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Abstract

Round-Robin Differential Phase-Shift (RRDPS) is a Quantum Key Distribution (QKD)
scheme proposed by Sasaki, Yamamoto and Koashi in 2014 [1]. It works with high-
dimensional quantum digits (qudits). Its main advantage is that it tolerates more noise
than qubit-based schemes while being easy to implement.
The security of RRDPS has been discussed in several papers [1, 2, 3]. However, these
analyses do not have the mathematical rigor that is customary in cryptology. In this
short note we prove a simple result regarding the min-entropy of the distributed key; this
may serve as a step towards a full security proof.

1 Preliminaries

1.1 The RRDPS scheme

The dimension of the qudit space is d. The basis states are denoted as |0〉, . . . , |d− 1〉.1 Alice
generates a random bitstring a ∈ {0, 1}d. She prepares the state

|µ(a)〉 def=
1√
d

d−1∑
t=0

(−1)at |t〉 (1)

and sends it to Bob. Bob chooses a random integer r ∈ {1, . . . , d−1}. Bob performs a POVM

measurement M (r) described by a set of 2d operators (M
(r)
ks )k∈{0,...,d−1},s∈{0,1},

M
(r)
ks =

1

2

|k〉+ (−1)s|k + r〉√
2

〈k|+ (−1)s〈k + r|√
2

. (2)

Here k + r should be understood as k + r mod d. The result of the measurement M (r) on
|µ(a)〉 is an random integer k ∈ {0, . . . , d − 1} and a bit s = ak ⊕ ak+r.

2 Bob announces k
and r over a public but authenticated channel. Alice and Bob now have a shared secret bit s.
This procedure is repeated multiple times, after which the standard procedures of information
reconciliation and privacy amplification are carried out.
The security of RRDPS is intuitively understood as follows. A measurement in a d-dimensional
Hilbert space can extract at most log d bits of information. The state |µ(a)〉, however, con-
tains d − 1 candidate bits for becoming Alice and Bob’s shared secret, which is a lot more

1The physical implementation [1] is a pulse train: a photon is split into d coherent pieces which are released
at different, equally spaced, points in time.

2The phase (−1)ak⊕ak+r is the phase of the field oscillation in the (k + r)’th pulse relative to the k’th. The
measurement M (r) is an interference measurement where one path is delayed by r time units.
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than log d. Eve can learn (by measurement) only a small fraction of the phase information
embedded in the qudit. Eve’s information is of limited use to her because she cannot force
Bob to select precisely those phases that she knows. (i) She cannot force Bob to choose a
specific value of r. (ii) Even if she feeds Bob a state of the form (|`〉+(−1)u|`+r〉)/

√
2 where

r accidentally equals Bob’s r, then there is a 1
2 probability that Bob’s measurement yields

k 6= ` with random s.

1.2 Min-entropy of a classical variable given a quantum state

Consider a combined classical-quantum system, where the (mixed) quantum state depends
on a uniformly distributed classical random variable X ∈ X . Alice knows X and prepares
state ρX , which is then given to Eve. The combined system can be written as

ρAE =
1

|X |
∑
x∈X
|x〉〈x| ⊗ ρx, (3)

where the states |x〉 form an orthonormal basis. In this situation, the min-entropy of X given
Eve’s quantum state ρX is [4]

Hmin(X|ρX) = − log max
M

Ex∈X tr ρxMx (4)

where M is a POVM measurement described by positive semidefinite operators (Mx)x∈X
satisfying

∑
x∈X Mx = 1.

2 Min-entropy of the secret bit S in RRDPS

Lemma 2.1 Let ρAE be a combined classical-quantum system as in (3), with X = {0, 1}. Let
λj(ρ0− ρ1) denote the j’th eigenvalue of ρ0− ρ1. Let P = {m ∈ {1, . . . , d}|λm(ρ0− ρ1) > 0}.
Then (4) reduces to

Hmin(X|ρX) = 1− log[1 +
∑
j∈P

λj(ρ0 − ρ1)]. (5)

Proof: In (4) we write Ex = 1
2

∑
x and pull the factor 1

2 out of the logarithm. We write
M1 = 1 − M0. This gives Hmin(X|ρX) = 1 − log maxM0 [tr ρ0M0 + tr ρ1(1 − M0)] = 1 −
log[1 + maxM0 tr (ρ0 − ρ1)M0]. The M0 that maximises this expression is a projection onto
the subspace spanned by the those eigenvectors of ρ0 − ρ1 that have positive eigenvalue. �

Lemma 2.2 Let Alice and Bob carry out the RRDPS steps as described in Section 1.1. Let
Eve intercept the state |µ(a)〉 and send an arbitrary unrelated state to Bob. After Bob has
announced r and k, Alice’s secret bit s = ak ⊕ ak+r and Eve’s intercepted state together form
a classical-quantum system of the form (3),

ρAE(k, r) =
1

2

∑
s∈{0,1}

|s〉〈s| ⊗ ρ(k,r)s (6)

with

ρ(k,r)s =
1
d

+ (−1)s
|k〉〈k + r|+ |k + r〉〈k|

d
. (7)
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Proof: Using the definition of |µ(a)〉 we get

ρ
(k,r)
0 = (12)d−1

∑
a∈{0,1}d:

ak⊕ak+r=0

|µ(a)〉〈µ(a)| = (12)d−1
1

d

d−1∑
t,z=0

|t〉〈z|
∑

a∈{0,1}d:
ak⊕ak+r=0

(−1)at+az . (8)

The
∑

a summation yields zero unless t = z or t− z = ±r. We have

ρ
(k,r)
0 = (12)d−1

1

d

d−1∑
t,z=0

|t〉〈z|
[
δtz2

d−1 + (δtkδz,k+r + δt,k+rδzk)2d−1
]

=
1

d

d−1∑
t=0

|t〉〈t|+ |k〉〈k + r|+ |k + r〉〈k|
d

. (9)

The derivation for ρ
(k,r)
1 is completely analogous. �

Theorem 2.3 (Main result) Let Alice and Bob carry out the RRDPS steps as described
in Section 1.1. Let Eve intercept the state |µ(a)〉 and send an arbitrary unrelated state to
Bob. After Bob has announced k and r, Eve’s uncertainty about Alice’s secret S, given the
intercepted quantum state, is given by

Hmin(S|K,R, ρ(K,R)
S ) = 1− log(1 +

2

d
). (10)

Proof: The conditioning on the classicalK,Rmodifies [5] expression (4) to Hmin(S|K,R, ρ(K,R)
S ) =

− log Ekr maxM Estr ρ
(k,r)
s Ms, which following Lemma 2.1 reduces to

Hmin(S|K,R, ρ(K,R)
S ) = 1− log[1 + Ekr

∑
j∈P(k,r)

λj(ρ
(k,r)
0 − ρ(k,r)1 )]. (11)

From Lemma 2.2 it follows that ρ
(k,r)
0 − ρ(k,r)1 = 2 |k〉〈k+r|+|k+r〉〈k|

d . The eigenvalues of this
matrix are 0 (d−2 times), +2

d and −2
d , independent of k and r. We substitute the positive

eigenvalue into (11). �
With this attack Eve learns only log(1 + 2/d) bits of information, as compared to 1 bit in the
case of qubit-based QKD schemes such as BB84 and its many variants.

3 Discussion

The attack analysed above is not the most general attack possible; hence the analysis does
not constitute a proof of security. However, we have learned something useful. Let Alice and
Bob accept bit error rate (BER) β on the quantum channel. It is prudent to assume that
actually the channel is noiseless and all the noise is caused by Eve. In BB84 and similar
schemes such as 6-state QKD, the most powerful attack on individual qubits [6] is to couple
an ancilla to the qubit, perform a unitary on the total system, pass the qubit on to Bob,
wait until Bob has announced the basis, and then perform a projective measurement on the
ancilla. The unitary should be such that the BER does not exceed β. Let Alice send n qubits.
Eve learns nf(β) bits of information, where f is an increasing function [6] satisfying f(0) = 0
and f(12) = 1. Now for RRDPS we have some as yet unknown increasing function g instead

of f , with g(0) = 0 and g(12) = log(1 + 2/d) < 2 log e
d . Even if the function g(β) behaves very

differently from f(β), it holds that g(12)� f(12) if d� 1. In the strong noise regime RRDPS
has far less leakage than qubit-based QKD, and hence requires far less privacy amplification.

3



References

[1] T. Sasaki, Y. Yamamoto, and M. Koashi. Practical quantum key distribution protocol
without monitoring signal disturbance. Nature, 509:475–478, May 2014.

[2] K. Inoue. Differential Phase-Shift Quantum Key Distribution Systems. IEEE J. of selected
topics in quantum electronics, 21(3):6600207, 2015.

[3] Z. Zhang, X. Yuan, Z. Cao, and X. Ma. Round-robin differential-phase-shift quantum key
distribution. http://arxiv.org/abs/1505.02481v1, 2015.

[4] R. König, R. Renner, and C. Schaffner. The operational meaning of min- and max-entropy.
IEEE Trans.Inf.Th., 55(9):4337–4347, 2009.

[5] S. Fehr and S. Berens. On the conditional Rényi entropy. IEEE Transactions on Infor-
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