
PePTCAP: A Privacy-enhancing Protocol for
(Temporary) Car Access Provision

Iraklis Symeonidis, Abdelrahaman Aly, Mustafa A. Mustafa, Bart Preneel

COSIC and imec, KU Leuven
first.last@esat.kuleuven.be

Abstract. This paper proposes a novel physical keyless car sharing pro-
tocol that allows users to share their cars conveniently. In spite of many
advantages, keyless car sharing systems come with substantial security
and privacy challenges. Within this work, we design a concrete decen-
tralised and Privacy-enhanced Protocol for (Temporary) Car Access Pro-
vision namely PePTCAP. PePTCAP uses multiparty computation based
on Shamir’s secret sharing scheme which allows the generation, update,
revocation and distribution of an access token for a car in a privacy-
preserving manner. In order to solve disputes and to deal with law en-
forcement requests, our protocol provides forensic evidence of car inci-
dents based on threshold secret sharing. We perform a security and pri-
vacy analysis of PePTCAP followed by a complexity analysis, practical
efficiency and time estimations for the multiparty computation elements
of PePTCAP under realistic scenarios.

1 Introduction

Physical Keyless car Sharing Systems (KSSs) allow users to share their cars
without the requisite of exchanging physical keys. Car owners’ can rather use
their portable devices such as smartphones to distribute (temporary) digital car
keys and access tokens to other users. As such KSSs allow users to share cars
more conveniently, several car manufacturers such as Volvo [1], BMW [2] and
Toyota [3] have started investing in them. In contrast to traditional car rental
companies, KSSs can provide a relatively inexpensive alternative to users who
occasionally need a car, presenting an alternative model for car ownership [4].
Moreover, encouraging users to use KSSs can help to decrease the number of
cars, effectively reducing CO2 emissions [5] and the need for parking space.

In spite of these advantages, KSSs can introduce several security and privacy
concerns [6]. For example, an adversary may try to impersonate a car owner,
to tamper with the car sharing details, or even to deny having used the car.
Regarding users’ privacy, the adversary may try to eavesdrop and passively col-
lect information exchanged within the car sharing system and try to infer users’
behaviour [7]. For example, an adversary may try to infer the users’ sharing
preferences, free time activities and circle of trust. These preferences can be es-
tablished by collecting information about sharing patterns such as rental time,
duration, pickup, drop-off location, when, where, and with whom someone is

sharing a car. An adversary may even attempt to infer sensitive information
about users such as their health status, by identifying users who use cars for
disabled passengers or visit hospitals regularly.

There is a prior work on security and privacy enhanced applications of con-
nected cars. Troncoso et al. [8] proposed a pay-as-you-drive scheme that enhances
the location privacy of drivers’ by sending only aggregated data to insurance
companies. Balasch et al. [9] proposed an electronic toll pricing protocol where a
car’s on-board unit calculates locally the driver’s annual toll fee while disclosing a
minimum amount of location information. Mustafa et al. [10] proposed an anony-
mous electric vehicle charging protocol with billing support. Also, EVITA [11]
and PRESERVE [12] are research projects focusing on designing and prototyp-
ing onboard units for communication systems of connected cars with privacy in
mind. However, apart from the comprehensive security and privacy analysis of
KSS performed by Symeonidis et al. [6], there is no prior work addressing the
security and privacy issues in such systems. To the best of our knowledge, this is
the first work that proposes a concrete protocol to address the identified issues.

One way to mitigate the security and privacy issues is to have a peer-to-peer
protocol between both the users and the car. The car owner can generate a
(temporary) access token for her car using the car key and distribute it to the
other user, the consumer, who can use the token to access the car. However, this
approach has two main limitations: (i) the owner and the consumer may not trust
each other, thus affecting the accountability of the system, and (ii) the owner has
to have a copy of the car key on her personal device which is prone to get lost or
stolen. These limitations can be overcome by having a centralised entity which is
trusted by both users, and which performs the access token generation on behalf
of the car owner. However, such a centralised entity will have to be fully trusted,
which might not be realistic under real world scenarios. Moreover, this entity can
jeopardize users’ privacy as it will have access to users’ booking details, and the
cars’ keys. To mitigate all these concerns, we propose to use secure Multiparty
Computation (MPC) in combination with a public ledger for generating and
delivering the access token to the consumer. A detailed argumentation for the
system model of PePTCAP can be found in Appendix A.

Contributions. Our contributions are twofold: (i) We design a concrete decen-
tralised and privacy-preserving protocol for a (temporary) car access provision
using MPC namely PePTCAP. Our protocol also covers an update and revoca-
tion operation upon a mutually agreed modification of the booking details or a
misbehaving consumer. For dispute resolution, we base our protocol on thresh-
old secret sharing in order to provide forensic evidence of car incidents at the
request of law enforcement. (ii) We perform a security and privacy analysis of
PePTCAP and evaluate it from a theoretical complexity and practical efficiency
under realistic scenarios.

Outline. The rest of this paper is organised as follows: Sections 2 and 3 provide
the preliminary information and cryptographic building blocks used in the design

Information flow

Authorities

OBU

Owner PDs

Consumer PDs

Database
Personal Device
Key-less Sharing Management System
On-Board Unit

DB
PD
KSMS
OBUPublic Ledger

KSMS

Car ManufacturerDB

Fig. 1. System model of a physical Keyless car Sharing System (KSS).

of PePTCAP, respectively. Section 4 describes PePTCAP in detail. Section 5
provides the security and privacy analysis of PePTCAP. Section 6 evaluates its
theoretical complexity and practical efficiency. Section 7 concludes our work.

2 Preliminaries

Within this section, we describe the system model, the entities involved and the
functionalities of a KSS. Moreover, we specify the threat model, assumptions
and the security and privacy requirements which PePTCAP needs to satisfy.

System Model. As shown in Fig. 1, KSS consists of the following entities [6].
Users are individuals who are willing to share their cars, owners, and use cars
which are available for sharing, consumers. Users’ Portable Devices (PDs) are
mobile devices such as smartphones. An On-Board Unit (OBU) is an embedded
or standalone hardware/software component which is part of the access man-
agement system of a car. It has a wireless interface such as Bluetooth, NFC
or LTE. The Car manufacturer is responsible for generating and embedding a
digital key into each car. These keys are used for car sharing and are stored in
the manufacturers’ Database (DB). The Keyless Sharing Management System
(KSMS) is a complex of servers that help owners with car access token gener-
ation, distribution, update and revocation. The access token is published in a
Public Ledger (PL), which is a publicly available source of information. In the
case of a dispute, law enforcement authorities can assist users in resolving it.

Once users (and their cars) have been registered within the KSS, users could
post their offers and requests for sharing cars. If two users agree on the sharing
(booking) details, an owner can initiate a procedure for generating and distribut-
ing a temporary access token for the consumer to access the car. Moreover, the
owner can also update or revoke the generated access token. When the consumer
receives an access token, she/he can use it to authenticate to and access the car.

Threat Model and Assumptions. Owners, car manufacturers, and the KSMS
are honest-but-curious entities. They will perform the protocol honestly but they

are curious to extract private information about users. Consumers and outsiders
can be malicious. Cars are trusted entities whereas, users’ PDs are untrusted.
Within the KSS, we make the following assumptions. Each entity has a pri-
vate/public key pairs and a corresponding digital certificate. Entities have copies
of each others’ certificates. For PePTCAP we assume that the communication
channels among entities are secure and authenticated such as using SSL-TLS [13].
Moreover, an adversary cannot break the underlying cryptographic primitives.

Protocol design requirements. PePTCAP should satisfy the following secu-
rity and privacy requirements.

– SR1 - (Temporary) car access provision: No one, but the owner, should be
able to provide a consumer with (temporary) access to her car.

– SR2 - The smallest number of trusted entities having access to a car key: No
one, but the car and car company, should hold the car keys.

– SR3 - Booking details data authentication: The car should verify the origin
and integrity of the booking details.

– SR4 - Backward and forward secrecy: Compromise of a key used to encrypt
an access token should not compromise other tokens published on the PL.

– SR5 - Non-repudiation of origin and receipt of an access token: The owner
should be able to prove that an access token was published on the PL and
delivered to the consumer.

– PR1 - Booking details confidentiality: No one, but the car, should access the
booking details.

– PR2 - Consumer’s anonymity: No one, but the shared car, should learn the
identity of the consumer.

– PR3 - Consumer’s unlinkability: No one, but the shared car, should be able
to link two booking requests of the same consumer.

– PR4 - Owner’s anonymity: No one, but the KSMS, learns the identity of the
owner.

– PR5 - Owner’s unlinkability: No one, but the KSMS, should be able to link
two booking requests of the same owner.

– PR6 - Undetectability of an access token operation: No one should be able to
distinguish between an access token generation, update and revocation.

– PR7 - Forensic evidence provision: The KSMS should be able to provide au-
thorities with forensic evidence of car incidents at law enforcement requests.

3 Cryptographic building blocks

3.1 Security Model for Multiparty Computation

Shamir’s secret sharing [14] can be used in combination with the multiplica-
tion protocol introduced by Ben-or et al. [15], later improved by Gennaro et
al. [16]. Additionally, sharing mechanisms such as Shamir’s sharing primitive,
provide non-interactive addition and scalar multiplication for secretly shared

values. Furthermore, the results by Bern-or et al. in [15] (commonly referred to
as BGW) and Chaum et al. [17] have proven that it is possible to calculate any
function with perfect security in the presence of active and passive adversaries
under the information-theoretic model. However, both protocols are bounded by
the threshold properties of Shamir’s scheme. Perfect security can be achieved
only under an honest majority (1/2 for passive and 2/3 for active adversaries).
The protocol assumes the use of private channels in between the KSMS servers
and verifiable secret sharing (VSS) for the malicious case.

Although these threshold properties might sound as a limitation for some
applications, i.e., dishonest majorities, this is not our case. By using protocols
such as BGW, a majority coalition can reconstruct the secrets without the other
parties’ inputs. This kind of collusion is a desired property of our system. Note
that a 3 party protocol should allow 2 computational parties to reconstruct the
secret in exceptional cases. Our protocol, however, is MPC-agnostic, this means
that it does not depend on the protocols that implement the MPC functionality
(as long as addition and multiplication are provided). The protocol could well
be executed using more recent MPC protocols that are secure against dishonest
majorities such as SPDPZ [18], BDOZ [19] or MASCOT [20]. Typically these
protocols work over a finite field limited by some q, we denote this field Zq. We
assume the q to be a sufficiently large prime number or RSA modulus.

3.2 Additional multiparty constructions and functionality

PePTCAP uses the following cryptographic functionalities for MPC:

- [x]← share(x): is used to secret share a private input. We implemented with
Shamir secret sharing primitive [14].

- x← open([x]): reconstructs the private inputs based on the secret shares.

- [z]← add([x], [y]): uses the properties of Shamir’s scheme to linearly add two
shared inputs.

- [z]← mult([x], [y]): multiplies two secretly shared inputs using the improved
BGW multiplication protocol by Gennaro et al. [16].

- [z]← eqz([x], [y]): secretly compute the equality test between shared inputs.

In this case, this is equivalent to computing [z]← [x]
?
= [y] ∀ [z] ∈ {0, 1}.

- [r]← rand(Zq): returns a random value bounded by q. A random number
can be generated without the need of a communicational round [21].

On Secure Equality Tests: The eqz functionality can be implemented using
a constant number of communication rounds between the computational par-
ties. Moreover, either perfect or statistical security can be achieved by existing
protocols. We refer the reader to the constructions presented in [22–24] for fur-
ther details on their implementation and inner working. Although our protocol
is agnostic towards the protocol selection for the equality tests, we assume, for
simplicity reasons, that it makes use of the results by Catrina and Hoogh [24].

Owner

MB

Consumer
MB

K1,K2

OBU

Kcar

Car

Public Ledger

[CB] [Cuc,car] TPUB

ersdf3tx0 fwefw234 30412800

.

fsd23f0x0 l2jhusa3u 14827104

1.1 EncPkSi
([K1], [K2])

Server 1

[Kcar]

Server i

[Kcar]

Server l

[Kcar]

KSMS

Car manufacturer
1.2 EncPkSi

([K1], [K2]), [Muc])

0. [Kcar]

2. [Cuc,car], [CB]

3.1 Cuc,car, CB

3.2 EK1(Ccar, IDcar)4. Auth.

Fig. 2. PePTCAP high level overview.

AES with MPC: Research has been put forward for the implementation of
AES using MPC, where the computational parties hold a secretly shared key,
together with a secretly shared message. The product of the operation could be
adapted to be a secretly shared AES encrypted ciphertext. We refer the reader
to [25–28] for further details and treatment on the state of the art. Note that
our protocol is agnotistc with respect to the underlying implementation of AES.

4 The PePTCAP

This section provides a detailed description of PePTCAP which consists of access
token generation and distribution, as well as an update, revocation and accusa-
tion operation. Before delving into details, we give an overview of PePTCAP.

4.1 High Level Description

Below, we briefly describe PePTCAP, the steps are also shown in Fig. 2. For
simplicity, the owner’s and consumer’s PDs are referred as owner and consumer.

Starting from the prerequisite steps, upon registration of a user and her
car, the KSMS requests the car’s symmetric key from the corresponding car
manufacturer. The manufacturer retrieves the key from its DB, generates l secret
shares of the key (assuming that the KSMS has l servers) and forwards each key
share to the corresponding KSMS server. Each server stores its share of the car
key in its local DB. With a car sharing request, an owner and a consumer agree
on the booking details such as time period of access and car location for sharing
a car. Once these details have been agreed upon, our protocol can commence.

First, the owner requests the consumer to generate two session keys: the first
one is used by the KSMS to encrypt the access token and the second one for gen-
erating an authentication tag for the booking details. The consumer constructs
l secret shares of each key, encrypts them with the corresponding server’s public
key and sends the ciphertexts to the owner. Meanwhile, the owner generates a
signature of the booking details and constructs l secret shares of them and the
signature. Finally, the owner sends a ciphertext of the shares of the consumer’s
keys and a share of the booking details and the signature to each server.

Each KSMS server queries and extracts its share of the car key from its DB.
To create an access token and to guarantee the confidentiality of the sharing
details, the servers encrypt the booking details using their shares of the car key.
This token along with the car identity should be given only to the consumer
and should be confidential against any other entity. To achieve this, a second
encryption is performed; the servers encrypt the access token using their shares
of the first consumer’s key. Then, this encrypted access token is published on the
PL. To allow the consumer to verify the booking details contained in the token,
the servers generate a hash value of the booking details and encrypt this value
using the shares of the consumer’s second session key. Finally, each server sends
to the PL its share of the encrypted access token and the encrypted hash value.

Upon receiving all the shares, the PL reconstructs both ciphertexts, publishes
them and notifies the KSMS. The notification includes the time-stamp of pub-
lishing; it is also forwarded by the KSMS to the owner. Subsequently, the owner
forwards it to the consumer. Upon receiving the notification, the consumer uses
the received time-stamp to query the PL for both ciphertexts. To protect the
consumer’s anonymity, this query is made only via an anonymous communica-
tion channel. The consumer then hashes the booking details that she knows,
encrypts the result with the second session key, and compares the computed
ciphertext with the ciphertext retrieved from the PL, i.e., the encrypted hash
value. If both are the same, the consumer is assured that the encrypted access
token contains the booking details agreed during the booking phase. Finally, the
consumer decrypts the other retrieved ciphertext using his first session key to
obtain the access token and delivers it to the car. Upon the reception of the
access token, the car decrypts it using the car key, verifies the owner’s signature
and accepts the token. Then, when the consumer requests to access the car, the
car uses a challenge-response protocol to authenticate the consumer.

Note that owners submit private inputs to the KSMS consisting of multiple
servers that function as evaluators. The number of evaluators depends on the
application. There could be as many as the number of parties involved in the
computation. However, this is costly in terms of performance. Thus, we assume
three computational parties: one comes from the drivers’ association, another
from the car manufacturers’ association and the third one from a control agency.

4.2 Detailed Description

PePTCAP consists of three steps: consumer session keys generation and data
distribution, access token generation and access token distribution and verifica-
tion. Before describing them in detail, we give a brief description of the prerequi-
site, and complete the section with an overview of the possible operations after
PePTCAP: consumer access to the car and access token update and revocation.

Prerequisite. Before PePTCAP can commence, two prerequisite steps need to
take place: car key distribution and car booking. Car key distribution takes place
immediately after an owner, uo, has registered her yth car, ID

caruo
y , with the

Table 1. Notation.

Symbol Description
ux, uo, uc User x, owner, consumer

IDB , IDuo , IDuc ID of booking, uo, uc

Certuc , Lcar Digital certificate of uc, car’s location
CDuc , ACuc Set of conditions, access rights under which uc is allowed to access a car

Si, DB
Si ith MPC Server where i ∈ {1 . . . l}, Database that Si holds

~Duo Car records of uo extracted from DBSi where |~Duo | = n
~Dcar, ~Dcar

y Equality test output, content of ~Dcar at position y
Kx

y , Pki/Ski yth symmetric key of the KSS entity x, Public/private key pair of Si

M,MB , H(M) Message, Message that contains the booking details, Hash operation of M

CK ← EK(M) Ciphertext generated by the Encryption function E of M with K
DK(C) Decryption of C with K

CSi ← EncPki
(M) Ciphertext generated by the Encryption function Enc of M with the Pki of Si

DecSki
(C) Decryption of C with the Ski of Si

σi ← SigSki
(M) Digital signature generated by the Signing function Sig() of M with Ski of Si

KSMS. The KSMS forwards ID
caruo
y to the car manufacturer to request the sym-

metric key of the car, K
caruo
y . The manufacturer retrieves K

caruo
y from its DB,

~DBcc, and generates l secret shares of K
caruo
y and ID

caruo
y , denoted by [K

caruo
y]

and [ID
caruo
y], respectively. Then, it forwards each share to the corresponding

KSMS server, i.e., Si. Upon receipt of its shares, each Si stores IDuo together

with its shares, [ID
caruo
y] and [K

caruo
y], in its local DB, ~DBSi . The representa-

tions of the DB of Si and the manufacturer are shown in Fig. 3. For simplicity, in
some parts of PePTCAP we use IDcar and Kcar instead of ID

caruo
y and K

caruo
y .

~DBSi =



IDu1 [ID
caru1
1] [K

caru1
1]

IDuo [ID
caruo
1] [K

caruo
1]

...
...

...
IDuo [ID

caruo
y] [K

caruo
y]

...
...

...
IDuo [ID

carux
n] [K

carux
n]


~DBcc =



IDu1 ID
caru1
1 K

caru1
1

IDuo ID
caruo
1 K

caruo
1

...
...

...
IDuo ID

caruo
y K

caruo
y

...
...

...
IDuo ID

carux
n K

carux
n


Fig. 3. DB representation of the ith server (left) and the car manufacturer (right).

Car booking allows uo and uc to agree on the sharing details, i.e., MB =
{Certuc , IDcar, Lcar, CDuc , ACuc , IDB}, where Certuc is the digital certificate
of uc, L

car is the pick-up location of the car, CDuc = {Conduc
1 , . . . , Conduc

m } is
the set of conditions under which uc is allowed to use the car (e.g., restrictions
on locations, time period), ACuc is the access rights under which uc is allowed
to access the car, e.g., driver, passenger, and IDB is the booking identifier.

Step 1: Consumer session keys generation and data distribution. The consumer
generates two symmetric session keys which are then delivered to the KSMS
servers. The first key will be used by the servers to encrypt the access token,
so that only uc has access to it. The second key will be used to generate an

Owner Consumer S1 . . .Si . . .Sl

msg{SES K GEN REQ, IDB}
K1 ← Gen Ses keys()
K2 ← Gen Ses keys()
[K1]← Share(K1)
[K2]← Share(K2)
for i = 1, . . . , l do

CSi ← EncPkSi
([K1], [K2])

end for

σuo ← SigSkuo
(MB)

Muc ← {MB , σuo}
[Muc]← Share(Muc)

msg{SES K GEN ACK, IDB , {CS1 , . . . , CSl}}

msgi{AT OP REQ, IDuo , CSi , [Muc]}

Fig. 4. Step 1: Consumer session keys generation and data distribution.

authentication tag which will allow uc to verify that the access token contains
the car sharing details agreed in the booking phase. Moreover, the car sharing
details are also delivered to the KSMS. In detail, as shown in Fig. 4, uo sends
a session-keys-generation request, GEN SES K REQ, along with IDB to uc.
Upon receiving the request, uc generates two symmetric session keys, K1 and
K2. Each of these keys is then transformed into l secret shares, [K1] and [K2],
one for each Si, so that none of the servers has access to these keys, but only to
one share of each key. Finally, uc encrypts the shares of the keys with the public
key of the corresponding KSMS servers, e.g., CSi = EncPkSi

([K1], [K2]), so that
only the servers can access the shares, before forwarding an acknowledgment
message, GEN SES K ACK, together with IDB and {CS1 , . . . , CSl} to uo.

While waiting for the response of uc, uo signs MB with her private key, i.e.,
σuo = SigSkuo

(MB), so that, in a later step of the protocol, the car could verify
that the sharing details have been approved by the owner. She then concatenates
MB and σuo

to create Muc and transforms it into l secret shares, [Muc]. Upon
receipt of the response of uc, uo forwards to each Si an access token generation
request, AT OP REQ, along with IDuo , CSi and the corresponding [Muc].

Step 2: Access token generation. The KSMS generates the access token and
publish it on the PL. Figure 5 shows the details: upon receipt of AT OP REQ
from uo, each Si uses IDuo to extract [Kcar] from its database, DBSi . Initially,
Si uses IDuo to retrieve the list of all car identity and car key shares related
to uo, e.g., [ID

caruo
y] and [K

caruo
y]. The results are stored at a vector ~Duo size

n× 3, where n is the number of cars uo has registered with the KSMS, i.e.,

~Duo =



IDuo [ID
caruo
1] [K

caruo
1]

...
...

...
IDuo [ID

caruo
y] [K

caruo
y]

...
...

...
IDuo [ID

carux
n] [K

carux
n]



Public Ledger S1 . . .Si . . .Sl

~Duo ← Query(IDuo , DBSi)
for y = 1, . . . , n do

~Dcar
y ← { ~Dcar

y−1 || eqz([IDcar], [ID
caruo
y])}

end for
[K

caruo
y]← ~Dcar × ~Duo

[Ccar]← E
[K

caruo
y]

([Muc])

{[K1], [K2]} ← DecSkSi
(CSi)

[Cuc,car]← E[K1]([C
car], [IDcar])

[hB]← H([MB])
[CB]← E[K2]([h

B])

msgi{AT PUB REQ, [Cuc,car], [CB]}

Fig. 5. Step 2: Access token generation.

To retrieve the record of the car to be shared, Si extracts [IDcar] from [Muc]

and performs a comparison with each of the n records of ~Duo using the eqz()

function. The comparison outcomes 0 for mismatch and 1 for identifying the car
at position y. The result of each iteration is stored at a vector ~Dcar, i.e.,

~Dcar = [
1
0 . . . 0

yth

1 0 . . .
n
0]

Si then multiplies ~Dcar and ~Duo to generate a third vector, i.e.,

~Dcar × ~Duo =
[
IDuo [ID

caruo
y][K

caruo
y]

]
from which the share of the car’s secret key, [K

caruo
y], can be retrieved. To pre-

serve the confidentiality of [Muo], each Si encrypts it with [K
caruo
y] to generate

an access token for the car, [Ccar].
As Ccar and IDcar need to be available only to uc, a second layer of encryp-

tion is done using a session key of uc. To retrieve the shares of the session keys,
{[K1], [K2]}, each Si decrypts CSi using its private key, SkSi . Then, each Si en-
crypts {[Ccar], [IDcar]} with [K1] to generate [Cuc,car]. Next, each Si generates
an index value which will be used by uc to identify [Cuc,car]. It hashes [MB] to
generate [hB], and encrypts [hB] with [K2] to generate [CB]. Finally, each Si
sends to the PL a publishing request, AT PUB REQ, [Ccar,uc] and [CB].

Step 3: Access token distribution and verification. The PL reconstructs and
publishes the encrypted access token which is then retrieved by uc. Once re-
trieved, the token is delivered to and verified by the car. The details are shown
in Fig. 6, upon receipt of AT PUB REQ, [Ccar,uc] and [CB] from each Si,
the PL uses these shares to reconstruct both, Ccar,uc and CB , using the open()

function. Then, it publishes Ccar,uc , CB and TPUB , which is the time of publish-
ing, and sends an acknowledgement of the encrypted access token publication,
AT PUB ACK, along with TPUB to the KSMS (to at least one Si). The KSMS
then forwards AT PUB ACK to uo who, in turn, forwards it to uc.

Owner Car Consumer Public Ledger S1 . . .Si . . .Sl

{Cuc,car, CB} ← open{[Cuc,car], [CB]}
Publish(Cuc,car, CB , TPUB)

msg{AT PUB ACK,TPUB}
msg{AT PUB ACK,TPUB}

msg{AT PUB ACK,TPUB}
Query(TPUB)

CB Cuc,car TPUB

ersdf3tx0 fwefw234 14774098

.

msg{Cuc,car, CB}

hB ← H(MB)
CB ← EK2(hB)

computed CB ?
= retrieved CB

{Ccar, IDcar} ← DK1(Cuc,car)

msg{Ccar, IDcar}

{MB , σuo} ← DKcar (Ccar)
Verify(σuo)

Fig. 6. Step 3: Access token distribution and verification.

Upon receipt of AT PUB ACK, uc uses TPUB to retrieve {Cuc,car, CB}
from the PL via an anonymous communication channel such as Tor [29], so that
the PL can not identify uc. Then, he hashes MB that was obtained after the
booking phase and encrypts the result with K2 to compute CB . Next, uc checks
if the computed CB is the same as CB retrieved from the PL. If both ciphertexts
are the same, uc is assured that the token contains the same details as the ones
agreed during car booking. He then obtains the access token and the car identity,
{Ccar, IDcar}, by decrypting Ccar,uc with K1, and sends them to the car.

Upon receipt of {Ccar, IDcar}, the car’s OBU obtains Muc = {MB , σuo
} by

decrypting Ccar with Kcar. Then, it verifies σuo
to be assured that the booking

details, MB , have not been modified and have been indeed approved by the car
owner. If the verification holds, the OBU accepts and stores MB for later use to
give uc access to the car. The whole protocol is depicted in Appendix B.

Consumer access to the car. When uc attempts to access the car, the car’s OBU
initially checks if the access attempt satisfies the conditions specified in MB ,
and then verifies the identity of uc. As the OBU has Certuc (it is included in
MB), it uses any challenge-response protocol based on public/private key [30].

Access token update and revocation. Upon an agreement among uo and uc to
update or revoke an access token, PePTCAP can be performed as described in
steps 1-3. The values of an update request can be changed according to new
booking details, M̂B , whereas for revocation, each of the parameters in M̂B can
receive a predefined value indicating the revocation action. However, there are
occasions when uo may need to enforce an update or revocation of an access
token. To prevent uc from blocking such operations, PePTCAP should be exe-

cuted only by uo, without the involvement of uc. This is: uo generates session
keys, requests an access token, queries the PL and sends the token to the car.

5 Security and Privacy Analysis

This section analyses the security and privacy properties of PePTCAP. Note
that the owner and consumer already know each others identity and the booking
details. Thus, we focus only on other parties who want to learn this information.

(Temporary) car access provision. PePTCAP allows a car owner to ini-
tiate a (temporary) access token generation and distribution to her car via a
consumer. This token contains various conditions under which the chosen con-
sumer can access the car, the consumer-specific information, i.e., his digital cer-
tificate, as well as the owner’s signature on these details. Once the car receives
and verifies this signature, it can allow the consumer to have access to it if all
the conditions in the token are met and it successfully verifies the consumer us-
ing a standard challenge-response authentication protocol. Using a token which
contains car access conditions settable by the owner, coupled with the owner’s
signature verification at the car, allows only the owner to provide a consumer
with access to her car. Thus, PePTCAP satisfies SR1.

The smallest number of trusted entities having access to car key.
With PePTCAP, only the car manufacturer and the car itself hold copies of the
car key. Although the access token for the car is generated by the KSMS servers
by encrypting the booking details with the car key, none of these servers actually
have access to the key, but only to a share of this key. Assuming that these servers
do not collude, coupled with the fact that, by design, the car manufacturer and
the car have copies of the car key, PePTCAP does not allow any additional
entities to have access to car keys, thus satisfying SR2.

Booking details data authentication. An owner who initiates the access
token generation and distribution, first signs the booking details using its private
key before sending them to the KSMS in shares. Therefore, once the car receives
the token and obtains the booking details, it can verify the owner’s signature on
the booking details. In other words, the car can verify the source of the booking
details, the owner, and their integrity. Thus, PePTCAP satisfies SR3.

Backward and forward secrecy. The access token is encrypted with the
consumer’s session key before the result is published on the PL. Also, for each
token, a consumer uses a freshly generated symmetric key. As long as he gener-
ates unique session keys for each request, even a compromise of these keys will
not affect the rest of the data on the PL. Thus, PePTCAP satisfies SR4.

Non-repudiation of origin and receipt of the access token. An access
token is generated by the KSMS servers and published on the PL, if the car owner
has initiated the procedure by sending the necessary information to the KSMS.
Moreover, once the token is published, the PL generates an acknowledgment
of publication which is sent to the KSMS. The KSMS then forwards it to the
owner who, in her turn, forwards it to the consumer. Assuming that (i) the
communication channels between the entities are authenticated, in other words,

the KSMS verifies the owner’s identity before generating the token, (ii) the
consumer gets the notification from the owner who initiated the token generation,
and (iii) the acknowledgement is signed by the PL, the owner can prove that
he initiated the token generation and that the token was published on the PL.
If the consumer is bound by his contract with the KSMS to retrieve the token
from the PL once he receives the acknowledgment of publication, the owner can
also prove that the consumer received the token. Thus, PePTCAP satisfies SR5.

Confidentiality of booking details. The owner sends the booking details
in shares, which are indistinguishable, i.e., randomized, to each of the KSMS
servers, so none of them has access to the booking details. Then, the servers
encrypt these details twice, first with the car key and then with the consumer’s
keys, before the result is published on the PL. Thus, even the car manufacturer,
who knows the car key, can not decrypt the ciphertext. The published ciphertext
can only be decrypted by the consumer. However, the result will be the access
token, i.e., the booking details encrypted with the car key. Once the consumer
obtains the token, he can deliver it to the car where the car can decrypt it and
read the booking details. As the owner and consumer already know these details,
with PePTCAP, only the car learns them. Thus, PePTCAP satisfies PR1.

Consumer’s anonymity and unlinkability. With PePTCAP, the only
consumer-identifiable data is the consumer’s certificate included in the booking
details. However, as mentioned above, with PePTCAP, only the car obtains the
booking details, thus only the car learns the identity of the consumer. Moreover,
apart from the PL, the consumer only communicates with the owner and the
car. The owner already knows the identity of the consumer from the booking
step, and the car is supposed to learn his identity, so that it can perform a
proper access control. Hence, as long as the consumer retrieves data from the PL
through an anonymous communication channel, PePTCAP allows only the car
to learn the consumer’s identity. Moreover, as every booking has a new randomly
generated booking identifier, only the car could link two booking sessions of the
same consumer. Thus, PePTCAP satisfies PR2 and PR3.

Owner’s anonymity and unlinkability. Only the car reads the owner’s
signature on the booking details, thus no other entity could use the signature
to learn the owner’s identity. Moreover, the KSMS servers store the shares of
the car keys in their local databases, so that they do not query on demand the
database of the car company, thus avoiding the car company linking an access
token generation to a specific owner. In addition, the owner communicates only
with the consumer and the KSMS. As the consumer already knows the owner’s
identity, only the KSMS learns it from the communication. As every booking
identifier is different for each booking request, also only the KSMS can link two
requests from the same owner. Thus, PePTCAP satisfies PR4 and PR5.

Undetectability of an access token operation. Access token generation,
update or revocation is performed using the same steps and type of messages sent
to the KSMS and PL. Hence, outsiders and system entities can not distinguish
which operation has been requested. Thus, PePTCAP satisfies PR6.

Forensic evidence provision. In case of disputes, the information related
to a specific transaction may need to be reconstructed. This reconstruction can
be done only if the KSMS servers collude and reveal their shares. In our setting,
these servers have competing interests, thus they would not collude unless pro-
vided with low enforcement requests by authorities. With PePTCAP, due to the
properties of threshold secret sharing, the private inputs can be reconstructed
by a majority coalition. This is, given our three party configuration, it suffices
two of such parties inputs to reconstruct the secrets (for semi-honest and mali-
cious cases). If, for example, an incident were to happen involving the car or the
owner, a control agency only needs to team up with the affected party to reveal
information related to the car access. Thus, PePTCAP satifies PR7.

6 PePTCAP Evaluation

In this section we evaluate PePTCAP from a theoretical complexity and practi-
cal efficiency point of view. We focus on the computational cost involved in the
MPC operations performed by the KSMS servers. Computational cost, in our
case is measured by the number of non-concurrent operations performed by the
KSMS servers. We can categorize these operations in two distinctive groups: the
operations that need message exchanges among the servers, and ones who can be
performed locally. We call the former round-based whereas the latter local. Nor-
mally round-base operations require far more resources than local operations, so
much so, literature typically address the complexity in terms of communication
complexity disregarding any polynomial amount of local operations. In other
words, local operations are consider to be free, in the sense that its computation
only requires a small set of basic arithmetic operations, e.g., addition of secret
shares, scalar multiplication. An example of a round-based operation is multipli-
cation, which requires at least one communication round [15, 18]. More precisely,
in our case, the improved BGW multiplication protocol by Gennaro [16] requires
one round for resharing an internal state product. Our analysis takes this into
account and defines complexity as the number of communication rounds per-
formed by the KSMS servers, i.e., communication complexity. This is a typical
approach taken for complexity analysis by the MPC community [22–24, 31, 32].

Theoretical Complexity: The KSMS servers first recover the car key by ex-
ecuting a linear exploration of an anonymity set stored in their local databases
in shared form. This operation requires the execution of at least |IDcar

b | mul-
tiplications per entry on the anonymity set Duo , where IDcar

b is the bitsize
representation of IDcar and |IDcar

b | is its size. This could be improved to the
size of the anonymity set, by using the disclose if equal operation from [23].
However, this can only be achieved at the cost of privately permuting the en-
tries in advance. Note that privately permuting a vector has a cost of n · log(n)
round operations, where n is the size of the vector [33]. Additional |Duo | secure
multiplications have to be performed too. This is followed by performing two
rounds of encryption on the booking details and one on their hash, using AES.

Hence, the number of round-based operations depends solely on the number of
S-Boxes that are executed for the encryption. We define ν to be the number of
round-based operations times the number of S-boxes (16) needed to encrypt a
single 128 bit block. The number of blocks is easily calculated by dividing the
bitsize of the booking details to 128. The total complexity can be expressed as

|Duo | · |IDcar|+ |Duo |+ 2 · |M
uc |

128
· ν +

H(MB)

128
· ν (1)

round based operations. Notice that the AES encryption of the hash of the
booking details can be performed in parallel. Note that, the car owner’s and con-
sumer’s task of share generation can be performed locally and secret share mech-
anisms like Shamir secret sharing are not intrinsically computationally heavy.

Practical Efficiency: Although PePTCAP is an AES implementation agnostic,
we make use of the results from [25] which is a BGW-based construction. We
stress that, although the state-of-the-art on this kind of AES implementations
has evolved, we consider [25] because it offers computational experimentation
based on BGW which is relevant for our case. Moreover, we consider a relatively
large token-size, to facilitate any further analysis for smaller (more realistic)
scenarios. We assume the following configuration for the booking details: Certuc

is 7920 bits, IDcar is 32 bits, Lcar is 64 bits, CDuc is 96 bits, ACuc is 4 bits,
IDB is 32 bits, and σ is 512 bits, consisting a bitsize of 8660 bits for Muc . We
consider an anonymity set Duo of median size, i.e., 40, being sufficient to hide the
average number of cars a single individual holds, and a typical 256 hash bitsize.
Finally, following [25], we set ν to 71. Using (1), the total number of round-based
operations equals 1118. However, this ν value corresponds to a highly parallelized
case described in [25]. The value of ν raises to 2202 when no such parallelization
on round-based operations is considered. If we use this greater ν value, the total
raises to 305, 188 non-concurrent round-based operations.

We measured the amount of time needed to execute a single round-based
operation, which is multiplication in our case, under BGW. We used the BGW
implementation introduced in [34], and implemented in C++. We run 106 multi-
plication operations on a 64 bit server running 2*2*10-cores Intel Xeon E5-2687
at 3.1GHz 256 GB of RAM memory available to a Linux distribution and three
parties running on the same machine. The average execution time for such op-
eration resulted in 2.08 × 10−5 seconds. The extrapolation of this value in our
case leads to an execution time equivalent to 0.0232544 seconds for the highly
parallelized case, and 6.35 seconds when no such parallelization is considered.
Although these running times would satisfy the needs of a realistic application,
this is only a relative approximation of what the execution time for the MPC
components would be. As this is only an estimation, results might vary depend-
ing instantiation details of any implementation.

7 Conclusions

Although physical keyless car sharing systems allow users to share their cars
conveniently, they come with security and privacy challenges. To address these
challenges, this paper proposes a decentralised and privacy-enhancing protocol
for (temporary) car access provision, PePTCAP. PePTCAP uses multiparty
computation based on Shamir’s secret sharing scheme which allows a generation
and distribution of an access token for a car in a privacy-preserving manner,
as well as, dealing with disputes upon law enforcement requests. Moreover, we
performed a security and privacy analysis of PePTCAP. We also performed a
complexity analysis, practical efficiency and time estimations for the multiparty
computation elements of PePTCAP. Our estimations show that PePTCAP is
fast enough for realistic scenarios. As future work, we plan to extend PePTCAP
to include additional operations such as booking and payment.

References

1. Volvo: Volvo Keyless Cars Accessed November, 2016.
2. BMW: Drivenow Accessed November, 2016.
3. TODAY, U.: Toyota will test keyless car sharing Accessed November, 2016.
4. Shaheen, S.A., Mallery, M.A., Kingsley, K.J.: Personal vehicle sharing services

in North America. Research in Transportation Business & Management 3 (2012)
71–81

5. Shaheen, S.A., Cohen, A.P.: Car sharing and personal vehicle services: worldwide
market developments and emerging trends. Int. Journal of Sustainable Transporta-
tion 7(1) (2013) 5–34

6. Symeonidis, I., Mustafa, M.A., Preneel, B.: Key-less Car Sharing System: A Secu-
rity and Privacy Analysis. In: 2016 IEEE International Smart Cities Conference
(ISC2). (Sept 2016) 1–7

7. Uber: New App Features and Data Show How Uber Can Improve Safety on the
Road Accessed July, 2016.

8. Troncoso, C., Danezis, G., Kosta, E., Balasch, J., Preneel, B.: PriPAYD: Privacy-
Friendly Pay-As-You-Drive Insurance. IEEE Trans. Dependable Sec. Comput. 8(5)
(2011) 742–755

9. Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I., Geuens, C.:
PrETP: Privacy-Preserving Electronic Toll Pricing. In: 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings. (2010) 63–
78

10. Mustafa, M.A., Zhang, N., Kalogridis, G., Fan, Z.: Roaming electric vehicle charg-
ing and billing: An anonymous multi-user protocol. In: IEEE SmartGridComm.
(Nov 2014) 939–945

11. EVITA: E-safety Vehicle Intrusion Protected Applications (EVITA) Accessed
November, 2016.

12. PRESERVE: Preparing Secure Vehicle-to-X Communication Systems (PRE-
SERVE) Accessed November, 2016.

13. Group, N.W.: The Transport Layer Security (TLS) Protocol, Version 1.2 Accessed
November, 2016.

14. Shamir, A.: How to share a secret. Commun. ACM 22(11) (1979) 612–613

15. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, ACM (1988) 1–10

16. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: PODC ’98, ACM
(1998) 101–111

17. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC, ACM (1988) 11–19

18. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO ’12. Volume 7417 of LNCS.,
Springer (2012) 643–662

19. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryp-
tion and multiparty computation. In: EUROCRYPT ’11. Volume 6632 of LNCS.,
Springer (2011) 169–188

20. Keller, M., Orsini, E., Scholl, P.: MASCOT: Faster Malicious Arithmetic Se-
cure Computation with Oblivious Transfer. Technical report, Cryptology ePrint
Archive, 201 6. http://eprint. iacr. org/2016/505

21. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: TCC 2005. Volume 3378 of LNCS.
Springer (2005) 342–362

22. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: TCC 2006. Volume 3876 of LNCS., Springer (2006) 285–304

23. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: ICALP (2). (2013) 645–656

24. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: SCN. (2010) 182–199

25. Damg̊ard, I., Keller, M.: Secure multiparty AES. In: International Conference on
Financial Cryptography and Data Security, Springer (2010) 367–374

26. Damg̊ard, I., Keller, M., Larraia, E., Miles, C., Smart, N.: Implementing AES via
an Actively/Covertly Secure Dishonest-Majority MPC Protocol. In: Security and
Cryptography for Networks. Volume 7485 of LNCS., Springer (2012) 241–263

27. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Springer (2015) 430–454

28. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-Friendly
Symmetric Key Primitives. Technical report, Cryptology ePrint Archive, Report
2016, 2016. http://eprint. iacr. org

29. Feamster, N., Dingledine, R.: Location diversity in anonymity networks. In: Pro-
ceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES
2004, Washington, DC, USA, October 28, 2004. (2004) 66–76

30. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptography 2(2) (1992) 107–125

31. Zhang, Y., Steele, A., Blanton, M.: Picco: a general-purpose compiler for private
distributed computation. In: Proceedings of the 2013 ACM SIGSAC conference on
Computer; communications security. CCS ’13, New York, NY, USA, ACM (2013)
813–826

32. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple
combinatorial graph problems. In: Financial Cryptography. (2013) 239–257

33. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Delayed path coupling and
generating random permutations via distributed stochastic processes. In: SODA
’99, SIAM (1999) 271–280

34. Aly, A.: Network Flow Problems with Secure Multiparty Computation. PhD thesis,
Universté catholique de Louvain, IMMAQ (2015)

35. Council of the EU Final Compromised Resolution: General Data Protection Reg-
ulation. http://www.europarl.europa.eu Accessed Feb, 2015.

Appendix A

Straw-man arguments

We outline two physical Keyless car Sharing Systems (KSSs), one is based on
a peer-to-peer and the other on a centralised architecture. Moreover, we argue
why these architectures are not good solutions. In short, the peer-to-peer KSS
architecture fails to provide the non-repudiation property, and it is weak against
adversaries who can physically steal the owner’s portable devices and extract the
car’s symmetric key stored on them. The centralised KSS architecture fails to
provide user’s anonymity and unlinkability as the Keyless Sharing Management
System (KSMS) can link all the booking sessions and construct a detailed user’s
profile (profiling) [35]. Next we collaborate more on these arguments.

A peer-to-peer KSS architecture. We first consider a simple peer-to-peer
protocol that consists of an owner, a consumer and a car. The car owner holds
the key of the car and have it stored in his portable device. Moreover, an owner
and a consumer have agreed upon the booking details for sharing a car. For a car
sharing request, the car owner can generate a (temporary) access token for her
car using the agreed booking details and the key of the car. Upon generation of
the access token, the owner distributes it to the consumer, who can use the token
to access the car. This architecture has two weaknesses: weak non-repudiation
and weak car key protection.

Weak non-repudiation. In a peer-to-peer KSS architecture, providing an ac-
countability might be challenging as resolving disputes will have to rely com-
pletely on the traces and evidences left on the car or on both users’ portable
devices. However, considering that users might be distrusting each other, cou-
pled with the fact that both users will have physical access to the car, they might
attempt to manipulate or even completely destroy the evidences on the car or
their devices. Moreover, the car is a mobile entity which might not all the time
have a connectivity with its owner. It can also be the case where an adversary
(consumer) have the means to deny the car reporting to the owner the use of the
car. The consumer might aim to disrupt any communication between the car and
the owner’s device or to physically violate and brake the car’s OBU. To better
mitigate such physical attacks and provide a strong non-repudiation property, a
trusted entity operating in a physically secure environment is essential for a fair
dispute resolution within the KSS.

Weak car key protection. Another major weakness of the peer-to-peer KSS ar-
chitecture is the fact that the symmetric key of the car has to be stored in the
owner’s devices. Unfortunately, such portable devices can easily get broken or
even stolen. For a capable adversary, it might be feasible to extract the sym-
metric car key from the device by bypassing the device’s security authentication
mechanisms such as PIN or password. Once an adversary gains access to the
car key, he/she can generate valid car sharing access tokens, so that he/she can
steal the car or share it with others. To mitigate such a limitation, the smallest
number of trusted entities should have access to the car key. Considering that
the car manufacturer is the trusted entity which generates and embeds a key
into each car, the manufacturer and the car already have copies of the car key.
Thus, ideally, a KSS solution should not allow any other entities to have copies
of the key.

A centralized KSS architecture. To overcome the aforementioned limita-
tions, a centralised architecture including a Keyless Management System (KSMS)
is necessary. The KSMS will deal with all the requests from the users, keep evi-
dences for each of the users’ actions (for quick disputes resolutions), as well as,
hold a copy of the car, so that (i) it can generate access tokens and (ii) owners’
device do not have to hold copies of car keys. However, the KSMS will have to
be filly trusted by both, owners and users. Hence, such an KSS architecture also
has two weaknesses: single point of failure and user privacy violation.

Single point of failure. Having a single entity managing all the access token
generation requests concentrates the system computations on one entity, the
KSMS, thus making it a performance bottleneck of the KSS, and an easy tar-
get for denial-of-service attacks. Hence, distributing the computational burden
among several parties, for example several servers managed by different parties,
could increase considerably the reliability of the KSS.

User privacy violation. Another weakness of the centralised KSS entity is that
the centralised entity can jeopardize the users’ privacy. The KSMS might pas-
sively collect the car sharing details such as who is sharing, which car, with
whom, at which location, when and for how long. It may also attempt to learn
the location and availability of a car, whether a user is absent from home and
whom he/she is traveling with. Moreover, the user’s car sharing preferences might
be inferred by a systematic collection of the user’s information by the KSMS.
Thereby, an adversary may infer the car owners’ sharing preferences, free time
activities and circle of trust. These preferences can be established by collecting
information about sharing patterns such as rental time, duration, type of car,
pickup, and drop-off location, how often a car is shared, and with whom. An
adversary may even attempt to infer sensitive information about users such as
their health status, by identifying users who use cars for disabled passengers, or
regular hospital visits. Profiling constitutes a high risk for users’ privacy [35].
Therefore, users’ anonymity, booking unlinkability and access token confiden-
tiality should be provided by any KSS.

To mitigate all these accountability, trust and privacy issues, we use a KSS
architecture based on secure Multiparty Computation (MPC) in combination
with a Public Ledger for guaranteeing user accountability, anonymity, unlink-
ability and access token confidentiality. Moreover, our system outsources the
computationally heavy operation to a complex of MPC servers, bearing users
from performing such operations.

Appendix B

Owner Car Consumer Public Ledger S1 . . .Si . . .Sl

msg{SES K GEN REQ, IDB}
K1 ← Gen Ses keys()
K2 ← Gen Ses keys()
[K1]← Share(K1)
[K2]← Share(K2)
for i = 1, . . . , l do

CSi ← EncPkSi
([K1], [K2])

end for

σuo ← SigSkuo
(MB)

Muc ← {MB , σuo}
[Muc]← Share(Muc)

msg{SES K GEN ACK, IDB , {CS1 , . . . , CSl}}

msgi{AT OP REQ, IDuo , CSi , [Muc]}
~Duo ← Query(IDuo , DBSi)
for y = 1, . . . , n do

~Dcar
y ← { ~Dcar

y−1 || eqz([IDcar], [ID
caruo
y])}

end for
[K

caruo
y]← ~Dcar × ~Duo

[Ccar]← E
[K

caruo
y]

([Muc])

{[K1], [K2]} ← DecSkSi
(CSi)

[Cuc,car]← E[K1]([C
car], [IDcar])

[hB]← H([MB])
[CB]← E[K2]([h

B])

msgi{AT PUB REQ, [Cuc,car], [CB]}

{Cuc,car, CB} ← open{[Cuc,car], [CB]}
Publish(Cuc,car, CB , TPUB)

msg{AT PUB ACK,TPUB}
msg{AT PUB ACK,TPUB}

msg{AT PUB ACK,TPUB}
Query(TPUB)

CB Cuc,car TPUB

ersdf3tx0 fwefw234 14774098

.

msg{Cuc,car, CB}

hB ← H(MB)
CB ← EK2(hB)

computed CB ?
= retrieved CB

{Ccar, IDcar} ← DK1(Cuc,car)

msg{Ccar, IDcar}

{MB , σuo} ← DKcar (Ccar)
Verify(σuo)

Fig. 7. PePTCAP complete representation.

