
Analyzing the Shuffling Side-Channel
Countermeasure for Lattice-Based Signatures

Peter Pessl

IAIK, Graz University of Technology, Graz, Austria
peter.pessl@iaik.tugraz.at

Abstract. Implementation security for lattice-based cryptography is
still a vastly unexplored field. At CHES 2016, the very first side-channel
attack on a lattice-based signature scheme was presented. Later, shuffling
was proposed as an inexpensive means to protect the Gaussian sampling
component against such attacks. However, the concrete effectiveness of
this countermeasure has never been evaluated.

We change that by presenting an in-depth analysis of the shuffling coun-
termeasure. Our analysis consists of two main parts. First, we perform
a side-channel attack on a Gaussian sampler implementation. We com-
bine templates with a recovery of data-dependent branches, which are
inherent to samplers. We show that an adversary can realistically recover
some samples with very high confidence.

Second, we present a new attack against the shuffling countermeasure in
context of Gaussian sampling and lattice-based signatures. We do not
attack the shuffling algorithm as such, but exploit differing distributions
of certain variables. We give a broad analysis of our attack by considering
multiple modeled SCA adversaries.

We show that a simple version of shuffling is not an effective countermea-
sure. With our attack, a profiled SCA adversary can recover the key by
observing only 7 000 signatures. A second version of this countermeasure,
which uses Gaussian convolution in conjunction with shuffling twice, can
increase side-channel security and the number of required signatures sig-
nificantly. Here, roughly 285 000 observations are needed for a successful
attack. Yet, this number is still practical.

Keywords: Lattice-Based Cryptography, BLISS, Side-Channel Analy-
sis, Countermeasures

1 Introduction

Quantum computers are a serious threat to a majority of currently in-use public-
key cryptosystems. Although powerful enough quantum computers might not
be available in the near future, their possible advent causes concerns and has
already led to official recommendations from government bodies, such as the
NSA [16,22]. Furthermore, standardization agencies are starting to investigate
post-quantum alternatives [6]. Very recently, also Google began experimenting
with post-quantum key-exchange algorithms in their Chrome browser [1,3].

2 Peter Pessl

Lattice-based cryptography is a very promising candidate for the post-quantum
world. It proved to be very versatile and offers practical realizations of many
public-key building blocks. When it comes to digital signatures, the Bimodal
Lattice Signature Scheme (BLISS), which was presented by Ducas, Durmus, Le-
point, and Lyubashevsky [7] at CRYPTO 2013, is an attractive option. This is
due to its efficiency both in terms of runtime and parameter sizes. Signature and
public key sizes are in the range of current RSA moduli, which is a significant
improvement over many earlier proposals.

There already exists a large body of work targeting efficient implementation
of lattice-based primitives. Even when only considering BLISS, these range from
hardware implementations [18] to microcontrollers [17,19] and PCs [23]. How-
ever, up until very recently the implementation-security aspect was pretty much
neglected. The first side-channel attack on a lattice-based signature scheme,
namely BLISS, was presented at CHES 2016 by Groot Bruinderink et al. [10].
They use a cache attack to recover some of the outputs of a Gaussian sampling
algorithm. By combining information from multiple signatures and respective
identified samples, they are able to recover the key. Note that Gaussian samplers
play an integral part in most lattice-based schemes and their implementations.
Hence, this type of attack might be applicable to a multitude of settings.

Shuffling was proposed by Saarinen [21] as a countermeasure against such an
attack. Instead of securing the sampler itself, which would come at a hefty price,
one could simply generate n Gaussian samples using an unprotected implemen-
tation and then randomly permute them. Shuffling is easy to implement and has
a relatively low runtime overhead. This makes it especially attractive for use in
low-resource devices, such as microcontrollers. However, the concrete security
gains achieved by shuffling have thus far never been analyzed. As a consequence,
convincing security arguments are still sorely lacking.

Our Contribution. In this paper, we tackle the above problem and present an
in-depth analysis of shuffling in context of lattice-based signatures. Our analysis
consists of two main parts, a side-channel analysis and a new attack on shuffling.

In the first part, we perform a side-channel attack on a Gaussian sampler
implementation running on an ARM microcontroller. Our attack combines two
methods. First, we recover the control flow of the sampling procedure. As sam-
plers, including the one used by us, require data-dependent branches and are
not inherently constant runtime, this already allows to narrow down the pos-
sible samples. And second, we use templates to uniquely identify the sampled
value. While this attack is not able to identify all samples, it can recover certain
values with very high confidence.

In the second part of our shuffling analysis, we present a new attack on the
countermeasure. We perform an un-shuffling, i.e., reassign some recovered sam-
ples to the corresponding part of the signature output. After having collected
enough matching pairs over multiple signatures, we can recover the private sign-
ing key. We stress that we do not attack the shuffling algorithm as such, we do
not even consider its leakage in our analysis. Instead, we exploit the difference

Analyzing the Shuffling Countermeasure for Lattice Signatures 3

in distributions of Gaussian samples (high standard deviation) and a specific
key-dependent intermediate (low standard deviation).

As we aim for a broad analysis, we evaluate this attack given several modeled
side-channel adversaries. They are largely based on the previous side-channel
analysis, but to test the theoretical boundaries of the countermeasure we also
include an ideal attacker who is able to recover all samples. We also consider two
different versions of the shuffling countermeasure. Our analysis shows that the
simpler variant does not provide a noteworthy increase in side-channel security.
Our ideal attacker succeeds using only 40 signatures. With 7 000 signatures,
the modeled adversary which is closest to our side-channel analysis can also
easily recover the key. However, the second shuffling version, which uses Gaussian
convolution and shuffles twice, can increase the number of observed signatures
required for an attack significantly. Yet, with around 260 000 signatures (for both
mentioned adversaries) an attack is still practical and possible1.

Finally, note that while we focus on BLISS, Gaussian sampling is required
for most lattice-based schemes. Thus, the shuffling countermeasure and also our
attack could be used for a wide range of implementations.

Outline. In Section 2, we recall BLISS, discrete Gaussians and proposed sam-
plers. Then, in Section 3 we discuss previous work on SCA and countermeasures
on BLISS. We evaluate the side-channel leakage of a concrete Gaussian sampler
implementation in Section 4. Using the results of this side-channel analysis, we
present an attack on the shuffling countermeasure and also discuss its outcome
in Section 5. Finally, we conclude in Section 6.

2 BLISS and Gaussian Samplers

We now give a brief description of BLISS [7]. We then go on and describe the
discrete Gaussian distribution and methods to sample from it.

2.1 BLISS - Bimodal Lattice Signatures

The most efficient instantiation of BLISS works with polynomials over the ring
Rq = Zq[x]/〈xn + 1〉. We will later use the fact that the multiplication of two
polynomials a,b ∈ Rq can be written as a matrix-vector product, i.e., ab =
aB = bA, where the columns of matrices A,B are negacyclic rotations of a and
b, respectively.

Key generation and signature verification do not play a role in our later
analysis, here we refer to [7]. Signature generation is described in Algorithm 1. It
takes as input a message µ, a public key A, and a private key S = (s1, s2), with s1
a polynomial with exactly δ1n coefficients in {±1}, δ2n coefficients in {±2}, and
all other elements being 0. First, two noise polynomials y1,y2 are sampled from
a discrete Gaussian distribution Dσ. The intermediate u is hashed together with
the message, where H outputs a bit vector c of length n and (small) hamming

1 These numbers assume recoverability of bit b for each signature (cf. Section 5.3).

4 Peter Pessl

Algorithm 1. BLISS Signature Algorithm

Input: Message µ, public key A = (a1, q − 2), private key S = (s1, s2)
Output: A signature (z1, z

†
2, c)

1: y1 ← Dn
σ , y2 ← Dn

σ

2: u = ζ · a1y1 + y2 mod 2q
3: c = H(bued mod p||µ)
4: Sample a uniformly random bit b
5: z1 = y1 + (−1)bs1c
6: z2 = y2 + (−1)bs2c
7: Continue with some probability f(Sc, z), restart otherwise (see [7])
8: z†2 = (bued − bu− z2ed)
9: return (z1, z

†
2, c)

n q σ δ1, δ2 κ d

512 12289 215.73 0.3, 0 23 10

Table 1. BLISS-I parameter set

weight κ. The noise polynomials are then added to s1c and s2c, respectively.
A subsequent rejection-sampling step prevents leakage of the key. Finally, the
compressed signature is returned2. Throughout this paper, we use the BLISS-I
parameter set [7] given in Table 1. It provides a security level of 128 bit.

2.2 Discrete Gaussians

We denote with Dσ the discrete Gaussian distribution with standard deviation
σ and zero mean; we use y ← Dσ for variables sampled from this distribution.

The probability-mass function Dσ(x) = ρσ(x)/ρσ(Z), with ρσ(x) = exp(−x
2

2σ2)
and the normalization constant ρσ(Z) =

∑∞
k=−∞ ρσ(k). With Dn

σ , we denote
the n-dimensional extension. Samples from Dn

σ can simply be generated by in-
dependently sampling n times from Dσ.

Implementation of Gaussian samplers. The emergence of lattice-based cryp-
tography and its reliance on discrete Gaussian noise led to a large number of
proposed sampler architectures. Apart from generic methods like rejection sam-
pling and inversion sampling, these also include, e.g., the Knuth-Yao random
walk [8], the Ziggurat method [4], and arithmetic coding [21].

Compared to lattice-based public-key encryption [14], the standard devia-
tion required for BLISS is relatively high. This makes samplers requiring large
precomputed tables less attractive, especially for constrained devices and their
usually low storage capacities. For this reason, Pöppelmann et al. [18] proposed
an optimized sampler which is based on the inversion method. Since their ap-
proach is tailored for low-resource devices and also an ideal candidate for use

2 The constants ζ, d, p are used for compression purposes. For details, see [7].

Analyzing the Shuffling Countermeasure for Lattice Signatures 5

with the shuffling countermeasure, we use their algorithm in our work and now
give a more detailed description.

For inversion sampling, one first precomputes a cumulative distribution ta-
ble (CDT), i.e., a table T [y] = P(x < y|x← D+

σ) for y ∈ [0, τσ]. Here, τ denotes
the tail-cut factor which is required due to the infinite support of Dσ. Thanks to
symmetry of Dσ, sampling can be easily reduced to sampling from the one-sided
distribution D+

σ with support [0, τσ] and then sampling a random sign bit. As
the statistical distance to a true discrete Gaussian must be kept low, the entries
of T need to be stored with a very high precision, e.g., 128 bit.

For actual sampling, one generates a uniformly random r ∈ [0, 1) and returns
the y satisfying T [y] ≤ r < T [y + 1] (using a binary search in T). To reduce
the table size and speed up sampling, Pöppelmann et al. propose the following
optimizations. They save memory by using Gaussian convolution. They set k =
11, σ′ = σ/

√
1 + k2 ≈ 19.53 and sample two values y′, y′′ ← Dσ′ . They then

combine them to y ← Dσ by setting y = ky′ + y′′. Furthermore, they speed
up sampling by using a byte-oriented guide table I. Each entry I[r0] stores
the smallest interval (minr0 ,maxr0) with T [minr0] ≤ r0/256 and T [maxr0] ≥
(r0 + 1)/256. By using this table, the range for the following binary search can
be immediately reduced to the interval [minr0 ,maxr0).

The detailed sampling procedure is given in Algorithm 2. It uses a byte-
wise approach, where Tj [i] denotes the j-th byte of T [i]. To save memory, the
table T is stored in floating-point representation, using a mantissa table M and
an exponent table E. For efficiency reasons Pöppelmann et al. actually store
T [y] = P(x ≥ y|x ← D+

σ), i.e., T [0] = 1 and T [y] > T [y + 1]. This is accounted
for in the binary-search part. For further explanations we refer to [18].

Algorithm 2. CDT Sampler using Guide Tables [18]

Input: Guide table I, mantissa table M , exponent table E
Output: A value y′ sampled according to Dσ′

1: Sample a uniformly random byte r0
2: [min,max] = I[r0]
3: i = (min + max)/2, j = 0, k = 0
4: while max-min > 1 do
5: t = Tj [i], with Tj [i] = Mj−E[i][i] or 0
6: if t > rj then
7: min = i, i = (i+ max)/2, j = 0
8: else if t < rj then
9: max = i, i = (min + i)/2, j = 0

10: else
11: j = j + 1
12: if k < j then
13: Sample uniformly random byte rj , k = j

14: Sample a uniformly random bit s
15: if s then return −i
16: else return i

6 Peter Pessl

3 Side-Channel Attacks and Countermeasures for
Gaussian Sampling

When analyzing the components of BLISS for side-channel weaknesses, the Gaus-
sian sampler appears to be a critical and especially hard to protect part. To
the best of our knowledge, none of the samplers given in the previous section
inherently feature a constant runtime or a complete absence of data-dependent
branches. Thus, it should not come as a huge surprise that the first reported side-
channel attack on lattice-based signatures, which we will now discuss, targets
samplers. We will then also state possible countermeasures, including shuffling.

3.1 A Cache Attack on BLISS

At CHES 2016, Groot Bruinderink et al. [10] presented the first side-channel
attack on BLISS. They perform a cache attack, i.e., observe time differences
caused by the CPU cache, to partially recover the Gaussian noise vector y1.
They analyze the susceptibility of two sampler implementations to such attacks
in depth3.

Their attack proceeds as follows. First, they need to observe the creation of
multiple signatures (zj , cj), where zj refers to only the first signature polynomial
z1 of the j-th signature. They then focus on line 5 of Algorithm 1, i.e., z1 =
y1 + (−1)bs1c. For each recovered Gaussian sample, an attacker can create an
equation of form:

zji = yji + (−1)bj 〈s1, cji〉 (1)

Here, i denotes the index of the recovered Gaussian sample in the signature. zji
and yji are the i-th coefficients of z1 and y1 in the j-th signature. cji denotes the
i-th column of Cj , which is the matrix used in the matrix-vector representation
of polynomial multiplication.

The cache attack does not reveal the random but secret bit b. Therefore,
Groot Bruinderink et al. keep only those equations which satisfy zji = yji, i.e.,
where 〈s1, cji〉 = 0 and thus the value of b is irrelevant. They then build a matrix
L where the columns are the filtered cji. This matrix satisfies s1L = 0. The key
s1 can then be found in the kernel-space of L. s2 can be reconstructed by using
the relation between public and private key.

Groot Bruinderink et al. also consider a scenario where the information on the
samples is not exact, but instead a small error is possible. Here, they formulate
a lattice problem and use lattice-reduction techniques for key recovery.

3.2 Countermeasures

Protecting samplers from attacks like the one above seems to be difficult. While
there exist methods for constant-runtime and protected sampling, they come
at a hefty performance impact (see, e.g., [2]). Also, there do exist alternatives

3 Further sampler architectures are discussed in the full version of [10].

Analyzing the Shuffling Countermeasure for Lattice Signatures 7

to using (high-precision) Gaussian noise. However, they either do not apply to
signature schemes [1] or they are suboptimal in terms of security or signature
size [11,7].

Instead of protecting the sampler itself, one could also simply use an unpro-
tected (or somewhat protected) sampler implementation to generate n samples
and then randomly permute them. This breaks the connection between time of
sampling and index in the signature and thus makes attacks more difficult. This
shuffling countermeasure was first proposed by Roy et al. [20], albeit in the con-
text of lattice-based public-key encryption. Recently, Saarinen [21] proposed a
variant that uses shuffling multiple times (in conjunction with Gaussian convolu-
tion) for use in BLISS. For m stages, he sets σ′ = σ/

√
m, then samples yi ← Dn

σ′

for i = 1..m and computes y =
∑
i Shuffle(yi). However, neither Roy nor Saari-

nen provided an analysis of this countermeasure. Thus, its true effectiveness has
still been unknown.

In this work, we will investigate two versions of shuffling in terms of security.
First, we have a look at simple shuffling in combination with the sampler of
Pöppelmann et al. [18]. And second, we will analyze an instantiation of multi-
stage shuffling that was concretely proposed by Saarinen [21]. He suggests to
combine two stages of shuffling with the Gaussian-convolution parameters of
Pöppelmann et al.. Below we give a description of both versions.

Single-Stage Shuffling: y′,y′′ ← Dn
σ′ , y = Shuffle(ky′ + y′′)

Two-Stage Shuffling: y′,y′′ ← Dn
σ′ , y = k · Shuffle(y′) + Shuffle(y”)

4 A Side-Channel Attack on a Gaussian Sampler

Before evaluating the shuffling countermeasure, it is important to understand
how much information on Gaussian samples a side-channel attacker can realisti-
cally expect. For this reason, we now present a side-channel analysis of a sampler
implementation. Recall that Gaussian sampling is a random process that does
not involve any keying material. Also, its output is typically used only once.
Hence, we are limited to single-trace SPA-style attacks.

4.1 Implementation and Measurement Setup

For our experiments, we implemented the Gaussian sampling procedure proposed
by Pöppelmann et al. [18] in software. The contents of all required lookup-tables
are directly taken from their open-sourced BLISS FPGA implementation. Note
that our analysis focuses solely on sampling from Dσ′ (Algorithm 2), i.e., we do
not use any leakage stemming from the Gaussian convolution step.

As a target platform, we chose a Texas Instruments MSP432 (ARM Cortex-
M4F) microcontroller on a MSP432P401R LaunchPad development board4. For

4 The design files of this development board are available online [24].

8 Peter Pessl

Fig. 1. Measurement setup. The EM probe is placed directly to the left of the external
core-voltage regulation circuitry.

pseudo-random number generation we used the on-chip hardware AES accel-
erator in counter mode. While this setup is likely susceptible to DPA attacks
[12,15], we do not use any leakage of the AES execution.

In our attack we exploit the EM side channel. As shown in Figure 1, we
placed a Langer RF-B 3-2 near-field probe in proximity to the external core-
voltage regulation circuitry. Note that for this setup, no spatial profiling of on-
chip EM leakage is required. Also, we expect the results of power measurements
to be somewhat similar. For our evaluation, we use a dedicated trigger that
signals the start of a sampling procedure. Real-world attackers do not have this
option and need to detect the 1024 calls to Algorithm 2 required for sampling y1.
Such adversaries can use, e.g., trace alignment in combination with the methods
described in the next section.

4.2 Reconstructing the Control Flow

When analyzing Algorithm 2, it becomes obvious that the data-dependent branches
offer a lot of information on the sampled value. In fact, the return value can be
uniquely determined by the first random byte r0 and the control flow.

We recover the control flow using a trace-matching approach. For each pos-
sible conditional jump, we record a reference trace by computing the mean of
multiple profiling traces at select points in time (in some cases just a single
point) near the first occurrence of this branch. During the attack, we then com-
pare these references to the attack trace by computing the mean of squared
differences. Figure 2 illustrates that for some branches, the most information
lies within a time shift of subsequent operations. In these cases, we use a sin-
gle reference and match them at both locations. We then use the case with the
lowest score. We repeat this matching process until the algorithm exits. The
position of the respective next matching process is determined on basis of the
previously taken branches. The final branch detection then also reveals the sign
of the sampled value.

With the described method, we can reconstruct the control flow with perfect
accuracy. This should not be surprising, when, e.g., observing the huge trace
differences illustrated in Figure 2.

Analyzing the Shuffling Countermeasure for Lattice Signatures 9

350 400 450 500
Clock cycle

0

20

40

60 T1[i] > r1

T1[i] < r1

Fig. 2. Demonstration of a timing difference stemming from a branch inside the first
loop iteration. After around cycle 420, the trace for T1[i] > r1 (blue, solid) trails by 8
clock cycles.

Note that, while we use device profiling for deriving the reference traces,
there exist non-profiled alternatives. An attacker could, e.g., build the references
on the fly after a visual inspection of a limited number of traces. Alternatively,
he could use a clustering approach for determining the branches.

4.3 Determining the Sampled Values via Templates

In order to uniquely determine the sampled value, we recover the value of r0 using
a template attack [5]. For each possible control flow (up to a certain depth), we
built templates for each value of r0 that can potentially result in this flow. The
points-of-interest for the attack were determined using a t-test, as proposed by
Gierlichs et al. [9]. We limited the maximum number of used points to 8.

The outcome of the template attack is depicted in Figure 3. There we show
a histogram of the maximum classification probabilities. In our implementation,
the guide-table lookup already yields the final sample for 206 values of r0. As
seen in Figure 3a, we cannot determine the correct samples with high confidence
in these cases. As our later analysis on the shuffling countermeasure requires
such a high confidence, we have to discard these samples. This situation changes
in cases that require a single comparison step in the binary-search algorithm,
Figure 3b shows that 6.5 % of these samples can be determined with probability
close to 1.

If more than a single comparison is required, then the template attack can re-
cover the sampled value almost perfectly. The overall success rate here is 99.5 %.
If we discard the 1 % of samples whose probability is lower than 0.90, then the
success rate reaches 99.9 %.

5 An Analysis of the Shuffling Countermeasure

In this section, we give an in-depth analysis of the shuffling countermeasure.
First, we give a brief discussion on its cost. Afterwards, we present an attack
that can circumvent this countermeasure, albeit at the cost of requiring a higher
number of recorded signatures. We state the performance of this attack with

10 Peter Pessl

0 0.2 0.4 0.6 0.8 1
Maximum classi-cation probability

0

0.1

0.2

0.3

O
cc

u
re

n
ce

ra
te

(a) No comparisons

0 0.2 0.4 0.6 0.8 1
Maximum classi-cation probability

0

0.02

0.04

0.06

0.08

O
cc

u
re

n
ce

ra
te

(b) 1 comparison

Fig. 3. Results of the template attacks for no or 1 comparison

regards to several modeled side-channel adversaries and variations of the coun-
termeasure.

5.1 Cost

We evaluated the cost of shuffling by implementing the Fisher-Yates shuffling
algorithm [13]. When run at 48 MHz, which is the maximum for our MSP432
evaluation platform, shuffling a vector of n = 512 entries took 1.5 ms. For com-
parison, sampling an element from Dn

σ′ , which requires 512 calls to Algorithm 2,
needs about 2.5 ms. For creating a single signature, 4 elements of Dn

σ′ need to
be sampled. The shuffling operation is called either 2 or 4 times, depending on
whether single-stage or two-stage shuffling is used. In the latter case, the total
runtime of sampling is increased by 57 %, which is still relatively little when it
comes to SCA countermeasures.

5.2 Considered Attackers

In order to allow a broad analysis of the shuffling countermeasure and to achieve
easier reproducibility, we do not directly use the outcome of the attack described
in Section 4. Instead, we use the results as a basis to model three side-channel
adversaries. Each one is based on a different assumption on his capabilities. Note
that all following descriptions are in context of sampling from the ”small” Dσ′

and thus Algorithm 2, which is called 2048 times during signature generation.
We do not use any leakage from the multiplication with k, the addition for
Gaussian convolution, and even the shuffling algorithm itself. We do so to keep
the analysis as generic and implementation-independent as possible.

A1 - perfect SCA adversary. This attacker is able to recover all generated
samples. We use this adversary to evaluate the theoretical limits of the shuf-
fling countermeasure.

A2 - profiled SCA adversary. This attacker is able to profile the device and
perform a template attack. We assume that the attacker can correctly deter-
mine the entire control flow and is able to correctly classify all samples which

Analyzing the Shuffling Countermeasure for Lattice Signatures 11

required at least 2 comparisons in the binary-search step. For the analysis,
we make a further simplification and only use samples with absolute above
a certain threshold. This threshold is set so that all samples larger than it
require at least 2 comparisons. All samples at and below the threshold are
considered to be unknown.

A3 - non-profiled SCA adversary. This attacker is not able to profile and
thus cannot perform a template attack. However, he is still able to recon-
struct the control flow. All samples which are not uniquely determined by
the control flow are considered to be unknown.

Adversary A2 is closest to the side-channel analysis given in the previous
section. However, in this model we do not use any potentially classified samples
which used only a single comparison (cf. Figure 3b) or the small portion of
samples requiring 2 comparisons but being below the threshold. In return, we
also ignore the very small error probability and assume that all reconstructed
samples are correct.

For our particular BLISS parameter set and sampler implementation, we have
the following concrete implications. For A2, the above mentioned threshold is
47, i.e., we say that the adversary can correctly classify all samples with absolute
value larger than 47. Approximately 1.5 % of the samples from Dσ′ meet this
restriction. The adversary A3 can correctly classify all samples with absolute
value larger than 54, which amounts to only 0.53 % of all samples.

For each modeled adversary, we also evaluate two sub-scenarios with regards
to the secret bit b used for computing (−1)bs1c. First, we consider the case that
the adversary can recover this bit with side-channel measurements using, e.g.,
methods akin to Section 4.2. And second, we also evaluate the case that this bit
is unknown.

5.3 Attack without Shuffling

For key recovery, we use the relation also exploited by Groot Bruinderink et al.
(cf. Section 3.1). We gather equations of the form zji = yji + (−1)bj 〈s1, cji〉 and
then solve the resulting linear system. We do not consider error correction and
require that these equations are correct.

If the entire y1 is known, which is the case for adversary A1, and no shuffling
is used, then key recovery is trivial and requires only a single signature. s1 (or
−s1) can be computed by solving the linear system given as z1−y1 = (−1)bs1c
for any value of b. Attackers A2 and A3 require multiple signatures in order to
recover the key, even in the non-shuffled scenario. As our sampling procedure
combines two samples y′, y′′ ← Dσ′ to y = ky′+y′′, we can only recover samples
y where the side-channel information reveals both y′ and y′′. Hence, A2 can
recover a portion of 0.0152 ≈ 2.2 · 10−4 of all samples, whereas for A3 this
quantity decreases to 2.2 · 10−5.

If the bj are recoverable by using side-channel information, then we can com-
bine n equations zji = yji + (−1)bj 〈s1, cji〉 into a linear system which can then
simply be solved for the key s1. The expected number of signatures required to

12 Peter Pessl

-15 -10 -5 0 5 10 15
s1c

0

0.05

0.1

0.15

0.2

X
sc

-1000 -500 0 500 1000
y

0

1

2

D
<
(y

)

#10-3

Fig. 4. Comparison of the coefficient-wise distribution of s1c (Xsc) and y (Dn
σ)

gather n = 512 classified samples and corresponding signature values is roughly
4 400 for A2 and 36 000 for A3. Note that in this non-shuffled scenario, the dif-
ferences between A2 and the SCA from Section 4, i.e., not using all classifiable
samples, have a significant impact. With that data we would require only around
1 000 signatures to mount this attack.

If the bj are unknown, then, like also done in [10], we only use those equations
where zji = yji and thus 〈s1, cji〉 = 0. Then, one can search for the key s in
the kernel of the matrix composed by the cji. As seen in Figure 4a, 〈s1, cji〉 = 0
holds for about 15 % of all samples, thus the number of required traces needs
to be multiplied by 6.6. Hence, 29 000 and 239 000 signatures are required for
A2 and A3, respectively. In the remainder of this paper, we give the signature
requirements for both cases of b. We state the requirements with a known b first,
followed by the unknown case in parentheses.

5.4 An Attack on Shuffling - Basic Concept

If the elements of y1 are shuffled after sampling, then the above attack is not
directly applicable. To still use it, we first need to do an un-shuffling, i.e., we
need to re-assign recovered Gaussian samples to their respective index in the
signature and thus to the correct zi ∈ z1.

We do that by exploiting the differing (coefficient-wise) distributions of s1c
and y1, they are shown in Figure 4. The distribution of s1c, which we denote
with Xsc, was estimated using a histogram approach, whereas y1 follows Dn

σ .
Observe that the standard deviation of y1 is much larger than that of s1c. Thus,
we can say that z1 ≈ y1.

We use this relation as basis of our attack. If we know one particular coeffi-
cient y of y1 but not its position due to shuffling, then we can test all coefficients
of the public z1 for proximity to y. If only a single zi ∈ z1 is ”close” to y, then
we can assign y to the position of zi and compute zi − y to retrieve the value
of (−1)b〈s1, ci〉. As actual metric for closeness, we use Xsc(zi− y). Observe that
this approach is expected to succeed mostly for large absolute values of y and
thus zi, i.e., in the tail of Dσ. Due to the high dimension n = 512, there will be
many similar values of y and zi near the center, thus a unique assignment will
not be possible in those cases.

Analyzing the Shuffling Countermeasure for Lattice Signatures 13

5.5 Attack Details

The previous description of our attack is relatively informal, we now give a more
in-depth explanation. For now, consider the case of single-stage shuffling, we
adapt the approaches to the two-stage variant later on.

Given two values zi and y, we define zi ∼ y as the event that zi and y belong
to the same index i in the signature. Without considering knowledge of other
processed values, we have a likelihood P(zi ∼ y) = Xsc(zi − y).

When now given the public z1 and a single sample y of y1, we can compute,
for each zi ∈ z1, P(zi ∼ y|z1). We do that by using Bayes’ theorem with uniform
prior, i.e., P(zi ∼ y|z1) = P(zi − y)/

∑
zj∈z1

P(zj − y). Analogously, for a single

zi and a fully reconstructed but shuffled y1, we can compute P(zi ∼ yj |y1).

We perform this analysis on every possible combination of y and zi. Thus,
we compute a likelihood matrix L ∈ (n × n), with Li,j = Xsc(zi − yj). After-
wards, we apply the Bayesian step to both the columns and the rows of this
matrix in order to derive the aforementioned conditional probabilities. Then,
we combine both normalized matrices by taking their maximum, i.e., we set
P(zi ∼ yj) = max(P(zi ∼ yj |z1),P(zi ∼ yj |y1)). In other words, we both search
for zi that fit to only one y, and y that fit to only one zi. Finally, for each
zi ∈ z1, we pick the most likely y as argmaxyj P(zi ∼ yj). This shuffling analysis
is repeated for each recorded signature.

The previously discussed key-recovery algorithm requires errorless informa-
tion. Thus, we keep only pairs of (zi, y) that match with very high probability; we
set the threshold to 0.99. Even so, matching errors cannot be entirely excluded.
However, a small number of errors can be corrected by gathering slightly more
than n = 512 equations, and then performing the key-recovery procedure multi-
ple times, each time using a random subset of the collected equations. Alterna-
tively, one could use the lattice-based techniques discussed by Groot Bruinderink
et al. [10].

Merging equal y. For key-recovery we compute zi − y for each recovered pair
(zi, y). Here, the actual index of y is irrelevant, only the value of y needs to
be correct. Consequently, if y1 contains multiple copies of the same value, then
they can be treated as a single entity.

We use this observation as follows. We create a vector u which contains
the unique elements of y1. We then compute P(zi ∼ uj |u). For that, we use
the number of times each uj appears in u as prior probabilities (instead of the
uniform distribution). For y ← Dσ, the average number of unique elements in
y is 377. For y′ ← Dσ′ only 92 elements are unique on average. Especially in
the latter case, the merging of equal y′ increases the rate of matches and also
decreases the computation time of the subsequent analysis. From now on, we
will always use this optimization implicitly.

Note that merging equal values of z1 is not useful. As already hinted by
always using subscripts, each zi is coupled to one specific ci, i.e., a negacyclic
rotation of the signature part c.

14 Peter Pessl

Results on single-stage shuffling. We evaluated our described attack against
(single-stage) shuffling by running it with 220 signatures. The results for A1 are
shown in Figure 5. 2.5 % of all samples match with a probability of at least
0.99. With this number, only 40 (264) signatures are required to gather n =
512 equations. As expected, the successfully matched y lie in the tail of D′σ
(Figure 5b).

For A2 and A3, we do not know the entire y1 and so did not compute
P(zi ∼ yj |y1). When only using P(zi ∼ y|z1), we can match a proportion of
1.4·10−4 (A2) and 2.2·10−5 (A3) of all samples. This translates to requiring 7 000
(46 000) and 46 000 (301 000) signatures, respectively. The number of expected
errors in n = 512 equations is well below 1 for all considered adversaries.

When compared to the signature requirements without shuffling, one can
observe only a marginal increase. All numbers are well low enough to be practical,
thus shuffling once is not an effective countermeasure.

0 0.2 0.4 0.6 0.8 1
Maximum matching probability

0

0.02

0.04

0.06

0.08

O
cc

u
re

n
ce

ra
te

(a) Histogram of maximum matching
probabilities.

-1500 -1000 -500 0 500 1000 1500
Sample y

0

0.05

0.1
M

at
ch

in
g

o
cc

u
re

n
ce

ra
te

(b) Histogram of the value of success-
fully matched y

Fig. 5. Result for the attack on single-stage shuffling, attacker A1

5.6 Adaptation to Two-Stage Shuffling

For two-stage shuffling, the y′,y′′ are independently permuted. Thus, we cannot
compute any elements of y1 in straight-forward manner which makes the attack
from above not directly applicable. A similar one, however, is still possible; we
now state the required modifications. As the sampling (and shuffling) process
proceeds in two steps, we also adapt a two-stage approach in the attack.

Assume we are given z1 and the shuffled y′,y′′, with y1 = ky′+y′′ and hence
z1 = ky′ + y′′ + (−1)bs1c. We first aim at finding matching pairs for elements
of z1 and y′. Afterwards, for each pair (zi, y

′), we compute zi − ky′ and then
match this difference with the elements of the second vector y′′. We now explain
the details of this process.

First stage. The first part differs from the previous attack mainly as in we
now test the proximity of elements of z1 to those of ky′. As z1 − ky′ = y′′ +
(−1)bs1c, we cannot test proximity with regards to Xsc. Instead, we could use

Analyzing the Shuffling Countermeasure for Lattice Signatures 15

the distribution of an x = x1 + x2, with x1 ← Dσ′ and x2 ← Xsc. We denote it
as Xsc+Dσ′ . However, as the attacker has (at least partial) knowledge on y′′, this
would be suboptimal. Hence, we set (with some abuse of notation) x2 ← y′′, i.e.,
randomly chosen elements from y′′. We call the resulting distribution Xsc+y′′ and
use it to fill our likelihood matrix L with Li,j = Xsc+y′′(zi−ky′j). The remainder
of the analysis, i.e., the Bayesian steps and picking the maximum, are then the
same. Finally, all samples matched with probability greater than 0.99 are fed to
the second stage of the recovery.

For A2 and A3, we require additional modifications. First, we cannot compute
Xsc+y′′ , as y′′ is only partially known. Instead, we construct a hybrid distribution
that merges Dσ′ (for all unknown samples up to the threshold of 47 and 54,
respectively) and the known samples of y′′. Then, unlike in the single-stage
attack, we would also like to compute (or rather estimate) P(zi ∼ y′j |y′) despite
not having the full y′. We do so by introducing a dummy sample y′d, which
represents all (unknown) samples below the model threshold. Thus, we test if
zi matches with any of the known y′j or with any element below the threshold.
We set the likelihood of y′d as in (2), the remaining steps are then equivalent to
those of A1.

P(zi ∼ y′d) =

threshold∑
y=−threshold

Xsc+Dσ′ (zi − y) (2)

Second stage. In the second stage, we test each pair (zi, y
′
i) found in the pre-

vious stage with the elements of y′′. We do so by computing zi − ky′i and then
testing for proximity to the elements of y′′ with regards to Xsc.

Even for A1, the expected number of matched pairs per signature in the first
stage is relatively small. Thus, we cannot compute P((zi − ky′i) ∼ y′′j |(z1 − ky′))
and are left with P((zi − ky′i) ∼ y′′j |y′′). Like in the first stage, A2 and A3 only
have partial knowledge of y′′. We use the same trick as above and introduce a
dummy sample y′′d representing all elements below the modeled threshold of 47
and 55, respectively. Here we use (3) and then again perform the Bayesian step
and a filtering of the most probable matches.

P((zi − ky′i) ∼ y′′d) =

threshold∑
y=−threshold

Xsc(zi − ky′i − y) (3)

Results on two-stage shuffling. Like earlier, we evaluated our described at-
tack against two-stage shuffling by running it with 220 signatures. For our ideal
adversary A1, we can match 0.26 % of samples in the first stage (with probability
greater than 0.99). Out of the found pairs, 0.15 % can also be matched in the
second stage. This results in requiring 260 000 (1 550 000) signatures in order to
find n = 512 equations.

Interestingly, the losses incurred by the restrictions of A2 are relatively small.
We can match 0.25 % in the first and 0.15 % of samples in the second stage. With
285 000 (1 880 000), the number of required signatures is virtually identical to

16 Peter Pessl

the previous case. As to be expected, A3 performs slightly worse. The matching
rates decrease to 0.18 % and 0.10 %, respectively. This results in requiring 575 000
(3 800 000) signatures.

Discussion. Apparently, two-stage shuffling can increase the number of required
signatures for an attack significantly and thus can be considered an effective
countermeasure. For A1, for instance, 260 000 (1 710 000) instead of the previous
40 (264) signatures are required. However, while the given numbers are high,
they are still within reach for a dedicated attacker.

This large increase could be explained as follows. For single-stage shuffling,
we tested elements from Dσ, with σ ≈ 215, against a distance of Xsc. For the
two-stage attack, the ratio of the matched standard deviations is much smaller.
For instance, in the second stage we match elements from Dσ′ , with σ′ ≈ 19.5,
against the same Xsc. As a result, the matchable samples are even further out in
the tail of Dσ′ and so less frequent than was the case for single-stage shuffling.
This also explains the compared to A1 maybe surprisingly small losses of A2
and A3. These adversaries can only recover a small number of samples, but the
ones they can find are already in tail Dσ′ and thus more likely to be usable.
Obviously, the effect of smaller difference of deviations is amplified by requiring
two matching steps. So, we can only rewind shuffling for indizes i where both y′i
and y′′i are outliers.

6 Conclusion

Our work shows that shuffling is, at least if done correctly, an effective and
cheap countermeasure in the context of lattice-based signatures. However, while
it can drastically increase the attack complexity, relying on two-stage shuffling
alone might not be enough to protect against attacks on Gaussian samplers. The
reported signature requirements for attacks are still practical, at least in the case
of a recoverable b. In this regard, recall that we did not use leakage from either
multiplication with k and addition of two samples in the Gaussian convolution,
the shuffling itself, or from the PRNG. This information can be used to further
decrease the number of required signatures. Thus, a mix of countermeasures and
reducing the leakage of the sampling algorithm itself is necessary for sufficient
protection. Increasing the number of sampling (and shuffling) stages as well as
the use of different convolution parameters might also offer better protection.
For future work, we plan to further investigate and improve the attack technique.
Our goal is to eliminate the impact of an unknown b, i.e., to use the same number
of signatures as in the known-b case.

Acknowledgements
This work has been supported by the Austrian Research Promotion Agency
(FFG) under grant number 845589 (SCALAS). We would also like to thank
Leon Groot Bruinderink for his ideas and valuable input.

Analyzing the Shuffling Countermeasure for Lattice Signatures 17

References

1. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum Key Exchange
- A New Hope. In T. Holz and S. Savage, editors, USENIX Security 2016, pages
327–343. USENIX Association, 2016.

2. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-Quantum Key Exchange
for the TLS Protocol from the Ring Learning with Errors Problem. In SP 2015,
pages 553–570. IEEE Computer Society, 2015.

3. M. Braithwaite. Experimenting with Post-Quantum Cryptog-
raphy, July 2016. https://security.googleblog.com/2016/07/

experimenting-with-post-quantum.html.

4. J. A. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing, and P. Weiden. Discrete
Ziggurat: A Time-Memory Trade-Off for Sampling from a Gaussian Distribution
over the Integers. In T. Lange, K. E. Lauter, and P. Lisonek, editors, SAC 2013,
volume 8282 of LNCS, pages 402–417. Springer, 2013.

5. S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In B. S. Kaliski, Jr.,
Ç. K. Koç, and C. Paar, editors, CHES 2002, volume 2523 of LNCS, pages 13–28.
Springer, 2002.

6. L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-
Tone. NISTIR 8105 DRAFT, Report on Post Quantum Cryptography, Febru-
ary 2016. http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_

8105_draft.pdf.

7. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice Signatures and
Bimodal Gaussians. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, volume
8042 of LNCS, pages 40–56. Springer, 2013.

8. N. C. Dwarakanath and S. D. Galbraith. Sampling from discrete Gaussians for
lattice-based cryptography on a constrained device. Applicable Algebra in Engi-
neering, Communication and Computing, 25(3):159–180, 2014.

9. B. Gierlichs, K. Lemke-Rust, and C. Paar. Templates vs. Stochastic Methods.
In L. Goubin and M. Matsui, editors, CHES 2006, volume 4249 of LNCS, pages
15–29. Springer, 2006.

10. L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, Gauss, and
Reload - A Cache Attack on the BLISS Lattice-Based Signature Scheme. In B. Gier-
lichs and A. Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS, pages 323–
345. Springer, 2016. full version available at http://eprint.iacr.org/2016/300.

11. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical Lattice-Based Cryp-
tography: A Signature Scheme for Embedded Systems. In E. Prouff and P. Schau-
mont, editors, CHES 2012, volume 7428 of LNCS, pages 530–547. Springer, 2012.

12. J. Jaffe. A First-Order DPA Attack Against AES in Counter Mode with Unknown
Initial Counter. In P. Paillier and I. Verbauwhede, editors, CHES 2007, volume
4727 of LNCS, pages 1–13. Springer, 2007.

13. D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Pro-
gramming, chapter 3, pages 145–146. Addison-Wesley, 3rd edition, 1998.

14. R. Lindner and C. Peikert. Better Key Sizes (and Attacks) for LWE-Based Encryp-
tion. In A. Kiayias, editor, CT-RSA 2011, volume 6558 of LNCS, pages 319–339.
Springer, 2011.

15. A. Moradi and G. Hinterwälder. Side-Channel Security Analysis of Ultra-Low-
Power FRAM-Based MCUs. In S. Mangard and A. Y. Poschmann, editors,
COSADE 2015, volume 9064 of LNCS, pages 239–254. Springer, 2015.

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://eprint.iacr.org/2016/300

18 Peter Pessl

16. NSA/IAD. CNSA Suite and Quantum Computing FAQ, January 2016. https:

//www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/

algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm.
17. T. Oder, T. Pöppelmann, and T. Güneysu. Beyond ECDSA and RSA: Lattice-

based Digital Signatures on Constrained Devices. In DAC ’14, pages 110:1–110:6.
ACM, 2014.

18. T. Pöppelmann, L. Ducas, and T. Güneysu. Enhanced Lattice-Based Signatures
on Reconfigurable Hardware. In L. Batina and M. Robshaw, editors, CHES 2014,
volume 8731 of LNCS, pages 353–370. Springer, 2014. VHDL source code available
at http://sha.rub.de/research/projects/lattice.

19. T. Pöppelmann, T. Oder, and T. Güneysu. High-Performance Ideal Lattice-
Based Cryptography on 8-Bit ATxmega Microcontrollers. In K. E. Lauter and
F. Rodŕıguez-Henŕıquez, editors, LATINCRYPT 2015, volume 9230 of LNCS,
pages 346–365. Springer, 2015.

20. S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede. Compact and Side
Channel Secure Discrete Gaussian Sampling. Cryptology ePrint Archive, Report
2014/591, 2014. http://eprint.iacr.org/2014/591.

21. M.-J. O. Saarinen. Arithmetic Coding and Blinding Countermeasures for Lat-
tice Signatures: Engineering a Side-Channel Resistant Post-Quantum Signature
Scheme with Compact Signatures. Cryptology ePrint Archive, Report 2016/276,
2016. http://eprint.iacr.org/2016/276 Note: to appear in Journal of Crypto-
graphic Engineering.

22. B. Schneier. NSA Plans for a Post-Quantum World, August 2015. https://www.

schneier.com/blog/archives/2015/08/nsa_plans_for_a.html.
23. strongSwan. strongSwan 5.2.2 Released. https://www.strongswan.org/blog/

2015/01/05/strongswan-5.2.2-released.html, 2015.
24. Texas Instruments. MSP432P401R LaunchPad. http://www.ti.com/tool/

msp-exp432p401r.

https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
http://sha.rub.de/research/projects/lattice
http://eprint.iacr.org/2014/591
http://eprint.iacr.org/2016/276
https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html
https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html
http://www.ti.com/tool/msp-exp432p401r
http://www.ti.com/tool/msp-exp432p401r

	Analyzing the Shuffling Side-Channel Countermeasure for Lattice-Based Signatures

