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Abstract—Intel SGX isolates the runtime memory of protected
applications (enclaves) from the OS and allows enclaves to en-
crypt and authenticate (seal) data for persistent storage. Sealing
prevents an untrusted OS from reading or arbitrarily modifying
stored data. However, rollback attacks, where the adversary
replays an old seal, remain possible. Data integrity violations
through rollback can have severe consequences, especially for
enclaves that operate on financial data. The SGX architecture
was recently updated to support monotonic counters that may
be used for rollback prevention, but we show that these counters
have significant performance and security limitations.

In this paper we propose a new approach for rollback
protection on SGX. The intuition behind our approach is simple.
A single platform cannot efficiently prevent rollback, but in
many practical scenarios multiple processors can be enrolled
to assist each other. We design and implement a rollback
protection system called ROTE that realizes integrity protection as
a distributed system among participating enclaves. We construct
a model that captures the ability of the adversary to schedule the
execution of protected applications, and show that our solution
achieves a strong security property that we call all-or-nothing
rollback: the only way to violate data integrity is to reset all
participating platforms to their initial state. We implement ROTE
and demonstrate that such a distributed rollback protection
mechanism can be very fast.

I. INTRODUCTION

Intel Software Guard Extensions (SGX) enables execution
of security-critical application code, called enclaves, in isola-
tion from the untrusted system software [10]. Protections in the
processor ensure that a malicious OS cannot read or modify
enclave memory at runtime. To protect enclave data across
executions, SGX provides a security mechanism called sealing
that allows each enclave to encrypt and authenticate data for
persistent storage. SGX-enabled processors are equipped with
certified cryptographic keys that can issue remotely verifiable
attestation statements on the software configuration of en-
claves. Through these security mechanisms (isolation, sealing,
attestation) SGX enables development of various applications
and online services with hardened security.

The architecture has also its limitations. While sealing
prevents a malicious OS from reading or arbitrarily modifying
persistently stored enclave data, rollback attacks [36], [34],
[28], [10] remain a threat. In a rollback attack a malicious
OS replaces the latest sealed data with an older encrypted
and authenticated version. Enclaves cannot easily detect this
replay, because the processor is unable to maintain persistent
state across enclave executions that may include platform
reboots.

Data integrity violation through rollback attacks can have
severe implications. Consider, for example, a financial ap-
plication implemented as an enclave. The enclave repeatedly
processes incoming transaction at high speed and maintains an
account balance for each user or a history of all transactions
in the system. If the adversary manages to revert the enclave
to its previous state, the maintained account balance or the
transaction histories do not match the executed transactions.

To address rollback attacks, two basic approaches are
known. The first is to store the persistent state of enclaves
in a non-volatile memory element on the same platform. The
SGX architecture was recently updated to support monotonic
counters leveraging the use of non-volatile memory [18]. How-
ever, the security guarantees and the performance limits of this
mechanism are not precisely documented. Our experiments
show that writes of counter values to this memory are slow
(counter increment takes 80-250 ms), which limits its use in
high-throughput applications. More importantly, this memory
allows only a limited number of write operations. We show that
this limit is reached within just few days of continuous system
use after which the memory becomes unusable. Additionally,
since the non-volatile memory used to store the counters
resides outside the processor package, the mechanism is likely
vulnerable to simple bus tapping and flash mirroring attacks
[33]. Similar limitations apply also to rollback protection
techniques that leverage Trusted Platform Modules (TPMs)
[36], [28], [34].

The second common approach is to maintain integrity
information for protected applications in a separate trusted
server [22], [38], [23]. The drawback of such solutions is that
they require the setup of additional computing infrastructure
and the server becomes an obvious target for attacks. Server
replication using standard Byzantine consensus protocols [7]
avoids a single point of failure, but requires high communica-
tion overhead and several replicas for each untrusted node.

In this paper we propose a new approach to protect SGX
enclaves from rollback attacks. The intuition behind our solu-
tion is simple. A single SGX platform cannot prevent rollback
attacks efficiently, but in many practical scenarios the owner
or the owners of processors can assign multiple processors
to assist each other. Our approach realizes rollback protection
as a distributed system among multiple enclaves. When an
enclave seals data, it stores a counter to a set of enclaves
running on assisting processors. Later, when the enclave reads
the sealed data from its local persistent storage, it obtains



counter values from assisting enclaves to verify that the sealed
data is of the latest version.

We consider a powerful adversary that controls the OS on
the target platform and on any of the assisting platforms.
Additionally, we assume that the adversary can break SGX
protections on some of the assisting processors, for example,
through physical attacks. The adversary can also control all
network communication between the platforms. Our adversary
model combines commonly considered network control based
on the standard Dolev-Yao model [11] and Byzantine faults
[29], [24], but additionally captures the the ability of the
adversary to terminate trusted processes, restart their execution
from a previously saved state, and dictate the schedule of
trusted processes on all nodes. Such adversarial capabilities
are crucial for the security of our system, and we believe that
the model is of general interest.

Secure and practical realization of distributed rollback pro-
tection under such a strong adversarial model involves chal-
lenges. One of the main challenges is that when an assisting
enclave receives a counter, its own state changes, which
implies a set of new state updates that would in turn propagate.
To prevent endless update propagation, the counter value must
be stored in the volatile runtime memory of enclaves. However,
the assisting enclaves may be restarted at any time.

In this paper, we design and implement a rollback pro-
tection system called ROTE (Rollback Protection for Trusted
Execution). Our system distributes counter values to a set of
enclaves that we call the protection group. The size of the
group depends on desired level of security (the number of
tolerated compromised enclaves) and robustness (the number
of platforms that may be simultaneously unreachable). The
main components of our solution are a state update mechanism
that is an optimized version of consistent broadcast protocols
[30], [6], and a recovery mechanism that obtains lost counters
from the rest of the protection group upon enclave restart.

We show that our solution achieves a strong security prop-
erty that we call all-or-nothing rollback in the presence of a
strong adversary. Although the attacker can restart enclaves
freely, and thus implement subtle attacks where enclave state
updates and recovery are interleaved, the adversary cannot
roll back individually any enclave of the protection group to
their respective previous states. The only way to violate data
integrity is to reset the entire group to its initial state. Similar to
[28], [36], our approach can provide crash resilience, assuming
deterministic enclaves and a slightly weaker notion of rollback
prevention (the latest input can be executed twice).

We implemented ROTE on SGX and evaluated its perfor-
mance on four SGX machines. We also tested larger groups up
to 20 platforms using a simulated implementation over a local
network and geographically distributed protection groups. Our
evaluation shows that state updates in ROTE can be very fast
(1-2 ms). The number of state updates and counter increments
is unlimited. This is in contrast to solutions based on SGX
counters and TPMs, where state updates are approximately
100 times slower and the system becomes unusable after a
few days of continuous use. Application developers can use

our rollback protection system by adding a small library (150
LoC) to their enclave code. The TCB size increment of ROTE
is moderate (1100 LoC).

Contributions. We make the following contributions.

e New security model. We introduce a new security model
for reasoning about the integrity and freshness of SGX
applications.

o SGX counter experiments. We show that SGX counters
have severe performance limitations.

e Novel approach. We propose a novel way to protect SGX
enclaves. Our key idea is to realize rollback protection by
storing enclave-specific counters in a distributed system
encompassing a collaborative set of distinct nodes.

o ROTE. We propose and implement a system called ROTE
that effectively protects against rollback attacks. ROTE
ensures integrity and freshness of application data in a
powerful adversarial model.

o Experimental evaluation. We demonstrate that distributed
rollback protection incurs small performance overhead.
Deployed over a low-latency network, the enclave sealing
overhead is 1-2 ms.

The rest of this paper is organized as follows. In Section II
we provide background information on SGX. Section III
defines our adversarial model and explains rollbacks attacks.
Section IV describes our distributed rollback protection ap-
proach. Section V describes the ROTE system and Section VI
provides security analysis. Section VII provides performance
evaluation and Section VIII further discussion. We review
related work in Section IX. Section X concludes the paper.

II. SGX BACKGROUND

The SGX architecture consists of new instructions, protec-
tive mechanisms in the processor, and new processor-specific
cryptographic keys. The main goal of the architecture is
to prevent other applications and even the operating system
from subverting the control-flow integrity of an application or
observing its runtime state. The SGX architecture provides
such isolation of security-critical application execution, but
also gives rise to a new type of adversary, one that can
terminate, restart and dictate the schedule of enclave execution
(see Section III). Here we briefly describe the main protection
mechanisms of SGX. For a more elaborate explanation of the
architecture, we refer interested readers to [10].

Enclave creation. An enclave is created by the OS. During
enclave creation, the OS specifies the enclave code. Security
mechanisms in the processors create a data structure called
SGX Enclave Control Structure (SECS) that is stored in a
protected memory area (see below). Because enclaves are
created by the OS, their code cannot contain sensitive data. The
start of the enclave is recorded by the processor, reflecting the
content of the enclave code as well as the loading procedure
(sequence of instructions). The recording of an enclave start
is called measurement and it can be used for later attestation.
Once an enclave is no longer needed, the OS can terminate
it and thus erase its memory structure from the protected
memory.



Runtime isolation. The SGX security architecture guar-
antees that enclaves are isolated from all software running
outside of the enclave, including the OS, other enclaves,
and peripherals. By isolation we mean that the control-flow
integrity of the enclave is preserved and other software cannot
observe its state. The isolation is achieved via protection
mechanisms that are enforced by the processor. The code and
data of an enclave are stored in a protected memory area
called Enclave Page Cache (EPC) that resides in Processor
Reserved Memory (PRM) [26]. PRM is a subset of DRAM that
cannot be accessed by the OS, applications or direct memory
accesses. The PRM protection is based on a series of memory
access checks in the processor. Non-enclave software is only
allowed to access memory regions outside the PRM range,
while enclave code can access both non-PRM memory and
the EPC pages owned by the enclave [10].

The untrusted OS can evict EPC pages into the untrusted
DRAM and load these back at a later stage. While the evicted
EPC pages are stored in the untrusted memory, SGX assures
their confidentiality, integrity and freshness via cryptographic
protections. The architecture includes the Memory Encryp-
tion Engine (MEE) which is a part of the processor uncore
(microprocessor function close to but not integrated into the
core [10]). The MEE encrypts and authenticates the enclave
data that is evicted to the non-protected memory, and ensures
enclave data freshness at runtime using counters and a Merkle-
tree structure. The root of the tree structure is stored on the
processor die. Additionally, the MEE is used to protect SGX’s
Enclave Page Cache against physical attacks and is connected
to the Memory Controller [2], [10].

Attestation. Attestation is the process of authenticating
that a particular piece of enclave code has been properly
instantiated. In local attestation both the prover and the chal-
lenger reside on the same platform. This is done using the
EREPORT mechanism which uses a report key, shared with
the challenger, to sign security critical attributes of the prover
enclave (e.g., its code hash and issuer key).

Remote attestation refers to a procedure where a remote
challenger gains confidence that a particular piece of enclave
code has been instantiated on a trusted platform. To accom-
plish this, the SGX architecture uses an Intel-provided Quoting
Enclave which can access a processor-specific attestation key
to sign security critical enclave data and measurements. This
signed report is returned to the challenger who uses an online
attestation verification service (operated by Intel) to verify that
the key being used is a valid Intel SGX attestation key. The
attestation key is a part of the group signature scheme called
EPID (Enhanced Privacy ID) used to sign objects without
uniquely identifying the platform (processor), thus protecting
end-user privacy [20], [10]. The challenger can verify the
responses from the Quoting Enclave and the online attestation
service, and confirm the indicated enclave code is running
on a genuine SGX processor. Once an enclave has been
authenticated using attestation, an external entity or another
enclave on the same platform can establish a secure channel
to it using an authenticated key exchange.
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Fig. 1: SGX model. We model enclaves and the operating sys-
tem, their main functionality, and the operations (scheduling,
storage, communication) through which they interact.

Sealing. Enclaves can save confidential data across exe-
cutions. Sealing is the process to encrypt and authenticate
enclave data for persistent storage [1]. Typically enclaves
perform sealing when their state has changed in such a way
that the new state should be recoverable on the next execution
of the enclave (possibly after a reboot). All local persistent
storage, such as the disk, is controlled by the untrusted OS.
For each enclave, the SGX architecture provides a sealing key
that is private to the executing platform and the enclave. The
sealing key is derived from a Fuse Key (unique to the platform,
not known to Intel) and an Identity Key that can be either the
Enclave Identity or Signing Identity. The Enclave Identity is a
cryptographic hash of the enclave measurement and uniquely
identifies the enclave. If data is sealed with Enclave Identity, it
is only available to this particular enclave version. The Signing
Identity is provided by an authority that signs the enclave prior
to its distribution. Data sealed with Signing Identity can be
shared among all enclave versions that have been signed with
the same Signing Identity.

III. PROBLEM STATEMENT

In this section we define models for the SGX architecture
and the adversary. After that, we explain rollback attacks,
limitations of known solutions, and our requirements.

A. SGX Model

Figure 1 illustrates our SGX model. We model enclaves
and the operating system, their main functionality, and the
operations through which they interact. Our model captures
the main SGX functionalities (isolation, attestation, sealing)
that are available on all SGX platforms.

Scheduling operations. Enclave execution is scheduled by
the OS.

e id < Create(code). The OS can create an enclave by
providing its code as an input. The SGX architecture cre-
ates a unique identifier that is defined by the processor on
which it runs and by its code: id < {code, processor}.



o output < start(id,input). The OS can start a created
enclave using its identifier and input data. The enclave
executes the code that was assigned to it during creation.
While an enclave is running, the OS and other enclaves
are isolated from its runtime memory. Multiple instances
of the same enclave can run concurrently on one platform.

o Suspend(id) and Resume(id). The OS can suspend the
execution of an enclave. When an enclave is suspended,
its program counter and runtime memory retain their
values. The OS can resume suspended enclave execution.

e Terminate(id). The OS can terminate the enclave ex-
ecution. At termination, the enclave runtime memory is
erased by the SGX architecture and the enclave id is
rendered unusable.

Storage operations. The second set of operations that we

model are related to sealing data for local persistent storage.

e seal < Seal(data). An enclave can save data for local
persistent storage. This operation creates an encrypted
and authenticated data structure that is passed to the OS.

o Offerseal(id, seal). The OS can offer sealed data. The
enclave can verify that it previously created the seal, but
the enclave cannot distinguish which seal is the latest.

Communication operations. The attestation mechanism
allows an enclave to authenticate its code and bind application-
specific data to it. We model attestation as a single source-
authenticated message, although the attestation is an interac-
tive protocol between the enclave and the verifier (see Sec-
tion II). A recipient of a message that contains an attestation
signature, can verify the code of the sending enclave and that
the code is running in an SGX-enabled processor. All sent and
received messages are mediated by the OS.

e Send(msg). An enclave can send source-authenticated
messages. The recipient of the message can be on the
same or on another platform.

e code,msg < Receive(). An enclave, or an external
verifier, can receive source-authenticated messages. The
operation returns the code configuration of the sender
code and the sent data msg.

We do not model platform reboots, as those have the same
effect as enclave restarts. Our model assumes that each enclave
identity has its own runtime memory that is perfectly isolated
from the untrusted OS and other enclaves. In reality, enclave
code and data are processed in shared processor caches.
Additionally, all enclave code and data may not reside in
the enclave runtime memory simultaneously, but encrypted
memory pages can be evicted to the untrusted memory. The
OS-controlled paging mechanism has been demonstrated to
leak information about the control flow of the enclave [40].
Cache-based side-channels are discussed in [10]. We consider
information leakage through side-channel attacks a realistic
threat, but an orthogonal problem to rollback attacks, and thus
outside our model.

B. Local Adversary Model

We consider a powerful adversary who controls all system
software on the target platform, including the OS. As specified

above, the adversary can schedule enclaves (create, start,
suspend, resume, terminate). The adversary can offer the latest
and previous versions of sealed data, and block, delay, read
and modify all messages sent by the enclaves.

The adversary cannot read or modify the enclave runtime
memory or learn any information about the secrets held
in enclave data (i.e., no information leakage through side-
channels). The adversary has no access to processor-specific
keys, such as the sealing key or the attestation key, and
the adversary cannot break cryptographic primitives provided
by the SGX architecture (attestation, sealing). The enclaves
may implement additional cryptographic operations, such as
authenticated key exchange and message signing, and we
assume that the adversary cannot break those operations.

C. Rollback Attacks

The goal of the adversary is to violate the integrity of the
sealed enclave data. This is possible with a simple rollback
attack. After an enclave has sealed at least two data elements
s1 < Seal(dy) and sg < Seal(ds), the adversary performs
Terminate () and Start () to erase the runtime memory of
the enclave. When the enclave requests for the latest sealed
data ds, the adversary performs OfferSeal (id,s1) and the
enclave accepts d; as do. When the sealed data captures
the state of the enclave at the time of sealing, we say that
the rollback attack reverts the enclave back to its previous
state. Such attacks can have severe implications, especially
for applications that maintain financial data, such as account
balances or transaction histories.

D. Limitations of SGX Counters

Intel has recently added support for monotonic counters [18]
as an optional SGX feature that an enclave developer may
use for rollback attack protection. However, the security and
performance properties of this mechanism are not well docu-
mented. Furthermore, they are not available on all platforms.
Below we describe the counter functionality and explain our
findings on experimenting with them.

SGX counter service. An enclave can query the availability
of counters from the Platform Service Enclave (PSE). If
supported, the enclave can create up to 256 counters. The
default owner policy is that only the enclaves with the same
signing key may access the counter. The counter creation
operation returns a counter identifier that is a combination of
the Counter ID and a nonce to distinguish counters created by
different entities. The enclave must store the counter identifier
to access the same counter later, as there is no API call to list
the existing counters. After a successful counter creation, the
enclave can increment, read, and delete the counter.

According to the SGX API documentation [18], the counter
operations involve writing to a non-volatile memory. Repeated
write operations can cause the memory to wear out, and thus
the counter increment operations may be rate limited. Based on
Intel developer forums [16], the counter service is provided by
the Management Engine on the Platform Control Hub (PCH).



Experiments. We tested the SGX counters on five differ-
ent platforms: Dell Inspiron 13-7359, Dell Latitude E5470,
Lenovo P50, Intel NUC and Dell Optiplex 7040. The counter
service was not available on Inte]l NUC. On the Dell laptops
a counter increment operation took approximately 250 ms,
while on the Lenovo laptop and Dell Optiplex increment
operations took approximately 140 ms and 80 ms, respectively.
Strackx et al. [36] report 100 ms for counter updates. Counter
read operations took 60-140 ms, depending on the platform.
As expected, the counter values remained unchanged across
enclave restarts and platform reboots. We tested the wear-out
characteristics of the counters and found out that on both of
the Dell laptops after approximately 1.05 million writes the
tested counter became unusable and other counters on the same
platform could not be created, incremented or read.

Additionally, we observed that reinstalling the SGX Plat-
form Software (PSW) or removing the BIOS battery deletes
all counters. Finally, to our surprise, we noticed that after
reinstalling the PSW the first usage of counter service triggered
the platform software to connect to a server whose domain is
registered to Intel. If Internet connection is not available, the
counter service is unavailable.

Performance limitations. An enclave developer could at-
tempt to use the SGX counters as a rollback mechanism.
When an enclave needs to persistently store an updated state,
it can increment a counter, include the counter value and
identifier to the sealed data, and verify the integrity of the
stored data based on the counter value at the time of unsealing.
However, such approach may wear out the used non-volatile
memory. Assuming a system that updates one of the enclaves
on the same platform once every 250 ms, the counters become
unusable in few days. Even with a modest update rate of one
increment per minute, the counters are exhausted in two years.
Services that need to process tens or hundreds of transactions
per second and update their state accordingly are not possible.

Weaker security model. According to Intel developer fo-
rums [16], the counter service is provided by the Management
Engine on the PCH (known as “south bridge” in older archi-
tectures). However, to the best of our knowledge, the actual
location of the non-volatile memory used to store the counters
is not publicly stated. Based on Intel specifications [17], [15],
the PCH typically does not host non-volatile memory, but it
is connected over an SPI bus to a flash memory that is also
used by the BIOS. Since the Management Engine is an active
component, the communication between the processor and the
Management Engine can be replay protected. However, the
SPI flash is a passive component, and therefore any counter
stored there is likely to be vulnerable to bus tapping and
flash mirroring attacks, as recently demonstrated in the case
of mobile devices (inspired by the FBI iPhone unlocking
debate) [33]. Although the precise storage location of the SGX
counters remains unknown at the time of writing, it is clear
that if the integrity of the enclave data relies on the SGX
counter feature, then additional hardware components besides
the processor must be considered trusted. This is a significant
shift from the enclave execution protection model, where the

security perimeter is the processor package [2, p. 30].

Other concerns. The current design of the SGX counter
APIs makes safe programming difficult. To demonstrate this
we outline a subtle rollback attack. Assume an enclave that
at the beginning of its execution checks for the existence of
sealed state, and if one is not provided by the OS, it creates
a new state and counter, and stores the state sealed together
with the counter value and identifier. Every time the state is
updated, the enclave increments the counter value. Later, the
OS no longer provides a sealed state to the restarted enclave.
The enclave assumes that this is its first execution and creates
a new (second) counter and new state. Recall that the SGX
APIs do not allow checking existence of previous counter.
The enclave updates its state again. Finally, the OS replays a
previous sealed state associated with the first counter. A careful
developer can detect such attacks by creating and deleting 256
counters (an operation that takes two minutes) to check if a
previous counter, and thus sealed state, exists. A crash before
counter deletion would render that particular enclave unusable.

We have no good explanation why a connection to an Intel
server is needed after the PSW reinstall. Similarly, we do not
know why the SGX counters become unavailable after BIOS
battery removal or PSW reinstall.

The above attack and availability issues could be probably
fixed with better design of the SGX APIs and system services,
but the performance limitations and the weaker security model
are hard to avoid in future versions of the SGX architecture.

E. Limitation of SGX Trusted Time

Another recently introduced and optional SGX feature is
the trusted time service [19]. As in the case of SGX counters,
also the time service is provided by the Management Engine.
The trusted time service allows an enclave developer to query
a time stamp that is relative to a reference point. The function
returns a nonce in addition to the timestamp, and according to
the Intel documentation, the timestamp can be trusted as long
as the nonce does not change [19].

We tested the time service and noticed that the provided
nonce remained the same across platform reboots. Reinstalling
the PSW resulted in a different nonce, but the provided time
was still correct. The reference point is the standard Unix time.

As a rollback protection mechanism the trusted time service
is of limited use. Including a timestamp to each sealed data
version allows an enclave to distinguish which out of two seals
is more recent. However, the enclave cannot know if the sealed
data provided by the OS is the latest one.

F. Limitations of Other Known Solutions

TPM solutions. TPMs provide monotonic counters and
NVRAM that can be used to prevent rollback attacks [28],
[34], [36]. The TPM counter interface is rate-limited (typically
one increment every 5 seconds) to prevent memory wear



out.! Writing to NVRAM takes approximately 100 ms and
the memory becomes unusable after 300K to 1.4M writes
(few days of continuous use) [36]. Thus, similar to SGX
counters, TPM based solutions are unsuitable for applications
that require fast and repeated state updates.

Integrity servers. Another approach is to leverage a trusted
server to maintain state for protected applications [22], [38],
[23]. The drawback of this approach is that it requires setup
and maintenance of a new infrastructure and the centralized
integrity server becomes an obvious target for attacks. To
eliminate a single point of failure, the integrity server could be
replicated using a Byzantine agreement or consensus mecha-
nism. However, standard consensus protocols [7] require sev-
eral rounds of communication, have high message complexity,
and require at least three replicas for each untrusted node.

Architecture modifications. The SGX architecture could be
modified such that the untrusted OS cannot erase the enclave
runtime memory. However, this approach would prevent the
OS from performing resource management and the architec-
ture would not scale to many enclaves. Additionally, rollback
attacks through forced reboots would remain possible. Another
approach would be to enhance the processor with a non-
volatile memory element. Such architecture changes are costly
and the current NVRAM technologies have the performance
limitations discussed above.

G. Rollback Protection Desiderata

The goal of our work is to design a rollback protection
mechanism that overcomes the performance and security
limitations of SGX counters and other known solutions. In
particular, our solution should support unlimited and fast state
updates without weakening the enclave protection model. We
seek to find a solution that does not require expensive hardware
modifications or setup of new computing infrastructure, allows
easy data migration for flexible resource use, and does not have
a single point of failure for high level of security.

IV. OUR APPROACH

The intuition behind our approach is that a single SGX
platform cannot prevent rollback attacks, but the owner or
the owners of SGX platforms can enroll multiple processors
to assist each other. Thus, our goal is to design rollback
protection for SGX as a distributed system between multiple
enclaves running on separate processors. Instead of using a
standard state replication protocol, our distributed system is
customized for the task of rollback protection to reduce the
number of required replicas and the communication overhead.

To realize rollback protection, the distributed system should
provide, for each participating platform, an abstraction of a
secure counter storage that consists of two operations:

'The TPM 2.0 specifications introduce high-endurance non-volatile mem-
ory that enables rapidly incremented counters [13]. The counter value is main-
tained in RAM and the value is flushed to non-volatile memory periodically
(e.g., mod 100) and at controlled system shutdown. However, if the system
is rebooted without calling TPM Shutdown, the counter value is lost and at
start-up the TPM assumes the next periodic value. Therefore, such counters
do not prevent attacks where the adversary reboots the system.

e WriteCounter(value). An enclave can use this opera-
tion to write a counter value to the secure storage.

e value/empty < ReadCounter (). An enclave can use
this operation to read a counter value from the secure
storage. The operation returns the last written value or
an empty value if no counter was previously written.

When an enclave seals data for local persistent storage, it
distributes a monotonic counter over the network to a set of
enclaves running on assisting processors (WriteCounter) and
includes that counter value to the locally sealed data. Later,
when the same enclave reads the sealed data from its local
persistent storage, it obtains counter values from enclaves on
the assisting processors (ReadCounter) and verifies that the
sealed data is of the latest version. By using enclaves on the
assisting platforms, we reduce the required trust assumptions
on them.

A. Distributed Model

We assume n SGX platforms that assist the target platform
in rollback protection. The platforms can belong to a single
administrative domain or they could be owned by private indi-
viduals who all benefit from collaborative rollback protection.
We model each platform using the SGX model described in
Section III-A. The distributed system can be seen as a compo-
sition of n + 1 SGX instances (target platform included) that
are connected over a network. We make no assumptions about
the reliability of the communication network, messages may be
delayed or lost completely. We assume that while participating
in collaborative rollback protection, some platforms may be
temporarily down or unreachable.

B. Distributed Adversary Model

On each platform, the adversary has the capabilities listed
in Section III-B. Additionally, we assume that the adversary
can compromise the SGX protections on f < n participat-
ing nodes, excluding the target platform. Such compromise
is possible, for example, through physical attacks. On the
compromised SGX nodes the adversary can freely modify the
runtime memory (code and data) of any enclave, and read all
enclave secrets and the SGX processor keys.

This adversarial model combines a standard Dolev-Yao
network adversary [11] with adversarial behaviour (Byzantine
faults) on a subset of participating platforms [29], [24]. Ad-
ditionally, the adversary can schedule the execution of trusted
processes and replay old versions of their persistently stored
data. In Section VI we illustrate subtle attacks enabled by such
additional adversarial capabilities.

C. Challenges

Secure and practical realization of our approach under a
strong adversarial model involves challenges.

Network partitioning. A simple solution would be to store
a counter with all the assisting enclaves, and at the time
of unsealing require that the counter value is obtained from
all assisting enclaves. However, if one of the platforms is
unreachable at the time of unsealing (e.g., due to network



Counter Security Enclave Crash
technique property type resilience
inc-then-store  no any rollback any no

store-then-inc ~ no arbitrary rollback,

last input twice

deterministic ~ yes

TABLE I: Comparison of counter increment techniques. inc-
then-store provides strong security, but no crash resilience.
store-then-inc supports crash resilience, but enables the latest
input to be executed twice.

error, maintenance or reboot), the operation would fail. Our
goal is to design a practical system that allows enclave sealing
and unsealing even if some of the participating enclaves are
unreachable. In such a system, some of the assisting enclaves
may have outdated counter values, and the system must ensure
that only the latest counter value is ever recovered, assuming
an adversary that can block message, and partition the network
by choosing which nodes are reachable at any given time.

Coordinated enclave restarts. When an enclave seals data,
it sends a counter value to a set of enclaves running on
assisting platforms and each enclave must store the received
counter. However, sealing the received counter for persistent
storage would cause a new state update that would propagate
endlessly. Therefore, the enclaves must maintain the received
counters in their runtime memory. The participating enclaves
may be restarted at any time, which causes them to lose
their runtime memory. Thus, the rollback protection system
must provide a recovery mechanism that allows the assisting
enclaves to restore the lost counters from the other assisting
enclaves. Such a recovery mechanism opens up a new attack
vector. The adversary can launch coordinated attacks where he
restarts assisting enclaves to trigger recovery while the target
platform is distributing its current counter value.

V. ROTE SYSTEM

In this section we describe ROTE (Rollback Protection for
Trusted Execution), a distributed system for rollback protec-
tion on SGX. We start by explaining the rationale behind the
chosen counter increment technique, our system architecture,
group assignment and system initialization. After that, we
describe the rollback protection protocols.

A. Counter Increment Technique

Two common techniques for counter-based rollback protec-
tion exist (see Table I). The first technique is inc-then-store,
where the enclave first increments the trusted counter and
after that updates its internal state and stores the sealed state
together with the counter value to the disk. This approach pro-
vides a strong security property (no rollback to any previous
state), but if the enclave crashes between the increment and
store operations, the system cannot recover from the crash.

The second technique is store-then-inc, where the enclave
first saves its state on the disk together with the latest input
value, after that increments the trusted counter, and finally
performs the state update [28], [36]. If the system crashes,
it can recover from the previous state using the saved input.

ROTE System (TCB)
3rd pParty Development

Platform A

ASE,,; ASE,;

ME,
Platform B

ROTE lib ROTE 1lib

I [ Y

=:

Fig. 2: The ROTE system architecture. Application-Specific
Enclaves (ASEs) verify the integrity of their sealed data using
the Master Enclave (ME) that distributes its own state to
assisting platforms.

‘OS

This technique requires a deterministic enclave and provides
a slightly weaker security property: arbitrary rollback is not
possible, but the last input may be executed twice on the same
enclave state [36].

The stronger security guarantee is needed, for example,
in a financial enclave that executes transactions (withdraws
randomized digital coins) and maintains account balances. If
the enclave executes the same input twice on the same state,
the adversary can withdraw double the coins accounted. The
weaker security guarantee is sufficient in applications where
the execution of the same input on the same state provides no
advantage for the adversary (e.g., appending a transaction to
a transaction history in a deterministic manner).

Our distributed rollback protection approach is agnostic to
the choice of the counter increment technique. We design and
implement ROTE using inc-then-store, because of its stronger
security guarantees. However, our system could easily be
adapted to provide crash resilience using store-then-inc similar
to [36].

B. System Architecture

Figure 2 shows the system architecture. Each platform
may run multiple user applications that have a matching
Application-Specific Enclave (ASE). The ROTE system con-
sists of a system service that we call the Master Enclave (ME)
and a library that ASEs can use for rollback protection. When
an ASE needs to update its state, it calls a counter increment
function from the ROTE library. Once the ME returns a counter
value, the ASE can safely update its state and seal data together
with the counter value. When an ASE needs to unseal data
(e.g., restore its state after a restart), it can again call a function
from the library to obtain the latest counter value to verify the
freshness of the seal.

To provide state protection for ASEs, the ME needs to
protect its own state. The ME maintains a Monotonic Counter
(MCO), increases it for every internal state update, distributes
it to MEs running on assisting platforms, and finally includes
the counter value to its own sealed data. When the ME is
restarted and needs to restore its own state, it obtains the latest
counter value from the assisting nodes and verifies that the
counter value matches the one in the unsealed data. Essen-
tially, the ME realizes the secure counter storage functionality
(WriteCounter and ReadCounter) defined in Section IV.



This design choice of introducing a dedicated system service
(ME) serves two purposes. First, it allows the ASEs to verify
data integrity upon restart without any networking overhead.
Some ASEs may be started and terminated repeatedly, while
the ME is designed to run constantly. Second, the ME can hide
group management and distributed counter maintenance com-
plexity from the applications. Having a separate ME increases
the TCB of our system slightly, but we consider improved
performance and easier development more important.

C. System Parameters
The ROTE system has three configurable parameters:

o n is the number of assisting platforms,

o f is the number of compromised processors, and

e u is the maximum number of assisting platforms that can
be unreachable or non-responsive at the same time for
the system to proceed.

These parameters have a dependency n = f + 2u + 1 (see
Section VI). As a configuration example, a system adminis-
trator can select the desired level of security f and robustness
u which together determine the required number of assisting
platforms n. Alternatively, given certain number of assisting
platforms n, the administrator can pick f and wu.

D. Group Assignment

Our system is agnostic to the way the n assisting SGX
platforms are chosen. Here we outline an example approach
based on a trusted offline authority. Such group assignment
is practical, for example, in scenarios where all assisting
platforms belong to a single administrative domain (e.g.,
multiple servers in the same data center).

We call the trusted authority that selects the assisting nodes
the group owner. The group owner can be a fully offline
entity to reduce its attack surface. To establish a protection
group, the group owner selects n platforms. We assume that
the operating systems on these platforms are trusted at the
time of group assignment (e.g., freshly installed OS version).
The ME on each platform generates an asymmetric key pair
SKyp/PKy g and exports the public key. The public keys
are delivered to the group owner securely, and the group owner
issues a certificate by signing all group member keys. The
group certificate can be verified by the ME on each selected
platform by hard-coding the public key of the group owner to
the ME implementation.

In Appendix B we outline group updates (e.g., removal and
addition of nodes) and group assignment alternatives based
on attestation and consensus protocols that do not require a
trusted authority or trust on first use.

E. System Initialization

When an ME is started for the first time, it creates a
monotonic counter (MC) that it sets to zero. The master
enclave saves the public keys PK;g; of the protection group
members to a group configuration table. The MEs run an
authenticated key agreement protocol to establish symmetric
keys kprp; and add them to the group configuration table.

ME persistent state
(sealed)

ASE persistent state
(sealed)
signing key: SKy:/PKy

app. specific data: d

own counter: MC shared key: Kpg

local ASE counter table: Counteryg;

idasprs Kasms Counter,g

ME runtime memory
(not sealed)

group configuration table: group counter table:

PKye1r  Kuma PRypy, Signed(MCyg;)

Fig. 3: ROTE system state structures. The ME maintains a local
ASE counter table in its persistent state and a group counter
table in its runtime memory. The group configuration table is
set up during system initialization.

Finally, the ME allocates local ASE counter table and group
counter table data structures that will be populated during
system use. The ME seals its state containing the signing key
pair, its own counter (value zero), and the above mentioned
tables, as shown in Figure 3.

When an ASE wants to use the ROTE system for the
first time, it performs an attestation of the ME. The code
measurement of the ME can be hard-coded to the ASE enclave
or provisioned by the ASE developer. The ASE runs a key
establishment protocol with the ME and adds the established
shared key k 45p; to the local ASE counter table together with
a locally unique enclave identifier id 4sg;. The ASE adds the
same key to its own state, as shown in Figure 3.

F. ASE State Update Protocol

When an ASE is ready to update its state, it performs a
state update protocol with the help of the ME, as illustrated in
Figure 4. This protocol can be seen as an customized version
of the Echo broadcast [30]. We discuss the differences between
our state update mechanism and common Byzantine broadcast
primitives in Section IX. The communication between the
enclaves is encrypted and authenticated using the shared keys
established during system initialization. Additionally, we add
nonces and end point identifiers to each message to prevent
message replay. The protocol proceeds as follows:

1) The ASE is ready to update its state. For example, a
financial application has received a new transaction and
is ready to process it (e.g., update account balance).

2) The ASE triggers a counter increment using the ME.

3) The ME increments a counter for the ASE, increases its
own MC, and signs the incremented MC using SK /.

4) The local ME sends the signed counter to all other MEs
in the protection group. The counter is signed to preserve
its integrity in the case of compromised assisting MEs.

5) Upon receiving a signed MC, each ME in the protection
group updates its group counter table. This table is kept
in the runtime memory and not sealed after every update
to avoid endless propagation.
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Fig. 4: ASE state update protocol. The ASE sends a counter
increment request to the ME that increments the ASE specific
counter in its table and increments its MC to distribute it to the
assisting MEs. If the ME receives sufficient number of echoes
and ACKs, both the ME and ASE seal their respective states.

6) The MEs that received the counter send a echo message
that contains the received signed MC. The MEs also
save the echo in runtime memory for later comparison.

7) After receiving a quorum ¢ = u+ f+1 = %f“ echos,
the ME returns the echos to their senders. We discuss
the necessity of the second communication round in
Section VI.

8) Upon receiving back the echo, each ME finds the self-
sent echo in its memory and checks if the MC value
from it matches the one in the group counter table and
the one received back from the target ME. If this is the
case, the ME sends a final ACK message to the target
ME. If the MC in the echo does not match to the MC
in the group counter table (indicating a restart), or the
platform cannot find its own echo in the memory, the
ME will not send the final ACK.

9) After receiving ¢ final ACK messages confirming the
existence of the counter in their tables, the ME can
accept the next created data state and seal it to the disk.

10) The ME returns the increment ASE counter value. The
ASE can now safefy perform the state update (e.g.,
update account balance) and seal its state together with
the received counter value.

G. ASE Start Protocol

When an ASE needs to unseal data (e.g., recover its state
after a restart), it performs the protocol shown in Figure 5.

Operating ASE Master
Al

system Enclave,
requestLocalState() :
1 unsealState(); retrieveASEcounter()
.- >
OfferSeal(ASE a1,5€al) :‘ 2
3 getASEx Counter() R
e =

CounterASE,,  checkLocalASECounterTable()

> 4
@ compare counter from the unsealed| state
with counter received from ME,

— REQUEST
— > RESPONSE LOCAL ENTITY

Fig. 5: ASE start protocol. An ASE obtains the latest data state
counter from the ME and verifies the integrity of the unsealed
data using it.

Operating Master Master Master
system Enclave, Enclaves | **"| Enclave;

requestLocalState() i

1 ) unsealState(); extract MC
OfferSeal(ME,,seal) :| 2
getMC() checkGroupCounterTable()
3 : | &
getMC() R
g

signed MC(ME,), signed MC(all)

5 compare MC from sealed state

REQUEST with max(MC) received from network LOCAL ENTITY

| — > RESPONSE EXTERNAL ENTITY

Fig. 6: ME start protocol. The ME obtains the latest MC
value from the assisting MEs and verifies the integrity of the
unsealed data using it.

1) The ASE queries the OS for the sealed data state.

2) The ASE unseals the state (if received) and obtains a
counter value from it.

3) The ASE issues a request to the local ME to retrieve its
latest ASE counter value.

4) The ME returns a value from the local ASE counter
table.

5) The ASE compares the received counter value to the one
obtained from the sealed data.

If the counter values match, the ASE successfully loads the

previously sealed state. Otherwise, the ASE refuses to load
the unsealed state.

H. ME Start Protocol

Figure 6 shows the protocol when the ME is started. The
protocol serves two purposes: to retrieve its own self-signed
MC from the protection group (if one exists) and to retrieve
the lost MCs of other nodes in the protection group.

1) The ME queries the OS for the sealed state.
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Fig. 7. State transition diagram showing enclave execution
states using an ideal secure counter storage functionality. We
show that the enclave can only accept the latest state or halt
its execution.

2) The ME unseals the state (if received) and extracts the
MC.

3) Regardless of whether the OS offered a sealed state, the
ME sends a request to all other MEs in the protection
group to retrieve its MC.

4) The assisting MEs check their group counter table.
If the MC is found, the enclaves prepare a response
containing the signed MC of the requesting ME, and
additionally the complete table of other signed MCs that
the responding node has in its memory for the protection
group.

5) When the ME receives g responses from the group, it
verifies its own signature over the offered MCs, and
selects the maximum value. We select the maximum
value because some MEs might have an old counter
value or they may have purposefully send an old counter
value. Additionally, the target ME verifies signatures and
compares all the group counter table entries with MCs of
other nodes. For each assisting ME, the target ME picks
the highest MC and updates its own group counter table.

The ME now has an updated group counter table that reflects

the latest monotonic counters for each node in the group. Upon
finding the maximum value for its own MC, the ME compares
it to the MC value recovered form the sealed state. If the
counters correspond to each other, the ME successfully loads
the previously sealed state. If the comparison fails, the ME
refuses to load the unsealed state.

VI. SECURITY ANALYSIS

Our system is designed to provide the following security
property: an ASE cannot be rolled back to a previous state.
In this section we first show that given a secure storage
functionality (Section IV), an ASE accepts only the latest
seal it made. After that, we show that the MEs realize the
secure counter storage functionality as a distributed system.

And finally, we show that ASEs cannot be rolled back if the
ME cannot be rolled back. Our system achieves a security
guarantee that we call all-or-nothing rollback. Enclave data
integrity violation may only occur if the entire protection
group is reset to its initial state.

A. Rollback Protection with Secure Storage

Given the ideal secure counter storage functionality defined
in Section IV, rollback attacks can be prevented using the inc-
then-store technique. In Figure 7 we illustrate a state transition
diagram that represents ME states during sealing and unsealing
using the ideal storage functionality. The notion of state in
this section is an execution state, in contrast to enclave data
states created and stored using sealing. We show that any
combination of adversary operations, in any of the enclave
execution states, cannot make the master enclave accept a
previous version of sealed data.

First start. Upon enclave start (), the ME execution
begins from State 1. Initially, the counter MC is set to zero
in the runtime memory and the ME proceeds to State 2
to determine if it has previously saved sealed state. The
ME reads the counter value from the secure storage using
ReadCounter (). On the first execution the operation returns
empty and the ME continues to State 7, where it continues
normal operation. If the ReadCounter () operation fails, the
ME halts.

Sealing. When the ME needs to seal data for local persistent
storage (save its current state), it proceeds to State 8. The
ME increments the monotonic counter MC, and performs the
WriteCounter () operation to write it to the secure storage
in State 9. If the writing operation succeeds, the ME continues
to State 10. If counter writing fails, the ME halts. In State 10,
the ME seals the data that represents its current state together
with the counter value. OS confirmation moves the enclave
back to normal operation in State 7.

Unsealing. When the ME needs to unseal data (recover its
state) and the counter MC in the runtime memory has a non-
zero value, the ME proceeds from State 7 to State 3. The
ME asks the OS for the latest seal. The adversary can offer
the correct sealed data (OfferSeal (latest) ) which moves the
execution to State 4. Unsealing is successful and the counter
value in the seal matches the MC value in the runtime memory,
and the ME proceeds back to State 7. The adversary can also
offer a previously sealed state (Of ferSeal (previous)) which
moves the execution to State 6. The unsealing is successful, but
the counter value in the unsealed data does not match the MC
value in the runtime memory and the ME halts. Finally, the
ME can offer any other data (0OfferSeal (arbitrary)) which
moves the ME to State 5. In this case the unsealing fails and
the ME halts.

Restart. After an ME restart, the execution proceeds to
State 2. If the ReadCounter () operation returns a non-empty
value, the ME proceeds to State 3, from where we follow the
same steps as above.

If in any of these states the ME is terminated or restarted,
its execution continues from State 1. Deleting and creating
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the same enclave again has the same effect. Suspend () and
Resume () have no effect, i.e., the enclave remains in the same
execution state. We conclude that, assuming the ideal secure
storage functionality, the adversary can only force the ME to
halt or to load the correct latest seal.

B. Distributed Secure Storage Realization

Next, we show that ROTE realizes the secure counter storage
functionality as a distributed system. When obtaining a counter
value from the distributed protection group (ReadCounter),
the enclave receives the latest value that was successfully
sent to the protection group (WriteCounter). We divide the
analysis into three parts: quorum size, platform resets, and
two-phase counter writing.

Quorum size. As defined in Section V, the ROTE system
has three parameters: the number of assisting nodes n, the
number of compromised nodes f, and the number of unre-
sponsive nodes u. The required quorum for responses at the
time of counter writing and reading is ¢ = f+u+1 = %f“
Figure 8 illustrates that this is the optimal quorum size. We
consider an example where the adversary performs network
partitioning by blocking messages during writing and reading.

On the first write, the attacker allows the counter value 1 to
reach the right side of the group by blocking the messages sent
to the left side. On the second write, the adversary allows the
counter value 2 to reach the left side of the group by blocking
the right side. Finally, on counter read, the adversary blocks the
left side again. If the counter is successfully written to ¢ = f+
u+1 nodes, there always exists at least ©+ 1 honest platforms
in the group that have the latest counter value. Because counter
reading requires the same number of responses, at least one
correct counter value is obtained upon reading. The maximum
number of tolerated compromised platforms is f < n. If we
set v = 0, and therefore ¢ = n, we can tolerate f = n — 1
compromised processors. However, with such parameters the
system does not proceed if even one platform is not reachable
at the time of sealing or master enclave start.

Platform resets. If the counter is successfully written to
q nodes, then at least u + 1 honest assisting MEs have the
latest MC value in their runtime memory. If an assisting ME
is restarted, it attempts to recover the lost MC values (its own
counter and counters for other nodes) from the rest of the
protection group.

Three distinct cases are possible. The first case is that the
number of restarted MEs is at most u. Since the number of
not restarted nodes is u+ f 41 = ¢ there is sufficient available
platforms with the correct MC for the counter retrieval,
concerning network partitioning. All restarted platforms will
recover the correct MC. The second case is that more than
u platforms, but not the entire protection group, are rebooted
at the same time. The number of remaining platforms is not
sufficient for ME recovery and the distributed system no longer
provides successful MC reading or writing, but no rollback is
possible. The third case is all n+ 1 nodes are restarted at the
same time, in which case all platforms are reset to their initial
state.

Two-phase counter writing. The above analysis showed
that if the counter is successfully written to at least ¢ nodes,
then at least u + 1 honest nodes have the latest counter
value, and during reading at least one correct value is always
received. We also showed that the system can maintain the
counter, if the adversary resets assisting MEs after successful
counter writing. What remains to be shown is that our two-
phase status update protocol successfully writes the counter to
q nodes, despite possible ME resets during the protocol.

We illustrate the challenges of counter writing in this
particular setting through an example attack on a single-phase
variant of the status update protocol. This variant completes
after the ME has received ¢ echos. In this attack, during state
update, the adversary blocks all communication and performs
sequential passing of the messages. First, the attacker allows
the message delivery to only one node that saves the counter
and returns an echo. After that, the attacker restarts the ME on
that node, which initiates the lost counter recovery procedure
from the rest of the protection group. The adversary blocks the
communication to the target platform, and the restarted ME
recovers the previous counter value, because all the reachable
MEs have not yet received the new value. The adversary
repeats the same process for all other platforms. As a result,
the target node has received ¢ echos and accepts the state
update, but all the assisting nodes have the previous counter
value. Rollback is possible.

The second communication phase of our state update proto-
col prevents such attacks. Below we show that no combination
of ME restarts during the state update protocol allows the
target ME to complete the protocol, unless the counter was
written to ¢ nodes and at least u + 1 honest nodes saved the
counter value. There are four distinct cases to consider. (Below
we assume that the adversary restarts at most u platforms si-
multaneously. If more than u platforms are restarted, recovery
is not possible, as explained above.)

e Case 1: Echo blocking. If the attacker blocks communi-
cation or restarts assisting MEs so that ¢ nodes cannot
send the echo, the target ME does not receive enough
responses and the protocol does not complete.

o Case 2: No echo blocking. If the attacker allows at least
q echoes to pass, the target ME can start returning these
echoes to the original senders. Depending on the attacker



actions on the assisting MEs after they have sent the
echoes, the following two cases are possible.

o Case 2a: No restarts during first round. If none of the
assisting MEs were rebooted during the first protocol
round, then at least u + 1 nodes have the updated MC of
the target ME in their runtime memory. If the adversary
restarts assisting MEs before they sent the final ACK
and after they received the self-sent echo returned from
the target ME, the protocol will not complete, because
less than ¢ final ACKs will be received. The adversary
can also restart assisting MEs after they have sent the
final ACK which will result in successful state update,
and successful state recovery of the restarted ME since
sufficient number of the assisting nodes already have the
updated counter value.

e Case 2b: Restarts during first round. If the adversary
restarts assisting MEs during the first round, the update
protocol will either successfully complete (¢ final ACKs
received) or halt execution depending on the number of
simultaneously restarted nodes. Sequential node restarts,
as discussed in the example attack above, are detected.
Upon receiving ¢q echos, the ME sends each of the
received echoes to the original sender from the assisting
nodes. Because of sequential ME restarts, all assisting
nodes have the previous MC value in their runtime
memory, and thus the protocol will fail upon comparison
of the echoes and the MC values. None of the assisting
MEs will deliver the final ACK, and the protocol will not
complete.

We conclude that the successful completion of the two-
phase state update protocol guarantees that at least ¢ nodes
receives and at least w + 1 honest nodes saved the counter
value.

C. Security Analysis Summary

If the target ME has the latest MC that it sent, it is able to
distinguish its latest sealed state, and if the latest sealed state
is loaded, all the ASEs state counters kept within are fresh.
Upon retrieval, the ASE always receives the latest counter, and
thus each ASEs will only accept the latest sealed state they
produced. The adversary may only cause a complete system
reset if all the nodes are restarted at the same time.

D. Forking Attacks

Finally, we consider forking attacks, where the adversary
purposefully starts more than one instance of the target enclave
[36]. In our case, the adversary could stars two ME instances.
The SGX architecture does not enable one enclave instance to
check if another instance of the same enclave code is already
running. Both of the started ME instances retrieve the latest
counter value from the assisting nodes and recover the latest
sealed state. The adversary connects an ASE to the first ME
instance and updates its state. The state update is kept in the
runtime memory of the first ME instance and propagated to
the assisting nodes, but not to the second ME instance. After
that, the adversary restarts the ASE and connects it to the

component LoC
test relay 100
master relay 1600
test ASE 100
ROTE library 150
Master Enclave (ME) 950
TCB size 1100

TABLE II: ROTE prototype implementation size.

second ME instance. The second ME instance provides a stale
ASE counter value from its runtime memory and rollback is
possible.

The above forking attack can be prevented at least in two
ways. The first approach is that the ASE start protocol includes
ME connecting to the assisting nodes and verifying its latest
counter and seal. This adds a small delay to every ASE start.
The second approach is to leverage a TPM. After system boot,
the started ME instance could extend a PCR that has a known
value at boot. If a second ME instance is started, it can check
if the PCR value differs from its known initial value [36]. We
will implement forking attack protection for ROTE in the next
version of this technical report.

VII. PERFORMANCE EVALUATION

In this section we describe our implementation and experi-
mental evaluation.

A. Implementation

Our implementation consists of the following components.
First, we implemented the ME and an accompanying master
relay application. Second, we implemented the ROTE library,
a simple test ASE, and a matching test relay application.
The purpose of the relays is to mediate enclave-to-enclave
communication (enclaves cannot communicate directly). We
implemented all components in C++, the relays were imple-
mented for the Windows platform. Table II shows the sizes of
implemented components.

Communication. The communication between the relay
applications and enclaves takes place using function calls from
the Intel SGX API. The local communication between the
relay applications was implemented using Windows named
pipes. The communication across platforms was implemented
using the standard Windows networking stack. When an ME
sends a message to another ME, it first passes the data to the
local master relay that sends it to the remote master relay over
the network where it is passed to the remote ME.

Cryptography. The enclaves use asymmetric keys for sign-
ing and key establishment. We implemented the asymmetric
cryptography using 256-bit ECC keys. For signing we use
ECDSA. Our implementation establishes shared keys using
authenticated Diffie-Hellman key exchange. For symmetric
message encryption and MAC generation we use 128-bit
AES-GCM. The implemented operation mode of authenticated
encryption is encrypt-then-MAC. All of the used cryptographic
primitives are provided by the standard Intel SGX libraries.
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Fig. 9: Experimental results. The first row shows ROTE performance (update delay and throughput) for protection groups that
are connected over a local network. The second row show performance for geographically distributed protection groups.

B. State Update Delay and Throughput

Experiments. The main performance metric that we mea-
sure is the ASE state update delay at the time of sealing. This
operation includes counter distribution to the protection group
over the network, and thus the delay depends on the size of
the protection group and the network. Depending on the ASE,
such updates may be needed frequently. The ASE unsealing
is a local operation, and thus constant time and fast (e.g., 10
s depending on the size of the sealed data). The ME start
requires network communication, but this operation would be
normally performed only once per platform boot, and thus the
operation is not time-critical.

Additionally, we measure the theoretical system throughput,
measured as the number of state update operations that one
platform or an entire protection group can process (encompass-
ing only the system protocol overhead). In our implementation,
all the messages passed between the nodes were 224 bytes,
where 200 bytes indicate the encrypted payload and the re-
maining 24 bytes is the header containing routing information
and sent in plain text. We report state average update delays
and system throughput over 100,000 executions for the first
and second experimental setup, and 100 executions fot the
third experimanetal setup (due to larger networking times).

Our first experimental setup consisted of four SGX-enabled
laptops connected via local network (1-GBit Ethernet, off-the-
shelf router). The laptops had Windows 10 OS, Intel i7-6500U
processor and 8GB RAM. The round-trip time between the
laptops was measured at < 1ms. For this setup, we used the
ROTE prototype implementation.

nodes locations
2 US (West), Europe
3 US (West), Europe, Asia
4 US (West), Europe, Asia, South America,
5 US (West), Europe, Asia, South America, Australia
6 US (West), Europe, Asia, South America, Australia, US (East)

TABLE III: Geographically distributed protection groups.

nodes state update delay
2 2.00 ms (£1.5 ps)
3 2.02 ms (£1.3 ps)
4 2.03 ms (£1.4 ps)

TABLE IV: State update delay on local network.

Our second experimental setup consisted 20 identical desk-
top computers connected via local network (1-Gbit Ethernet,
university network). All desktops had Windows 10 OS, Intel
i7-6700T processor and 8GB RAM. The round-trip time
between the computers was measured at < 1ms. For this
setup, we used a simulated implementation that is otherwise
identical but does not run the protocol as enclaves.

Our third experimental setup was a geographically dis-
tributed protection group of sizes from two to six nodes that
we tested on Amazon AWS EC2 instances with Windows
Server 2016, Intel Xeon-E5-2686 processor, 16GB RAM and
dedicated 750 Mbit Internet connections. We distributed the
platforms across different continents as shown in Table III.
Also for this setup we used the simulated implementation.

Results. The state update delay consists of two components:



networking overhead and SGX processing. In Appendix A
we provide measurements on the cryptographic operations
on SGX, measured on an average laptop (Intel i7-6500U
processor and 8GB RAM). Context switching to enclave
execution is fast (few microseconds). Symmetric encryption
used in the protocol is also fast (less than a microsecond).
The only computationally expensive operation that the state
update protocol requires is asymmetric signatures (0.46 ms
per signing operation). The ASE state update protocol has
one signature creation, the signature is verified later in the
ME start protocol. The required processing time of the state
update protocol is less than 0.6 ms on an average laptop, where
the creation of the first protocol message takes 0.51 ms (due
to signing operation) and the creation of the second, third and
forth messages is fast (approximately 5 us).

Table IV shows the results from our first experimental
setup using the ROTE prototype. The state update delay was
measured to be approximately 2 ms for group sizes from two to
four nodes with the deviation depending solely on the network
performance (the round trip time using a 1-Gbit router took
< 1ms and with 4 messages passed between the nodes it
equals 2 ms with a maximum deviation of 3.2 us measured
across 100,000 repetitions).

Figure 9 shows the results from our second and third
experiments using simulated implementation for larger groups.
Figure 9a illustrates the status update delay for group sizes up
to 20 platforms in the local network (round-trip time less than
a millisecond). We see an increase in the delay as the group
size grows. This is as expected, since the target platform needs
to communicate with more platforms. For a group size of five
nodes, the delay is 1.94 ms and for group size of 20 nodes,
the delay is 3.24 ms.

The throughput per node in the local network is shown in
Figure 9b. For a group size of 10 nodes, we measure over
418 updates per second. The throughput for the entire group
is shown in Figure 9c. For a group size of 20 platforms, we
measure more than 6,150 updates per second. We emphasize
that these numbers represents the best-case scenario, as there
is no significant other traffic in the network and no significant
other computation on the platforms during our measurements.

Figure 9d illustrates the status update time for geographi-
cally distributed group sizes up to six platforms (see Table III).
The observed increases in delay, and decreases in throughput,
are less systematic, due to the dependency on network connec-
tions between various geographic locations in the protection
group. The update time between two locations takes 654 ms
while distributing it over five locations gives us the update time
of 1.37 seconds. The throughput per node and the throughput
of the entire group are shown in Figures 9e and 9f. For a group
size of six platforms, we measure 0.73 updates per second for
a single node, while the entire group consequently achieves
4.4 updates per second.

We draw two conclusions from these experiments. First,
the performance overhead imposed by our rollback protection
mechanism is defined largely by the network connections
between the platforms. Second, if the nodes are connected

Request  State no rollback ROTE SGX counter
type size protection system protection
(KB) (ms) (ms) (ms)
Write 1 3.85(£0.06)0 5.17 (£ 0.03) 160.7 (£ 0.7)
state 10 4.65 (£ 0.05) 6.03 (£ 0.03) 162.7 (£ 1.6)
100 6.49 (£ 0.04) 7.83 (£ 0.05) 169.1 (£ 2.1)
Read 1 0.06 (£ 0.00)
state 10 0.19 (% 0.00)
100 1.76 (£ 0.05)

TABLE V: Performance comparison for the example appli-
cation w/o ROTE, using ROTE and using SGX monotonic
counters.

over a low-delay network, ROTE can support applications
that require frequent state updates (e.g., over 400 updates per
second). For applications that can tolerate larger sealing delays
(e.g., more than 600 ms per state update), the ROTE system
can be run on geographically distant protection groups.

C. Example Application Performance

In addition to state update delay, we measured the through-
put of an example financial enclave with no rollback protec-
tion, using ROTE and using SGX counters (see Table V).

Our example application is a financial enclave that processes
incoming transactions from a buffer that is never empty. The
experimental setup was a protection group of four nodes. We
used the Intel NUC for disk operations due to its fast NVMe
SSD; we used the two Dell laptops and the Lenovo laptop
as the assisting nodes; lastly, we used the Lenovo laptop to
test the SGX counters. For every processed transaction, the
enclave updates its state, creates a new seal, and writes it
to the disk. In case of ROTE and SGX counter variants, the
enclave also performs a counter increment. We tested three
different enclave state sizes (1 KB, 10 KB, 100 KB) since
the transaction processing and local state of the app can differ
based on the exact use case scenario. In all three cases the
ROTE system provides significantly better performance than
using SGX counters (e.g., 190 over 6 tx/s, 1KB) while suf-
fering a 20-25% performance drop in comparison to systems
which have no rollback protection (e.g., 260 over 190 tx/s,
for 1KB). Additionally we tested the ROTE system with two,
three and four nodes as protection group members and the
difference in the results varies between 1-3% covered by the
standard deviation of the results itself.

VIII. DISCUSSION

In this section we discuss data migration, performance
optimizations, and information leakage.

A. Data Migration

Although sealing binds encrypted enclave data to a specific
processor, our solution enables easy data migration within
the protection group. Migration is especially useful before
planned hardware replacements and group updates (e.g., node
removal). In a migration operation, an ASE first unseals its
persistent data and passes it to the ME. The ME sends the
enclave data to another master within the same protection



group together with the measurement of the ASE. The com-
munication channel between the master enclaves is encrypted
and authenticated. On the receiving processor, the ME passes
the enclave data to an instance of the same ASE (based on
attestation using the received measurement) which can seal it.
Combined with group updates (see Appendix B), such enclave
data migration enables flexible management of available com-
puting resources. Similar data migration is discussed in [35].

B. Performance Optimizations

The main performance characteristic of our solution, the
state update overhead, is dominated by the networking time
and the asymmetric signature operation required for the first
message of the state update protocol. In case of a local network
and an average laptop, the networking takes approximately 1
ms and the signature operation 0.5 ms. Because symmetric
MAC operations are significantly faster (approximately 1 us),
the protocol could be optimized by replacing the asymmetric
signature with n MACs that are calculated using the pair-wise
keys established during system initialization. As malicious
nodes can create fake MACs, it is no longer sufficient to
receive q responses from any of the n nodes and pick the
maximum value during counter read (as explained in Sec-
tion VI-B). Instead at least g responses must be received from
the same nodes as written previously and at least ¢ responses
must have the same value for the read operation to succeed.
Such optimization can make state updates approximately 0.5
ms faster, but it can prevent the system from proceeding
in environments with high node unavailability or network
partitioning.

Another possible optimization is to pre-compute the asym-
metric signatures. Since the signed data is predictable counter
values, we can pre-compute and store them. This pre-
computation may be done at times when the expected load
is low or at system initialization depending on the specific
application scenario.

C. Information Leakage

As explained in Section III, our model excludes execution
side-channels, such as page faults and measurements on shared
caches. Here we briefly discuss additional information leakage
that our solution may add. Each local enclave state update
causes network communication. An adversary that can observe
the network, but does not have access to the local persistent
storage, can use the information leakage to determine the
timing of sealing and unsealing events. Also the reboot of
the target platform causes an observable network pattern. We
consider such information leakage a minor threat. If the exact
timing of such events should be hidden, the master enclave
can generate network traffic that mimics state updates and
master enclave restarts at random intervals. Communication
between the enclaves is encrypted and authenticated to prevent
eavesdropping.

IX. RELATED WORK

SGX counters and TPMs. Ariadne [36] uses TPM
NVRAM or SGX counters for enclave rollback protection.

ROTE state consistent Byzantine

update broadcast agreement

Echo broadcast [30] PBFT [7]

stored value counters arbitrary arbitrary
sender trusted untrusted untrusted

provides total order no no yes

replicas f+1 3f+1 3f+1
message complexity O(n) O(n) O(n?)

TABLE VI: Comparison between ROTE state update protocol
and common Byzantine broadcast and agreement primitives.

The counter is incremented using store-then-inc technique that
provides crash resilience, but allows two executions of the
latest input on the same state. Ariadne minimizes the TPM
NVRAM wear out using counter increments that only require
a single bit flip. This work has three main differences to our
solution. The first is service availability. SGX counters are an
optional feature, not supported by all platforms, while our so-
lution leverages functionality available on all SGX platforms.
The second is performance. SGX counter increments take 80-
250 ms and make the non-volatile memory unusable after
few days of continuous use. Similar performance limitations
apply to TPM NVRAM as well. Our solution performs counter
increments in 1-2 ms (local network) and imposes no limits
on the number of state updates. The third difference is the
security model. Solutions that rely on SGX counters are likely
vulnerable to bus tapping and flash mirroring attacks [33]. In
our solution the trust perimeter is the processor package.

Memoir [28] leverages TPM NVRAM for rollback protec-
tion of isolated applications. The main drawback is as above:
NVRAM updates are slow for high-throughput applications
and continuous use will wear out the memory in few days.
An optimized variant of Memoir assumes the availability of
an Uninterrupted Power Supply (UPS). This variant stores
the state updates to volatile Platform Configuration Registers
(PCRs) and at system shutdown writes the recorded update
history to the NVRAM.

The ICE system [34] enhances the CPU with protected
volatile memory, a power supply and a capacitor. At system
boot, a base value is written to NVRAM in the TPM. After
that, a non-reversible update history (hash chain) is recorded
in the processor protected memory and at system shutdown
the capacitor flushes the latest history version. After reboot
or crash, the unsealed data is only accepted if it matches the
latest history version and the base value in the TPM. Both the
optimized Memoir and ICE require hardware changes.

Integrity servers. Another common approach is to store
data integrity information on a separate server. For example,
the Verena system [22] maintains authenticated data structures
for web applications and stores integrity information (hashes)
for these stuctures on a separate, trusted server. Another use
case is to prevent the usage of disabled credentials on mobile
devices by storing counters on an integrity-protected server
[23]. In contrast to our system, such solutions requires setup
and maintenance of new infrastructure and the integrity server
becomes an obvious attack target.



Byzantine broadcast and agreement. Our state update
protocol resembles well-known Byzantine broadcast primi-
tives [6]. Echo broadcast [30] is an example of a consistent
broadcast that ensures that non-malicious nodes do not receive
different values. Bracha broadcast [4] is an example of a
reliable broadcast that ensures that all non-malicious nodes
receive the same value. Practical BFT [7] is an example of a
Byzantine agreement (or total-order broadcast) protocols that
additionally ensures that all the nodes receive the broadcasted
values in the same order [6].

Our state update mechanism requires that the target platform
only accept the update and creates the seal if a sufficient
number of assisting nodes have received the counter value.
Thus, our state update protocol follows the approach of Echo
broadcast [30] with an additional confirmation message in the
end. Like broadcast primitives, our state update protocol has
O(n) message complexity. Byzantine agreement protocols typ-
ically require O(n?) messages. Another significant difference
is the number of required replicas. Byzantine broadcast and
agreement protocol operate on arbitrary values and assume
a potentially malicious sender. Thus such protocols require
3f + 1 replicas. In our system the sender (i.e., the target
platform) is trusted and the distributed data is a signed counter
value. Thus f+1 replicas are sufficient. Table VI summarizes
the comparison.

Byzantine adversary models. Classical works on Byzan-
tine agreement [24], [29] consider a model where f processes
behave arbitrarily and the other processes behave as expected.
The main difference to our model is that the attacker can
control the execution schedule of the trusted processes as well.
Researchers have also considered agreement under models
where the Byzantine faulty nodes have some trusted function-
ality (e.g., an unmodifiable hardware primitive) available. Such
approaches reduce the number of required replicas to 2f + 1
[8], [25], [9] or f 4+ 1 [21]. In our model we have no trust
assumptions on the compromised nodes. Byzantine agreement
has also been considered with so called dual failure models
[27], [12], [32] where the adversary can fully control the faulty
processes and can read the secrets of other processes (but not
affect their control-flow integrity). In our case, the adversary
cannot read secrets from trusted enclaves but can restart them.

SGX adversary models. Several recent research papers
consider adversaries against SGX-based systems [37], [41],
[39], [31], [14], [5]. These works typically consider individual
adversarial capabilities, such as platform restarts, but to the
best of our knowledge none of them defines all operations
through which the OS or the adversary can control enclave
execution schedule.

X. CONCLUSION

In this paper we have proposed a new approach for rollback
protection on Intel SGX. Our key idea is to implement integrity
protection as a distributed system across collaborative enclaves
running on separate processors. We consider a powerful ad-
versary that controls the OS on all participating platforms and
has even compromised a subset of the assisting processors. We

constructed a model that captures the adversarial capabilities to
schedule enclaves and show that our system provides a strong
security guarantee that we call all-or-nothing rollback. Our
experiments demonstrate that distributed rollback protection
is practical even if applications require fast or frequent state
updates.
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APPENDIX A
PERFORMANCE MEASUREMENTS

Table VII provides measurements of cryptographic opera-
tions on SGX. We report average time over 1M repetitions. All
enclave operations are reported switching time excluded. The
test platform was running Windows 10 OS, Intel i7-6500U
processors, 8GB RAM and a 256GB SSD.

APPENDIX B
GROUP MANAGEMENT

In Section V we described the ROTE system using a trusted
offline authority: the group owner. In this appendix we discuss

Operation Time
enclave switching time 2.6 (£ 0.0) us
SHA256 24 (+ 0.0) us
Opening and closing ECC context 24 (£ 0.0) us

ECDSA signing (0.5KB)

ECDSA verfication (0.5KB)

Sealing (1KB)

Unsealing (1KB)

Rijndael AES-CTR125 encryption (0.5KB)

Rijndael AES-CTR12g decryption (0.5KB)

Rijndael AES-GCM encryption + MAC (1KB)
Rijndael AES-GCM decryption + verification (1KB)

457.5 (£ 0.3) ps
843.6 (£ 0.9) s
9.6 (& 0.1) us
4.5 (£ 0.1) ps
0.63 (& 0.0) ps
0.62 (+ 0.0) us
1.05 (£ 0.0) pus
1.07 (& 0.0) ps

TABLE VII: Cryptographic operations on SGX.

how groups can be updated and established without trust on
first use assumption or a trusted authority.

A. Group Updates

The group owner issues a signed list of public parts of
the public-private key pairs generated by each master enclave
that define the protection group. Assume that later one or
more processors in the group are found compromised or need
replacement. The group owner should be able to update the
previously established group (i.e., exclude old members and
add new ones) without disabling access to the already rollback-
protected sealed data.

During system initialization, the ME verifies the signed
list of group member keys and seals the group configuration.
When a group update is needed, the group owner can issue
an updated list that will be processed and again sealed by
the ME. However, the adversary should not be able to revert
the group to its previous configuration (e.g., one that includes
compromised nodes) by replaying the previous sealed group
configuration. Since group updates are typically infrequent,
they can be protected using SGX or TPM counters.

At system initialization, the master enclave creates a mono-
tonic counter using SGX counter service or on a local TPM. If
this is done using TPM, establishing a shared secret with the
TPM (see session authorization in [3]) is necessary. The group
owner includes a version number to every issued group config-
uration. When the ME processes the signed list, it increments
the SGX or TPM counter to match the group version, and
includes the version number in the sealed data. For every group
update, the ME increments either of these counters (depending
which of those two solutions is implemented). Additionally,
the ME establishes shared keys with the new group members
and sends its MC to them. When the ME is restarted, it verifies
that the version number in the unsealed group configuration
matches the counter. The NVRAM memory available in TPMs
is expected to support approximately 100K write cycles, while
in the case of SGX counter we showed it supports 1M write
cycles, a sufficient number for most group management needs.
For example, if group updates are issued once a week, the
NVRAM would last 2000 years using TPMs and 20000 year
using SGX counters.

Usage of TPM counters requires trust on first use, otherwise
a malicious OS could redirect the TPM session establishment



to another TPM (e.g., one in possession of the adversary).
Usage of SGX counters does not have similar requirement.

B. Group Establishment Without Trust On First Use

The group establishment described in Section V-D requires
trust on first use, because a malicious OS could modify the
exported ME public key. This assumption may be removed, if
the group owner can perform remote attestation of the group
member MEs such that the member platforms have no network
connection besides to the group owner (i.e., the malicious OS
cannot redirect the attestation session to another platform).

C. Group Establishment Without Trusted Authority

Distributed rollback protection does not necessarily require
a trusted authority. Alternatively, the participating platforms
can decide the protection group configuration directly them-
selves. In the presence of potentially malicious nodes, such
group establishment can be done using a Byzantine agreement
protocol [24], [29] and remote attestation. Another alterna-
tive is to establish asymmetric groups where each platform
distributes its state to a freely chosen and attested set of
assisting platforms that in turn choose their assisting platforms
independently.

Symmetric groups. An enclave that requires rollback pro-
tection chooses n SGX processors that should form the protec-
tion group. The enclave can discover the assisting nodes from a
public directory, peer-to-peer manner etc. The enclave broad-
casts the proposed group configuration to all chosen nodes
using a Byzantine agreement protocol (total-order broadcast)
that tolerates malicious nodes and guarantees that all non-
malicious nodes agree on the same value. After the group is
established, attestation is performed to verify the correctness
of the code running and that it is running inside SGX. When an
update to the group configuration is needed, the leader repeats
the same process. Byzantine agreement protocols have high
message complexity. Because byzantine agreement requires
3f + 1 replicas, the rollback protection mechanism can no
longer tolerate f < n compromised nodes. Because Byzantine
agreement protocols have higher message complexity O(n?),
this group establishment is not applicable to very large groups.

Asymmetric groups. Another alternative is that each plat-
form distributes its state to a freely chosen set of assisting
platforms that in turn choose their assisting platforms indepen-
dently. The set of platforms can be even selected for each state
update separately. We call such protection groups asymmetric.
Asymmetric groups offer flexible deployment, as every node
is free to choose where it distributes its state at any given time.
However, the different trust model requires minor changes
to the rollback protection system, and it provides slightly
different security and liveness properties. We discuss these
differences briefly below.

The first main difference is the recovery of master en-
clave’s own counter (MC) after restart. We illustrate this
with an example. Assume that a node distributes its counter
to one set of nodes s;. At the next state update the node
distributes its counter to another set of nodes s,. The rollback
protection system must prevent attacks, where the adversary
causes counter recovery form s; which would result in a
rollback. To prevent such attacks, the node can request s; to
remove the saved counter from their memory and only after
a successful confirmation the node proceeds with the state
update to so. The list of nodes to communicate is stored in
sealed format on the disk, and after master enclave restart the
master enclave unseals the list and contacts the nodes on it. If
the adversary replays an old sealed data, the master enclave
gets no responses (as the counter has been deleted) and aborts
unsealing.

Another difference is the recovery of stored counters after
master enclave restart. The master enclave maintains counters
for other nodes in its runtime memory (no sealing to pre-
vent endless update propagation). When a master enclave is
restarted, it needs to obtain its own counter value, and addi-
tionally the lost counter values of other nodes. In asymmetric
groups, stored counter recovery must be handled differently.
One option is to request the counter back from the sender,
after a master enclave restart. This requires that the processor
identity for each stored counter is saved on the local persistent
storage.



