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Abstract

Yao’s garbled circuits have been extensively used in Secure Function Evaluations (SFE). Several improvements
have been proposed to improve the efficiency of garbled circuits. Kolesnikov and Schneider (2008) proposed the
free-XOR technique. Naor, Pinkas, and Sumner (1999) introduced garbled row-reduction technique GRR3 to reduce
each garbled gate to three ciphertexts, Pinkas et al (2009) proposed GRR2, and Zahur, Rosulek, and Evans (2015)
introduced a half-gates technique to design free-XOR compatible GRR2. The GRR2, half-gates, and free-XOR
garbling schemes improve efficiency by leaking locations of XOR gates in the circuit. This kind of information
leakage is acceptable for SFE protocols though it maybe be unacceptable for other protocols such as Private Function
Evaluation (PFE). For example, these techniques could not be used to improve the efficiency of existing non-universal-
circuit-based constant round PFE protocols. The first result of this paper is a Gate Privacy preserving Garbled Row
Reduction technique GPGRR2 for designing garbled circuits with at most two ciphertexts for each garbled gate.
Compared with state-of-the-art gate-privacy-preserving garbling scheme GRR3, the scheme GPGRR2 reduces the
garbled circuit size by a factor of at least 33%. The second result is the design of a linear (over integers) garbling
scheme to garble a single odd gate to one ciphertext. Zahur, Rosulek, and Evans (2015) proved that a linear garbling
scheme garbles each odd gate to at least 2 ciphertexts. Our result shows that Zahur et al’s result should be formulated
more appropriately by restricting the “linear concept” explicitly to the field F2t . The third result is to use the GPGRR2
scheme to reduce the number of ciphertexts in non-universal-circuit based PFE protocols by a factor of 25%.

1 Introduction
Yao [18] introduced the garbled circuit concept which allows computing a function f on an input x without leaking
any information about the input x or individual circuit gate functionality used for the computation of f(x). Since
then, garbled circuit based protocols have been used in numerous places and it has become one of the fundamental
components of secure multi-party computation (SMC), secure function evaluation (SFE), and private function evalu-
ation (PFE) protocols. In a PFE protocol, one participant P1 holds a circuit C and a private input x1 and every other
participant Pi (i ≥ 2) holds a private input xi. The PFE protocol’s goal is that a subset (or all) of the participants
learns the circuit output C(x1, · · · , xn) but nothing beyond this. In particular, the participant Pi (i ≥ 2) should not
learn anything else except the size of C and, optionally, the output. Note that a PFE protocol is different from standard
SMC/SFE protocols where the circuit C is publicly known to all participants in SMC/SFE protocols.

Bellare et al [3] provides a rigorous definition of circuit garbling schemes and analyzed garbling scheme security
from aspects of privacy, obliviousness, and authenticity. Specifically, Bellare et al [3] pointed out that garbling schemes
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that are secure for Φcirc (that is, it does not conceal the circuit) is sufficient for the design of SFE/SMC protocols.
However, for a PFE protocol, one needs a garbling scheme that is secure for Φsize (that is, it only leaks the circuit
size). Though Yao’s circuit garbling scheme is only secure for Φtopo (that is, it only reveals the circuit topology) and
not secure for Φsize, one can use universal circuit to convert a Φtopo-secure garbling scheme to a Φsize-secure garbling
scheme (see, e.g., Bellare et al [3]).

We first review Yao’s garbled circuit construction using Beaver, Micali, and Rogaway’s point-permute (or called
external index) technique [2]. Note that the external index technique makes it possible to design garbled circuits
without using CPA-secure encryption schemes. Unless stated otherwise, throughout the paper we will use lower case
letters u, v, w, x, y, z etc. to denote wires within a circuit and use bu, bv, bw, bx, by, bz ∈ {0, 1} as variables to
denote the values on the wires u, v, w, x, y, z respectively. For a given number t that is dependent on the security
parameter κ, the circuit owner assigns two random values k0x, k

1
x ∈ {0, 1}t to each wire x corresponding to 0 and

1 values of the wire. The circuit owner chooses a secret random permutation πx over {0, 1} for each wire x. The
garbled values for the wire x consist of k0x||πx(0) and k1x||πx(1) where πx(b) is considered as an external index for
kbx. It is easily observed that for any b ∈ {0, 1}, we have b = πx(b)⊕ πx(0). For a gate z = g(x, y), the garbled gate
g̃ consists of four ciphertexts that are ordered using the external index πx(bx)||πy(by). For example, if we assume that
πx(0) = πy(0) = 1 and πx(1) = πy(1) = 0, then the garbled gate g̃ is described using the following four ciphertexts.

πx(1)||πy(1) : (k
g(1,1)
z ||πz(g(1, 1)))⊕Hg(k

1
x ◦ k1y)

πx(1)||πy(0) : (k
g(1,0)
z ||πz(g(1, 0)))⊕Hg(k

1
x ◦ k0y)

πx(0)||πy(1) : (k
g(0,1)
z ||πz(g(0, 1)))⊕Hg(k

0
x ◦ k1y)

πx(0)||πy(0) : (k
g(0,0)
z ||πz(g(0, 0)))⊕Hg(k

0
x ◦ k0y)

(1)

where Hg is a gate g specific pseudorandom function (e.g., a secure hash function or an encryption scheme) whose
output length is |kbz|+1 and ◦ is an operator. For example, one may define k1 ◦ k2 = k1||k2 or k1 ◦ k2 = k1 ⊕ k2 or
k1 ◦ k2 = k1 + k2 mod 2t etc.. For most applications, we take a pseudorandom function H (e.g., a cryptographic
hash function) and define Hg(·) = H(gID, ·) where gID is an identity string for the gate g. At the start of the
protocol, the circuit owner provides the evaluator with a garbled version g̃ for each gate g of the circuit. During the
evaluation process, the circuit owner provides garbled input values to the evaluator and the evaluator evaluates the
garbled circuits gate by gate. As an example, if the input is (x, y) = (1, 0), then the circuit owner sends garbled values
k1x||πx(1) = k1x||0 and k0y||πy(0) = k0y||1 to the evaluator. Since the external index bit value πx(1)||πy(0) = 01, the

evaluator uses the corresponding second ciphertext to recover the garbled value kg(1,0)z ||πz(g(1, 0)) for the output wire
z, which corresponds to the output g(1, 0).

Several efforts have been made to reduce the garbled circuit size. Kolesnikov and Schneider [10] observed that
if there is a circuit-wide global offset value ∆ ∈ {0, 1}t such that garbled values for each wire x within the circuit
satisfy the invariance property k1x = k0x ⊕∆, then the XOR gate could be garbled for free since we have kbxx ⊕ k

by
y =

k0x ⊕ k0y ⊕ ((bx ⊕ by) ·∆) where 1 ·∆ = ∆ and 0 ·∆ = 0t.
Naor, Pinkas, and Sumner [13] observed that one can choose a randomly fixed pair (bx, by) ∈ {0, 1}2 and let

kg(bx,by)z ||π(g(bx, by)) = Hg(k
bx
x ◦ kbyy ).

Then the corresponding ciphertext for the row (π(bx), π(by)) is a zero string and one does not need to store it. In other
words, one can reduce the number of ciphertexts from 4 to 3 for each garbled gate. In this paper, we will refer this
approach as GRR3.

Pinkas et al [15] used polynomial interpolation to reduce each gate to two ciphertexts. However, Pinkas et al’s
technique is not compatible with the free-XOR technique. Recently, Zahur, Rosulek, and Evans [19] introduced the
state-of-the-art half-gates technique to design free-XOR compatible garbling schemes so that each AND/OR gate
could be represented using two ciphertexts.

The aforementioned free-XOR, GRR2, and half-gates garbling schemes reduce garbled circuit sizes by leaking the
number and locations of XOR gates within circuits. This kind of side information leakage is acceptable for SFE (secure
function evaluation) though it may be unacceptable for other applications. For example, these techniques cannot be
used to improve the efficiency of non-universal circuit based PFE protocols in Katz and Malka [7] and Mohassel
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and Sadeghian [12]. In this paper, we investigate the possibility of reducing garbled circuit size without leaking any
further information beyond circuit topology. Specifically, we design garbled circuits with at most two ciphertexts for
each garbled gate such that the only leaked information is the circuit topology. We then apply our techniques to PFE
protocols in Katz and Malka [7] and Mohassel and Sadeghian [12] to reduce the number of ciphertexts by a factor of
25%.

It has been an interesting and challenging question to study the lower bounds of garbled circuit sizes. Zahur,
Rosulek, and Evans [19] proved that any “linear” garbling scheme garbles an AND gate to at least two ciphertexts.
However, the statement of their lower bound theorem is inaccurate. In this paper, we present a linear (over integers)
garbling scheme that garbles an AND gate to one ciphertext. By examining the proofs in [19], it is clear that their
proof is based on linear operations in the finite field F2t . Thus one should bear in mind that the result in [19] only
applies to the finite field F2t .

We conclude this section with the introduction of some notations. We use κ to denote the security parameter, p(·)
to denote a function p that takes one input, and p(·, ·) to denote a function p that takes two inputs. A function f is
said to be negligible in an input parameter κ if for all d > 0, there exists K such that for all κ > K, f(κ) < κ−d.
For convenience, we write f(κ) = negl(κ). Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N , are said to be
computationally indistinguishable (written as X c∼ Y or X c

= Y ) if for all probabilistic polynomial-time algorithm
D, we have

|Pr[D(Xκ, 1
κ) = 1]− Pr[D(Yκ, 1

κ) = 1]| = negl(κ).

Throughout the paper, we use probabilistic experiments and denote their outputs using random variables. For example,
Expreal

E,A(1κ) represents the output of the real experiment for scheme E with adversary A on security parameter κ.
The structure of this paper is as follows. Section 2 reviews security definition for garbling schemes. Section 3

reviews GRR2 techniques. Section 4 presents our linear interpolation based garbled circuit construction techniques
where each garbled gate uses two ciphertexts. Section 5 provides an optimization of GPGRR2 and shows that one can
linearly garble an AND gate with one ciphertext. Section 6 uses linear interpolation garbling schemes to reduce the
size of garbled circuits for PFE protocols in various adversary security models. Section 7 presents a revised circuit
garbling scheme GRRcirc that is only secure for input privacy (it reveals the number and positions of XOR gates).

2 Circuit garbling schemes and their security
In this section, we briefly review the formal definition of circuit garbling schemes formalized by Bellare, Hoang, and
Rogaway [3].

Definition 2.1 Let C = {Cn}n∈N be a family of circuits such that Cn is a set of boolean circuits that take n-bit inputs.
A garbling scheme for C is a tuple of probabilistic polynomial time algorithms GS = (Gb, Enc, Eval, Dec) with the
following properties

• (C̃, sk, dk) = GS.Gb(1κ, C) outputs a garbled circuit C̃, a secret key sk, and a decoding key dk for circuits
C ∈ Cn on the security parameter input κ.

• c = GS.Enc(sk, x) outputs an encoding c for an input x ∈ {0, 1}∗.

• ỹ = GS.Eval(C̃, c) outputs a garbled value ỹ.

• y = GS.Dec(dk, ỹ) outputs a circuit output.

The garbling scheme GS is correct if we have

Pr[GS.Dec(dk, GS.Eval(C̃, GS.Enc(sk, x))) 6= C(x)|GS] = negl(κ).

The garbling scheme GS is efficient if the size of C̃ is bounded by a polynomial and the run-time of c = GS.Enc(sk, x)
is also bounded by a polynomial.

3



The security of garbling schemes is defined in terms of input and circuit privacy in the literature. For a garbled
circuit, some side-information such as the number of inputs, outputs, gates, and the topology of the circuit C (that is,
the connection of gates but not gate types) and other information is leaked inherently. We denote such kind of side
information as Φ(C). Thus a security definition of garbling schemes should capture the intuition that the adversary
learns no information except Φ(C) and the output given one evaluation of the garbled circuit. The following definition
requires that for any circuit or input chosen by the adversary, one can simulate the garbled circuit and the encoding
based on the computation result and Φ(C) in polynomial time. In the definition, the variable α represents any state
that the adversary A may want to give to the algorithm D.

Definition 2.2 (Privacy for garbling schemes) A garbling scheme GS for a family of circuits C is said to be input and
circuit private if there exists a probabilistic polynomial time simulator SimGS such that for all probabilistic polynomial
time adversaries A and algorithms D and all large κ, we have∣∣∣∣ Pr[D(α, x, C, C̃, c) = 1|REAL]−

Pr[D(α, x, C, C̃sim, c̃) = 1|SIM]

∣∣∣∣ = negl(κ)

where REAL is the following event

(x,C, α) = A(1κ);

(C̃, sk, dk) = GS.Gb(1κ, C);
c = GS.Enc(sk, x)

C(x) = GS.Dec(dk, GS.Eval(C̃, c))

and SIM is the following event

(x,C, α) = A(1κ);

(C̃sim, c̃) = SimGS(1
κ, C(x),Φ(C), 1|C|, 1|x|).

The authors of [3] considered the following three kinds of commonly used side-information functions.

1. Φsize(C) = (n,m, q) where n,m, q are the number of inputs, outputs, and gates of the circuit C respectively.

2. Φtopo(C) = Ctopo where a topolgical circuitCtopo is like the conventional circuitC except that the functionality
of the gates is unspecified.

3. Φcirc(C) = C where the side information is the circuit itself. That is, the entire circuit C is revealed.

The authors of [3] then argued that, by varying Φ(C), one can encompass the customary setting for secure function
evaluation (SFE) with Φ(C) = Φcirc(C) and private function evaluation (PFE) with Φ(C) = Φsize(C). It is straight-
forward to observe that garbling schemes based on free-XOR, GGR2, and half-gates are secure for Φcirc but not
secure for Φtopo.

It is pointed out in Bellare et al [3, Sections 3.8] that, for both indistinguishability-based security notion and
simulation-based security notion, each Φtopo-secure garbling scheme GStopo can be converted to a Φsize-secure gar-
bling scheme GSsize using universal circuits. GSsize and oblivious transfers can then be used to design secure PFE
protocols. If the security notion is based on simulation, then one can use Φcirc-secure garbling schemes, universal cir-
cuits, and oblivious transfers to design secure PFE protocols. However, no proof has been presented to show whether
one can use Φcirc-secure garbling schemes, universal circuits, and oblivious transfers to design secure PFE protocols
using the indistinguishability-based security notion1.

We conclude this section by pointing out a circuit complexity result which shows the important information leakage
by identifying the number (or locations) of XOR gates within a topological circuit Ctopo. Let ACi denote the family
of polynomial size circuits of depth O(logi n) with unlimited-fanin AND and OR gates (NOT gates are only allowed
at inputs). Let NCi denote the family of polynomial size circuits of depth O(logi n) with bounded-fanin AND and OR
gates. It is a folklore that

NCi ⊆ ACi ⊆ NCi+1.

1The authors would like to thank Dr. Viet Tung Hoang for several valuable discussions on this question and other results in [3].
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Let fparity(x1, · · · , xn) = x1 ⊕ x1 ⊕ · · · ⊕ xn be the parity function. It is well known that fparity ∈ NC1. Ajtai et al
[1] and Furst et al [5] showed that fparity /∈ AC0. That is, fparity ∈ NC1 \ AC0.

Let Cparity be a randomly selected polynomial size circuit of constant depth with unlimited-fanin XOR gates that
computes fparity. Note that there are many such kind of circuits. Let fac0 ∈ AC0 and Cfac0 be a circuit that computes
fac0 such that Cfac0 ,topo = Cparity,topo. That is, the topological circuits of Cfac0 and Cparity are identical.

Assume that a circuit owner randomly selects Cparity or Cfac0 to garble. Given Φtopo-secure garbled circuits for
Cparity or Cfac0 , the evaluator cannot tell whether the evaluated function is in AC0 or not. On the other hand, if the
evaluator receives Φcirc-secure garbled circuits for Cparity or Cfac0 , it can distinguish whether the evaluated function
is in AC0. More involved examples that contain both odd and even gates but with a large fraction of even gates could
be constructed using Håstad’s switching lemma [6]. The aforementioned example shows that it is preferred to design
efficient garbling schemes that do not reveal the number and positions of XOR gates.

3 Pinkas et al’s Garbled Row Reduction GRR2
We first review Pinkas et al’s Garbled Row Reduction GRR2 [15]. Let t be the length in terms of number of bits of wire
lables. That is, we have t = |kbx| for all wires x and b = 0, 1. Wire labels kbx and integers 0, 1, 2, 3, · · · can be interpreted
as elements of the finite field F2t . A binary gate is said to be odd if its truth table has an odd number of ‘1’ entries
(e.g. an AND or OR gate), otherwise it is called an even gate (e.g., an XOR gate). Using polynomial interpolation,
Pinkas et al showed that each gate could be represented by only two ciphertexts. Specifically, for an odd gate g (e.g.,
an AND or OR gate), assume that the first three ciphertexts C1, C2, C3 encrypt the same wire label kbz||πz(b) via
Ci = (kbz||πz(b))⊕ (Ki||Mi) (for i = 1, 2, 3) and the fourth ciphertext C4 encrypts the wire label k1−bz ||πz(1− b) via
C4 = (k1−bz ||πz(1 − b)) ⊕ (K4||M4) where b,Mi ∈ {0, 1} for i = 1, 2, 3, 4. Let P (X) be a degree two polynomial
over F2t passing through points (1,K1), (2,K2), and (3,K3). Let Q(X) be another degree two polynomial over
F2t passing through points (5, P (5)), (6, P (6)), and (4,K4). Then by setting kbz = P (0) and k1−bz = Q(0), one can
replace the garbled table with 〈P (5), P (6), c1, c2, c3, c4〉where P (5) and P (6) are elements from F2t and c1, c2, c3, c4
are bits encrypting the external index bits. That is, πz(g(bx, by)) = ci ⊕Mi for i = 2πx(bx) + πy(by) + 1. The total
size of the garbled gate is 2t + 4 bits. Interpolating the polynomial passing through points (5;P (5)), (6;P (6)), and
(i;Ki) for i = 1, 2, 3, 4 will produce either polynomial P (X) or Q(X), which can be evaluated at X = 0 to get the
appropriate value kbz or k1−bz .

For an even gate g (e.g., an XOR or NXOR gate), assume that ciphertexts Ci1 , Ci2 encrypt the wire label k0z ||πz(0)
via Cij = (k0z ||πz(0)) ⊕ (Kij ||Mij ) (for j = 1, 2) and the ciphertexts Ci3 , Ci4 encrypt the wire label k1z ||πz(1)
via Cij = (k1z ||πz(1)) ⊕ (Kij ||Mij ) (for j = 3, 4) where Mij ∈ {0, 1} for ij = 1, 2, 3, 4. Let P (X) be a linear
polynomial over F2t passing through points (i1,Ki1) and (i2,Ki2). Let Q(X) be another linear polynomial over
F2t passing through points (i3,Ki3) and (i4,Ki4). Define k0z = P (0) and k1z = Q(0). If πz(0) = 0 then the
garbled gate is represented as 〈P (5), Q(5), c1, c2, c3, c4〉. Otherwise, πz(1) = 0 and the garbled gate is represented
as 〈Q(5), P (5), c1, c2, c3, c4〉. In the garbled gate, P (5) and Q(5) are elements from F2t and c1, c2, c3, c4 are bits
encrypting the external index bits. That is, πz(g(bx, by)) = ci ⊕Mi for i = 2πx(bx) + πy(by) + 1. The total size of
the garbled gate is 2t + 4 bits. The evaluator receives the garbled gate in the format of 〈Y1, Y2, c1, c2, c3, c4〉. At the
time of evaluation, the evaluator first calculates the value πz(bz) using the ingoing wire labels. If πz(bz) = 0, then
it interpolates the linear polynomial passing through points (5;Y1) and (i;Ki) for i = 1, 2, 3, 4 which will produce
either polynomial P (X) or Q(X), which can be evaluated at X = 0 to get the appropriate value kbzz . If πz(bz) = 1,
then it interpolates the linear polynomial passing through points (5;Y2) and (i;Ki) for i = 1, 2, 3, 4 to obtain the
appropriate value kbzz .

The ciphertexts for odd gates and even gates have different format with GRR2 techniques. Thus GGR2 garbled
circuits are not secure for Φtopo. It is also easy to check that in the GRR2 garbling scheme, the number of ciphertexts
for an even gate could be reduced to one ciphertext by using the GRR3 approach.
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4 Garbled gate size reduction using linear interpolation

4.1 Gate Privacy preserving Garbled Row Reduction GPGRR2
As we mentioned in the preceding section, Pinkas et al’s GRR2 garbling scheme [15] leaks the number and positions of
even/odd gate types. For example, an evaluator evaluates a garbled odd gate using degree two polynomial interpolation
and evaluates a garbled even gate using linear interpolation. The free-XOR techniques proposed by Kolesnikov and
Schneider [10] leaks the number and positions of XOR gates and the half-gates techniques by Zahur, Rosulek, and
Evans [19] leaks the number and positions of XOR gates also. In this section, we propose a gate privacy preserving
garbled row reduction GPGRR2 technique to garble circuits with security for Φtopo. Our garbling scheme GPGRR2
does not require the external index bits. For reason of convenience, the following construction still includes the
external index bits. These external index bits are used in next Sections for the design of garbling schemes that are only
secure for Φcirc.

First select two parameters t and τ based on the security requirements. It is recommended to select τ such that
10 ≤ τ < t. Each ciphertext will be of length t+ 1 bits. In order to garble a circuit C, the circuit owner first chooses
a circuit-wide global offset value ∆ ∈ {0, 1}t uniformly at random. Furthermore, let H be a pseudo-random function
with (t + τ + 1)-bits output. The circuit C will be garbled in such a way that for all wires x, the garbled values
k0x||πx(0) and k1x||πx(1) for the wire x satisfy the following invariance property:

k1x = k0x + ∆ mod 2t (2)

In the following, we formally describe the process of garbling a gate z = g(x, y) in a circuit C. Let k0x||πx(0),
k1x||πx(1), k0y||πy(0), and k1y||πy(1) be the garbled input wire values for the wires x and y respectively. Let k0z ||πz(0),
k1z ||πz(1) be the garbled output wire values for the output wire z = g(x, y) that will be defined. Define the operator ◦
as the integer addition modulo 2t. Then we have

k0x ◦ k0y = k0x + k0y = x̄1 mod 2t

k0x ◦ k1y = k1x ◦ k0y = k0x + k0y + ∆ = x̄1 + ∆ mod 2t

k1x ◦ k1y = k0x + k0y + 2∆ = x̄1 + 2∆ mod 2t
(3)

for some x̄1 ∈ {0, 1}t. For these garbled input wire values, we have

K00||M00||N00 = Hg(k
0
x ◦ k0y) = Hg(x̄1 mod 2t)

K01||M01||N01 = Hg(k
0
x ◦ k1y) = Hg(x̄1 + ∆ mod 2t)

K10||M10||N10 = Hg(k
1
x ◦ k0y) = Hg(x̄1 + ∆ mod 2t)

K11||M11||N11 = Hg(k
1
x ◦ k1y) = Hg(x̄1 + 2∆ mod 2t)

(4)

where M00,M01,M10,M11 ∈ {0, 1} and N00, N01, N10, N11 ∈ {0, 1}τ . It follows that

K01||M01||N01 = K10||M10||N10.

In case that there exist two values in
N00, N10, and N11 (5)

that are identical, re-start the garbling process and choose different garbled input wire values for the wires x and y.
We distinguish the following two cases depending on whether g is an even gate or an odd gate.
Garbling an odd gate g. First we assume that g is an OR gate. Let P (X) be a linear polynomial over F2t passing
through the following two points

(N10,K10) and (N11,K11) .

Set k1z = P (0) and k0z = k1z −∆ mod 2t where we interpret k0z , k1z , and ∆ as integers modulo 2t. Let Q(X) be a
linear polynomial over F2t passing through the following two points

(0, k0z) and (N00,K00) .
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Notice that P (X) is interpolated using the points corresponding to the situation when the output of the OR gate is 1
and Q(X) is interpolated using points corresponding to the situation when the output of the OR gate is 0. Let Xz be a
solution of the equation P (X) = Q(X) over F2t . Then the garbled table for the gate g is 〈Xz, P (Xz), c1, c2, c3, c4〉 =
〈Xz, Q(Xz), c1, c2, c3, c4〉 where Xz and P (Xz) are elements from F2t and c1, c2, c3, c4 are bits encrypting the ex-
ternal index bits. That is, πz(g(bx, by)) = ci ⊕Mi for i = 2πx(bx) + πy(by) + 1. The total size of the garbled gate is
2t+ 4 bits. Without the external index bits, the total size of the garbled gate is 2t bits.

For an AND gate g, one chooses the linear polynomialP (X) to pass through the points (N10,K10) and (N00,K00) .
Let k0z = P (0) and k1z = k0z+∆ mod 2t. Then choose the linear polynomialQ(X) to pass the points (0, k1z) and (N11,K11) .
That is, P (X) is interpolated using the points corresponding to the situation when the output of the AND gate is 0
and Q(X) is interpolated using points corresponding to the situation when the output of the AND gate is 1. The other
steps remain the same.

It should be noted that, alternatively, one can use 〈P (2τ ), Q(2τ ), c1, c2, c3, c4〉 as the garbled table for the gate g
instead of using the solution point Xz for the equation P (X) = Q(X). In this case, the external index bit will be used
to determine whether P (2τ ) or Q(2τ ) should be used for the linear interpolation at the evaluation time.
Garbling an even gate g. Without loss of generality, assume that g is an XOR gate. The case for an NXOR gate is
dealt with similarly by swapping the values of k0z and k1z . Let P (X) be a linear polynomial over F2t passing through
the following two points

(N00,K00) and (N11,K11) .

Set k0z = P (0) and k1z = k0z + ∆ mod 2t where we interpret k0z , k1z , and ∆ as integers modulo 2t. Let Q(X) be a
linear polynomial over F2t passing through the following two points

(0, k1z) and (N10,K10) .

In other words, P (X) is interpolated using the points corresponding to the situation when the output of the XOR gate is
0 andQ(X) is interpolated using points corresponding to the situation when the output of the XOR gate is 1. LetXz, be
a solution of the equation P (X) = Q(X) over F2t . Then the garbled table for the gate g is 〈Xz, P (Xz), c1, c2, c3, c4〉
where Xz and P (Xz) are elements from F2t and c1, c2, c3, c4 are bits encrypting the external index bits. That is,
πz(g(bx, by)) = ci ⊕Mi for i = 2πx(bx) + πy(by) + 1. The total size of the garbled gate is 2t+ 4 bits. Without the
external index bits, the total size of the garbled gate is 2t bits. Similarly, we may also use 〈P (2τ ), Q(2τ ), c1, c2, c3, c4〉
as the garbled table for the gate g and use the external index bit information for determining whether P (2τ ) or Q(2τ )
should be used for the linear interpolation at the evaluation time.
Evaluation of a garbled circuit. For a garbled gate g̃ = 〈Xz, P (Xz), c1, c2, c3, c4〉 where the evaluator does not
know whether g̃ is an even gate or an odd gate, the evaluator receives garbled values kbxx ||π(bx) and kbyy ||π(by) on the
wires x and y respectively. The evaluator first computes

K||M ||N = Hg(k
bx
x + kbyy mod 2t).

Let R(X) be a linear polynomial over F2t passing through points (N,K) and (Xz, P (Xz)). Then kg(bx,by)z = R(0).
The external index bit for output wire is calculated using πz(g(bx, by)) = c2πx(bx)+πy(by)+1 ⊕M.

In the above evaluation process, the evaluator needs to carry out one cryptographic hash function operation and
one linear polynomial interpolation operation. For the linear polynomial interpolation, the evaluator needs to find
a, b ∈ F2t such that aNi + b = Ki and aXz + b = P (Xz). That is, a = (Ni −Xz)

−1(Ki − P (Xz)) over F2t . In a
summary, the major cost for the evaluator is one cryptographic hash function operation and one field element inverse
operation over F2t .

In the above garbling scheme, an additional parameter τ is used. For larger circuits, one should choose a larger
τ though for smaller circuits, one can use a smaller τ . The value of τ does not have impact on the garbling scheme
security. However, it has impact on the efficiency of the garbling process. If the value of τ is too small, then the
probability for two values in (5) to be identical is high and one has to re-start the garbling process more frequently. On
the other hand, for large enough τ , the probability for two values in (5) to be identical is very small and one does not
need to restart the garbling process at all. It is also noted that the value of τ has no impact on the garbled circuit size.
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4.2 Provable security of GPGRR2 for Φtopo

In Section 4.1, we proposed a Gate Privacy preserving Garbled Row Reduction technique GPGRR2 such that each
garbled gate contains two ciphertexts and a four-bits ciphertext. The four-bits ciphertext is optional and could be
ignored since we do not use it for the scheme GPGRR2. For both odd gates and even gates, the two ciphertexts are the
coordinates of a point in a two dimensional space over F2t . Thus the evaluator cannot distinguish the type of a garbled
gate. The remaining part of the security proof is similar to that of the garbling scheme Garble1 security for Φtopo

by Bellare, Hoang, and Rogaway [3]. The proof of Garble1 security in [3] is based on the observation that, given a
pair of garbled values of the input wires, the evaluator can compute one garbled output value, but cannot distinguish
the other garbled output value from random. This is true for GPGRR2 since the other garbled value is defined using
a linear interpolation with a value which is unknown to the evaluator (indeed, the evaluator cannot distinguish that
unknown value from random). The details are omitted here.

5 Optimized GPGRR2 and lower bounds for garbled AND gate ciphertexts
GPGRR2 is secure for Φtopo and has comparable efficiency with other GRR techniques that are only secure for Φcirc.
For example, Pinkas et al’s Garbled Row Reduction GRR2 [15] converts each odd gate to two ciphertexts and each
even gate to one ciphertext. Pinkas et al’s GRR2 technique requires the evaluator to carry out a degree two polynomial
interpolation while GPGRR2 only requires a linear interpolation.

Zahur, Rosulek, and Evans [19] proved that “every ideally secure linear garbling scheme for AND gates must have
two ciphertexts for each garbled gate”. Zahur, Rosulek, and Evans’s proof is based on linear operations in the finite
field F2t . In this section, we show that if we use linear operations over integers (instead of linear operations over F2t ),
we can design a secure linear garbling scheme that garbles an AND/OR gate to only one ciphertext. This technique
is further used to optimize the garbling scheme GPGRR2. In an ideal case, the optimized garbling scheme GPGRR2
may generate garbled circuits of 1.5n ciphertexts for circuits of n gates. That is, the garbled circuit is around 1.5nt
bits. But the reader should be reminded that generally this ideal size is not achievable. Indeed, the problem of finding
an optimized garbled circuit for a given circuit is NP-complete following a similar proof as that in FleXOR [9].

The garbling scheme GPGRR2 in Section 4.1 used a circuit-wide global offset value ∆ though it is not necessary
to have this offset value ∆ to be global. In order for the construction in Section 4.1 to work, it suffices to have the
following invariance property

k0x + k1y = k1x + k0y mod 2t (6)

for all gates z = g(x, y) with garbled input wire values k0x||πx(0), k1x||πx(1), k0y||πy(0), and k1y||πy(1) respectively.
Based on this observation, the garbling scheme GPGRR2 could be optimized using the following principle: for each
gate g with two input wires x and y, if x is the output wire of a gate g1 and y is the output wire of a gate g2, then we
can construct a garbled gate for g1 with one ciphertext and a garbled gate for g2 with two ciphertexts. The gates g1
and g2 are constructed in such a way that the equation (6) is satisfied.

As an example of optimized garbling scheme GPGRR2, we construct a Φtopo-secure garbled circuit of 4-ciphertexts
for the 3-gate circuit “(x1 ∧ x2) ∨ (x3 ∧ x4)”. Let g1 be the gate x5 = (x1 ∧ x2), g2 be the gate x6 = (x3 ∧ x4), and
g3 be the gate x7 = (x5 ∨ x6) respectively. Assume that the invariance property (6) is satisfied for garbled input wire
labels for gates g1 and g2. That is, (6) is satisfied by replacing x, y with x1, x2 (or with x3, x4) respectively. Similar
to the original GPGRR2 garbling scheme, we define the operator ◦ as the integer addition modulo 2t.
Garbling the gate g1: “x5 = (x1 ∧ x2)”. Let k0x1

||πx1
(0), k1x1

||πx1
(1), k0x2

||πx2
(0), and k1x2

||πx2
(1) be the garbled

input wire values for the wires x1 and x2 respectively. For i1, i2 ∈ {0, 1}, let

Ki1i2 ||Mi1i2 ||Ni1i2 = Hg1(ki1x1
◦ ki2x2

).

By the invariance property (6), we have

k0x1
◦ k1x2

= k1x1
◦ k0x2

mod 2t

This implies that K01||M01||N01 = K10||M10||N10. In case that there are two values from N00, N01, and N11 that
are identical, re-start the garbling process to choose different garbled input wire values for the wires x1 and x2.
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Let P (X) be a linear polynomial over F2t passing through the two points (N00,K00) and (N01,K01). Let Q(X)
be a linear polynomial over F2t passing through the two points (N11,K11) and (2τ , P (2τ )). Set k0x5

= P (0) and
k1x5

= Q(0). Then the garbled table for the gate g1 is 〈P (2τ ), c1, c2, c3, c4〉 where P (2τ ) is an element from F2t and
c1, c2, c3, c4 are bits encrypting the external index bits. That is, πx5

(g(bx1
, bx2

)) = ci ⊕Mi for i = 2πx1
(bx1

) +
πx2

(bx2
) + 1. The total size of the garbled gate is t+ 4 bits.

Garbling the gate g2: “x6 = (x3 ∧ x4)”. Let k0x3
||πx3(0), k1x3

||πx3(1), k0x4
||πx4(0), and k1x4

||πx4(1) be the garbled
input wire values for the wires x3 and x4 respectively. For i1, i2 ∈ {0, 1}, let

Ki1i2 ||Mi1i2 ||Ni1i2 = Hg1(ki1x3
◦ ki2x4

).

By the invariance property (6), we have

k0x3
◦ k1x4

= k1x3
◦ k0x4

mod 2t

This implies that K01||M01||N01 = K10||M10||N10. In case that there are two values from N00, N01, and N11 that
are identical, re-start the garbling process to choose different garbled input wire values for the wires x3 and x4.

Let P (X) be a linear polynomial over F2t passing through the two points (N00,K00) and (N01,K01). Set k0x6
=

P (0) and
k1x6

= k0x6
+ k1x5

− k0x5
mod 2t (7)

where we interpret k0x5
, k1x5

, k0x6
, and k1x6

as integers modulo 2t. Note that the equation (7) guarantees that the
invariance (6) is satisfied for the gate g3 with input wires x5, x6. Let Q(X) be a linear polynomial over F2t passing
through the two points (0, k1x6

) and (N11,K11). Let Xz, be a solution of the equation P (X) = Q(X) over F2t .
Then the garbled table for the gate g is 〈Xz, P (Xz), c1, c2, c3, c4〉 where Xz and P (Xz) are elements from F2t and
c1, c2, c3, c4 are bits encrypting the external index bits. That is, πx6

(g(bx3
, bx4

)) = ci ⊕Mi for i = 2πx2
(bx2

) +
πx4(bx4) + 1. The total size of the garbled gate is 2t+ 4 bits.
Garbling the gate g3: “x7 = (x5 ∨ x6)”. By the equation (7), the invariance (6) is satisfied for the gate g3 with input
wires x5, x6. Thus the garbling process for the gate g1 could be used to construct a garbled gate g̃3 with one ciphertext
and 4 bits. That is, the total size of the garbled gate g̃3 is t+ 4 bits. The details are omitted here.

As a summary, the garbled circuit for the 3-gate circuit “(x1 ∧ x2) ∨ (x3 ∧ x4)” contains four ciphertexts (one for
g1, two for g2, and one for g3) and twelve bits. The total size of the garbled circuit is 4t+ 12 bits. Note that for such
kind of 3-gate circuit, the best reported garbled circuit size in the literature is 6t+ 12 bits.

The proof of security for the optimized GPGRR2 remains the same as that for GPGRR2 and the details are omitted
here.

6 Reducing ciphertext size in Private Function Evaluation (PFE) Protocols
In a two party PFE protocol, participant P1 has a string x, participant P2 has a function f and the outcome of the
protocol is that P2 learns f(x) and nothing about x (beyond its length), while P1 learns nothing about f (beyond side
information we are willing to leak, such as the number of gates in the circuit f ). Similarly, the outcome of the two
party PFE protocol could be that P1 learns f(x) and nothing about f , while P2 learns nothing about x. For the general
case that P2 has a private input x2 himself, one can include the value of x2 in the circuit computing f itself.

Traditionally, there are two approaches to design PFE protocols: using universal circuits and using homomorphic
encryption. Universal circuit based PFE protocols introduce extra overhead and result in more complicated imple-
mentations. For the class of size n circuits, Valiant’s universal circuit [17] is of size 19n log n and Kolesnikov and
Schneider’s universal circuit [11] is of size 1.5n log2 n though it has smaller universal circuits for circuit sizes less
than 5000. Kiss and Schneider [8] further reduced Valiant’s universal circuit size by a factor of at least 2n. Though
Kiss and Schneider [8] showed that it is practical to implement PFE using Valiant’s size-optimized universal circuits,
they claimed that “universal circuits are not the most efficient solution to perform PFE”. Specifically, SFE protocol
implementation for functions with billions of gates has been reported in the literature though the best reported univer-
sal circuit based PFE protocol implementation [8] is for simulated circuits of 300,000 gates, which results in billions
of gates in the universal circuit.
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6.1 PFE in semi-honest security model
Katz and Malka [7] and Mohassel and Sadeghian [12] proposed efficient constant-round Yao’s garbled circuit based
PFE protocols with communication/computational complexity linear in the size of the circuit computing f . The PFE
protocols in [7] and [12] require that each circuit gate contain four ciphertexts. In the following, we use our GPGGR2
techniques to reduce the number of each garbled gate’s ciphertexts to three in these PFE protocols. Thus we have a
25% reduction in the garbled circuit size for these PFE protocols. Note that free-XOR, GGR2, and half-gates could not
be used to reduce the ciphertext numbers in these PFE protocols. The garble row reduction technique GGR3 cannot be
used to reduce the ciphertext numbers in these PFE protocols either since the wire label values are obliviously chosen
by both parties.

Katz and Malka [7] introduced one PFE protocol with provable security in the semi-honest security model with the
assumption of semantic security for homomorphic encryption schemes and linear-related key security for symmetric
encryption schemes. They also introduced a more efficient variant PFE protocol with provable security in the random
oracle model. The second protocol is roughly twice as efficient as the first one. The authors of [7] mentioned that the
random oracle requirement for the second protocol may not be necessary and its security without random oracle may
be proved if further assumptions on the symmetric-key encryption scheme is made. In the following, we reduce the
number of ciphertexts in the second PFE protocol [7] (with security in random oracle) by a factor of 25%. The same
reduction could be made for the PFE protocols in Mohassel and Sadeghian [12].

PFE protocols in [7, 12] use a singly homomorphic public-key encryption scheme sHE(Gen, Enc, Dec) such as
the additive homomorphic Paillier encryption scheme [14]. In the following, we will give the protocol description in
sufficient details without a formal definition. For a formal definition, the readers are referred to [7]. In our discussion,
we assume that P2 learns the output f(x). The protocol can be modified to let P1 learn the output straightforwardly.
Let Cf be a circuit that computes P2’s function f and that Cf contains only NAND gates. Assume that Cf have n
gates and it take l-bit inputs. In a high level, the PFE protocol proceeds as follows.

1. Given the pair (n, l), P1 generates a sequence of n gates.

2. P2 obliviously connects these gates to form a circuit Cf using a singly homomorphic encryption scheme.

3. P1 produces a garbled circuit corresponding to the circuit Cf by garbling the n gates independently (which are
connected obliviously).

4. P1 gives an encoded version of the input x to P2 and P2 evaluates the garbled circuit to obtain the circuit output
Cf (x) = f(x).

In the following, we describe an instantiation of the above PFE protocol with reduced number of ciphertexts for
each garbled gate. Let the outgoing wires set OW = {ow1, · · · , owl, · · · , owl+n} be the union of the set of l input
wires and the n output wires for all gates in the circuit Cf . Let the incoming wires set IW = {iw1, · · · , iw2n} be
the set of input wires to each gate of the circuit. The topology of the circuit Cf can be described by a mapping
πC : {1, · · · , |OW|} → {1, · · · , |IW|}. Though each internal gate has only a single outgoing wire, it can have arbitrary
fan-out. This is handled by mapping an outgoing wire owi ∈ OW to multiple incoming wires in IW. The full protocol
semiPFE is described in Figure 1.
Correctness. In step (5) of the protocl semiPFE, if the linear polynomial Ti(X) = Pi(X), then the equation (9)
shows that kl+i = k0l+i + ∆. Otherwise Ti(X) = Qi(X) and the equation (9) shows that kl+i = k0l+i. This shows the
correctness of the protocol.
Security. The security for PFE protocols can be defined in the semi-honest adversary model and in the malicious
adversary model. In the semi-honest model, we assume that both participants follow the protocol honestly but both
of them may be curious and try to learn some additional information from their protocol view. Let viewi(1κ, x, Cf )
(i = 1, 2) be the view of the participant Pi during the PFE protocol execution when P1 holds input x and P2 holds
Cf ∈ C, where C is a class of circuits. The protocol is called a secure C-PFE protocol if there exist probabilistic
polynomial time simulators S1 and S2 such that for all probabilistic polynomial time algorithm D, we have

|Pr[D(S1(1κ, x)) = 1]− Pr[D(view1(1κ, x, Cf )) = 1]| = negl(κ)
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Figure 1: Protocol semiPFE

1. P1 generates a private and public key pair (sk, pk) for an additive homomorphic encryption
scheme such as Paillier scheme and chooses a circuit-wide global offset value ∆ ∈ F2t . P1

chooses l + n outgoing-wire keys k0i ∈ F2t and sets k1i = k0i + ∆ for 1 ≤ i ≤ l + n. P1

sends pk, Encpk(k01), · · · , Encpk(k0l+n) to P2.
2. For each gate i with incoming wires owj, owk, P2 chooses random ai, a

′
i ∈ F2t and re-

randomize the encrypted wire labels for gate i as

encGi =
(
Encpk(k

0
j + ai), Encpk(k

0
k + a′i), Encpk(k

0
l+i)

)
.

P2 sends encG1, · · · , encGn to P1.
3. For each i = 1, · · · , n, P1 decrypts encGi to obtain the keys (L0

i , R
0
i , k

0
l+i) where L0

i =

k0j + ai and R0
i = k0k + a′i. P1 defines L1

i = L0
i + ∆, R1

i = R0
i + ∆, and prepares

the garbled version of the i-th gate as follows. Let Hi be a gate i specific hash function with
(t+ τ)-bit outputs and let

K00||N00 = Hi(L
0
i +R0

i mod 2t)
K01||N01 = Hi(L

0
i +R0

i + ∆ mod 2t)
K10||N10 = Hi(L

0
i +R0

i + ∆ mod 2t)
K11||N11 = Hi(L

0
i +R0

i + 2∆ mod 2t)

(8)

where K00,K01,K10,K11 ∈ F2t and N00, N01, N10, N11 ∈ F2τ .

(a) Let Pi(X) be a linear polynomial passing through the points: (N00,K00) and
(N01,K01) .

(b) Set γ0i = Pi(0) − ∆ mod 2t and let Qi(X) be a linear polynomial passing through
the points: (0, γ0i ) and (N11,K11) .

(c) Let Xi,0 be a solution of the equation Pi(X) = Qi(X).
(d) The garbled version of the i-th gate is GGi = 〈Xi,0, Pi(Xi,0), k0l+i − γ

0
i 〉

4. P1 sends GG1, · · · , GGn to P2. In addition, for the input x = x1 · · ·xl that P1 holds, P1 sends
kx1
1 , · · · , kxll to P2.

5. Now P2 has the keys kx1
1 , · · · , kxll for the outgoing wire i ∈ {1, · · · , l}. For each gate i

that P2 has both incoming wire key labels, P2 computes the i-gate outgoing wire key label
kl+i as follows: Assume that the i-th gate have incoming wires owj, owk and P2 have already
determined keys kj , kk for outgoing wires owj, owk. P2 computes keys Li = kj + ai and
Ri = kk + a′i for the left and right incoming wires to gate i respectively. P2 computes

Ki||Ni = Hi(Ri + Li mod 2t).

Let Ti(X) be a linear polynomial passing through the following two points: (Ni,Mi) and
(Xi,0, Pi(Xi,0)) . P2 sets the outgoing wire keys

kl+i = Ti(0) + k0l+i − γ
0
i = k0l+i + Ti(0)− Pi(0) + ∆ mod 2t. (9)

Once P2 has determined key kl+n, it can use an oblivious transfer protocol with P1 to learn the
circuit output f(x).

and
|Pr[D(S2(1κ, Cf , Cf (x)) = 1]− Pr[D(view2(1κ, x, Cf )) = 1]| = negl(κ)

The provable security in the above semi-honest adversary model for our protocol semiPFE follows from the proof
in Katz and Malka [7] by observing the following fact: given a pair of key values of the incoming wires of a gate, P2

can compute one key values for the outgoing wire, but cannot distinguish the other key values for the outgoing wire
from random. This is true for the protocol semiPFE since the other key values for the outgoing wire is defined using a
linear interpolation with a value which is unknown to P2. The details are omitted here.

Mohassel and Sadeghian [12] proposed a framework for designing PFE protocols by considering circuit topology
privacy and secure evaluation of circuit gates independently. Specifically, they reduce the task of the circuit topology
hiding (CTH) to oblivious evaluation of a mapping that encodes the topology of the circuit and they design a private
gate evaluation (PGE) sub-protocol. Mohassel and Sadeghian then showed how to naturally combine CTH and PGE to
obtain an efficient and secure PFE. The CTH functionality is implemented by an efficient oblivious evaluation of the
mapping πC using generalized switching networks and oblivious transfers. The PGE functionality is a PFE protocol
for a single gate circuit where P2 provides the gate’s functionality and P1 provides the input to the gate. The PGE
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functionality is based on Yao’s garbled circuit and our above linear interpolation approach in the protocol semiPFE
could be used in the same way to improve the PGE efficiency by a factor of 25%. The details are omitted here.

6.2 PFE protocols against malicious participants
Section 6.1 presents an efficient protocol semiPFE against semi-honest adversaries. This protocol is insecure against
active adversaries. For example, in step (2) of the E protocol semiPFE, P2 may generate the wires encGi in a malicious
way to learn P1’s private input x. Specifically, assume that ow1, · · · , owl are the circuit input wires. For each gate i,
P2 can choose random ai, a

′
i ∈ F2t and re-randomize the encrypted wire labels for gate i as

encGi =
(
Encpk(λ(j, l)k0j + ai), Encpk(λ(j, l)k0k + a′i), Encpk(k

0
l+i)

)
where

λ(j, l) =

{
0 if j < l
1 if j ≥ l

P2 sends encG1, · · · , encGn to P1. With this revision of the encGi, P2 may learn the last bit xl of P1’s private input x =
x1 · · ·xl. Assume that P1 provide the wire labels kx1

1 , · · · , kxll for the private input x. By the construction of encGi,
P2 can evaluate the garbled circuit to obtain f(0, · · · , 0, xl). By comparing whether f(0, · · · , 0, xl) = f(0, · · · , 0, 0)
or f(0, · · · , 0, xl) = f(0, · · · , 0, 1), P2 may learn the value of xl.

Zero-knowledge proofs could be used to make the protocol semiPFE secure against active malicious participants.
However, performance of the resulting protocol could not compete with PFE protocols based on SFE with universal
circuits in the malicious adversary model.

Security definition for PFE protocols against malicious adversaries uses the real protocol execution to simulate
an ideal world protocol execution by a trusted party (see, e.g., Canetti [4]). In the real-world execution, protocol
participants jointly run the protocol and the adversary A is allowed to corrupt a participant. Let Ai (i = 1, 2) be the
probabilistic polynomial time adversary that corrupts the participant Pi. In the ideal world evaluation, all participants
submit their inputs to a trusted party who will evaluate the entire protocol himself and there is a simulator Si for
the subset of participants controlled by the adversary Ai in the real world evaluation. Intuitively, a protocol is called
a secure C-PFE protocol if there exist simulators such that the real world protocol evaluation simulates the ideal
world protocol evaluation. This intuition is formally captured by requiring that the following two distributions are
computationally indistinguishable.

• The honest participants’ outputs and the adversary A’s view in the real-world execution.

• The honest participants’ outputs and the simulator S’s view in the ideal-world execution.

Real-world execution. In the real world execution, let out1, out2 denote the output of P1 and P2 respectively. For
each individual adversaryAi (i = 1, 2), there are two candidate views that we should consider. As an example, for the
adversary A1, we need to consider the following two scenarios.

• If P2 is honest, then we need to consider viewA1,1 = viewA1
∪ out2.

• If P2 is dishonest, then we need to consider viewA1,0 = viewA1
.

Ideal-world execution. In the ideal world execution, P1 sends x to the trusted party and P2 sends Cf to the trusted
party if they are honest. For a dishonest participant, she sends either what she holds or a random string (it could be
in the correct syntax format of a legal protocol message) to the trusted party. The trusted party computes Cf (x) and
sends it to P2. We use out1, out2 to denote the output sent to P1 and P2 respectively by the trusted party and use
S1,S1 to denote the simulators for A1 and A2 respectively. For each individual adversary, we need to construct a
simulator S (that is, S1 or S2). But for this single simulator S, we need to consider two candidate views derived from
the other adversary who may control the other participants. As an example, for the adversary A1, we need to consider
the following two potential views.

• If P2 is honest, then we need to consider viewS1,1 = viewS1 ∪ out2.
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• If P2 is dishonest, then we need to consider viewS1,0 = viewS1 .

Definition 6.1 A two party protocol Π is called a secure C-PFE protocol if there are probabilistic polynomial time
simulators S1 and S2 such that the following four pairs of probabilistic distributions are computationally indistin-
guishable over the security parameter κ.

viewS1,0(1κ, x, Cf )
c∼ viewA1,0(1κ, x, Cf )

viewS1,1(1κ, x, Cf )
c∼ viewA1,1(1κ, x, Cf )

viewS2,0(1κ, x, Cf )
c∼ viewA2,0(1κ, x, Cf )

viewS2,1(1κ, x, Cf )
c∼ viewA2,1(1κ, x, Cf ).

In the above list, the views are dependent on the security parameter κ which is omitted.

Katz and Malka [7] proposed a revision of their PFE protocol to achieve security against a malicious participant
P1. Specifically, they revised their protocol by requiring P1 to prove to P2 the following facts (in the following, we
use our protocol semiPFE instead of their original protocols):

• The public key pk communicated in Step 1 of semiPFE was generated using the specified key generation algo-
rithm sHE.Gen.

• The ciphertexts Encpk(k01), · · · , Encpk(k0l+n) communicated in Step 1 of semiPFE are well-formed ciphertexts
using the public key pk.

• The garbled circuits in Step 3 are constructed correctly.

• The inputs are encoded correctly in Step 6.

A similar proof as in [7] could be used to show that

viewS1,1(1κ, x, Cf )
c∼ viewA1,1(1κ, x, Cf )

viewS1,0(1κ, x, Cf )
c∼ viewA1,0(1κ, x, Cf )

for our protocol semiPFE. In the same way, if we require P2 to prove to P1 the knowledge of ai, a′i ∈ F2t (i =
1, · · · , n) for the ciphertexts

encGi =
(
Encpk(k

0
j + ai), Encpk(k

0
k + a′i), Encpk(k

0
l+i)

)
communicated in Step 2 and that the circuit encoded using encG1, · · · , encGn+l belongs to C, then we can show that

viewS2,1(1κ, x, Cf )
c∼ viewA2,1(1κ, x, Cf )

viewS2,0(1κ, x, Cf )
c∼ viewA2,0(1κ, x, Cf )

.

6.3 Circuit private PFE protocols with malicious P1

The discussion in the preceding section shows that the protocol semiPFE could be revised to be secure against ma-
licious participants using zero-knowledge proofs. Zero-knowledge proofs are normally expensive and the resulting
protocols may not outperform universal circuit based PFE protocols. In certain practical applications, we may want
to protect the circuit privacy from a malicious participant P1 and assume that P2 is semi-honest. For this kind of
scenarios, it is not necessary for the participant P1 to prove to P2 that the garbled circuits in Step 3 are constructed
correctly. Since it will not help P1 to learn any information of P2’s circuitCf by constructing incorrect garbled circuits
in Step 3 of semiPFE. Similarly, P1 does not need to prove to P2 that the inputs are encoded correctly in Step 6. In
the following paragraphs, we sketch the construction of a more efficient protocol privPFE that leaks zero information
about the circuit Cf to a malicious P1.

Though other singly homomorphic encryption schemes could be used, we use Paillier’s encryption scheme to
simplify the discussion. In Paillier’s scheme, the public key pk = (n, g) consists of two integers where n = pq
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divides the order of g ∈ Z∗n2 and p, q are two prime numbers. The private key sk = (λ, µ) is a pair of integers where

λ = lcm(p − 1, q − 1) and µ =
(

(gλ mod n2)−1
n

)−1
mod n. A message m is encrypted to c = Encpk(m) =

gm · rn mod n2 for a randomly selected r ∈ Z∗n. A ciphertext c is decrypted to the message m = Decsk(c) =
µ((cλ mod n2)−1)

n mod n.
In the protocol semiPFE, the only message that P2 sends to P1 is the oblivious gates encGi (i = 1, · · · , n). P1 will

not learn any information about the circuit Cf if P1 cannot correlate the ciphertext Encpk(k0j + ai) to the ciphertext
Encpk(k

0
j ). This is guaranteed by the semantic security of the homomorphic encryption scheme. In other words, if P1

can prove to P2 that the public key is generated using the specified key generation algorithm then the circuit privacy is
guaranteed. However, if Paillier’s scheme is used then zero knowledge proof is necessary at all. It is sufficient for P2

to check that the condition g ∈ Z∗n2 holds for the public key (n, g) generated by P1 where we assume that P2 will not
leak any information about the circuit Cf on purpose. Specifically, the new protocol privPFE is described in Figure
2.

Figure 2: Protocol privPFE

1. P1 generates a private and public key pair (sk, pk) for Paillier’s encryption scheme where sk =
(λ, µ), pk = (n, g), and n = pq.

2. P1 chooses two circuit-wide global offset values ∆,Γ ∈ F2t . P1 chooses l + n outgoing-
wire keys k0i ∈ F2t and sets k1i = k0i + ∆ for 1 ≤ i ≤ l + n. P1 sends
pk, Encpk(k01), · · · , Encpk(k0l+n) to P2.

3. P2 verifies that g ∈ Z∗
n2 and Encpk(k0i ) ∈ Z∗

n2 for i = 1, · · · , n+ l.
4. For each gate i with incoming wires owj, owk, P2 chooses random ai, a

′
i ∈ F2t and re-

randomize the encrypted wire labels for gate i as

encGi =
(
Encpk(k

0
j + ai), Encpk(k

0
k + a′i), Encpk(k

0
l+i)

)
.

P2 sends encG1, · · · , encGn to P1.
5. For each i = 1, · · · , n, P1 decrypts encGi to obtain the keys (L0

i , R
0
i , k

0
l+i) where L0

i =

k0j + ai and R0
i = k0k + a′i. P1 defines L1

i = L0
i + ∆, R1

i = R0
i + ∆, and prepares

the garbled version of the i-th gate as follows. Let Hi be a gate i specific hash function with
(t+ τ)-bit outputs and let

K00||N00 = Hi(Γ + L0
i +R0

i mod 2t)
K01||N01 = Hi(Γ + L0

i +R0
i + ∆ mod 2t)

K10||N10 = Hi(Γ + L0
i +R0

i + ∆ mod 2t)
K11||N11 = Hi(Γ + L0

i +R0
i + 2∆ mod 2t)

(10)

where K00,K01,K10,K11 ∈ F2t and N00, N01, N10, N11 ∈ F2τ . Set the garbled version
of the i-th gate as GGi = 〈Xi,0, Pi(Xi,0), k0l+i−γ

0
i +Γ〉where 〈Xi,0, Pi(Xi,0), k0l+i−γ

0
i 〉

is constructed in the same way as Step 5 of the protocol semiPFE.
6. P1 sends GG1, · · · , GGn to P2. In addition, for the input x = x1 · · ·xl that P1 holds, P1 sends

Γ + kx1
1 , · · · ,Γ + k

xl
l to P2.

7. The process for P2 to evaluate the garbled circuit to obtain Cf (x) remains the same as the Step
5 of the protocol semiPFE.

Correctness. The correctness of the protocol privPFE can be verified straightforwardly in the same way as that for
the protocol semiPFE.
Privacy. In the following, we sketch a proof of privacy for the protocol privPFE against malicious P1. First we show
that a dishonest P1 will learn nothing about the circuit Cf except the circuit size unless P2 leaks certain information
about Cf on purpose. As we have mentioned in the preceding paragraphs, the only information that P2 sends to P1 is
the set of oblivious gates

encGi =
(
Encpk(k

0
j + ai), Encpk(k

0
k + a′i), Encpk(k

0
l+i)

)
for i = 1, · · · , n. In Step 3, P2 verifies that g ∈ Z∗n2 and Encpk(k0i ) ∈ Z∗n2 for i = 1, · · · , n+l. Thus if ai, a′i are chosen
uniformly at random, then Encpk(k0j +ai), Encpk(k

0
k+a′i) are values distributed uniformly at random over Z∗n2 and are

independent of the values Encpk(k0j ) and Encpk(k
0
k). In a summary, unless P2 chooses ai, a′i nonuniformly, P1 learns

no information about the circuit Cf except the circuit size. Note that the privacy of Cf is preserved unconditionally.
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Secondly, a semi-honest participant P2 learns nothing about the private input x except the final output f(x). The proof
is similar to the proofs in [7] and the details are omitted. This completes the proof of privacy.

6.4 Secure PFE protocols against two malicious participants
In order to protect the privacy of P1’s input x againt a malicious P2 in the protocol privPFE, P2 needs to prove to P1

that the circuit defined by the oblivious gates encG1, · · · , encGn+l belongs to the specified circuit class C. Otherwise,
the circuit corresponding to these oblivious gates could be a simple circuit such as ¬(x1∧x1) which leaks information
about the input value x = x1 · · ·xl from the output Cf (x). In other words, the protocol privPFE is not secure against
malicious participant P2.

For PFE protocols with circuit owner P2 learning the final output Cf (x), it seems to be inherently necessary
to have participant P2 to prove to P1 that the circuit defined by the oblivious gates encG1, · · · , encGn+l belongs to
the specified circuit class C. Otherwise, the protocol could not be secure against a malicious participant P2. For
applications where only the participant P1 needs to learn the final output Cf (x), the protocol privPFE is also secure
against both malicious P1 and malicious P2. Let us revise the protocol privPFE to a new protocol secPFE as in Figure
3.

Figure 3: Protocol secPFE
The protocol proceeds as in privPFE. In the last step, instead of P2 obliviously learning exactly one of
the key labels k0n+l and k0n+l + ∆, P2 handles the garbled circuit evaluation output to P1. Note that
the garbled circuit evaluation output is either k0n+l or k0n+l + ∆.

The correctness of the protocol secPFE is straightforward. For the security proof, we distinguish two cases. In
the first case we assume that P1 is malicious. In this case the proof is identical to the privacy proof for the protocol
privPFE since the only extra information that P2 delivers to P1 is the final output key label k0n+l or k0n+l + ∆ which
leaks no information about the circuit topology. In other words, a malicious P1 learns no information about the circuit
Cf . In the second case, we assume that P2 is malicious. In this case, let ow1, · · · , owl be the l input wires. Assume
that the ith gate

encGi =
(
Encpk(k

0
j + ai), Encpk(k

0
k + a′i), Encpk(k

0
l+i)

)
contains one or two input wires. Note that P1 garbles this ith gate using ingoing key labels (Γ+k0j+ai,Γ+k0j+ai+∆)

and (Γ + k0k +ak,Γ + k0k +ak + ∆) respectively. Without loss of generality, we may assume that j ≤ l (that is, owj is
an input wire). For the input wire owj , P1 provides the input key label Γ + k

xj
j = Γ + k0j + xj∆ to P2 corresponding

to the input bit xj . We can distinguish the following two cases:

• P2 knows the value of k0j + ai. In this case, unless Paillier’s encryption scheme is not semantically secure, P2

does not follow the protocol by choosing a random ai to generate the ciphertext Encpk(k0j + ai). Instead, P2

chooses a value ci = k0j + ai and let Encpk(k0j + ai) = Encpk(ci). In this case, P2 can not distinguish ai from a
random value. Thus P2 can not distinguish Γ + k0j + ai + xj∆ from a random value. Consequently, P2 cannot
go ahead to evaluate the ith garbled gate.

• P2 does not know the value of k0j + ai. In this case, P2 may or may not follow the protocol. In either case, P2

can not distinguish k0j from a random value. If P2 followed the protocol and selected a known value ai, then P2

can compute the key value Γ + k0j + ai + xj∆ and continue the garbled gate evaluation. If P2 has not followed
the protocol and selected k0j + ai in a way that she does not know the value of ai, then P2 can not compute the
key value Γ + k0j + ai + xj∆ and cannot continue the garbled gate evaluation.

With above discussion, a similar proof for garbled circuit security as in [3, 7] could be used to show that a malicious
participant P2 learns no information about the input x in case that the Paillier’s encryption scheme is semantically
secure and the hash functions used in the protocol can be considered as random oracles. The details of the proof are
omitted.
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7 Circuit garbling scheme GRRcirc
The half-gates technique garbles each odd gates to two ciphertexts and even gates are free. However, the evaluator
needs to carry out two cryptographic hash (or encryption) operations for each odd gate. In our GPGRR2 scheme, the
evaluator needs to carry out one cryptographic hash (or encryption) operation and one multiplicative inverse opera-
tion in the finite field F2t . In case that one needs a Φcirc-secure garbling scheme and prefers multiplicative inverse
operations than cryptographic hash (or encryption) operations, one may revise the scheme GPGRR2 by adding addi-
tional conversion processes (either free or with one additional ciphertexts) to obtain a free-XOR compatible GRRcirc
scheme.

As a high level description, the conversion process is as follows. For each odd gate, if an output wire z is going
to even gates, then we can let the output wire z to satisfy the condition “k1z = k0z ⊕ ∆” instead of “k1z = k0z + ∆
mod 2t”. For each odd gate, if one or two input wires x satisfy “k1x = k0x ⊕∆” instead of “k1z = k0z + ∆ mod 2t”,
we can add a conversion ciphertext to translate the condition “k1x = k0x⊕∆” to the condition “k1z = k0z +∆ mod 2t”.
Furthermore, we use the GPGRR2 optimization technique to reduce two ciphertexts to one ciphertext for as many odd
gates as possible. After the above revision, all even gates are free and each odd gate has one, two, or three ciphertexts.
Specifically, the garbling scheme GRRcirc proceeds as follows.

1. For each odd gate such that all input wire labels satisfy the invariance property (6) and the output wire is only
used by odd gates, garble the gate using the scheme GPGRR2. That is, let the garbled output wire labels satisfy
the property k1z = k0z + ∆ mod 2t. This garbled gate contains two ciphertexts.

2. For each odd gate such that at least one input wire label does not satisfy the invariance property (6) and the
output is only used by odd gates, garble the gate using the GRR3 with three ciphertexts.

3. For each odd gate with all fanout wires z going to even gates, depending on whether the input wires satisfy the
invariance property (6) or not, revise either the above step 1 or the above step 2 to garble the gate so that the
output wire has garbled wire labels k0z and k1z = k0z ⊕∆. This garbled gate contains two or three ciphertexts.

4. For each odd gate with fanout wires going to both odd and even gates, garble it with three ciphertexts so that
the output wire has garbled wire labels k0z and k1z = k0z ⊕∆ for even gates and has garbled wire labels k0z and
k1z = k0z +∆ mod 2t for odd gates. Our experiments have not found such kind of gates for the commonly used
circuits that we will discuss later.

5. For each odd gate, use the following process to reduce the number of ciphertexts to one if possible. In the
following process, a gate g1 is called a sibling gate of g2 if there exists a gate g3 such that the two input wires of
g3 are the output wires of g1 and g2 respectively.

(a) Mark all even gates as "FINAL".

(b) If all gates are marked either as "1-Cipher" or as "FINAL". Then the process is over. Otherwise, choose a
random odd gate g that is not marked as "1-Cipher" or "FINAL". Let S = {g}.

(c) If there exists a gate g′ /∈ S, g′ is a sibling of some gate in S, and g′ is marked as "1-Cipher" or "FINAL",
mark all gates in S as "FINAL" and go to Step (5b).

(d) If there exists a gate g′ /∈ S, g′ is a sibling of some gate in S, and g′ is neither marked as "1-Cipher" nor
marked as "FINAL", let S = S ∪ {g′} and go to Step (5c).

(e) If there is no gate g′ /∈ S such that g′ is a sibling of some gate in S, use the optimized GPGRR2 technique
to garble g using one ciphertext and all other gates in S using two ciphertexts appropriately. It is noted
that if the garbled gate g contains three ciphertexts originally, then we can only reduce the number of
ciphertexts to two instead of one. Mark g as "1-Cipher" and all other gates in S as "FINAL". Go to Step
(5b).

6. Each even gate is for free. That is, no ciphertext is required.
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We used the above process to compare the proposed garbling scheme GRRcirc against other garbling schemes
from the literature. Since it is optional to use the external index bits in GRRcirc, we do not include the external index
bits for GRRcirc garbling scheme in the following comparison. Specifically, we compare the garbled circuit sizes
for the following circuits that are available from [16]: AES (Key Expanded), DES (Key Expanded), MD5, SHA-1,
SHA-256. Note that the circuits for these functions [16] contains AND, XOR, and INV gates. For our comparison,
we integrated the INV gates into the AND/XOR gates to obtain OR and NXOR gates. Thus we will only consider
circuits with AND/OR/XOR/NXOR gates. We will use t to denote the size of wire labels (e.g., we may take t = 80).
For the garbling schemes, we compare Yao’s classical scheme [18], point-permute [2], GRR3 [13], GRR2 [15], free
XOR+GRR3 [10], FleXOR [9], and half-gates [19]. For the FleXOR garbling scheme [9], we used the data for the
best performance “safe ordering heuristics” reported in Figure 9 of [9]. For each garbling scheme in Table 1, we have
two rows of values for each circuit. The top row contains the number of ciphertexts of the garbled circuits and the
bottom row contains the size of the garbled circuits when t = 80.

The comparison results in Table 1 show that, GRRcirc has comparable performance with FleXOR. However, it
has large garbled circuit size compared with half-gates techniques. As we have mentioned in the previous sections,
one may choose to use GRRcirc instead of half-gates if one prefers field multiplicative inverse operations than cryp-
tographic hash (or encryption) operations since for half-gates garbled circuits, each odd gate evaluation requires two
cryptographic hash (or encryption) operations while for GRRcirc garbled circuits, each odd gate evaluation requires
one cryptographic hash (or encryption) operation and one field multiplicative inverse operation.

Table 1: Garbled Circuit Size Comparison

AES (KE) DES (KE) MD5 SHA-1 SHA-256
# AND/OR [16] 5440 18175 29084 37300 90825
# XOR/NXOR [16] 20325 1351 14150 24166 42029
# Total gates 25765 19526 43234 61466 132854

classical [18] 103060t 78104t 172936t 245864t 531416t
0.98MB 0.74MB 1.65MB 2.34MB 5.07MB

point-permute [2] 103060(t+1)t 78104(t+1) 172936(t+1) 245864(t+1) 531416(t+1)
1MB 0.75MB 1.67MB 2.37MB 5.13MB

GGR3 [13] 77295(t+1) 58578(t+1) 129702(t+1) 184398(t+1) 398562(t+1)
0.75MB 0.57MB 1.25MB 1.78MB 3.85MB

GGR2 [15], 51530(t+1) 39052(t+1) 86468(t+1) 122932(t+1) 265708(t+1)
0.50MB 0.38MB 0.83MB 1.19MB 2.57MB

free XOR+GRR3 [10] 16320(t+1) 54525(t+1) 87252(t+1) 111900(t+1) 272475(t+1)
0.16MB 0.53MB 0.84MB 1.08MB 2.63MB

FleXOR [9] 18550(t+1) 36904(t+1) N/A 85438(t+1) 207253(t+1)
0.18MB 0.36MB N/A 0.82MB 2MB

half-gates [19] 10880(t+1) 36350(t+1) 58168(t+1) 74600(t+1) 181650(t+1)
0.11MB 0.35MB 0.56MB 0.72MB 1.75MB

GRRcirc 16640t 37198t 75584t 97080t 225498t
0.16MB 0.35MB 0.72MB 0.92MB 2.15MB

8 Conclusion
Using a linear interpolation method, we proposed a circuit garbling scheme to garble each circuit gate to at most two
ciphertexts with gate functionality privacy. We also proposed an optimization process to garble a circuit in such a
way that some gates only contain one ciphertext. It would be interesting to investigate the lower bound for garbled
circuit size. We also applied our garbling schemes to constant round PFE protocols and proposed a more efficient PFE
protocol that is secure against malicious participant P1 if P2 learns the final output and is secure against two malicious
participants P1/P2 if only P1 learns the final output.
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