
Anonymous contribution of data

Matthew McKague∗ and David Eyers†

January 18, 2017

Abstract

Many application domains depend on the collection of aggregate
statistics from a large number of participants. In such situations,
often the individual data points are not required. Indeed participants
may wish to preserve the privacy of their specific data despite being
willing to contribute to the aggregate statistics. We propose a protocol
that allows a server to gather aggregate statistics, while providing
anonymity to participants. Our protocol is information theoretically
secure so that the server gains no information about participants’ data
other than what is revealed by the aggregate statistics themselves.

1 Introduction

Suppose you buy a wearable heart rate monitor. Its software gives you the
option to anonymously contribute heart rate data for scientific research. Se-
curity conscious individuals are likely to immediately consider the implica-
tions of this statement about anonymous participation. Is it possible to
achieve anonymous participation? If so, can anonymity be protected in an
information theoretic fashion? Is it possible to protect the anonymity with-
out a huge overhead? In this paper we give an affirmative answer to these
three questions.

Data contribution is useful in numerous applications — personal health
monitoring and fitness systems, smart cities, and other emerging applications

∗School of Electrical Engineering and Computer Science, Queensland University of
Technology. m.mckague@qut.edu.au
†Department of Computer Science, University of Otago. dme@cs.otago.ac.nz

1

m.mckague@qut.edu.au
dme@cs.otago.ac.nz

from the Internet of Things domain [AIM10, AAS13, McK15]. However, the
need to protect privacy may mean that some applications are not possible
without measures to ensure anonymity. Healthcare is one field where it may
be extremely valuable to collect information for research or clinical purposes,
but their can be serious ethical concerns and strict regulatory requirements
to protect patients’ privacy. In other fields, intelligible guarantees of privacy
in and of themselves may help increase participation.

1.1 Previous work

Anonymity has been studied in the context of secure multi-party function
evaluation. In secure multi-party function evaluation, n participants each
have some input xj and they wish to evaluate some function f(x1 . . . xn) so
that all participants learn the correct value of f , but nothing beyond this.
Secure multi-party function evaluation is known to be possible as long as less
than a third of participants are dishonest [BOGW88, CCD88], or less than
half when a broadcast channel is available [RBO89]. The dining cryptogra-
phers problem [Cha88] is one early example of an anonymous protocol. The
dining cryptographers problem assumes honest participants and attempts to
decide whether all inputs are 0 or otherwise.

Broadbent et al. [BT07] developed protocols that preserve anonymity for
several problems. Importantly, their protocols do not make assumptions
about the number of dishonest participants. All of their protocols are based
around a single protocol for evaluating the parity of the participants’ in-
put bits. The results assume the presence of a broadcast channel in which
messages from all participants are simultaneously announced.

Another aspect of anonymity is exemplified by the Tor onion routing
system [DMS04]. Here the idea is — rather than to compute a function
from participants’ inputs — to hide the identities of participants who are
communicating. There may be many conversations going on within the set
of participants, but it should be practically impossible to determine which
participants are conversing with each other. The degree of protection offered
at any point in time will, of course, depend on the number of participants
that are active within the Tor network at that time, and whether or not they
are colluding.

2

1.2 Contributions

In this paper we present a straightforward protocol that allows n participants
to contribute data to a server such that the server learns the mean of the
participants’ data points, without leaking any information on any individual
participant’s data. Security is information theoretic and does not rely on any
computational assumptions. The protocol has a communication overhead1

of O(log n) and makes no assumption on the number of dishonest partici-
pants. However, the overhead does increase with the fraction of dishonest
participants.

We then develop further anonymous protocols that build on our initial
protocol for:

• sharing the variance and higher statistical moments,

• detecting a consensus,

• detecting a single participant that is breaking consensus,

• contributing single data points,

• establishing anonymous identities and

• contributing time series data.

Our protocols could be adapted for use in a secure multi-party function
evolution scenario, provided that there is a simultaneous broadcast channel
available. A simultaneous broadcast channel is one where all parties can
simultaneously send a message to be received by all other parties. However,
our main intention is to contribute data to a designated collection point, such
as a single server, in which case no broadcast channels are needed.

2 Anonymous summation channels

Before we describe our protocol, we elaborate on what we wish to accomplish,
that is to say, the ideal functionality that we would like to achieve. Suppose
that we have a group of participants P who wish to communicate with a
server S. An anonymous summation channel is a communication mechanism

1the overhead is a multiplicative factor compared to the case of the participants sending
their data directly to the server

3

that will allow each p ∈ P to contribute some data mp ∈M— where (M,+)
is a group — to S such that S learns M ←

∑
p∈P mp and nothing else. In

particular, we must achieve that S learns nothing about the distribution of
mp for any p other than what would be revealed by knowing M .

We elaborate on how to achieve this end by first specifying the ideal
functionality as implemented using a trusted third participant T .

1. Each p sends message mp to T via a private channel.

2. T sums the messages it receives to form M , which it sends to S via a
private channel.

3. T erases all its information.

Some salient features of this channel are:

• The server receives M , and nothing else.

• Participants receive nothing.

• The server could still learn values of mp for dishonest participants
through other communication.

• Participants are in complete control over their contribution. As a con-
sequence, there is no concept of contributing incorrect data.

The last point is especially important for discussing security. A par-
ticipant may choose to contribute some data that is not meaningful, or is
somehow incorrect in a particular context. The ideal channel will still faith-
fully incorporate this incorrect data. The ideal channel cannot do any better,
since it has no other route to “verify” the contribution being made by any
participant. For this reason, if there is some behaviour that is equivalent
to a participant honestly contributing some data, then we will consider that
behaviour to be honest. In particular, any participant may render a run
of the protocol meaningless by contributing some meaningless data. Since
that is still true of the ideal channel, we will not consider it to be dishon-
est behaviour in this context. However, it may still be dishonest in a larger
context.

Another important point about the ideal behaviour is that anonymity
is always with respect to the pool of honest participants. In particular, it

4

is possible that an attacker knows that the participants are contributing,
perhaps by observing their use of communication channels. Anonymity is for
participants’ data, not for their participation in the protocol. Also, if there
are dishonest participants who are collaborating with the server then their
contribution can be removed by subtracting it from M , and anonymity is
with respect to the smaller pool of honest participants.

As is often the case, we will not necessarily be able to simulate the ideal
functionality perfectly. In particular, with some probability, various condi-
tions may hold that break the security of the protocol. Hence we need to
introduce the idea of approximately anonymous summation channels where
security is achieved except with probability δ, where δ is a tunable security
parameter.

3 Description of the protocol

In order to accomplish our task of developing an approximate anonymous
summation channel we will need some resources. Our resources will be sup-
plied by the following assumptions:

• There are private authenticated communication channels between each
p ∈ P and S.

• There are private, authenticated communication channels between all
p, q ∈ P .

• Every p ∈ P has private access to a source of random numbers.

3.1 2-participant protocol

Before describing the full protocol that is applicable to any number of partic-
ipants, we first introduce a restricted variant for two parties. This will give
a clear illustration of how the general protocol works.

We start with two participants, p and q, with data mp and mq. The
protocol is as follows:

1. p chooses a number rp,q uniformly at random from M and sends it to
q over their private authenticated channel.

2. p then sends rp ← mp + rp,q to S.

5

3. q sends rq ← mq − rp,q to S.

4. S forms M = rp + rq.

Clearly the protocol is correct as rp + rq = mp + rp,q +mq − rp,q = mp +mq.
To see how security is accomplished, first note that if S has M and rp

then this is exactly the same information as if S has rp and rq. Indeed, since
rq = M − rp, S can easily go between these two scenarios. So let us look at
the second scenario. S has M , as it should, and also has rp = mp + rp,q. Now
rp,q was chosen uniformly at random. Hence we can view rp as a ciphertext
where mp was encrypted using the one-time-pad with key rp,q. This means
that rp contains absolutely no information about mp or mq. Thus the only
information that S has learned is M .

Each of the two participants has also learned nothing. Indeed, q has only
received a random number and nothing else. The only way for anyone to
learn information is to collaborate. If q and S collaborate then they can
learn p’s input. In this case the pool of honest participants is just p, and
anonymity is with respect to that pool of size one.

3.2 Full protocol

The full protocol is detailed in Algorithms 1 and 2. A summary of the
symbols used appears in Table 3.2. Roughly speaking, we extend the 2-party
protocol by having many random numbers sent between many participants.
Then when p sends some random number rp,q to another participant q, p
adds rp,q to rp. Whenever p receives a random number, p subtracts it from
rp.

Correctness comes from the fact that when participant p sends rp,q to
q, p adds it to rp and q subtracts it from rq. Then when S forms M , rp,q
will appear twice in the summation, once added and once subtracted. Hence
all the rp,q drop out of the summation and M is just the sum of all rp as
required.

4 Proof of security

The proof of security has three main steps. The first step is to prove security
in a special case. Secondly, we reduce the case of honest participants down

6

Symbol Meaning

M Message space, that is an additive group
P Pool of participants
p, q Participants p and q
S Server
mp data contributed by p
rp,q Random number sent from p to q
rp Message sent from p to the server
M

∑
p∈P mp

d Number of dishonest participants
c Fraction of dishonest participants (i.e. d = cn)
G Graph of communications between participants
G′ Subgraph of G of honest participants
Qp Participants that p sends random numbers to
Rp Participants that p receives random numbers from
k Number of participants to send messages each

participant exchanges random numbers with

Table 1: Symbols used in the algorithm listings

7

Algorithm 1 Honest participant protocol for participant p.

1: procedure setup(mp)
2: rp ← mp

3: end procedure
4:

5: procedure send messages
6: Choose a set Qp of size k randomly from P \ {p}
7: for q ∈ Qp do
8: Randomly choose rp,q from M
9: Send rp,q to q

10: rp ← rp + rp,q
11: end for . The value rp,q should not be retained
12: end procedure
13:

14: procedure message received(rq,p) . Asynchronous event handler
15: If rq,p is malformed, then ignore it.
16: rp ← rp − rq,p
17: end procedure . The value rp,q should not be retained
18:

19: procedure final
20: Send rp to S
21: end procedure

8

Algorithm 2 Honest server protocol

1: procedure setup
2: M ← 0 . Should finish as M defined in Table 3.2
3: cm ← 0 . Count of messages received
4: P ← ∅ . Accumulates which p have sent rp
5: end procedure
6:

7: procedure message received(rp)
8: M ←M + rp
9: cm ← cm + 1

10: P ← P ∪ {p}
11: end procedure
12:

13: procedure final
14: if cm 6= ‖P‖ ∨ P 6= P then
15: abort
16: else
17: output M
18: end if
19: end procedure

9

to the special case. Finally, we consider dishonest participants and reduce
down to the honest participant case.

Before we get into the proofs, let us set down some basic facts and def-
initions. First, for a participant p, define Rp to be the set of participants
that have sent a random number to p. That is, Rp = {q | p ∈ Qq}. Then the
message that p sends to the server is

rp = mp +
∑
q∈Qp

rp,q −
∑
q∈Rp

rq,p (1)

Next, we form a directed graph G such that (p, q) is an edge if q ∈ Qp.
We will assume that after the protocol is run G becomes public knowledge,
so that privacy is not dependent on secrecy around who is communicating
with whom. Note that G is generated randomly, and independently from the
data, so it does not contain any information about the participants’ data.

4.1 Honest case

For now we will assume that all participants are honest and that S is honest
but curious. That is to say, we are only concerned with what information S
receives from the protocol. We want to show that S does not learn anything
beyond M . In the first case, we consider a variant of the protocol where the
graph G is fixed beforehand rather than chosen randomly by the participants.

Lemma 1. If G is a directed rooted tree and all participants are honest, then
the server learns exactly M .

Proof. First, some notation. Set R to be the root of the tree, Pp to be the
parent of p, Cp the set of children of p and Dp the set of all descendants of
p. Then the messages received by the server from each participant p are

rp = mp − rPp,p +
∑
q∈Cp

rp,q. (2)

The root R has no parent, so we leave rPR,R off for that special case.
Now we will reduce to a different protocol where S receives different

messages. This idea is a generalisation of how we proved security in the
2-participant case. Suppose that the server receives

r′p = rp +
∑
q∈Cp

rq (3)

10

for each p. Note that these values are easily derived from the messages that
S receives in the original protocol. Also, given r′p for all p, S can calculate
each rp. To see this first note that r′p = rp for any leaf vertex p since Cp = ∅
in that case. Now supposing that rq is known for all children q of p, we can
subtract them off r′p to get rp. Thus we can apply induction starting at the
leaf vertices and obtain rp all the way up the tree. This means that the set
of all r′p contains exactly the same information as the set of all rp.

Let us prove another property. For the leaf vertices p we have

r′p = mp − rPp,p +
∑
q∈Dp

mq (4)

since Dp is empty. Now suppose that the above formula is true for all the
descendants of some vertex p. Then applying the formula along with the
definition of r′p we find

r′p = rp +
∑
q∈Cp

rq (5)

= mp − rPp,p +
∑
q∈Cp

rp,q +
∑
q∈Cp

rq (6)

= mp − rPp,p +
∑
q∈Cp

rp,q +mq − rp,q +
∑
s∈Dq

ms

 (7)

= mp − rPp,p +
∑
q∈Dp

mq (8)

Applying induction all the way up we find the same is true for all p other
than R. For the root R we leave off the rPp,p since R has no parent. Hence
r′R = M . This establishes that S can obtain M from all of the rp’s.

Now we see that each r′p is the sum of some data with an independently
chosen random number rPp,q. Thus each r′p is effectively one-time-padded
with its own independent key. The exception is r′R, which is just M . Thus
what the server has is just M and a collection of ciphertexts that are com-
pletely independent of each other. We have thus shown that the protocol
leaks no information other than M .

Now we move from the special case to the original protocol where G is de-
termined randomly. We do this by showing that when G is weakly connected

11

we can reduce security to the case where G is a rooted tree. Essentially we
find a spanning tree and argue that the operations required to turn G into a
root tree do not leak any information to S.

Lemma 2. Assume all participants are honest. If G is a weakly connected
graph, then the server learns exactly M .

Proof. G is weakly connected, so there exists a spanning tree T of the un-
derlying undirected graph of G. Suppose we announce all rp,q where (p, q) is
in G but {p, q} is not an edge in T . This only increases the information that
the server has. In fact, whenever we announce rp,q the server can add this
to rp and subtract it from rq after which the server’s information is exactly
the same as if rp,q was never sent between p and q. So announcing rp,q is the
same as deleting the edge (p, q) from G.

Next, to get a rooted directed tree G′, we choose some vertex R in T to be
the root and orient all edges from parent to child. Some of these edges may be
backwards compared to the original edge in G. However, we can flip an edge
around by noting that an edge going backwards is the same as replacing rp,q
with −rp,q. From the server’s perspective these are both uniformly random,
so there is no change in the server’s information by making this change. If
both (p, q) and (q, p) are in G, then we can announce whichever one is not
in G′.

To summarise, for each (p, q) ∈ E(G) we do the following:

• If neither (p, q) nor (q, p) are in E(G′) then announce rp,q.

• If (q, p) ∈ G′ and (q, p) ∈ G then announce rp,q.

• If (q, p) ∈ G′ but (q, p) /∈ G then set rq,p = −rp,q.

• If (p, q) ∈ G′ then do nothing.

G′ is now a rooted directed tree, and so the previous lemma applies. The
reduction has only announced more information to the server, so the infor-
mation available when the graph is G is again exactly M . The announced
information is just a set of random numbers that are uncorrelated with the
participants’ data and the other random numbers.

12

4.2 Dishonest participants

For greatest generality, we assume that all dishonest participants are col-
laborating with each other and with the server. This will provide an upper
bound on the capabilities of any set of adversaries.

We might also consider whether dishonest participants could launch an
attack against an honest server, disrupting service, leading the server to ac-
cept an incorrect outcome, or learning information that only the server would
normally obtain. The first two attacks are clearly possible by disrupting com-
munication channels, or by contributing inappropriate data according to the
honest algorithm. Both of these problems are outside the scope of our proto-
col. As for information leakage, the only information (other than ciphertexts
for private communications) that dishonest parties receive are random num-
bers which are not correlated with any data. Hence dishonest parties will
not know any information about the honest participants’ data.

For the remainder of this section we assume that there is a set D of
participants who are dishonest and collaborating with a dishonest server.
We suppose that they are all operating according to a common strategy and
sharing all information. This provides an upper bound on all other strategies.

What can dishonest participants do? They could:

• send more than one message to a participant;

• send messages to more or fewer than k other participants, or choose
other participants not uniformly at random;

• choose messages not uniformly at random; or

• send malformed messages.

Let us deal with the first item. Every message received by an honest
participant p is simply added into the sum for rp. Now if a dishonest partic-
ipant q sends honest participant p several messages r`q,p for various `, this is
equivalent to sending one message,

∑
` r

`
q,p. Hence there is no gain in sending

more than one message, and we will assume that only one message (if any)
is sent.

If a dishonest participant changes their method of choosing who they will
send messages to, then this will affect the structure of G. However, it will
not affect the subgraph of honest participants since by definition these edges
are not between honest participants. Our security argument will look only

13

at the subgraph of honest participants, so how the dishonest participants
choose their neighbours will not affect security.

A dishonest participant might send a valid looking message which has not
been chosen uniformly at random as dictated by the protocol. However, as
we will soon argue, S’s information will always be the same as if dishonest
participants send no messages at all. Hence the distribution of messages is
not important.

Finally, if dishonest parties send malformed messages then the recipient
will ignore them. With all of these considerations, we will thus suppose that
each dishonest participant sends one well formed message to each of some
set of other participants.

Now, for some honest p, the server knows all the messages between p and
the dishonest participants. Hence the server can subtract rp,d and/or add
rd,p to rp for each dishonest d that has communicated with p. This forms a
new rp which is identical to what p would send if it had not communicated
with any dishonest participants. There is no additional information in rp,d or
rd,p since these were chosen without reference to p’s data. Thus the server’s
information is the same as if the dishonest participants did not communicate
with any honest participants. Equivalently, we can remove all dishonest
participants from G.

We have considered the possible actions of the dishonest participants and
concluded that we can equivalently consider the case where the dishonest
participants are removed from the protocol. As we have previously argued,
having a graph G of participants which is connected is important. In this
context we need the graph to be connected even after removing all dishonest
participants. If communication is never disrupted, as in the honest case, then
it suffices to have a weakly connected graph. However, when we later argue
for security in the presence of communication disruptions we will need G to be
strongly connected. Hence we would like to know thatG is strongly connected
except with some small probability, as show in the following lemma.

Lemma 3. Let a directed graph G on n vertices V be generated by a random
process where each vertex chooses k neighbours uniformly at random. Let
D ⊂ V be a subset of vertices with |D| ≤ cn for some 0 ≤ c < 1. Then
the probability that the subgraph of G on V \D is not strongly connected is
bounded above by

4n

(
1 + c

2

)k

. (9)

14

Proof. Set D to be the set of dishonest vertices and set G′ to be the induced
subgraph of G on V \ D. It is an easy argument to see that G′ is strongly
connected if and only if for every partition (A,B) of the vertices of G′ (with
A and B not empty) there exists at least one edge from A to B.

Our argument will be to sum, over all possible partitions (A,B), the
probability that there are no edges from A to B or B to A, assuming that
|A| ≤ |B|. This will provide an upper bound on the probability that G′ is
not strongly disconnected. To this end, let (A,B) be a partition of V \ D
and set a = |A|, b = |B|, and d = |D|, so n = a+ b+ d.

Looking at partition (A,B), there are three things which might happen to
make G′ disconnected. There might be no edge from A to B, no edge from B
to A, or no edges at all between A and B. These events are not independent,
and to upper bound the probability that there is a disconnection between A
and B we just need to sum the probability that there is no edge from A to B,
and the probability that there is no edge from B to A. This in fact double
counts the cases where there are no edges at all.

If there are no edges from A to B then each individual participant in set
A has chosen k other vertices from the a + d − 1 vertices not in B. The
probability of this happening is((

a+d−1
k

)(
n−1
k

))a

. (10)

Expanding this out and using the fact

s− `
t− `

≤ s

t
(11)

for 0 ≤ ` < s ≤ t we can upper bound the probability by(
a+ d

n

)ak

. (12)

If there are no edges from B to A then each participant in B has chosen
k neighbours from the n− a− 1 other vertices not in A. The probability of
this happening is bounded above by((

n−a−1
k

)(
n−1
k

))b

≤
(
n− a
n

)bk

≤
(

1− a
n

n

)kn 1−c
2

(13)

15

where we have used the fact that b ≥ n−d
2

. Now (1 + 1/x)x is always less
than e for all real x. Using this we can easily prove that (1− a/n)n ≤ e−a,
so the above is bounded above by

e−ak(
1−c
2) (14)

Now consider all possible partitions into A and B. Summing the proba-
bility of being disconnected over each partition provides an upper bound on
the probability of G′ not being strongly connected:

(n−d)/2∑
a=1

(
n− d
a

)((
a+ d

n

)ak

+ e−ak(
1−c
2)

)
(15)

Straightforwardly,(
n− d
a

)(
a+ d

n

)ak

≤ na

(
a+ d

n

)ak

≤ (a+ d)ak

na(k−1) (16)

With d = cn and a ≤ (n− d)/2, we further bound this above by((
1 + c

2

)k

n

)a

. (17)

Provided that
(
1+c
2

)k
n ≤ 1

2
, summing over a is a geometric series which is

upper bounded by

2n

(
1 + c

2

)k

. (18)

To bound the second term in (15) we use(
n− d
a

)
e−ak(

1−c
2) ≤

(
ne−k(

1−c
2)
)a
. (19)

Again, when e−k(
1−c
2) ≤ 1

2
we can bound the sum over a using a geometric

series, and the above is bounded by

2ne−k(
1−c
2). (20)

Now (15) is bounded above by

2n

(
e−k(

1−c
2) +

(
1 + c

2

)k
)
. (21)

16

A bit of calculus shows that for all 0 ≤ c ≤ 1 we have e−
1−c
2 ≤ 1+c

2
, so we

can simplify this to our final bound of

4n

(
1 + c

2

)k

. (22)

For this bound to be valid we require that k is large enough so that

ne−k(
1−c
2), n

(
1 + c

2

)k

≤ 1

2
(23)

but this is the same as saying that our final bound is less than 1, i.e. the final
bound is a non-trivial bound on probability.

The lemma tells us that, however many dishonest participants there are,
we can choose k large enough so that the probability that the subgraph of
honest participants is not strongly disconnected is below whatever threshold
we desire. Moreover, k = O(log n) is sufficient.

Now, let G′ be the subgraph of G of honest participants. As we have
argued, any information that the server gains from the dishonest parties is
equivalent to removing all dishonest edges from G, leaving us with G′. By
Lemma 2, whenever G′ is weakly connected the server learns exactly M and
no other information.

There is one remaining possibility, which is that the server (or some agent
of the server) disrupts communication between participants somehow. Per-
haps the message is corrupted so that authentication fails or the message is
lost entirely. Then the recipient will not process the message. Suppose that
p sent rp,q to q, but q did not receive it. Further suppose that rp and rq are
the messages that would have been sent to the server in the case that that
rp,q had never been sent. Then with the disrupted message q still sends rq to
S, but p now sends rp + rp,q since p adds rp,q regardless. This is equivalent
to removing the edge (p, q) from G′ and p contributing mp + rp,q. Note that
rp,q will remain unknown to the dishonest participants.

Suppose now that some number of messages have been lost. With very low
probability G′ was not strongly connected, and we have nothing to say about
security in that case, so let us assume that G′ is strongly connected. Now let
G′′ be the graph where we have taken G′ and removed all edges where the
message was lost. If G′′ is still weakly connected then the security reduction
still holds. So let us suppose that G′′ is not weakly connected and let H

17

be some weakly connected component of G′′. The same security argument
still applies to H, so that the server learns exactly

∑
p∈H mp. However, by

assumption G′ was strongly connected, there was some v ∈ H that sent a
message to some q outside of H. This message was lost, and as we have
argued v effectively contributes mv + rv,q, meaning that the server actually
learns

∑
p∈H mp + rv,q. This again looks like a one-time-padded message, so

the server has learned nothing at all about the data from participants in H.
The same argument applies to all connected components. Thus any attacks
that drop or corrupt messages will only reduce the amount of information
that the server learns.

Finally, we combine the above results to be able to state our security
theorem.

Theorem 1. If d ≤ cn then, except with probability at most 4n
(
1+c
2

)k
, the

server learns at most M and no participant learns anything.

Suppose we set a security constant of δ so that we want to have security
except with probability at most δ. Then given n we can choose k that gives
us security δ. Taking d to be a pessimistic value of 1

2
n we find that to achieve

security δ it suffices to set

k = d2.41 (log2 n+ 2− log2 δ)e. (24)

5 Extensions

For many applications, the server will not only be interested in the sum of
the participants’ data. In this section we document some possible uses of our
protocol to provide additional functionality. In all cases, honest participants’
anonymity is protected.

5.1 Means, variance, and other moments

Suppose that the server would like to find out about the distribution of the
participants’ data, but not individual data points. Using our protocol it is
very straightforward for the server to learn exactly

∑
mp, from which the

mean is easy to find. Once the mean is known, it is easy to find the variance
if the participants all contribute (mp)

2 so that the server learns
∑

(mp)
2.

18

Indeed, the variance is found via the formula

σ2 =
1

n

(∑
p

m2
p

)
− 1

n

(∑
p

mp

)2

(25)

where the two sums inside parentheses can be straightforwardly computed
anonymously using our protocol. Note that if the server learns the mean and
variance then it can also compute

∑
pm

2
p by rearranging the above formula,

so this does not leak any more information than is necessary.
Higher moments µt can be straightforwardly computed if the server an-

nounces the mean µ and the participants contribute (mp − µ)t. The formula
is given by

µt =
1

n

(∑
p

(mp − µ)t
)
. (26)

where the server learns the sum inside the parentheses in one run of the
protocol, after first learning µ.

These techniques allow the server to learn descriptive statistics without
revealing any particular data points.

5.2 Consensus

Suppose that the participants voluntarily assign themselves to either set A
or set B. The server would like to find out whether set B is empty or not2.
We can accomplish this by an anonymous contribution protocol where we set

mp =

{
0 p ∈ A
r ∈RM p ∈ B

. (27)

Suppose that the server learns M =
∑

pmp. If M 6= 0 then the server
concludes that there is at least one p ∈ B. If M = 0 then the server
concludes that |B| = 0.

How does this protocol perform? If all participants are honest and |B| = 0
then M will always be 0. If |B| ≥ 0 then M will be uniformly distributed and
will be non-zero except with probability 1

|M| . Similarly, if there are multiple

2This is a variant of the Dining Cryptographers problem where the server learns the
outcome rather than all participants

19

honest participants in B then M will be uniformly random and the fact that
|B| 6= 0 will be detected with high probability.

This protocol has reasonably good resistance to dishonest participants.
If there is an honest p ∈ B then M will be uniformly random regardless of
what the other participants send. So a dishonest participant cannot prevent
the server from detecting that |B| 6= 0, except with probability 1

|M| , the same
as the honest case. If the dishonest participant wants the server to believe
that |B| ≥ 0 then they can send a random number, but this is the same as
the honest behaviour for assigning themselves to B! Hence we do not count
this behaviour as dishonest.

One potential dishonest behaviour for this protocol is that if there is more
than one dishonest participant then they can conspire so that the sum of their
contributions equals 0, but each contribution is non-zero. From the server’s
point of view this is equivalent to all of the dishonest participants being in
A since the outcome for the server will be the same. From a semantic point
of view, the behaviour is not problematic since there is an honest behaviour
that produces exactly the same outcome. Namely, the dishonest parties could
just assign themselves to A and behave honestly.

5.3 Counting

The server can count the number of participants in B if participants con-
tribute 1 when they are in B. However, dishonest participants can very
easily manipulate this version of the protocol by contributing negative or
large positive numbers.

5.4 Exactly one

Suppose we want to know if B contains exactly 1 participant, no partici-
pants, or otherwise. The counting protocol works, but it is disrupted easily
by dishonest participants. We can fix this by having honest participants con-
tribute messages in a particular format. Suppose that f is a random oracle.

20

Participants contribute3{
(0, 0) p ∈ A
(r, f(r)), r ∈RM p ∈ B

. (28)

If the server observes that M has the form (a, f(a)) then it concludes that
|B| = 1. If M = (0, 0) then the server concludes |B| = 0 and otherwise
the server rejects. As we shall see, rejecting means either there are multiple
participants in B or there exists a dishonest participant. Let us call this
protocol exactly one.

Let us look at the honest case first. There are six possible cases in which
the server’s conclusion does not match the inputs. Two of these cannot occur,
namely when all inputs are (0, 0) and the server concludes either |B| = 1 or
rejects. If |B| = 1 then the first bad case is M = (0, 0) which occurs only
when r = 0 (probability 1

|M|). If f(0) 6= 0 then this case never occurs. The

second bad case is whenM = (a, b) with b 6= f(a), which does not occur in the
honest case. If |B| > 1 the two bad cases are M = (0, 0) and M = (a, f(a))
for some a. When |B| > 1 then in the honest caseM = (a, b) with a uniformly
random. When f is a random oracle b will also be uniformly random. Hence
the first bad case happens with probability at most 1

|M|2 . The second bad
case happens only when two uniformly random numbers are equal, which
happens with probability 1

|M| .
Let us now look at the dishonest case. This protocol is vulnerable to

the same attack as the consensus protocol, namely dishonest participants
conspiring so that their contributions sum to (0, 0) or (a, f(a)). The first case
is equivalent to all the dishonest participants instead assigning themselves to
A. The second case is equivalent to a single dishonest participant in B and
the rest in A. Both of these cases correspond to honest behaviours so we will
not consider them.

Suppose that the sum of the dishonest participants’ contributions is (a, b)
with one of a, b not equal to 0 and b 6= f(a). In this case the server should
always reject. We will take the convention here that A and B contain no
dishonest participants. If |B| = 0 then M = (a, b) and the server rejects
since b 6= f(a). If |B| = 1 then M = (a + r, b + f(r)). The server will
incorrectly conclude |B| = 0 if a = −r and b = −f(r), which happens with

3 The notation (a, b) implies that there are two runs of the protocol, and the server
considers the information together. Equivalently, there is one protocol which runs over
the group M×M.

21

probability 1
|M|2 . In other cases the server correctly decides that |B| = 1, or

rejects. If |B| > 1 then M = (c, d) where c and d are randomly distributed.
The server will be wrong only if (c, d) = (0, 0) (probability 1

|M|2), or d = f(c)

(probability 1
|M|).

For all cases, the worst probability that the server is wrong is 2
|M| .

5.5 Single data points

We can extend the exactly one protocol to allow the single participant in B
to contribute some data. This allows the server to determine that exactly
one participant has contributed data, without knowing who that participant
is. Each participant p contributes{

(0, 0, 0) p /∈ B
(r,mp, f(r +mp)), r ∈RM p ∈ B

(29)

The server learns M = (a, b, c). If a = b = 0 then nobody is in B. If
c = f(a + b) then the server takes b as the data. If c 6= f(a + b) then the
server rejects. Let us call this protocol single data.

Following a similar logic to the exactly one protocol, if there is a dishonest
party or more than one participant contributing, then M will with high
probability not have the form (a, b, f(a + b)) or (0, 0, 0) and the server will
reject.

5.6 Anonymous identities and time series data

For some applications the server may wish to know individual data points,
and may wish to associate data points together over time. One way of achiev-
ing this functionality is to have identities, which are attached to some par-
ticipant, but in such a way that only the participant knows their identity.

One way to establish such identities is to use the exactly one protocol
to claim identities. Suppose that the server announces “Who would like to
be participant x”. Then the server runs the exactly one protocol. If there
is exactly one participant in B, then that participant becomes participant x
and the server moves on to the next identity. If B is empty or the exactly one
protocol rejects, the the server repeats. Supposing that participants attempt
to claim an identity with probability about 1

2m
where m is the number of

participants who have not yet claimed an identity, this protocol will not

22

need too many retries. Indeed with this scheme the probability of needing a
retry can be bounded above using Bernoulli’s inequality by 0.75.

Another way to claim identities would be to use the single data protocol.
Here the data that a participant contributes could be the requested identity.

Once identities are established, they can be used to establish time series
data. For example, the server may announce “Participant x please contribute
data” followed by a run of the single data protocol. Or the server may run the
single data protocol without first specifying an identity. Then a participant
who wishes to do so can contribute a string containing their identity and
their data.

It is possible to establish a private channel from the server to an anony-
mous identity. The server can request that participant x send a random
string using the single data protocol. If it succeeds then the server uses the
random string to encrypt a message using the one-time-pad, and then broad-
casts the ciphertext. Only participant x knows the random string and can
decipher the message.

Note that it is easy to disrupt someone attempting to use an identity
by contributing garbage whenever the server requests data from a particular
identity. However, it is not possible to steal an identity as long as the original
owner of the identity continues to participate in the protocols. The exactly
one and single data protocols will reject whenever two or more participants
try to contribute. If the owner of an identity drops off the network or stops
responding correctly when the server requests information from their identity,
then a dishonest participant may take up that identity. If the owner is
known to leave the network then the server may notice that a particular
identity stops responding and conclude that the leaving participant owned
that identity. Hence maintaining both the integrity and confidentiality of an
anonymous identity requires continued participation in the network.

5.7 Peer to peer communication

So far we have designated a server S who learns M after a run of our protocol.
However, we can instead use a simultaneous broadcast channel, as in [BT07].
In this version participants broadcast rp instead of sending it to the server.
In this way all participants learn M after a run of the protocol. We can use
this idea to build a network for anonymous peer to peer communication. A
sketch of one possible protocol is as follows:

23

1. Everyone claims an identity using the exactly one protocol.

2. Using the single data protocol, a sender announces a recipient. Repeat
until the protocol accepts, at which point the recipient is set.

3. Using the single data protocol, the recipient distributes a random key.
Repeat until the protocol accepts.

4. Using the single data protocol, the sender announces the message added
to the random key. Repeat until the protocol accepts.

5. Go back to 2 for the next message

Since the protocol is susceptible to disruption by dishonest parties, it is
straightforward for an attacker to launch a denial of service attack. Also,
it is important that the broadcast channel be simultaneous. If the channel
instead operates so that one participant learns all the other rp’s before it
needs to send its own rp, then it can choose a value for rp that gives any
desired M .

5.8 Improving communication efficiency

The protocol, as written, requires many random numbers to be transferred
over authenticated private channels. The private channels could be imple-
mented in many ways, one of which is using a one-time-pad along with a
message authentication code. These primitives already imply shared ran-
domness at least as long as the random numbers that need to be transferred.
Hence one possible improvement to the protocol is to consume the shared
randomness directly rather than sending new random numbers. In this case
the messages no longer need to be private, and can be much shorter. The
shortest length would be one that allowed the recipient to identify the sender,
perhaps with some additional information identifying which key to use.

If information theoretic security is not required, then various primitives
with computational security could drastically reduce the overall communi-
cation required, and eliminate the need for pre-shared keys. One obvious
method would be to use Diffe-Hellman key exchange as a source of random
numbers instead of pre-shared keys. Also, participants need not choose new
neighbours on every run of the protocol, so a pseudo-random number gener-
ator could provide a long stream to be used over many runs of the protocol.

24

Various certificate schemes could be used to provide authentication. All of
these methods can reduce the overhead of communication required to run
the protocol.

6 Discussion

Our protocols are in many ways very similar to those in [BT07]. Our basic
protocol, the anonymous summation channel, is in some ways an extension of
Broadbent et al.’s parity protocol to arbitrary abelian groups. However, we
offer the advantage of a much lower overhead — O(log n) compared to O(n)
— since our protocol has participants share random numbers with a subset
of other participants. As well, for our intended applications we can replace
the simultaneous broadcast channel with a designated server. Broadbent
et al. develop a similar list of protocols to ours, and in many cases our
protocols are again natural generalisations to larger groups. Importantly,
our protocols can be used to gather meaningful statistical information, such
as mean, variance and higher moments, which is useful for our intended
applications in anonymous data contribution.

In terms of functionality, a comparison with TOR [DMS04] and onion rout-
ing in general is also apt. However, the protocols involved are very different
in this case. Our protocol is designed for collecting aggregate information
while preserving privacy for individuals contributing data points. In contrast,
onion routing is concerned with preserving anonymity for communication be-
tween peers. Onion routing could also be used to simulate an anonymous
summation channel. A participant can choose a random number r and send
mp + r and mp − r to the server. A suitable onion routing protocol would
hide the source of these two messages from the server. Provided that many
participants are contributing similar messages, the server could reconstruct
M , but not an individual mp. This type of protocol seems to require public
key encryption, otherwise the server would need to know who sent a message
in order to choose which symmetric key is required for description.

References

[AAS13] Charu C Aggarwal, Naveen Ashish, and Amit Sheth. The Inter-
net of Things: A survey from the data-centric perspective. In

25

Managing and mining sensor data, pp. 383–428. Springer, 2013.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet
of Things: A survey. Computer networks, 54(15):2787–2805,
2010.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pp. 1–10. ACM, 1988.

[BT07] Anne Broadbent and Alain Tapp. Information-theoretic security
without an honest majority. In Kaoru Kurosawa, editor, Ad-
vances in Cryptology - ASIACRYPT 2007, 13th International
Conference on the Theory and Application of Cryptology and
Information Security, Kuching, Malaysia, December 2-6, 2007,
Proceedings, Lecture Notes in Computer Science, volume 4833,
pp. 410–426. Springer, 2007.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty
unconditionally secure protocols. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pp. 11–19.
ACM, 1988.

[Cha88] David Chaum. The dining cryptographers problem: Uncondi-
tional sender and recipient untraceability. Journal of cryptology,
1(1):65–75, 1988.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syver-
son. Tor: The second-generation onion router.
Technical report, DTIC Document, 2004. eprint
http://www.dtic.mil/dtic/tr/fulltext/u2/a465464.pdf.

[McK15] McKinsey Global Institute. The Internet of Things: mapping
the value beyond the hype, 2015.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and
multiparty protocols with honest majority. In Proceedings of the
twenty-first annual ACM symposium on Theory of computing,
pp. 73–85. ACM, 1989.

26

http://www.dtic.mil/dtic/tr/fulltext/u2/a465464.pdf

	Introduction
	Previous work
	Contributions

	Anonymous summation channels
	Description of the protocol
	2-participant protocol
	Full protocol

	Proof of security
	Honest case
	Dishonest participants

	Extensions
	Means, variance, and other moments
	Consensus
	Counting
	Exactly one
	Single data points
	Anonymous identities and time series data
	Peer to peer communication
	Improving communication efficiency

	Discussion

