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Abstract. Honey Encryption (HE), introduced by Juels and Ristenpart
(Eurocrypt 2014, [13]), is an encryption paradigm designed to produce
ciphertexts yielding plausible-looking but bogus plaintexts upon decryp-
tion with wrong keys. Thus brute-force attackers need to use additional
information to determine whether they indeed found the correct key.
At the end of their paper, Juels and Ristenpart leave as an open question
the adaptation of honey encryption to natural language messages. A
recent paper by Chatterjee et al. [5] takes a mild attempt at the challenge
and constructs a natural language honey encryption scheme relying on
simple models for passwords.
In this position paper we explain why this approach cannot be extended
to reasonable-size human-written documents e.g. e-mails. We propose an
alternative solution and evaluate its security.

1 Introduction

Cryptography assumes that keys and passwords can be kept private. Should such
secrets be revealed, any guarantee of confidentiality or authenticity would be
lost. To that end, the set of possible secrets – the keyspace K – is designed to be
very large, so that an adversary cannot possibly exhaust it during the system’s
lifetime.

In some applications however, the keyspace is purposely limited – for in-
stance, passwords. In addition to the limited keyspace size, secret selection has
a fundamental limitation: keys should be chosen uniformly at random – yet
users routinely pick (the same) poor passwords. Consequently, key guessing is a
guided process in which the adversary does not need to exhaust all possibilities.
The deadly combination of low-entropy key generation and small keyspace make
password-based encryption (PBE) particularly vulnerable [17].

The best security measure of a PBE is the min-entropy of the key distribution
over K:

µ = − log2 max
k∈K

pk(k).

where pk is the probability distribution of keys. The min-entropy captures how
probable is the most probable guess. Conventional PBE schemes such as [?] can
be broken with constant effort with probability O(2−µ), but µ is in practice
very small: [2] reports µ < 7 for passwords observed in a population of about
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69 million users. If a message m were to be protected by such passwords, an
adversary could easily recover m by trying the most probable passwords1.

But how would the adversary know that the key she is trying is the correct
one? A message has often some structure — documents, images, audio files for
instance — and an attempt at decrypting with an incorrect key would produce
something that, with high probability, does not feature or comply with this
structure. The adversary can therefore tell apart a correct key from the incorrect
ones, judging by how appropriate the decryption’s output is. Mathematically,
the adversary uses her ability to distinguish between the distribution of outputs
for her candidate key k′ and the distribution pm of inputs she is expecting to
recover.

Using such a distinguisher enables the attacker to try many keys, then select
only the best key candidates. If there are not many possible candidates, the
adversary can recover the plaintext (and possibly the key as well). In the typical
case of password vaults, when one “master password” is used to encrypt a list of
passwords, such an attack leads to a complete security collapse.

Example 1. Assume that we wish to AES-decrypt what we know is an English
word protected with a small 4 digits key: c← Enck(m). An efficient distinguisher
is whether mk′ ← Deck′(c) is made of letters belonging to the English alphabet.
For instance, if

c = 0f 89 7d 66 8b 4c 27 d7 50 fa 99 0c 5a d6 11 eb

Then the adversary can distinguish between two candidate keys 5171 and 1431:

m5171 = 48 6f 6e 65 79 00 00 00 00 00 00 00 00 00 00 00

m1431 = bd 94 11 05 a2 e5 a7 c8 48 57 87 2a 88 52 bc 7e

Indeed, m5171 spells out ‘Honey’ in ASCII while m1431 has many characters that
do not correspond to any letters. Exhausting all 4 digit keys yields only one
message completely made of letters, hence k = 5171 and the adversary succeeded
in recovering the plaintext m5171.

To thwart such attacks, Juels and Ristenpart introduced Honey Encryption
(HE) [13]. HE is an encryption paradigm designed to produce ciphertexts which,
upon decryption with wrong keys, yields plausible-looking plaintexts. Thus brute-
force attackers need to use additional information to decide whether they indeed
found the correct key.

Mathematically, the decoding procedure in HE outputs candidate plaintexts
distributed according to a distribution pd close to the distribution pm of real
messages. This renders distinguishing attacks inoperant. The advantages of HE
are discussed at length in [13] where the concept is applied to password-based
encryption of RSA secret keys, credit card PINs and CVVs. In particular, HE
does not reduce the security level of the underlying encryption scheme, but may
act as an additional protection layer.

1 Such passwords may be learnt from password leaks [12,22,23].
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However, the applications of HE highlighted in [13] are very specific: Passwords
protecting passwords (or passwords protecting keys). More precisely, low min-
entropy keys protecting high min-entropy keys. The authors are wary not to
extend HE to other settings and note that designing HE

“...for human-generated messages (password vaults, e-mail, etc.) (...) is

interesting as a natural language processing problem.” [13]

To give a taste of the challenge, realizing HE as Juels and Ristenpart defined
it is equivalent to modelling the probability distribution of human language itself.
A more modest goal is to restrict to subsets of human activity where choices are
more limited, such as passwords — this is indeed the target of a recent paper
by Chatterjee, Bonneau, Juels and Ristenpart [5], which introduces encoders
for human-generated passwords they call “natural language encoders” (NLE).
Chatterjee et al.’s approach to language is to model the distribution of messages
using either a 4-gram generative Markov model or a custom-trained probabilistic
grammar model. This works reasonably well for passwords.

A natural question is therefore: Could the same techniques be extended or
generalized to human-generated documents in general? Chatterjee et al. hint at
it several times, but never actually take a leap: The core reason is that these
approaches do not scale well and fail to model even simple sentences – let alone
entire documents.

In this paper we give arguments why the approach of Chatterjee et al. does
not extends, and give an alternative approach based on a corpus quotation
distribution transforming encoding.

2 Preliminaries

Notations. We write x D←− X to denote the sampling of x from X according to
a distribution D, and x $←− X when D is the uniform distribution.

Message recovery attacks. Let M be a message space and let K be a key
space. We denote by pm the message distribution over M, and by pk the key
distribution over K. Let Enc be any encryption scheme. The message-recovery

advantage of an adversary A against Enc is defined as

AdvMR
Enc,pm,pk

(A) = Pr
[
MRAEnc,pm,pk

= True
]

where the MR security game is described in Game 1. A may run for an unbounded
amout of time, and make an unbounded number of queries to a random oracle.

This advantage captures the ability of an adversary knowing the distributions
pm, pk to recover a message encrypted with Enc.

When key and message entropy are low, this advantage might not be negligible.
However, using Honey Encryption, Juels and Ristempart show that A’s advantage
is bounded by 2−µ, where µ = − log maxk∈K pk(k) is the min-entropy of the key
distribution.
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Game 1 Message recovery (MR) security game MRAEnc,pm,pk
.

K′ pk←− K
M ′ pm←−−M
C′ $←− Enc(K′,M ′)
M ← A(C′)
return M == M ′

Distribution Transforming Encoding. HE relies on a primitive called the
distribution transforming encoding (DTE). The DTE is really the central object
of HE, which is then used to encrypt or decrypt messages. A DTE is composed
of two algorithms, DTEncode and DTDecode which map messages into numbers
in the interval [0, 1] and back, i.e. such that

∀M ∈M, DTDecode(DTEncode(M)) = M.

More precisely, DTEncode : M→ [0, 1] is designed such that the output distri-
bution of DTEncode is uniform over [0, 1] when the input distribution overM
is specified and known — in other terms, DTDecode samples messages in M
according to a distribution pd close to pm, with

pd(M) = Pr
[
M ′ = M | x $←− [0, 1] and M ′ ← DTDecode(S)

]
As such, DTEs cannot be arbitrary: They need to mimic the behaviour of the

cumulative distribution function and its inverse. More precisely, the closeness of
pd and pm is determined by the advantage of an adversary A in distinguishing
the games of Figures 1 and 2:

AdvADTE,pm
=
∣∣Pr
[
SAMP1ADTE,pm

= 1
]
− Pr

[
SAMP0ADTE = 0

]∣∣
A is provided with either a real message and its encoding, or a fake encoding and
its decoding. A outputs 1 or 0 depending on whether it bets on the former or
the latter. A perfectly secure DTE is a scheme for which the indistinguishability
advantage is zero even for unbounded adversaries (this is equivalent to pd = pm).

Fig. 1. SAMP0B
DTE

x′ $←− [0, 1]
M ′ ← DTDecode(x′)
b

$←− B(M ′, x′)
return b

Fig. 2. SAMP1B
DTE,pm

M ′ pm←−−M
x′ $←− DTEncode(M ′)
b

$←− B(M ′, x′)
return b

Having good DTEs is the central aspect of building a Honey Encryption
scheme as well as the main technical challenge. Given a good DTE, the honey
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encryption and decryption of messages is provided by a variation of the “DTE-
then-encrypt” construction described in Figures 3 and 4 where some symmetric
encryption scheme (ESEncode,ESDecode) is used. In the “DTE-then-encrypt”
paradigm, a message is first transformed by the DTE into an integer x in some
range, and x (or rather, some binary representation of x) is then encrypted with
the key. Decryption proceeds by decrypting with the key, then reversing the
DTE.

Fig. 3. Algorithm HEncES

HEncES(K,M)
x← DTEncode(M)
C ← ESEncode(x,K)
return C

Fig. 4. Algorithm HDecES

HDecH(K,C)
x← ESDecode(K,C)
M ← DTDecode(x)
return M

2.1 Natural Language Encoding

Chaterjee et al. [5] developed an approach to generating DTEs based on two
natural language models: an n-gram Markov model, and a custom probabilistic
grammar tree.

Markov Model. The n-gram model is a local description of letters whereby
the probability of the next letter is determined by the n− 1 last letters:

Pr[w1 · · ·wk] =
k∏
i=1

Pr
[
wi | wi−(n−1) · · ·wi−1

]
It is assumed that these probabilities have been learnt from a large, consistent
corpus.

Such models are language-independent, yet produce strings that mimic the
local correlations of a training corpus — but, as Chomsky pointed out [6–8],
the output of such models lacks the long-range correlations typical of natural
language. The latter is not an issue though, as Chatterjee et al. train this model
on passwords.

The model can be understood as a directed graph where vertices are labelled
with n-grams, and edges are labelled with the cumulative probability from some
distinguished root node. To encode a string it suffices to encode the corresponding
path through this graph from the root — and decoding uses the input as random
choices in the walk. Encoding and decoding can be achieved in time linear in
message size.
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Grammar Model. Probabilistic context-free grammars (PCFG) are language-
dependent models that learn from a tagged corpus a set of grammatical rules,
and then use these rules to generate syntactically possible sentences. PCFGs are
a compact way of representing a distribution of strings in a language.

Although it is known that context-free grammars do not capture the whole
breadth of natural language, PCFGs are a good starting point, for such grammars
are easy to understand, and from a given probabilistic context-free grammar, one
can construct compact and efficient parsers [16]. The Stanford Statistical Parser,
for instance, has been used by the authors to generate parse trees in this paper.

Mathematically, a probabilistic context-free grammar G is a tuple of the
form (N,T,R, P,Root) where N are non-terminal symbols, T are terminal
symbols (disjoint from N), R are production rules, P is the set of probabilities
on production rules and Root is the start symbol. Every production rule is of
the form A→ b, where A ∈ N and b ∈ (T ∪N)∗.

Figure 5 shows a parse tree aligned with a sentence. Some grammatical rules
can be read at every branching: s → np vp, np → dt vbn nn, np → dt nn, etc.
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Fig. 5. Syntactic tree of an example sentence.

Chaterjee et al. [5] rely on a password-specific PCFGs [12,15,18,22,23] where
grammatical roles are replaced by ad hoc roles.
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Fig. 6. Two possible derivations of the same sentence. Note that these derivations
correspond to two possible meanings which are not identical.

The DTE encoding of a string is the sequence of probabilities defining a
parse tree that is uniformly selected from all parse trees generating the same
string (see e.g. Figure 6, which provides an example of two parse trees for a same
sentence, amongst more than 10 other possibilities). Decoding just emits the
string indicated by the encoded parse tree.

In the probabilistic context, the probability of each parse tree can be estimated.
A standard algorithm for doing so is due to Cocke, Younger, and Kasami (CYK)
[9, 14,24].

Generalized Grammar model. The generalized idea relies on the assumption
that if part of the syntactic tree of a message is revealed, little can be inferred
about the message. To understand the intuition, consider the syntactic tree of
the previous sentence (clause) shown in Figure 7.
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Fig. 7. Syntactic tree of an example sentence.

As we can see, words are tagged using the clause level, phrase level and word

level labels listed in Appendix A.
The idea underlying syntactic honey encryption consists in revealing a rewrit-

ten syntactic tree’s word layer while encrypting words2. The process starts by
a syntactic analysis of the message allowing to extract the plaintext’s syntactic
tree. This is followed by a projection at the word level. When applied to the
previous example, we get the projection denoted by S (hereafter called skeleton):

S = dt vbn nn vbz in dt nn in in nn in dt jj

nn in dt nn vbz vbn rb md vb vbn in dt nn

Given a clause, we can automatically associate each word si to a label Li3. For
instance, if the third word of the clause is “relies”, then L3 ← vbz. We denote
by Ri the rank of the skeleton’s i-th word in the dictionary of the category Li.
Finally we denote by |X| the cardinality of the set X.

To map our ordered wordlist into a single integer, we note that because in
the above example there are 5 dts, 3 vbns, 6 nns, 2 vbzs, 6 ins, and 1 jj, rb,
md and 1 vb, our specific clause is one amongst exactly B syntactically correct
messages where:

B = |dt|5|vbn|3|nn|6|vbz|2|in|6|jj||rb||md||vb|
2 We stress that unlike e.g. Kamouflage [1] which deals with passwords, syntactic honey
encyrption applies to natural language.

3 Note that such a skeleton might be ambiguous in certain constructions, for instance
in sentences such as “Time flies like an arrow; fruit flies like a banana”.
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Decoding

`← |L0|
for i← 0 to k − 1

Ri ← e mod `
e← (e−Ri)/`
`← `× |Li+1|
wordi ← DictionaryLi

(Ri)

Fig. 8. Decoding algorithm.

We can thus map a clause skeleton into N by writing:

e←
k−1∑
i=0

Ri

i−1∏
j=0

|Lj |

where, by typographic convention, L−1 = 1.
To get back the original clause, given e and the skeleton, we use the algorithm

of Figure 8.
The skeleton is transferred in clear:

s = dt vbn nn vbz in dt nn in in nn in dt jj nn

in dt nn vbz vbn rb md vb vbn in dt nn

Note that there is no need to tune precisely the plaintext size of the underlying
block cipher because the decoding process for e stops automatically when i reaches
k − 1. In other words, we can randomize encryption at little cost by replacing e
by e+ µB for some random integer µ.

The number e is then honey encrypted, thus attempting to protect the actual
content of the plaintext sentence.

3 Limitations of Honey Encryption

As observed by [13], HE security is threatened when A has some side information
about the target message. This puts strong constraints on HE’s applicability to
situations such as protecting RSA or HTTPS private keys. A second limitation
is that the HE construction assumes that the key and message distributions are
independent. When these distributions are correlated, A can identify a correct
message by comparing that message with the decryption key that produced it.
Similarly, encrypting two correlated messages under the same key enables A to
identify correct messages.

Finally, constructing a DTE requires knowing the distribution pm of messages
inM. As we will argue, this turns out to be extremely difficult to evaluate when
M becomes a large enough space, such as human-generated messages (emails,
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etc.). In those cases, it might even turn out that adversaries know pm better than

users.
The methods described in Section 2.1 apply reasonably well to short passwords,

but as we will now argue they cannot scale to deal with natural language
as used in real-world scenarios such as: e-mails and written documents. The
reason is threefold: First the methods require a huge amount of context-relevant
information; Second, even when this information is available, the methods of [5]
fail to produce convincing honey messages, i.e. messages that fool automated tools

in telling them apart from real messages with high probability; Third, natural
language HE may actually leak information about the underlying message.

Scaling NLE. The models developed for passwords in [5] can be extended:
Markov models for instance can be configured to generate arbitrary-length
messages. Instead of letters, such models can be trained to produce words, in
accordance with some known distribution of n-grams. But while there are only a
few English letters, a recent study of the English language [20] counts more than
a million individual words in usage.

As a result assuming we use one hundredth of the English language, the
memory required to store an n-gram database is of the order of 104n ≈ 213n.
That becomes a problem not only in terms of storage, but also when access
latency is taken into account. Applying directly the method of [5] to words (using
n = 5) would require knowing, storing, and sharing 265 bytes of data4. The real
issue however is that measuring accurately 5-grams usage is extremely difficult in
practice, so that most of this impossibly large database is essentially unknown5.

Using grammars is one way to avoid this combinatorial explosion by keeping
a simple and compact model of language. To that end, a sentence is parsed to
reveal its grammatical structure as in Figures 5 and 6. Each word is labelled
with an indication of its grammatical role (see Appendix A).

A sentence is therefore uniquely represented by a list of grammatical tags,
and a list of integers denoting which word is used. The idea behind syntactic
honey encryption consists in revealing the tags but honey encrypting the words.
By construction, generated honey messages have the same syntax as the original
message, which makes decryption with a wrong key yield an often plausible

plaintext. For instance, a sentence such as s1 = “Secure honey encryption is hard”
could be honey decrypted as Chomsky’s famous sentence s2 =“Colorless green
ideas sleep furiously” [6], illustrating a sentence that is grammatically correct
while being semantically void. Here s1 and s2 share the same syntax. To use this
algorithm the communicating parties must agree on a dictionary that includes a
set of labels and a parsing algorithm.

There are however two structural limitations to this grammatical approach.
First, revealing the syntactic structure of a message leaks information. This is a
very big deviation from classical cryptography, since it has always been taken
for granted -for obvious reasons- that a ciphertext should not leak anything
4 This is conceptually similar to Borges’ famous library [3,4].
5 See for instance http://www.ngrams.info/.

http://www.ngrams.info/
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but the length of the underlying plaintext. On a more practical note unless the
message is long enough, there might be only very few possible sentences with
that given syntax. Second, a grammar is language-dependent — and furthermore,
to some extent, there is variability within a given language6. The consequence
of an inaccurate or incorrect tagging is that upon honey decoding, the sentence
might be noticeably incorrect from the suitable linguistic standpoint.

This opens yet another research avenue. Automatically translate the sentence
into an artificially created language where syntactic honey encryption would
be very efficient. For instance translate French to Hindi, then perform honey
encryption on the Hindi sentence.

Quality of NLE. The question of whether a honey message is “correct” in a
given linguistic context can be rephrased: Is it possible, to an adversary having
access to a large corpus (written in the same language), to distinguish honey
messages from the legitimate plaintext?

It turns out that the two approaches to modelling natural language provide
two ways to construct a distinguisher: We can compare a candidate to a reference,
either statistically or syntactically. But we can actually do both simultaneously:
We can use Web search engines to assess how often a given sentence or word
is used7. This empirical measure of probability is interesting in two respects:
First, an adversary may query many candidates and prune those that score badly;
Second, the sender cannot learn enough about the distribution of all messages
using that “oracle” to perform honey encryption.

The situation is that there is a measurable distance between the model (used
by the sender) of language, and language itself (as can be measured by e.g. a
search engine). Mathematically, the sender assumes an approximate distribution
pm on messages which is different from the real-world distribution p̂m. Because of
that, a good DTE in the sense of Figures 1 and 2 would, in essence, yield honey
messages that follow pm and not p̂m. An adversary capable of distinguishing
between these distributions can effectively tell honey messages apart.

What is the discrepancy between pm and p̂m? Since p̂m measures real-world
usage, we can make the hypothesis that such messages correspond to human
concerns, i.e. that they carry some meaning — in one word, what distinguishes
pm from p̂m is semantics.

Leaking information. Another inherent limitation of HE is precisely that
decryption of uniformly random ciphertexts produces in general the most probable
messages. There are many situations in which linguistic constraints force a
certain structure on messages, e.g. the position of a verb in a German sentence.
6 An extreme example is William Shakespeare’s use of inversion as a poetic device:
“If’t be so, For Banquo’s issue have I fil’d my mind,/ For them the gracious Duncan
have I murther’d,/Put rancors in the vessel of my peace” (MacBeth, III.1.8).

7 We may assume that communication with such services is secure, i.e. confidential
and non-malleable, for the sake of argument.
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Consequently, there might be enough landmarks for a meaningful reconstruction
(see also [21]).

To thwart such reconstruction attacks, it is possible to consider phrase-level
defences. Such defences imply modifying the syntactic tree in a way which is both
reversible and indistinguishable from other sentences of the language. Phrase-
level defences heavily depend on the language used. For instance the grammar
of Latin, like that of other ancient Indo-European languages, is highly inflected;
consequently, it allows for a large degree of flexibility in choosing word order. For
example, femina togam texuit, is strictly equivalent to texuit togam femina or
togam texuit femina. In each word the desinence (also called ending or suffix): -a,
-am and -uit, and not the position in the sentence, marks the word’s grammatical
function. This specific example shows that even if the target language allows
flexibility in word order, this flexibility does not necessarily imply additional
security. Semitic languages, such as Arabic or Hebrew, would on the contrary offer
very interesting phrase-level defences. In semitic languages, words are usually
formed by associating three, four or five-consonant verbs to structures. In Hebrew
for example the structure mi��a�a corresponds to the place where action takes
place. Because the verb drš means to teach (or preach), and because the verb zrk

means to throw (or project), the words midraša8 and mizraka respectively mean
“school” and “water fountain” (the place that projects (water)). This structure
which allows, in theory, to build O(ab) terms using O(a) verbs and O(b) and
thus turns out to be HE-friendly.

4 Corpus Quotation DTE

We now describe an alternative approach which is interesting in its own right.
Instead of targeting the whole breadth of human language, we restrict users to
only quote from a known public document9.

The underlying intuition is that, since models fail to capture with enough
detail the empirical properties of language, we should think the other way around
and start from an empirical source directly. As such, the corpus quotation DTE
addresses the three main limitations of HE highlighted in Section 3: It scales, it
produces realistic sentences (because they are actual sentences), and it does not
leak structural information.

Consider a known public string M (the “corpus”). We assume thatM consists
in contiguous sequence of words sampled from M, i.e. from the set of substrings
of M. To build a DTE we consider the problem of mapping a substring m ∈M
to [0, 1].

Interval encoding of substrings. Let M be the size of M, there are |M| =
M(M − 1)/2 substrings denoted mi,j , where i is the starting position and j is
the ending position, with i ≤ j. Substrings of the form mi,i are 1-letter long.
8 The Arabic equivalent is madrasa.
9 The way some characters do in Umberto Eco’s novel, Il pendolo di Foucault [10].
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The DTE encoding of m ∈ M is a point in a sub-interval of [0, 1], whose
length is proportional to the probability pm(m) of choosing m. If pm is uniform
overM, then all intervals have the same length and are of the form

Ik =
]

2k
M(M − 1) ,

2(k + 1)
M(M − 1)

]
.

where k is the index of m ∈M for some ordering onM. Decoding determines
which Ik contains the input and returns k, from which the original substring can
be retrieved. For more general distributions pm, each substring mi,j is mapped
to an interval whose size depends on pm(m).

Length-dependent distributions. Let’s consider the special case where pm(m)
depends only on the length of m. We will therfore consider the function p :
[1,M ] −→ [0, 1] giving the probability of a substring of a given length. This
captures some properties of natural languages such as Zipf’s law [19]: Short
expressions and words are used much more often than longer ones. Note that
part of this is captured by the fact that there are fewer long substrings than
short ones.

m0,0

m0,M-1 mM-1,M-1

Fig. 9. Triangle representation T of the substrings M ⊆ M. Substrings along right
diagonals have equal length. The top-left point represents the entire corpus M.

Thus the encoding of a message mi,j is a random point in an interval of size
`(j − i) proportional to pm(mi,j) = p(j − i):

`(k) = p(k)
L

, L =
M∑
k=1

(M − k)p(k).

This ensures that
M∑
k=1

(M − k)`(k) = 1.
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The intervals associated to each substring are defined as follows. First, substrings
mi,j are mapped via the map τ : mi,j 7→ (i, j) to a triangle (see Figure 9):

T = {(i, j) | j ≥ i ∈ [0,M − 1]} ⊂ N2.

Then points in T are mapped to [0, 1] using the function:

Φ : (i, j) 7→ (i− 1)`(diag(i, j)) +
diag(i,j)−1∑

k=1

k`(k)

where diag(i, j) = M − 1− (j − i) indicates on which upright diagonal (i, j) is.
All in all, a substring mi,j is encoded using the following algorithm:

DTEncode : mi,j 7→ (Φ+ ε` ◦ diag) (τ(mi,j))

where ε is sampled uniformly at random from [0, 1].
Encoding can be understood as follows: Substrings of equal length k are

mapped by τ to points along a diagonal of constant k = j − i. The first diagonal
is the whole corpus M and the only substring of length M . The (M − 1 − k)-
th diagonal is the set of substrings {mi,i+k | i ∈ [0,M − 1− k]} of length k.
Decoding is achieved by Algorithm 1, which takes a number x ∈ [0, 1] and returns
the position (i, j) = Φ−1(x) of the corresponding substring by determining the
position in T . The idea is to count the segment length before x. At each iteration
we update the segment length and the current position in the diagonal.

Algorithm 1 Position of Φ−1(x)
Input: x ∈ [0, 1]
Output: (a, b) ∈ [|0,M |]2 such that Φ(a, b) = x
i← 0
j ← 0
k ←M
while i < x do

i← i+ `(k)
j ← j + 1
if j ≥M − k + 1 then

j ← 0
k ← k − 1

end if

return (j − 1,M + j − k − 1)
end while

This decryption algorithm is linear in the number of substrings, i.e. it runs
in time O(M2). We can speed things up using pre-computations, Algorithms 2
and 3 run in O(M) time and memory.
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Algorithm 2 Pre-computation
Output: vector V such that intervals in [V [i], V [i+ 1]] are the intervals of length `(i)
let V [1..M ] be a vector of length M
for i← 1 to M do

V [i]← V [i− 1] + (M − i+ 1)`(i)
end for

return V

Algorithm 3 Fast Decryption
Input: x ∈ [0, 1], V the result of Algorithm 2.
Output: (a, b) ∈ [|0,M |]2 such that Φ(a, b) = x
i← 1
while V [i] < x do

i+ +
end while

j ← (x− V [i])/`(i)
return (j − 1,M − i− 1)

5 Further Research

This work opens a number of interesting research directions:

Machine to Human HE: Search engines, and more generally computational
knowledge engines and answer engines such as Wolfram Alpha10 provide users
with structured answers that mimic human language. These algorithms generate
messages using well-defined algorithmic process having a precise probability
distribution which DTEs can be better modelled. Such sentences are hence likely
to be safer to honey encrypt.

Automated Plaintext Pre-Processing: A more advanced, yet not that un-
realistic option consists in having a machine understand a natural language
sentence m and re-encode m as a humanly understandable yet grammatically
and syntactically simplified sentence m′ having the same meaning for a human.
Such an ontology-preserving simplification process will not modify the message’s
meaning while allowing the construction better DTEs.

Adding Syntactic Defenses: This work was mostly concerned by protecting
messages at the word level. It is however possible to imagine the adding of defenses
at the clause and at the phrase levels. Two simple clause-level protections consist
in adding decoy clauses to the message, and shuffling the order of clauses in the
message. Both transforms can be easily encoded in the ciphertext by adding
an integer field interpreted as the rank of a permutation and a binary strong
10 www.wolframalpha.com.

www.wolframalpha.com
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whose bits indicate which clauses should be discarded. Decryption with a wrong
key will yield a wrong permutation and will remove useful skeletons from the
message. It should be noted that whilst the permutation has very little cost, the
addition of decoy skeletons impacts message length. It is important to use decoy
skeletons that are indistinguishable from plausible skeletons. To that end the
program can either pick skeletons in a huge database (e.g. the web) or generate
them artificially.

Adding Phrase-Level Defenses: Adding phrase-level defenses is also a very
interesting research direction. A simple way to implement phrase-level defenses
consists in adding outgrowths to the clause. An outgrowth is a collection of fake
elements added using a specific rewriting rule. Note that information cannot be
removed from the sentence. Here is an example of scrambling using outgrowths:
the original clause m0 is the sentence “During his youth Alex was tutored by a
skilled architect until the age of 16”. The syntactic tree of m0 is:

ROOT

S

VP

VP

PP

NP

PP

NP

CD

16

IN

of

NP

NN

age

DT

the

IN

until

PP

NP

NN

architect

JJ

skilled

DT

a

IN

by

VBN

tutored

VBD

was

NP

NNP

Alex

PP

NP

NN

youth

PRP$

his

IN

During

The skeleton of m0 is in prp$ nn nnp vbd vbn in dt jj nn in dt nn in

cd.
Now consider the following rewriting rules:
prp$ nn→ prp$ jj nn

dt nn→ dt jj nn

in dt jj nn→ in dt nn cc in dt jj nn

We can apply these rules to m0 to obtain:
m0 in prp$ nn nnp vbd vbn in dt jj nn in dt nn in cd

m1 ← r1(m0) in prp$ jj nn nnp vbd vbn in dt jj nn in dt nn in cd

m2 ← r2(m1) in prp$ jj nn nnp vbd vbn in dt jj nn in dt jj nn in cd

m3 ← r3(m2) in prp$ jj nn nnp vbd vbn in dt nn cc in dt jj nn in dt jj nn in cd

m3 is a plausible skeleton that could have corresponded to the clause: “During
his early youth Alex was tutored by a linguist and by a skilled architect until
the approximate age of 16”:
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ROOT

S

VP

VP

PP

NP

PP

NP

CD

16

IN

of

NP

NN

age

JJ

approximate

DT

the

IN

until

PP

PP

NP

NN

architect

JJ

skilled

DT

a

IN

by

CC

and

PP

NP

NN

linguist

DT

a

IN

by

VBN

tutored

VBD

was

NP

NNP

Alex

PP

NP

NN

youth

JJ

early

PRP$

his

IN

During

It remains to show how to reverse the process to recover the original skeleton
m0. To that end, we include in the ciphertext a binary string indicating which
outgrowths should be removed. Removal consists in scanning m0 and identifying
what could have been the result of rewriting. Scanning reveals one potential
application of rule 1 (namely “his early youth”), two potential applications of rule
2 (“a skilled architect” and “the approximate age”) and one potential application
of rule 2 (“by a linguist and by a skilled architect”). Hence 4 bits suffice to
identify and remove the outgrowths.
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A Grammatical tags for English

Table 1. Partial list of grammatical roles.

Clause Level

s Simple declarative clause
sbar Clause introduced by a (possibly empty) subordinating conjunction.

Phrase Level

advp Adverb phrase
np Noun phrase
pp Prepositional phrase
vp Verb phrase

Word Level

cc Conjunction, coordinating
dt Determiner
in Preposition or subordinating conjunction
jj Adjective
md Modal
nn Noun, singular or mass
prp Pronoun, personal
prp$ Pronoun, possessive
rb Adverb
vb Verb, base form

vbn Verb, past participle
vbz Verb, third person singular present
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