
A Probabilistic Baby-Step Giant-Step Algorithm

Prabhat Kushwaha
prabhatkk@students.iiserpune.ac.in

Ayan Mahalanobis
ayan.mahalanobis@gmail.com

IISER Pune, Dr. Homi Bhabha Road, Pune 411008, INDIA

ABSTRACT
In this paper, a new algorithm to solve the discrete logarithm
problem is presented which is similar to the usual baby-step
giant-step algorithm. Our algorithm exploits the order of
the discrete logarithm in the multiplicative group of a finite
field. Using randomization with parallelized collision search,
our algorithm indicates some weakness in NIST curves over
prime fields which are considered to be the most conservative
and safest curves among all NIST curves.

Keywords: Discrete logarithm problem, baby-step giant-
step algorithm, NIST curves over prime fields, parallelized
collision search.

1. INTRODUCTION
It is well-known that computationally hard number the-

oretic problems are used as primitives in public-key cryp-
tography. On that basis, public-key cryptography can be
divided into two categories. One uses the hardness of factor-
izing large integer as the building blocks to construct public-
key protocols and the other is based on the computational
difficulty of solving the discrete logarithm problem. In this
paper, we are interested in the latter.

Let G be a cyclic group of prime order p and generated by
P which is written additive. Given an element Q = xP ∈ G,
the discrete logarithm problem(DLP) in G is to compute the
integer x. This integer x is called the discrete logarithm of
Q with the base P . There are generic algorithms such as
the baby-step giant-step algorithm [3] which solves DLP in
any group G.

In this paper, we develop and study a different version of
the baby-step giant-step algorithm. The novelty of our ap-
proach comes from the implicit representation using F×

p as
auxiliary group. Our approach leads to a way to reduce the
discrete logarithm problem to a problem in F×

p . The advan-
tage of this approach is, F×

p has many subgroups and one
can exploit the rich and well understood subgroup structure
of F×

p .
In Theorem 1 we develop an algorithm that solves the dis-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

crete logarithm problem using implicit representation. Two
things come out of this theorem:

A If the secret key x belongs to some small subgroup of F×
p ,

there can be an efficient attack on the DLP.

B If somehow it is known to an attacker that the secret key
is in some subgroup H of F×

p , that information can be
used to develop a better attack.

The question remains, what happens if no information
about the secret x is known. We develop a probabilistic
algorithm (Theorem 2) to expand our attack. To understand
this probabilistic attack properly, we study it on the curve
P-256. This is an NIST recommended curve over a prime
field and is considered secure. Our study, which we present
in details in Section 3 indicates some weakness in this curve.

2. MAIN WORK
Let G be a cyclic group of prime order p and generated

by P which is written additive. For y ∈ Fp, yP ∈ G is
called the implicit representation of y ∈ Fp(with respect to
G and P ). The following lemma comes from the idea of
implicit representation of a finite field, proposed by Maurer
and Wolf [8].

Lemma 1. Let a, b be any two integers. Then a = b
(mod p) if and only if aP = bP in G.

Proof. Assume that a = b (mod p), then a = tp+ b for
some integer t. Then aP = tpP + bP = bP . Conversely,
assume that aP = bP , then (a − b)P = 0 in G and this
means p|(a− b) which implies that a = b (mod p).

The usefulness of this lemma is to be able to decide on
the equality in F×

p by looking at the equality in G. The
following algorithm to solve the discrete logarithm problem
uses the order of the discrete logarithm in the multiplicative
group of a finite field. This algorithm is different from the
baby-step giant-step [3] as it uses the implicit representation
with multiplicative group of a finite field as auxiliary group.

Theorem 1. Let G be an additive cyclic group generated
by P and order of P is a prime p. Let Q = xP be another
given element of G(x is unknown). For a given divisor d of
p− 1, let H be the unique subgroup of F×

p of order d. Then,

one can decide whether or not x belongs to H in O(
√
d)

steps. Furthermore, if x belongs to H, the same algorithm
will also find the discrete logarithm x in O(

√
d) steps where

each step is an exponentiation in the group G.



Proof. Since H is a subgroup of the cyclic group F×
p ,

we assume that it is generated by some element ζ. If the
generator of H is not given to us, we can compute it using
a generator of F× and d. The proof of whether x belongs
to H or not follows from the well-known baby-step giant-
step algorithm [3, Proposition 2.22] to compute the discrete
logarithm.

Let n be the smallest integer greater than
√
d. Then x ∈

H if and only if there exists an integer k with 0 ≤ k ≤ d
such that x = ζk (mod p). Note that any integer k between
0 and d can be written as k = an− b for unique integers a, b
with 0 ≤ a, b ≤ n, by division algorithm. Therefore, x ∈ H
if and only if there exist two integers a, b with 0 ≤ a, b ≤ n
such that x = ζan−b (mod p), or equivalently ζbx = ζna

(mod p). Using the lemma above, we see that x ∈ H if and
only if there exist two integers a, b with 0 ≤ a, b ≤ n such
that ζbxP = ζnaP , equivalently ζbQ = (ζn)aP as Q = xP .

Now, we create a list
{
ζbQ : 0 ≤ b ≤ n

}
. Then we gener-

ate elements of the form (ζn)aP for each integer a in [0, n]
and try to find a collision with the earlier list. When there
is a collision, i.e., ζbQ = (ζn)aP for some 0 ≤ a, b ≤ n, it
means that x ∈ H. Otherwise, x /∈ H.

Moreover, if x ∈ H then ζbQ = (ζn)aP for some 0 ≤
a, b ≤ n. So, we use the integers a and b to compute ζan−b

(mod p) which is nothing but the discrete logarithm x. Since
the two lists require computation of at most 2n exponenti-
ations, the worst case time complexity of the algorithm to
check whether or not x ∈ H, as well as to compute x(if

x ∈ H) would be O(n) ≈ O(
√
d) steps. This completes the

proof.

Remark 1. Even though the above algorithm is generic
in nature, it does have a practical significance. Our algo-
rithm applies on all the five prime order NIST curves [5]
viz. P-192, P-224, P-256, P-384, P-521. Although the prob-
ability of a randomly chosen secret key x being inside a par-
ticular subgroup of F×

p can be very small, however, it is ad-
visable to check, using our algorithm for each curve, if the
secret key x belongs to any of two (large enough)subgroups
whose orders are mentioned in the appendix A. If it does, we
discard the secret key.

Suppose that p− 1 has large enough(but a lot smaller than
p − 1) divisor d and H is the unique subgroup of F×

p of
order d. A drawback of the deterministic algorithm given
in Theorem 1 is that it might fail to solve DLP because the
probability of x belonging to H is very small. One way to
increase the probability is to increase the size of d, if such d
exists. Clearly, this is not a desirable solution because the
computational cost depends on the size of the subgroup.

The above algorithm can be parallelized which helps us
overcome this obstacle by increasing the probability. We
have randomized the above algorithm where the random in-
puts will be running on parallel processes or threads. This
parallelization along with collision algorithm (based on birth-
day paradox) [3, Theorem 5.38] yields a randomized proba-
bilistic algorithm which can solve DLP with a given proba-
bility.
Collision Theorem: An urn contains N balls, of which n
balls are red and N − n are blue. One randomly selects a
ball from the urn, replaces it in the urn, randomly selects a
second ball, replaces it, and so on. He does this until he has
looked at a total number of m balls. Then, the probability

that he selects at least one red ball is

Pr(at least one red ball) = 1−
(

1− n

N

)m

≥ 1− e
−mn

N .

Theorem 2. Let G be an additive cyclic group generated
by P and the order of P is a prime p. Let Q = xP be another
given element of G(x is unknown). For a given divisor d of
p− 1, let H be the unique subgroup of F×

p of order d. Then,

x can be computed in O(
√
d) steps with probability at least

1− e
(

−dm
p−1

)
if one has access to m parallel threads.

Proof. The main idea is to run the algorithm in Theo-
rem 1 on each of m threads as follows. We randomly selects
m elements y1, y2, .., ym in F×

p and compute corresponding
m elements Q1 = y1Q = (y1x)P ,...,Qm = ymQ = (ymx)P of
G. Now, we run the above algorithm on each of m parallel
threads, with element Qi = (yix)P running on ith thread.
Let zi = yix (mod p) for i = 1, ..,m. If zi ∈ H for some i,
1 ≤ i ≤ m; then the algorithm on that thread returns zi.
Once we have zi for some i, we compute zi · yi−1 (mod p)
which is nothing but the discrete logarithm x.

The collision theorem above tells us about the probability
of at least one zi belonging to H for 1 ≤ i ≤ m. In present
case, F×

p with p − 1 elements is the urn, so N = p − 1.
The elements of H are red balls, so n = d. Since we are
randomly selecting m elements y1, .., ym from F×

p , it implies
that z1, z2, .., zm also are random elements of F×

p . Therefore,
probability that at least one of zi would belong to H is at

least 1− e
(

−dm
p−1

)
, by the collision theorem. In other words,

with probability at least 1− e−
dm
p−1 , one can compute zi for

some i, 1 ≤ i ≤ m if one has access to m threads. Since
the number of steps performed on each thread before zi is
computed for some i is at max 2

√
d, we conclude that it

takes O(
√
d) steps to compute x with the probability at

least 1− e
(

−dm
p−1

)
if m threads are available. This completes

the proof.

Remark 2. It follows from Theorem 2 that if there exist
divisors d of p− 1 of suitable sizes, then DLP can be solved
in time much less than the square root of the group size but
with a probability which increases with the number of threads
used. A practical importance of Theorem 2 lies in the fact
that such divisors of p − 1 do exist for all NIST curves [5]
as well as most of SEC2 curves [6]. This gives us precise
estimates about the number of group operations and threads
needed to solve DLP with a given probability. We illustrate
this by an example in the next section.

Remark 3. Note that the probability of solving the DLP
in above theorem is proportional to the product m · d. It
follows that if we fix a probability, this product is constant.
Therefore, for a fixed probability of solving the DLP, there
is a trade-off between the number of steps and number of
threads needed in Theorem 2. Increasing one of the two
would decrease the other and vice-a-versa.

3. SECURITY ANALYSIS OF NIST CURVE
P-256

As discussed earlier, our probabilistic algorithm is appli-
cable to NIST curves. In this section, we will demonstrate
the implication of our algorithm on NIST curves. We will do
that only on the NIST curve P-256 but similar conclusions



Table 1: Trade-off between d and m for equal probability for curve P-256
log2 d1 = 201.73 log2 d2 = 202.73 log2 d3 = 203.32

log2(
√
d1) = 101.86 log2(

√
d2) = 101.36 log2(

√
d3) = 101.66

log2m = 45 0.00162 0.00324 0.00486
log2m = 50 0.05064 0.098711 0.14435
log2m = 52 0.18768 0.34013 0.46398
log2m = 53 0.34013 0.56458 0.71268
log2m = 54 0.56458 0.81040 0.91745
log2m = 55 0.81040 0.96405 0.993184
log2m = 56 0.96405 0.99871 0.99995

hold for other four NIST curves over prime field as well, see
appendix.
The NIST curve P-256 is defined over the prime field Fq and
the order of P-256 is a prime p given below.

q = 11579208921035624876269744694940757353008614
3415290314195533631308867097853951
p = 115792089210356248762697446949407573529996955
224135760342422259061068512044369
p− 1 = 24 · 3 · 71 · 131 · 373 · 3407 · 17449 · 38189·
187019741 · 622491383 · 1002328039319·
2624747550333869278416773953

Since p − 1 factors into many relatively small integers, we
have the following divisors of p− 1 of various sizes.

d1 = 5344274495032941459639941436409709731020474
123788264129719829 ≈ 2201.73.

d2 = 10688548990065882919279882872819419462040948
247576528259439658 ≈ 2202.73.

d3 = 16032823485098824378919824309229129193061422
371364792389159487 ≈ 2203.32.

d4 = 1820794320457723155299328047384788105358675
5339746615889955457403 ≈ 2213.47.

d5 = 23852405597996173334421197420740724180198649
49506806681584164919793 ≈ 2220.50

For above sizes of subgroups and various number of threads
m, the following tables give the probability to solve DLP.
The second column of the Table 1 shows the probabilities
when the subgroup size is d1 ≈ 2201.73 bits. For example, if
we have m = 254 parallel threads, then our algorithm would
solve DLP in 2101.86 steps with probability 0.56458 which
is the intersection of the fifth row(corresponding to m =
254) and the second column(corresponding to d1 ≈ 2201.73).
Other entries(probabilities) of the tables can be understood
similarly.

If we go across a row in the tables, we see the probabilities
getting increased with the size of subgroup d. If we move
along a column, probabilities increase with the number (m)
of parallel threads. Table 1 also exhibits the trade-off be-
tween d and m for equal probability. For equal probability,
highlighted diagonally in the second and third column, we
see that increasing the subgroup size by 1-bit(d1 and d2 dif-
fer by 1-bit) results in a decrease of 1-bit in the number of
parallel threads m. As an example, to achieve the proba-

Table 2: Probability for larger d for P-256
log2d4 = 213.47

log2(
√
d4) = 106.78

log2m = 41 0.29234
log2m = 42 0.49921
log2m = 43 0.74921
log2m = 44 0.93710

Table 3: Probability for much larger d for P-256
log2d5 = 220.50

log2(
√
d5) = 110.25

log2m = 33 0.16218
log2m = 34 0.29805
log2m = 35 0.50727
log2m = 36 0.75721
log2m = 37 0.94106

bility 0.56458, the subgroup of order d1 requires 254 parallel
threads while the subgroup of order d2 requires 253.

From Table 3, we can see that DLP on the curve P-256
can be solved in 2110.25(with a significant reduction from
2128) steps with probability greater than 0.5, while using 235

parallel threads. This indicates a weakness of NIST curve
P-256 if one assumes that 235 parallel threads are within the
reach of modern distributed computing. Similar conclusions
can be drawn for other NIST curves P-192, P-224, P-384
and P-521 see appendix.

Moreover, one observes that for most of the curves in
SEC2(Version 2) [6] which also include all other ten NIST
curves [5]over binary field, p− 1 factors into small divisors.
Therefore, our algorithm for solving DLP on those curves in
SEC2 [6] can similarly be studied.

4. CONCLUSION
In this paper we presented a novel idea of using the im-

plicit representation with F×
p as auxiliary group to solve the

discrete logarithm problem in a group G of prime order p.
We modified the most common generic algorithm, the baby-
step giant-step algorithm for this purpose and studied it
further for NIST curves over prime fields. This algorithm
that we developed brings to the spotlight the structure of
the auxiliary group for the security of the discrete logarithm
problem in G. This aspect is probably reported for the first
time.

5. REFERENCES



[1] S. D. Galbraith and S. W. Gebregiyorgis. Summation
polynomial algorithms for elliptic curves in
characteristic two. In International Conference in
Cryptology in India, pages 409–427. Springer, 2014.

[2] R. Gallant, R. Lambert, and S. Vanstone. Improving
the parallelized pollard lambda search on anomalous
binary curves. Mathematics of Computation,
69(232):1699–1705, 2000.

[3] J. Hoffstein, J. Pipher, J. H. Silverman, and J. H.
Silverman. An Introduction to Mathematical
Cryptography. Springer, 2008.

[4] N. Koblitz and A. Menezes. A riddle wrapped in an
enigma. IACR Cryptology ePrint Archive, 2015:1018,
2015.

[5] F. NIST. 186.2 Digital Signature Standard (DSS).
National Institute of Standards and Technology (NIST),
2000.

[6] S. SEC 2(Version 2). : Recommended Elliptic Curve
Domain Parameters. See http://www. secg.org/, 2010.

[7] I. Semaev. Summation polynomials and the discrete
logarithm problem on elliptic curves. IACR Cryptology
ePrint Archive, 2004:31, 2004.

[8] M. Ueli and S. Wolf. The relationship between breaking
the Diffie–Hellman protocol and computing discrete
logarithms. SIAM Journal on Computing,
28(5):1689–1721, 1999.

[9] M. J. Wiener and R. J. Zuccherato. Faster attacks on
elliptic curve cryptosystems. In International Workshop
on Selected Areas in Cryptography, pages 190–200.
Springer, 1998.

Appendices
A. NIST CURVES OVER PRIME FIELD

For each of these five NIST curves of order prime p, two
subgroups of F×

p with (large enough)orders d1, d2 are given
such that d1 · d2 = p− 1 and gcd(d1, d2) = 1, see Remark 1.

A.1 P-192
p = 627710173538668076383578942317605901376719477
3182842284081

p− 1 = 24 · 5 · 2389 · 9564682313913860059195669·
3433859179316188682119986911
d1 = 656279166350909980926771898430320 ≈ 2109.02

d2 = 9564682313913860059195669 ≈ 282.98

A.2 P-224
p = 269599466671506397946670150870196259404578077
14424391721682722368061

p− 1 = 22 · 36 · 5 · 2153 · 5052060625887581870
7470860153287666700917696099933389351507
d1 = 5052060625887581870747086015328766670091769
6099933389351507 ≈ 2195.01

d2 = 533642580 ≈ 228.99

A.3 P-256

p = 11579208921035624876269744694940757352999
6955224135760342422259061068512044369

p− 1 = 24 · 3 · 71 · 131 · 373 · 3407 · 17449 · 38189·
187019741 · 622491383 · 1002328039319·
2624747550333869278416773953

d1 = 1489153224408067225170753316415649493584
≈ 2130.13

d2 = 77757001302792844776776389119582520177
≈ 2125.87

A.4 P-384
p = 39402006196394479212279040100143613805079739
270465446667946905279627659399113263569398956308
152294913554433653942643

p− 1 = 2 · 32 · 72 · 13 · 1124679999981664229965379347·
305546578814035200273394690614456109064124960616
0407884365391979704929268480326390471

d1 = 11677990242272425354449145075284512488430855
994745078934044528146432239664131807464380162
≈ 2292.55

d2 = 1124679999981664229965379347 ≈ 289.86

A.5 P-521
p = 68647976601306097149819007990813932172694353
001433054093944634591855431833976553942450577463
33217197532963996371363321113864768612440380340
372808892707005449

p−1 = 23 ·7 ·11 ·1283 ·1458105463 ·164778191592198069046
8599 · 361519479488193001021694255910384759305026570
3173292383701371712350878926821661243755933835426
896058418509759880171943

d1 = 416608386935085449858679106894482362094293135
755259682030509895497369427129231525334965432941960
0683157636543108630210814256821981752 ≈ 2440.55

d2 = 1647781915921980690468599 ≈ 280.45


