1 ≤ i ≤ n, Verify1(ṼKi−1, (ṼKi, ṼK′i), σ̃i) = 1, where ṼK0 = VKε.

(b) Verify1(ṼKn,m
∗, σ̃∗) = 1.

Hybrid Hyb1 In this experiment, the challenger chooses (SKm∗i ,VKm∗i) using true randomness, instead
of the pseudorandom string given by F (K,m∗i).

1. A sends a message m∗ of length N .
2. The challenger chooses a puncturable PRF K ← F.setup(1λ).

Next, it computes (SKε,VKε) = Setup1(1λ).
3. It computes a signature σ for message m∗. Let SK0 ← SKε. For i = 1 to n, do the following:

(a) It computes the keys (SKm∗i ,VKm∗i)← Setup1(1λ), (SKm∗
i ,VKm∗

i) = Setup1(1λ;F (K,m∗
i
)).

(b) Next, it computes (VKi,VK′i) = switchm∗[i](VKm∗i ,VKm∗
i) and σi = Sign1(SKm∗(i−1) , (VKi,VK′i))

for 1 ≤ i ≤ n.

12

(c) Finally, it signs m∗ using SKm∗n , that is, it computes σ∗ = Sign1(SKm∗n ,m
∗). It sets σ =

{(VKi,VK′i, σi)}, σ∗}.

4. It computes a punctured keyK ′ ← F.puncture(K, {{m∗i}i≤n∪ ε}) and sets SK{m∗} = {σ, {SKm∗
i}i≤n,K ′}.

5. Finally, the challenger sends VKε,SK{m∗} to A.

6. A responds with a forgery σ̃ = {{(ṼKi, ṼK′i, σ̃i)}, σ̃∗} and wins if

(a) For all 1 ≤ i ≤ n, Verify1(ṼKi−1, (ṼKi, ṼK′i), σ̃i) = 1, where ṼK0 = VKε.

(b) Verify1(ṼKn,m
∗, σ̃∗) = 1.

Hybrid Hyb2 In the previous hybrid, the challenger sends VKε and n verification keys VKm∗i for 1 ≤ i ≤ n
as part of the signature σ. In the forgery, the adversary sends n tuples (ṼKi, ṼK′i, σi). In this game, the

challenger guesses the first i such that VKm∗i 6= ṼKi. It chooses i← {1, . . . , n+1}, where i = n+1 indicates

the guess that VKm∗i = ṼKi for all i. The attacker wins if its forgery verifies and this guess is correct.

1. A sends a message m∗ of length N .
2. The challenger first chooses i∗ ← {1, . . . , n+ 1}.
3. It chooses a puncturable PRF K ← F.setup(1λ).

Next, it computes (SKε,VKε) = Setup1(1λ).
4. It computes a signature σ for message m∗. Let SK0 ← SKε. For i = 1 to n, do the following:

(a) It computes the keys (SKm∗i ,VKm∗i)← Setup1(1λ), (SKm∗
i ,VKm∗

i) = Setup1(1λ;F (K,m∗
i
)).

(b) Next, it computes (VKi,VK′i) = switchm∗[i](VKm∗i ,VKm∗
i) and σi = Sign1(SKm∗(i−1) , (VKi,VK′i))

for 1 ≤ i ≤ n.
(c) Finally, it signs m∗ using SKm∗n , that is, it computes σ∗ = Sign1(SKm∗n ,m

∗). It sets σ =
{(VKi,VK′i, σi)}, σ∗}.

5. It computes a punctured keyK ′ ← F.puncture(K, {{m∗i}i≤n∪ ε}) and sets SK{m∗} = {σ, {SKm∗
i}i≤n,K ′}.

6. Finally, the challenger sends VKε,SK{m∗} to A.

7. A responds with a forgery σ̃ = {{(ṼKi, ṼK′i, σ̃i)}, σ̃∗} and wins if

(a) For all i < i∗, VKm∗i = ṼKi and VKm∗i∗ 6= ṼKi∗ .

(b) For all 1 ≤ i ≤ n, Verify1(ṼKi−1, (ṼKi, ṼK′i), σ̃i) = 1, where ṼK0 = VKε.

(c) Verify1(ṼKn,m
∗, σ̃∗) = 1.

Analysis We will now analyse the probability of an adversary’s success in each of these hybrids. Let ProbiA
denote the probability of adversary A winning in hybrid Hybi.

Lemma 4.1. Assuming F is a selectively secure puncturable pseudorandom function, for any PPT adversary
A, |Prob0A − Prob1A| ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |Prob0A − Prob1A| = γ. We will construct a PPT
algorithm B that uses A to break the selective PPRF security of F . B works as follows.

1. B receives message m∗ from A. B then requests the PPRF challenger for a key punctured at the set
{{m∗i}i≤n ∪ ε} along with the n+ 1 evaluations at (ε,m∗1, . . . ,m∗n). It receives a punctured key K ′

and the n+ 1 strings (y0, . . . , yn), where yi is either the PRF evaluation at m∗i or a uniformly random
string.

2. Using K ′, it computes the PRF evaluations at m∗
i

for all i ≤ n, that is, it sets yi = F (K ′,m∗
i
).

3. B first computes (SKε,VKε) = KeyGen1(1λ; y0).
4. It then computes, for 1 ≤ i ≤ n, (SKm∗i ,VKm∗i) = KeyGen1(1λ; yi), (SKm∗

i ,VKm∗
i) = KeyGen1(1λ; yi).

5. Next, it computes, for 1 ≤ i ≤ n, (VKi,VK′i) = switchm∗[i](VKm∗i ,VKm∗
i), σi = Sign1(SKm∗i , (VKi,VK′i))

and σ∗ = Sign1(SKm∗n ,m). It sets σ = {(VKi,VK′i, σi)i≤n, σ
∗}.

13

6. B sets the restricted key SK{m∗} = {σ, {SKm∗
i}i≤n,K ′} and sends SK{m∗},VKε to A.

7. Finally, A sends a forgery. If the forgery verifies, B sends b′ = 0, indicating the evaluations y0, . . . , yn
were pseudorandom; else it sends b′ = 1.

To analyse B’s advantage in the PPRF security game, let b denote the bit chosen by challenger. Then
Pr[b′ = 1|b = 0] = Prob0A and Pr[b′ = 1|b = 1] = Prob1A. Therefore, if |Prob0A−Prob1A| is non-negligible, then
so is B’s advantage in the PPRF security game.

Claim 4.1. For any adversary A, Prob2A = Prob1A/(q + 1).

Proof. This follows directly from the description of the hybrid experiments Hyb1 and Hyb2. The challenger’s
choice of i∗ is independent ofA’s view. Therefore, Pr[A wins in Hyb2] = Pr[i∗ is correct guess] Pr[A wins in Hyb1].

Lemma 4.2. Assuming S1 = (KeyGen1,Sign1,Verify1) is a one-time secure deterministic signature scheme,
Prob2A is negligible in λ.

Proof. We will construct an algorithm B that breaks the one-time security of S1 with probability Prob2A. B
is defined as follows.

1. B chooses i∗ ← {1, . . . , q + 1}. It receives verification key VK∗ from the S1 challenger.
2. A sends the challenge message m∗.
3. For all i 6= (i∗ − 1), it chooses (SKm∗i ,VKm∗i) ← KeyGen1(1λ) and sets VKm∗i∗−1 = VK∗. It also

computes (SKm∗
i ,VKm∗

i) = KeyGen1(1λ;F (K,m∗
i
)).

4. Next, it must compute signatures on the verification key pairs. For all i 6= i∗, it computes σi =
Sign1(SKm∗(i−1) , switchm∗[i](VKm∗i ,VKm∗

i)). For i = i∗, if i∗ 6= n+ 1, it sends as signature query the
tuple switchm∗[i∗](VKm∗i∗ ,VK

m∗
i∗) to the S1 challenger; if i∗ = n + 1, it sends m as the signature

query. It receives σ∗ in response. Therefore, B can perfectly simulate the signature σ on m∗.
5. To compute the restricted signing key, it computes K ′ ← F.puncture(K, {{m∗i} ∪ ε}). It has all the

required signing keys SKm∗
i . Therefore, it sends VKε and SK{m∗} = {{SKm∗

i},K ′, σ}.
6. A finally sends a forgery. If A wins in Hyb2, then it must send (ṼKi∗ , ṼKi∗) 6= (VKm∗i∗ ,VK

m∗
i∗) but

Verify1(VKm∗(i∗−1) , (ṼKi∗ , ṼKi∗)) = 1. Therefore B sends (ṼKi∗ , ṼKi∗) as forgery to S1 challenger,
and wins with the same probability as A.

5 Pseudorandom Puncturable Deterministic Encryption (PPDE)

In this section we describe another primitive, puedorandom puncturable deterministic encryption schemes.
This is a variation of puncturable deterministic encryption as put forth by Waters[16].

In this scheme, there is a setup algorithm PPDE.Setup which generates a key K, as well as a deterministic
encryption algorithm PPDE.Enc which takes the key K and message m. Since encryption is deterministic,
the security property cannot by IND-CPA; instead we introduce a “puncturing algorithm” PPDE.Puncture
which inputs a key K and message m and outputs a punctured key K{m}; the security property is that the
encryption of m appears uniformly random to an adversary in possession of K{m}.

The actual construction uses techniques very similar to the “hidden trigger” mechanism using puncturable
PRF’s, as described in [15]; this is also used by [16].

14

5.1 Definition

Let M be the message space. A pseudorandom puncturable deterministic encryption scheme (or PPDE
scheme) for M and ciphertext space CT ⊆ {0, 1}` (for some polynomial `), is defined to be a collection of
four algorithms.

• PPDE.Setup(1λ) takes the security parameter and generates a key K in keyspace K. This algorithm is
randomized.

• PPDE.Enc(K,m) takes a key K ∈ K and message m ∈ M and produces a ciphertext ct ∈ CT . This
algorithm is deterministic.

• PPDE.Dec(K, ct) takes a key K ∈ K and ciphertext ct ∈ CT and outputs m ∈M∪{⊥}. This algorithm
is deterministic.

• PPDE.Puncture(K,m) takes a key K ∈ K and message m ∈M and produces a punctured key K{m} ∈
K and y ∈ {0, 1}`. This algorithm may be randomized.

Correctness A PPDE scheme is correct if it satisfies the following conditions.

1. Correct Decryption For all messages m and keys K ← K, we require

PPDE.Dec(K,PPDE.Enc(K,m)) = m.

2. Correct Decryption Using Punctured Key For all distinct messages m, for all keys K ← K,

Pr

[
#{ct : Decrypt(K{m}, ct) 6= Decrypt(K, ct)} > 1

∣∣∣
(K{m}, y)← Puncture(K,m)

]
is less than negl(λ), where all probabilities are taken over the coins of PPDE.Puncture.

3. For all messages m∗ ∈M and keys K ← K,{
y
∣∣∣ (K{m∗}, y)← PPDE.Puncture(K,m∗)

}
≈ U`

where U` denotes the uniform distribution over {0, 1}`.

Definition 5.1. A PPDE scheme is selectively secure if no PPT algorithm A can determine the bit b in
the following game except with probability negligibly close to 1

2 :

1. A chooses a message m∗ to send to the challenger.

2. The challenger chooses K ← PPDE.Setup(1λ) and computes (K{m∗}, y) ← PPDE.Puncture(K,m∗)
and ct = PPDE.Enc(K,m∗). Next, it chooses b← {0, 1}. If b = 0, it sends (K{m∗}, (ct, y)); otherwise
it sends (K{m∗}, (y, ct)).

3. A outputs a guess b′ for b.

5.2 Construction

Next, we construct a secure PPDE scheme using a pair F1, F2 of selectively secure puncturable PRFs. Here
F1 : {0, 1}m → {0, 1}n and F2 : {0, 1}n → {0, 1}m, where m and n are polynomials in the security parameter
λ. Additionally, we require F1 to be statistically injective.

Our keyspace K will be the product of the keyspaces of F1 and F2; the message space M = {0, 1}m and
ciphertext space is CT = {0, 1}m+n.

Our algorithms are defined as follows:

15

• PPDE.Setup(1λ) runs the setup algorithms for F1 and F2 to obtain keys K1, K2 respectively. It outputs
K = (K1,K2).

• PPDE.Enc((K1,K2),m) computes A = F1(K1,m) and outputs

ct = (A,F2(K2, A)⊕m)

• PPDE.Dec((K1,K2), (ct1, ct2)) computes the message m = F2(K2, ct1) ⊕ ct2. It then checks that
F1(K1,m) = ct1; if so it outputs m, otherwise it outputs ⊥.

• PPDE.Puncture((K1,K2),m) chooses y = (y1, y2) ∈ CT uniformly randomly. It computes A =
F1(K1,m), then punctures K1 at m to obtain K1{m} and K2 at {A, y1} to produce K2{A, y1}. It
outputs

K{m} = (K1{m},K2{A, y1}), y = (y1, y2).

Correctness We observe that as long as F1 is injective (which occurs except with negligible probability in
the coins of PPDE.Setup), decryption will be correct on all inputs using the punctured key. Here “correct”
means: identical to the behavior at the punctured key on all points except the encryption of the punctured
message, where the output is changed to ⊥. (If F1 were not injective, the puncturing of K2 at the output
of F1 may cause other PRF outputs to be changed to ⊥, violating the requirement that the set of changed
outputs have size at most 1.)

Correctness of decryption using non-punctured keys is immediate.

Security We argue security through a series of hybrids.

Theorem 5.1. Suppose that no PPT adversary has advantage greater than ε1 in the selective security game
against F1 or greater than ε2 in the selective security game against F2. Then no PPT adversary has advantage
greater than ε1 + ε2 in the selective security game as defined in Definition 5.1.

Proof. Let A be an arbitrary PPT adversary. We start by defining a sequence of hybrids.

Hyb0 This hybrid is identical to the original security game with b = 0.

1. A chooses a message m∗ to send to the challenger.

2. The challenger produces (K1,K2) = PPDE.Setup(1λ). He computes the punctured key (K{m∗}, (y1, y2))
← PPDE.Puncture((K1,K2),m∗) and sends K{m∗} to A. He also computes A = F1(K1,m

∗) and sends
ct = (A,F2(K2, A)⊕m∗).

Hyb1 This hybrid is same as the previous one, except that A is replaced by y1.

1. A chooses a message m∗ to send to the challenger.

2. The challenger produces (K1,K2) = PPDE.Setup(1λ). He computes the punctured key (K{m∗}, (y1, y2))
← PPDE.Puncture((K1,K2),m∗) and sends K{m∗} to A.
He sends ct = (y1, F2(K2, y1)⊕m∗) as the ciphertext.

Hyb2 This hybrid is the same as the previous one, except that F2(K2, A) is replaced by y2. The ciphertext
is now (y1, y2 ⊕m∗).

1. A chooses a message m∗ to send to the challenger.

2. The challenger produces (K1,K2) = PPDE.Setup(1λ). He computes the punctured key (K{m∗}, (y1, y2))
← PPDE.Puncture((K1,K2),m∗) and sends K{m∗} to A.
He sends ct = (y1, y2 ⊕m∗) as the ciphertext.

16

We see that Hyb2 is the original security game with b = 1, except for the presence of y2 ⊕m∗ in place
of y2, which does not affect an attacker’s advantage. We need only now to argue that these hybrids are
indistinguishable.

Hyb0 to Hyb1 We claim that an attacker A which can distinguish between Hyb0 and Hyb1 with advantage
ε can be used by a simulator B to win the selective security game against F1 with advantage ε.
B acts as follows:

1. A sends a message m∗ to B, who gives it to the PRF challenger. The challenger replies with a punctured
key K1(m∗) and a challenge pair (x1, x2) consisting of F1(K1,m

∗) and a uniformly random element.

2. B computesK2 = SetupF2
(1λ) andK2(x1, x2) = PunctureF2

(K2, {x1, x2}). He setsK(m∗) = (K1(m∗),K2(x1, x2)),
ct = (x1, F2(K2, x1)), and sends these to A.

3. A outputs a guess b that he is in Hybb.

We see that if A is in Hyb0, this is exactly the case that the PRF challenger set x1 = F1(K1,m
∗); Hyb1

is the case when x2 = F1(K1,m
∗). Thus A’s guess can be translated into a guess for which of {x1, x2} is

equal to F1(K1,m
∗) which is correct exactly when A is, so that A’s advantage can be at most εF1

.

Hyb1 to Hyb2 We claim that an attacker A which can distinguish between Hyb1 and Hyb2 with advantage
ε can be used by a simulator B to win the selective security game against F2 with advantage ε.
B acts as follows:

1. A sends a message m∗ to B. B computes K1 = SetupF1
(1λ) and chooses (y1, y2) uniformly at random.

It computes A = F1(K1,m
∗) and submits {y1, A} to the challenger as his selective challenge.

2. The challenger replies with a punctured key K2(A, y1) and a pair (x1, x2) consisting of both F2(K2, A)
and a uniformly random element. (In fact, the challenger also provides a pair consisting of F2(K2, y1),
but we do not need this and ignore it.)

3. B sets K(m∗) = (K1(m∗),K2(A, y1)) and sends this to A. He also sends ct = (A, x1 ⊕m∗).

4. A outputs a guess b that he is in Hybb+1.

We see that if A is in Hyb1, this is exactly the case that the PRF challenger set x1 = F2(K2, A); Hyb2
is exactly the case that the challenger set x2 = F2(K2, A). We conclude that A’s advantage can be at most
εF2 .

Conclusion Summing the attacker’s maximum advantage in distinguishing the hybrids and winning in
the game of Hyb2, we see that the maximum advantage in the selective security game for the PPDE scheme
is εF1

+ εF2
.

6 Signed Universal Samplers

In this section, we will describe our construction for a signed universal sampler scheme. We will show that
it is both simulation secure (as per Definitions 3.2) and secure against forgeries (as per Definition 3.1).

A remarkable feature of our scheme is its simplicity. The sampler setup algorithm will first generate a
prefix restricted signature scheme verification and signing key pair. Next the universal sampler parameters
are created as the obfuscation of a program that takes two inputs x, d and outputs p = d(r), where r is
computed using a puncturable PRF on input x||d. The program also outputs a signature σ (using the signing
key) on (x||d, p) using a prefix-restricted signature scheme. The sampler parameters, U , are the obfuscated
program and the verification key VK of the universal sampler is the verification key of the prefix restricted
signature.

17

To sample from a distribution d, one computes x = H(d) and runs the sampler output on inputs x, d.
Finally, the verification algorithm is used to check that p was the correct output sample for a circuit d when
given a prefix restricted signature σ. The verification algorithm first computes x = H(d). Then, it simply
checks that the signature σ verifies on the message m = (m1,m2) = (x||d, p).

Our Construction Let (Pre.Setup, Pre.Sign, Pre.Verify, Restrict,ResSign) be a restructed-prefix signature
scheme, F a puncturable PRF with algorithms F.setup, F.puncture and F.eval, PPDE = (PPDE.Setup,
PPDE.Enc, PPDE.Dec, PPDE.Puncture) a puncturable deterministic encryption scheme with pseudorandom
ciphertexts.

Our (`ckt, `rnd, `out)-signed universal sampler scheme consists of the following algorithms.

- Setup(1λ) The setup algorithm first chooses a signing and verification key for the restricted-prefix signature
scheme; it computes (SKpre,VKpre)← Pre.Setup(1λ). Next, it chooses a puncturable PRF key KF ←
F.setup(1λ) and sets U to be an obfuscation of the program USampler4 defined in Figure 1; that is,
U ← iO(USampler) and VK = VKpre. It outputs (U,VK).

USampler

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Puncturable PRF key KF , prefix-restricted signing key SKpre.

Compute r = F (K, (x||d)).
Compute out = d(r).
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Figure 1: Program USampler

- Sample(U, d) The sample generation algorithm computes x = H(d) and (pd, σ) = U(x, d). It outputs
(pd, σ).

- Verify(VK, d, pd, σ) The verification algorithm computes x = H(d) and then outputs Pre.Verify(VK, (x||d, pd), σ).

6.1 Proof of Unforgeability

We will define a sequence of hybrids to show that the construction satisfies the adaptive unforgeability
definition.

Without loss of generality, let us assume the adversary A makes q unique random oracle queries before
submitting the forgery corresponding to one of the queries.

Proof Intuition This proof is fairly straightforward. The challenger first guesses the random oracle query
which corresponds to the forgery. Let this query be d∗. The challenger then modifies the obfuscated program
USampler to use a restricted signing key. Once the program has a restricted signing key, we can use the
security of our special signature scheme to argue that the adversary cannot forge a signature corresponding
to d∗.

Hybrid Hyb0 Hyb0 is the real security game between an adversary A and challenger.

1. Challenger computes universal samplers. It choosesKF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ)
and computes U ← iO(USampler{KF ,SKpre}).
It sends (U,VKpre) to A.

4Padded to be of the same size as the corresponding programs in the proof.

18

2. A sends q random oracle queries. For ith query di, the challenger chooses uniformly random strings
xi ← {0, 1}`1 , sets H1(di) = xi; it sends H1(di) to A.

3. A finally sends the forgery (d∗, p∗, σ∗) and wins if

(a) d∗ = di for some i ∈ [q],
(b) Sample(U, d∗)1 6= p∗; that is, x∗ = H1(d∗), (out, σ) = U(x∗, d∗) and out 6= p∗,
(c) Verify(VKpre, (x

∗||d∗, p∗), σ∗) = 1.

Hybrid Hyb1 In this experiment, the challenger guesses the random oracle query which will correspond to
the forgery. If this guess is incorrect, the challenger aborts.

1. Challenger first chooses i∗ ← [q].

2. Challenger computes universal samplers. It choosesKF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ)
and computes U ← iO(USampler{KF ,SKpre}).
It sends (U,VKpre) to A.

3. A sends q random oracle queries. For ith query di, the challenger chooses uniformly random strings
xi ← {0, 1}`1 , sets H1(di) = xi; it sends H1(di) to A.

4. A finally sends the forgery (d∗, p∗, σ∗) and wins if

(a) d∗ = di,
(b) Sample(U, d∗)1 6= p∗; that is, x∗ = H1(d∗), (out, σ) = U(x∗, d∗) and out 6= p∗,
(c) Verify(VKpre, (x

∗||d∗, p∗), σ∗) = 1.

Hybrid Hyb2 In this experiment, the challenger guesses the circuit sent as the (i∗)th random oracle query.
If this guess is incorrect, the challenger aborts.

1. Challenger first chooses i∗ ← [q].
2. Challenger chooses d′ ← {0, 1}`ckt , x′ ← {0, 1}`1 and

sets H1(d′) = x′.

3. Challenger computes universal samplers. It choosesKF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ)
and computes U ← iO(USampler{KF ,SKpre}).
It sends (U,VKpre) to A.

4. A sends q random oracle queries. For ith query di, if i 6= i∗, the challenger chooses uniformly random
strings xi ← {0, 1}`1 , sets H1(di) = xi; it sends H1(di) to A.
If i = i∗ and di = d′, it sends x′ to A, else it aborts.

5. A finally sends the forgery (d∗, p∗, σ∗) and wins if

(a) d∗ = d′,
(b) (out, σ) = U(x′, d′) and out 6= p∗,
(c) Verify(VKpre, (x

′||d′, p∗), σ∗) = 1.

Hybrid Hyb3 In this experiment, the challenger outputs the obfuscation of USampler′ (defined in 2) instead
of USampler. The only difference between USampler and USampler′ is that USampler′ uses a restricted signing
key.

1. Challenger first chooses i∗ ← [q].
2. Challenger chooses d′ ← {0, 1}`ckt , x′ ← {0, 1}`1 and sets H1(d′) = x′.
3. Challenger computes universal samplers. It choosesKF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).

It computes r′ = F (KF , x
′||d′), out′ = d(r′).

It computes SK{(x′||d′, out′)} ← Restrict(SKpre, (x
′||d′, out′)).

It sets U ← iO(USampler′{KF ,SK{x′||d′, out′}}).
It sends (U,VKpre) to A.

19

4. A sends q random oracle queries. For ith query di, if i 6= i∗, the challenger chooses uniformly random
strings xi ← {0, 1}`1 , sets H1(di) = xi; it sends H1(di) to A.
If i = i∗ and di = d′, it sends x′ to A, else it aborts.

5. A finally sends the forgery (d∗, p∗, σ∗) and wins if

(a) d∗ = d′,
(b) (out, σ) = U(x′, d′) and out 6= p∗,
(c) Verify(VKpre, (x

′||d′, p∗), σ∗) = 1.

USampler′

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Puncturable PRF key KF , prefix-restricted signing key SK{(x′||d′, out′)}.

Compute r = F (K, (x||d)).
Compute out = d(r).
Compute σ = ResSign(SK{(x′||d′, out′)}, (x||d, out)).
Output (out, σ).

Figure 2: Program USampler′

Next, we need to analyse the adversary’s advantage in each of these games. This analysis is included in
Appendix A.

6.2 Proof of Simulation Security

Let us assume the adversary A queries the random oracle by sending a message (RO, d) before sending a
message (params, d). Without loss of generality, let q be the number of queries made by A. We will define
a sequence of hybrid experiments, and then show that any PPT adversary cannot distinguish between the
hybrid experiments with advantage non-negligible in the security parameter λ.

Proof Intuition First, we give a high level intuition of our proof strategy. The main idea is to gradually
change the random oracle query responses from uniformly random strings to more structured strings which
will allow simulation. First, the challenger modifies the program USampler in order to allow trapdoors.
The program, instead of computing r = F (KF , x||d) and p = d(r), first decrypts the string x. It also has
a string α hardwired. If the decryption is successful, and the output message is (d̃, a,m) where d = d̃,
PRG(a) = α, then the program simply outputs m as the sampled parameter. Due to the security of PRG,
we can argue that the adversary cannot notice the difference. Now, the challenger can modify the random
oracle queries. For a query corresponding to circuit d, the challenger outputs an encryption of (d, a, d(t))
where t is a uniformly random string. This looks like a uniformly random string due to the property of
PPDE ciphertexts. However, note that the obfuscated program has the decryption key hardwired. Using
the techniques from punctured programming, we show how to transform the random oracle responses from
truly random strings to PPDE encryptions.

Experiment Expt0 This experiment corresponds to the real world. The challenger runs the universal
sampler setup honestly to compute U , and sends it to the adversary A. Next, for each random oracle query,
it outputs a uniformly random string.

1. Challenger computes universal samplers. It choosesKF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It computes U ← iO(USampler{KF ,SKpre}).
It sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth query dj ,

20

• The challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it sends H1(dj)
to A.

3. A finally sends a bit b.

The output of this experiment is b.

Experiment Expt1 In this experiment, the challenger outputs an obfuscation of USampler-1 (defined in
Figure 3) as the universal sampler program output during setup. This new program has a PPDE key
hardwired, and it uses this key to decrypt the input string. If the decryption is successful (and some
additional checks are satisfied), the program outputs the decrypted string. Else, its output is the same as in
previous experiment.

1. Challenger computes universal samplers. It choosesKF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses KPPDE and α← {0, 1}2λ.
It computes U ← iO(USampler-1{KF ,SKpre,KPPDE, α}) and sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth query dj ,

• The challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it sends H1(dj)
to A.

3. A finally sends a bit b.

USampler-1

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Puncturable PRF key KF , PPDE key KPPDE, α ∈ {0, 1}2λ, prefix-restricted signing key SKpre.

Compute m = PPDE.Dec(KPPDE, x). If m 6=⊥, let m = (d̃, a, y) ∈ {0, 1}λ × {0, 1}`out .
if m 6=⊥ and d̃ = d and α = PRG(a) then

Set out = y.
else

Compute r = F (K, (x||d)).
Compute out = d(r).

end if
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Figure 3: Program USampler-1

Experiment Expt2 In this experiment, the string α hardwired in the program is a pseudorandom string,
computed using PRG.

1. Challenger computes universal samplers. It choosesKF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE,
a← {0, 1}λ and sets α = PRG(a).
It computes U ← iO(USampler-1{KF ,SKpre,KPPDE, α}) and sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth query dj ,

• The challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it sends H1(dj)
to A.

3. A finally sends a bit b.

21

The output of this experiment is b

Next, we will have q hybrid experiments Expt2,i for 0 ≤ i ≤ q. In each hybrid, the challenger changes the
response to the random oracle queries. Instead of sending uniformly random strings, it sends encryptions
computed using PPDE.Enc(·, ·).

Experiment Expt2,i In this experiment, the challenger queries the Parameters Oracle to compute the
response for the first i random oracle queries. For the remaining queries, it outputs a uniformly random
string.

1. Challenger computes universal samplers. It choosesKF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
It computes U ← iO(USampler-1{KF ,SKpre,KPPDE, α}) and sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle.
On input dj , it receives pj in response.

It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.

• if j > i, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it sends
H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is b.

Clearly, Expt2,0 is identical to experiment Expt2, while Expt2,q corresponds to the ideal world. We now
need to show that any PPT adversary has almost identical advantage in each of the experiments described
above. Due to space constraints, the full analysis is included in the appendix. Here, we give an outline of
the proof.

In the first hybrid, the challenger replaces the program USampler with program USampler-1. The only
difference between these two programs is that USampler-1 first decrypts the input x using PPDE key. If the
decryption is successful and can be parsed as (d̃, a,m), then the program checks if d = d̃ and PRG(a) = α,
where α is a uniformly random string. As a result, this step is never executed, and hence the two programs
are identical. Therefore, using security of iO, the hybrids are computationally indistinguishable.

Next, the challenger replaces α with a pseudorandom string. It chooses a string a and sets α = PRG(a).
This step is indistinguishable due to the security of PRG.

Now, the first step of the program is “Decrypt x. If decryption is successful, and outputs (d̃, a,m) and
d = d̃ and PRG(a) = α, then output m”. This gives the challenger a ‘trapdoor’. Now, the adversary
sends encryption of (d, a, d(t)) as the response for RO(d). To prove that the adversary cannot distinguish
between the encryptions and random strings, we define q hybrids. In the ith hybrid, the first i responses
are encryptions, while the remaining are random strings. We now need to show that the ith and (i + 1)th

hybrids are indistinguishable. For this, the main idea is to first puncture the PPDE key, and then switch
the random RO responses to ciphertexts. However, to puncture the PPDE key, we will need to know the
‘puncture point’ in advance, resulting in a subexponential security loss. Here, note that the security loss is
q · 2`ckt , not 2q`ckt . This allows us to use complexity leveraging with subexponential security for iO, PRG
and F .

References

[1] Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: Avoiding barrington’s theorem.
In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014. pp. 646–658 (2014)

22

[2] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Theory of
Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part II. pp. 528–556 (2015)

[3] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: ACM Conference on Computer and Communications Security. pp. 62–73 (1993)

[4] Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: ASIACRYPT.
pp. 280–300 (2013)

[5] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistin-
guishability obfuscation. In: CRYPTO (2014)

[6] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Public-
Key Cryptography - PKC 2014 - 17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings. pp. 501–519 (2014)

[7] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability
obfuscation and functional encryption for all circuits. In: FOCS (2013)

[8] Goldreich, O.: Two remarks concerning the goldwasser-micali-rivest signature scheme. In: Advances in
Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings. pp. 104–110 (1986)

[9] Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to generate and use
universal parameters. In: ASIACRYPT (2016)

[10] Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained pseudorandom
functions. Cryptology ePrint Archive, Report 2014/720 (2014), http://eprint.iacr.org/

[11] Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In: Advances in Cryptol-
ogy - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. pp. 3–34 (2015)

[12] Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose.
In: Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II. pp. 18–35 (2013)

[13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions
and applications. In: ACM Conference on Computer and Communications Security. pp. 669–684 (2013)

[14] Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: Pro-
ceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washigton, USA. pp. 33–43 (1989)

[15] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In:
STOC. pp. 475–484 (2014)

[16] Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Ad-
vances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II. pp. 678–697 (2015)

[17] Zimmerman, J.: How to obfuscate programs directly. In: Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. pp. 439–467 (2015)

23

A Proof of Unforgeability

Analysis Let AdviA denote the advantage of adversary A in hybrid experiment Hybi.

Lemma A.1. For any adversary A, Adv1A = Adv0A/q.

Proof. This follows directly from the description of the experiment. The challenger’s guess i∗ is correct with
probability 1/q, which implies that if A wins with probability ε in Hyb0, then it wins with probability ε/q
in Hyb1.

Lemma A.2. For any adversary A, Adv2A = Adv1A/2
`ckt .

Proof. This proof also follows directly from the description of the experiment. The challenger’s guess d′

should be equal to the (i∗)th random oracle query, and is correct with probability 1/2`ckt , which implies that
if A wins with probability ε in Hyb1, then it wins with probability ε/2`ckt in Hyb2.

Lemma A.3. Assuming iO secure indistinguishability obfuscator, for any adversary A, |Adv3A − Adv2A| ≤
negl(λ).

Proof. Here we change from USampler to USampler′. The only difference between USampler and USampler′ is
that USampler uses the (master) secret key SKpre, while USampler′ uses a restricted secret key SK{(x′||d′, out′)},
where x′ = H1(d′), r′ = F (KF , x

′||d′) and out′ = d′(r′). For all x||d 6= x′||d′, Pre.Sign(SKpre, (x||d, out)) =
ResSign(SK{(x′||d′, out′)}), and therefore, the programs have identical functionality if x||d 6= x′||d′. On
input x′, d′, note that the program only signs the pair (x′||d′, out′), and Pre.Sign(SKpre, (x

′||d′, out′)) =
ResSign(SK{(x′||d′, out′)}, (x′||d′, out′)). As a result, USampler and USampler′ are functionally identical on
all inputs. Hence, if there exists a PPT adversary A such that |Adv3A − Adv2A| = ε, then there exists a PPT
algorithm B that breaks the security of indistinguishability obfuscation with advantage ε. This concludes
our proof.

Lemma A.4. Assuming S = (Pre.Setup,Pre.Sign,Pre.Verify,Restrict,ResSign) is a selectively secure prefix-
restricted signature scheme, for any PPT adversary A, Adv3A ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that Adv3A = ε. We will construct a PPT algorithm B
that uses A to break the security of prefix-restricted signature scheme S with probability ε. B is defined as
follows.

1. B chooses i∗ ← [q], d′ ← {0, 1}lckt, x′ ← {0, 1}`1 and KF ← Fsetup(1λ). It computes out′ =
d′(F (KF , (x

′||d′))) and sends (x′||d′, out′) to the signature scheme challenger. It receives SK{(x′||d′, out′)},
VKpre from the challenger. B computes U ← iO(USampler′{KF ,SK{(x′||d′, out′)}}) and sends U,VKpre

to A.
2. B then receives random oracle queries from A. For each random oracle query di 6= d′, it chooses a

uniformly random string ri ← {0, 1}`1 and sets H1(di) = ri. For the (i∗)th query d′, it sends x′.
3. Finally, A sends a forgery (d′, p∗, σ∗). B forwards message (x′||d′, p∗) and signature σ∗ as forgery to

the challenger.

Clearly, if A has advantage ε, then so does B.

From the above lemmas, it follows that if any PPT adversary has at most εS advantage in the prefix-
restricted signature security game and at most εiO in the security game against iO, then any PPT adversary
has advantage at most q·2`ckt ·(εiO+εS) in the adaptive unforgeability game of the universal sampler described
above. Therefore, assuming sub-exponential security of iO and S (that is, assuming q · 2`ckt · (εiO + εS) ≤
negl(λ)), our universal sampler satisfies the adaptive unforgeability definition (Definition 3.1).

24

B Analysis of Adversary’s Advantage in Simulation Security Proof

Let ProbxA denote the probability that A outputs 1 in experiment Expx.

Claim B.1. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Prob0A −
Prob1A| ≤ εiO.

Proof. To prove this claim, we need to show that the programs USampler and USampler-1 are functionally
identical. Recall the only difference between USampler and USampler-1 is that USampler-1 has PPDE key
KPPDE and a uniformly random string α hardwired. Consider any input x, d. USampler-1 first decrypts x to
compute m. If m is of the form (d̃, a, y) and d = d̃ and PRG(a) = α, then it sets out = y. However, since α is
chosen uniformly at random, except with negligible probability, there exists no a such that PRG(a) = α. As
a result, on all inputs (x, d), the first check of USampler-1 fails and therefore, USampler and USampler-1 have
identical functionality. This implies that if there exists a PPT adversary A such that |Prob0A − Prob1A| = ε,
then there exists a PT algorithm B that breaks the security of iO with advantage ε.

Claim B.2. Assuming PRG is a secure pseudorandom generator, for any PPT adversary A, |Prob1A −
Prob2A| ≤ εPRG.

Proof. Suppose there exists a PPT adversary A such that |Prob1A − Prob2A| = ε. We can use A to construct
a PPT algorithm B that breaks the PRG security with advantage ε. B is defined as follows.

1. B chooses PRF key KF , PPDE key KPPDE and prefix-restricted signature key pair (SKpre,VKpre).
It receives α from the PRG challenger. Using KF ,KPPDE,SKpre and α, it computes the sampler
parameters U ← iO(USampler-1{KF ,KPPDE,SKpre, α}) and sends U,VKpre to A.

2. A sends random oracle queries. For each unique query di, B chooses a uniformly random `1 bit string
xi and sets H1(di) = xi; it sends xi to A.

3. Finally, after q random oracle queries, A sends a bit b′. If b′ = 0, B output 0 (indicating α is a truly
random string), else it outputs 1, indicating α is pseudorandom.

Clearly, from the reduction, it follows that depending on whether α is pseudorandom or truly random,
A participates in either experiment Expt1 or Expt2. Therefore, if |Prob1A − Prob2A| = ε, then B breaks the
PRG security with advantage ε.

Lemma B.1. For any adversary A and any i ∈ [q], |Prob2,iA −Prob2,i+1
A | ≤ 2`ckt(5εiO + εPPDE + εF + εPRG).

Proof. The proof of this hybrid involves multiple hybrid experiments H0, . . . ,H12, where H0 corresponds to
Expt2,i and H12 corresponds to Expt2,i+1.

Experiment H0: This corresponds to Expt2,i.

Experiment H1: In this experiment, the challenger guesses the (i+ 1)th query. It chooses d∗ ← {0, 1}`ckt ,
and the output of the experiment is 1 if and only if the adversary’s output is 1 and the (i+ 1)th query is d∗.

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
It computes U ← iO(USampler-1{KF ,SKpre,KPPDE, α}) and sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.

25

• if j > i, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it sends
H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

Experiment H2: This experiment is identical to the previos one, except that the challenger modifies the
response to (i + 1)th random oracle query. Instead of choosing H(di+1) = y∗ uniformly at random, it first
computes the PPDE punctured key. Recall that PPDE.Puncture also outputs a ‘random-looking’ string y∗.
The challenger sends this string as the response to the (i+1)th random oracle query. The obfuscated sampler
program still uses the unpunctured PPDE key.

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗.
It computes (K ′PPDE, y

∗)← PPDE.Puncture(KPPDE, (d
∗, a, p∗)).

It computes U ← iO(USampler-1{KF ,SKpre,KPPDE, α}) and sends (U,VKpre) to A.
2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = y∗ and sends y∗ to the challenger.

• if j > i + 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it
sends H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

Experiment H3: In this experiment, the challenger replaces USampler-1 with USampler-2 (defined in
Figure 4). The only difference between these two programs is that on input (d∗, y∗), USampler-2 outputs a
hardwired value p∗, which is set to be d(F (KF , (y

∗||d∗))). Also, the program uses a punctured PRF key.

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗.
It computes (K ′PPDE, y

∗)← PPDE.Puncture(KPPDE, (d
∗, a, p∗)).

It sets p∗ = d∗(F (KF , y
∗||d∗)) and K ′F ← F.puncture(KF , y

∗||d∗).
It computes U ← iO(USampler-2{K ′F ,SKpre,KPPDE, α, p

∗, y∗}); sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = y∗ and sends y∗ to the challenger.
• if j > i + 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it

sends H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

26

USampler-2

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Punctured PRF key K′F , PPDE key KPPDE, α ∈ {0, 1}2λ, p∗ ∈ {0, 1}`out , prefix-restricted
signing key SKpre.

if x = y∗ and d = d∗ then
Set out = p∗.

else
Compute m = PPDE.Dec(KPPDE, x). If m 6=⊥, let m = (d̃, a, y) ∈ {0, 1}λ × {0, 1}`out .
if m 6=⊥ and d̃ = d and α = PRG(a) then

Set out = y.
else

Compute r = F (K′F , (x||d)).
Compute out = d(r).

end if
end if
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Figure 4: Program USampler-2

Experiment H4: In this experiment, the challenger replaces F (K, y∗||d∗) with a truly random string. The
indistinguishability of the hybrids follows from the security of puncturable PRFs.

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗.
It computes (K ′PPDE, y

∗)← PPDE.Puncture(KPPDE, (d
∗, a, p∗)).

It chooses a uniformly random string ρ, sets p∗ = d∗(ρ) and K ′F ← F.puncture(KF , y
∗||d∗).

It computes U ← iO(USampler-2{K ′F ,SKpre,KPPDE, α, p
∗, y∗}); sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = y∗ and sends y∗ to the challenger.
• if j > i + 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it

sends H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

Experiment H5: In this experiment, USampler-2 is replaced by USampler-3 (defined in Figure 5). These
two programs are identical, except that USampler-3 uses an unpunctured PRF key. Note that the two
programs have identical functionality because the PRF evaluation step is not executed for x = y∗, d = d∗.

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗.
It computes (K ′PPDE, y

∗)← PPDE.Puncture(KPPDE, (d
∗, a, p∗)).

It chooses a uniformly random string ρ, sets p∗ = d∗(ρ) and K ′F ← F.puncture(KF , y
∗||d∗).

It computes U ← iO(USampler-3{KF ,SKpre,KPPDE, α, p
∗, y∗}); sends (U,VKpre) to A.

27

2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = y∗ and sends y∗ to the challenger.
• if j > i + 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it

sends H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

USampler-3

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Puncturable PRF key KF , PPDE key KPPDE, α ∈ {0, 1}2λ, p∗ ∈ {0, 1}`out , prefix-restricted
signing key SKpre.

if x = y∗ and d = d∗ then
Set out = p∗.

else
Compute m = PPDE.Dec(KPPDE, x). If m 6=⊥, let m = (d̃, a, y) ∈ {0, 1}λ × {0, 1}`out .
if m 6=⊥ and d̃ = d and α = PRG(a) then

Set out = y.
else

Compute r = F (KF , (x||d)).
Compute out = d(r).

end if
end if
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Figure 5: Program USampler-3

Experiment H6: In this experiment, the challenger sends an obfuscation of USampler-4 (defined in Figure
6) instead of USampler-3 . The new program USampler-4 uses a punctured PPDE key for decryption. As a
result, to maintain functionality, it has the encryption of punctured point hardwired.

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗.
It computes (K ′PPDE, y

∗)← PPDE.Puncture(KPPDE, (d
∗, a, p∗)) and the ciphertext ct∗ = PPDE.Enc(KPPDE, (d

∗, a, p∗)).

It chooses p∗ ← {0, 1}`out and K{y∗||d∗} ← F.puncture(K, y∗||d∗).
It computes U ← iO(USampler-4{KF ,SKpre,K

′
PPDE, α, p

∗, y∗, ct∗}); sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = y∗ and sends y∗ to the challenger.
• if j > i + 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj ; it

sends H1(dj) to A.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

28

USampler-4

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Puncturable PRF key KF , PPDE key KPPDE, α ∈ {0, 1}2λ, p∗ ∈ {0, 1}`out ,
PPDE ciphertext ct∗, prefix-restricted signing key SKpre.

if x = y∗ and d = d∗ then
Set out = p∗.

else if x = ct∗ and d = d∗ then
Set out = p∗.

else
Compute m = PPDE.Dec(KPPDE, x). If m 6=⊥, let m = (d̃, a, y) ∈ {0, 1}λ × {0, 1}`out .
if m 6=⊥ and d̃ = d and α = PRG(a) then

Set out = y.
else

Compute r = F (KF , (x||d)).
Compute out = d(r).

end if
end if
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Figure 6: Program USampler-4

Experiment H7: In this experiment, the challenger swaps y∗ and ct∗ using the PPDE security. As a
result, the response to (i+ 1)th random oracle query is a PPDE ciphertext. The obfuscated program is now
USampler-5 (defined in Figure 7).

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗.
It computes (K ′PPDE, y

∗)← PPDE.Puncture(KPPDE, (d
∗, a, p∗)).

It chooses p∗ ← {0, 1}`out and K{y∗||d∗} ← F.puncture(K, y∗||d∗).
It computes U ← iO(USampler-4{KF ,SKpre,K

′
PPDE, α, p

∗, ct∗, y∗}); sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = ct∗ and sends ct∗ to the challenger.

• if j > i+ 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj and
sends H1(dj) to the adversary.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

Remark: Note that y∗ and ct∗ have been swapped in the hardwiring of program USampler-4. As a result,
the first two lines of the program are as follows:

- If x = ct∗ and d = d∗ set out = p∗.
- Else if x = y∗ set out = p∗.
- Else compute m = PPDE.Dec(KPPDE, x). . . .

29

Experiment H8: In this experiment, the challenger outputs an obfuscation of USampler-5 (defined in
Figure 7). This program uses an unpunctured PPDE key. As a result, it does not have the clause ‘if x = ct∗

and d = d∗ set out = p∗’ since the PPDE decryption will set out = p∗ if x = ct∗. Also, instead of checking
if x = y∗, it checks if PRG(x) = z∗, where z∗ is hardwired to be PRG(y∗). Note that the PRG is injective,
and therefore these two checks are equivalent.

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗.
It computes (K ′PPDE, y

∗)← PPDE.Puncture(KPPDE, (d
∗, a, p∗)) and z∗ = PRG(y∗).

It chooses p∗ ← {0, 1}`out and K{y∗||d∗} ← F.puncture(K, y∗||d∗).
It computes U ← iO(USampler-5{KF ,SKpre,KPPDE, α, p

∗, ct∗, y∗, z∗}); sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = ct∗ and sends ct∗ to the challenger.
• if j > i+ 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj and

sends H1(dj) to the adversary.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

USampler-5

Inputs x ∈ {0, 1}`1 , d ∈ {0, 1}`ckt .

Constants Puncturable PRF key KF , PPDE key KPPDE, α ∈ {0, 1}2λ, p∗ ∈ {0, 1}`out , PPDE ciphertext
ct∗, z∗ ∈ {0, 1}2`1 , prefix-restricted signing key SKpre.

if PRG(x) = z∗ and d = d∗ then
Set out = p∗.

else
Compute m = PPDE.Dec(KPPDE, x). If m 6=⊥, let m = (d̃, a, y) ∈ {0, 1}λ × {0, 1}`out .
if m 6=⊥ and d̃ = d and α = PRG(a) then

Set out = y.
else

Compute r = F (K, (x||d)).
Compute out = d(r).

end if
end if
Compute σ = Pre.Sign(SKpre, (x||d, out)).
Output (out, σ).

Figure 7: Program USampler-5

Experiment H9: In this experiment, the challenger chooses y∗ uniformly at random. As a result, it no
longer needs to compute PPDE.Puncture(·, ·).

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).

30

It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗.
It chooses y∗ ← {0, 1}`1 and z∗ = PRG(y∗).

It chooses p∗ ← {0, 1}`out and K{y∗||d∗} ← F.puncture(K, y∗||d∗).
It computes U ← iO(USampler-5{KF ,SKpre,KPPDE, α, p

∗, ct∗, y∗, z∗}); sends (U,VKpre) to A.
2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = ct∗ and sends ct∗ to the challenger.
• if j > i+ 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj and

sends H1(dj) to the adversary.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

Experiment H10: In this experiment, the challenger chooses z∗ uniformly at random. This change is
indistinguishable due to the security of PRG.

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗.
It chooses y∗ ← {0, 1}`1 and z∗ ← {0, 1}2`1 .

It chooses p∗ ← {0, 1}`out and K{y∗||d∗} ← F.puncture(K, y∗||d∗).
It computes U ← iO(USampler-5{KF ,SKpre,KPPDE, α, p

∗, ct∗, y∗, z∗}); sends (U,VKpre) to A.
2. A sends q random oracle queries. For jth unique query dj ,

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = ct∗ and sends ct∗ to the challenger.
• if j > i+ 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj and

sends H1(dj) to the adversary.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

Experiment H11: In this experiment, the challenger outputs an obfuscation of USampler-1. This hybrid
is identical to Hyb2,i+1, except that the challenger also guesses d∗. Note that the only difference between
USampler-5 and USampler-1 is the clause ‘if PRG(x) = z∗ then output p∗’. However, this statement is never
executed for a uniformly random z∗. As a result, these two programs are functionally identical, and hence
their obfuscations are computationally indistinguishable.

1. Challenger first chooses a circuit d∗ ← {0, 1}`ckt .
Next, it computes universal samplers. It chooses KF ← F.setup(1λ), (SKpre,VKpre)← Pre.Setup(1λ).
It chooses a puncturable PPDE key KPPDE, a← {0, 1}λ and sets α = PRG(a).
Next, it queries the parameters oracle on input d∗ and receives p∗. It computes ct∗ = PPDE.Enc(KPPDE, (d

∗, a, p∗))
It computes U ← iO(USampler-1{KF ,SKpre,KPPDE, α}); sends (U,VKpre) to A.

2. A sends q random oracle queries. For jth unique query dj ,

31

• if j ≤ i, the challenger queries the Parameter Oracle on input dj and receives pj in response.
It sets H1(dj) = PPDE.Enc(KPPDE, pj) and sends H1(dj) to A.
• if j = i+ 1, the challenger sets H1(dj) = ct∗ and sends ct∗ to the challenger.
• if j > i+ 1, the challenger chooses uniformly random strings xj ← {0, 1}`1 , sets H1(dj) = xj and

sends H1(dj) to the adversary.

3. A finally sends a bit b.

The output of this experiment is 1 if and only if b = 1 and di+1 = d∗.

Experiment H12: This corresponds to Hyb2,i+1.

We will now analyze the probability of jth hybrid Hj outputting 1. Let pjA denote the probability that
the outcome of Hj is 1.

Claim B.3. For any adversary A, p1A = p0A/2
`ckt .

Proof. This follows directly from the definition of H0 and H1, the fact that d∗ is chosen uniformly at random.

Claim B.4. For any adversary A, |p1A − p2A| ≤ negl(λ).

Proof. This follows from Correctness Property 3 of PPDE schemes. Recall this property states that for all
messages (a, p∗) and PPDE keys KPPDE, if (K ′PPDE, y

∗) ← PPDE.Puncture(KPPDE, (d
∗, a, p∗)), then y∗ is

statistically close to a uniformly random ` bit string, even when given K, a and p∗.

Claim B.5. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |p2A−p3A| ≤
εiO.

Proof. The proof of this claim follows from the fact that USampler-1 and USampler-2 are functionally identical.
The only difference between the two programs is that one uses an unpunctured PRF key, while the other
uses a punctured key. However, USampler-2 uses the hardwired value p∗ on input (y∗, d∗). As a result, both
programs have the same output on (y∗, d∗). On all other inputs, due to the correctness of puncturable PRFs,
both programs have identical behavior. As a result, their obfuscations are computationally indistinguishable.

Claim B.6. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |p3A−p4A| ≤ εF .

Proof. This proof follows from the security of puncturable PRFs. Consider any PPT adversary A. We
will construct a reduction algorithm B that breaks the selective security of F with advantage |p2A − p3A|.
The reduction algorithm chooses d∗, y∗ uniformly at random and sends (y∗||d∗) to the PRF challenger. It
receives a punctured key K ′F and a string r∗, which is either a PRF evaluation or a truly random string.
The reduction algorithm sets p∗ = d∗(r∗). It then chooses the PPDE key and signing/verification keys and
computes an obfuscation of USampler-2. Note that B does not require p∗ for answering the random oracle
queries. Finally, the adversary sends a bit b. If b = 1, B guesses that r∗ was pseudorandom, else it guesses
that it was truly random. This concludes our proof.

Claim B.7. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |p4A−p5A| ≤
εiO.

32

Proof. The proof of this claim follows from the fact that USampler-2 and USampler-3 are functionally identical.
The only difference between the two programs is that one uses a punctured PRF key (punctured at y∗||d∗),
while the other uses an unpunctured key. However, both programs do not execute the PRF evaluation step
for x = y∗, d = d∗. This is because for input x = y∗, d = d∗, both programs output the hardwired value p∗.
As a result, the two programs are functionally identical, and therefore their obfuscations are computationally
indistinguishable.

Claim B.8. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |p5A−p6A| ≤
εiO.

Proof. The only difference between the experiments H5 and H6 is that one uses USampler-3, and the other
uses USampler-4. The program USampler-4 uses a punctured PPDE key, and has the output hardwired for the
punctured point. As a result, both programs have the same output for ct∗ = PPDE.Enc(KPPDE, (d

∗, a, p∗)).
For all other inputs, the two programs are identical since the PPDE scheme is correct (decryptions us-
ing K ′PPDE are identical to decryptions using KPPDE for all inputs not equal to ct∗). As a result, their
obfuscations are computationally indistinguishable.

Claim B.9. Assuming PPDE is a secure puncturable pseudorandom deterministic encryption scheme, for
any PPT adversary A, |p6A − p7A| ≤ εPPDE.

Proof. Recall the PPDE security states that given a PPDE key K ′PPDE punctured at input γ, no PPT
adversary can distinguish between (ct, r) and (r, ct), where ct is the encryption of γ and r is a uniformly
random string. Let A be any PPT adversary. We will construct a reduction algorithm B that breaks the
security of PPDE with advantage |p5A−p6A| using A. The reduction algorithm first chooses a PRF key KF and
signing/verification keys. Next, it chooses a, d∗, y∗, r∗ uniformly at random and sets p∗ = d∗(r∗). It sends
(d∗, a, p∗) to the PPDE challenger, and receives a PPDE key K ′PPDE and a tuple (y1, y2), where one of them is
the encryption of (d∗, a, p∗), and the other is a uniformly random string. The reduction algorithm computes
an obfuscation of USampler-4{KF ,SKpre,K

′
PPDE, α, p

∗, y1, y2}. Finally, when responding to random oracle
queries, for the (i + 1)th query, it sends y1. The adversary outputs a bit b, which B forwards to the PPDE
challenger.

Now, if y1 is a random string, then this corresponds to H6, else it corresponds to H7. This concludes our
proof.

Claim B.10. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |p7A−p8A| ≤
εiO.

Proof. To prove this claim, we need to argue that USampler-4 and USampler-5 are functionally identical.
There are two differences between these two programs: first, USampler-5 has z∗ = PRG(y∗) hardwired
and it checks if PRG(x) = z∗ instead of checking if x = y∗. This does not change functionality since the
pseudorandom generator is injective. Next, it uses an unpunctured PPDE key, while USampler-4 uses a
punctured PPDE key and has the output hardwired for input (ct∗, d∗). However, note that for this input,
both programs have identical outputs. This implies that both programs are functionally identical, and as a
result, their obfuscations are computationally indistinguishable.

Claim B.11. For any adversary A, |p8A − p9A| ≤ negl(λ).

Proof. This follows from Correctness Property 3 of PPDE schemes, similar to the proof of Claim B.4.

Claim B.12. Assuming PRG is a secure pseudorandom generator, for any PPT adversary A, |p9A − p10A | ≤
εPRG.

33

Proof. The proof of this claim follows from the security of PRG. Note that the only difference between the
two hybrids is that in H9, the challenger sets z∗ = PRG(y∗), while in the other one, it chooses z∗ ← {0, 1}2`1 .
In both hybrids, y∗ is not used anywhere else. As a result, we can construct a reduction algorithm B that
breaks the PRG security with advantage |p9A − p10A |.

Claim B.13. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |p10A−p11A | ≤
εiO.

Proof. As in the other proofs involving iO, we will show that the two programs involved are functionally
identical. Let us consider the differences between USampler-5 and USampler-1. The only difference between
the two programs is the ‘if PRG(x) = z∗, set out = p∗’ clause. However, since z∗ is chosen uniformly at
random, with high probability, for all inputs x, this part will never be executed. Hence, the two programs
are functionally identical. As a result, using the security of iO, we can argue that |p10A − p11A | ≤ εiO.

Claim B.14. For any PPT adversary A, p11A = p12A /2
`ckt .

Proof. This is immediate since d∗ is chosen uniformly at random in H11.

Summing up, we get that |p0A − p12A | ≤ 2`ckt(5εiO + εPRG + εF + εPPDE)

34

