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Abstract. We introduce a new, simple and non-interactive complexity
assumption for cryptographic hash functions, which seems very reason-
able for standard functions like SHA-3. We describe how this assumption
can be leveraged to obtain standard-model constructions that previously
seemed to require a programmable random oracle: a generic construc-
tion of identity-based key encapsulation (ID-KEM) with full adaptive
security from a scheme with very weak security (“selective and non-
adaptive chosen-ID security”), a similar generic construction for digital
signatures, and the first constructions of ID-KEMs and signatures over
bilinear groups, where a ciphertext or signature consists of only a single
group element and which achieve full adaptive security without random
oracles.

Continuous collision resistance can be viewed as a way to realize cer-
tain potential applications of extremely lossy functions (ELFs; Zhandry,
CRYPTO 2016) with a standard cryptographic primitive. Furthermore,
known ELF constructions had only “nearly black-box” security proofs,
because the reduction was assumed to “know” sufficiently close approxi-
mations of the running time and success probability of a given adversary.
In contrast, our constructions allow for full black-box security proofs
without this requirement. The main drawback of our schemes, from a
practical perspective, is that the reductions in the security proof are very
non-tight, and some are based on strong “q-type” assumptions. There-
fore our results are mainly of conceptual interest, but not yet suitable
for practical deployment.

1 Introduction

The random oracle model (ROM) [4] is often used to analyze the security of
cryptosystems in a hypothetical setting, where a cryptographic hash function is
modeled as an oracle that implements a truly random function. This provides a
very strong handle for formal security proofs. For example, an adversary in this
model has to explicitly query the oracle to evaluate the hash function, and it is
possible to adaptively “program” the hash function to map certain input values
to specific output values in the security proof.

It is well-known that random oracles do not exist [20]. Therefore the hypo-
thetical random oracle can be used only in the security proof, and is instantiated



in practice with a standard cryptographic hash function, like SHA-3. This in-
curs the additional assumption that this hash function is “secure enough” for
the given application. The major drawback of this approach is that the random
oracle essentially provides a “perfect” hash function, which provides not only
the standard security properties for cryptographic hash functions, like oneway-
ness and collision resistance, but essentially all imaginable security properties
of a cryptographic hash function simultaneously. Therefore a security proof in
the random oracle model does not explain which precise security properties of a
hash function are actually necessary and sufficient for a given application. This
is very undesirable, as we want to understand the required security properties
and we want to provide cryptanalysts with clearly-defined cryptanalytic goals
to attack the “security” of cryptographic hash functions. Therefore the ROM is
often seen as only a first step towards the goal of provably-secure construction
in the standard model.

The only known security proofs for many important cryptographic construc-
tions seem to inherently require an adaptively-programmable random oracle [26,
28, 25]. There are many primitives for which it is still unknown if and how they
can be instantiated without random oracles, and where classical complexity as-
sumptions on cryptographic hash functions seem not sufficient for a standard-
model security proof. Several previous works isolated specific properties of ran-
dom oracles, such as programmability [31] or extreme lossyness [40], and realized
these properties with standard-model constructions of special-purpose functions
and based on algebraic public-key techniques, which are relatively inefficient in
comparison to standard cryptographic hash functions. In this work we ask the
following question, which is orthogonal to these previous works:

Which reasonable (=simple and non-interactive) complexity assumptions on
cryptographic hash functions are sufficient to obtain instantiations of

cryptographic tools that currently require the ROM?

Contributions. We introduce a new complexity assumption called continuous
collision resistance, which basically demands that there is no algorithm that
finds collisions significantly faster than the standard birthday collision algorithm,
even when (short) prefixes of hash values are considered. More precisely, let H :
{0, 1}∗ → {0, 1}k be a random element from a family H of cryptographic hash
function, and write Hj(x) to denote the first j bits of H(x). Continuous collision
resistance requires that two input values x, x′ with x 6= x′ and Hj(x) = Hj(x

′)
can not be found for any value of j with significantly better time-to-success ratio
than the standard birthday collision algorithm.

We show that this new assumption, which in contrast to the ROM provides an
explicit and well-defined goal for the cryptanalysis of hash functions, yields sev-
eral interesting new cryptographic constructions without random oracles. This
includes adaptively-secure identity-based key encapsulation schemes (ID-KEMs)
with very short ciphertexts and adaptively-secure digital signatures over bilinear
groups, where a signature consists of only a single group element. We furthermore
describe generic constructions of adaptively-secure IBE and digital signatures
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from IBE and signatures with extremely weak “selective” and “non-adaptive”
security properties.

Relation to ELFs. From a high-level perspective, continuously collision-resistant
(CCR) hash functions are related to extremely lossy functions (ELFs), which
were recently introduced by Zhandry [40]. In some applications, CCR and ELFs
can be used in a very similar way to argue in a security proof, and it seems
that some of our applications can also be achieved by using an ELF instead.
ELFs furthermore allow for some additional applications, like the construction
of output-intractable hash functions or a standard-model instantiation of full-
domain hash (the latter in combination with indistinguishability obfuscation).

The first main difference between Zhandry’s work and ours is that [40] gives
new constructions of hash functions based on public-key techniques and the rea-
sonable exponential hardness assumption of the decisional Diffie-Hellman prob-
lem in algebraic groups. Instead, we use standard cryptographic hash functions
(like e.g. SHA-3) that are already widely-used in practice, and propose a new, but
similarly reasonable complexity assumption for such functions. This partially re-
solves the open problem posed in [40] of constructing ELFs using symmetric-key
techniques: while we do not construct full ELFs, we show how certain potential
applications of ELFs can be realized based on standard hash functions. We fur-
thermore show how CCR can be used to obtain interesting new constructions:
the first ID-KEM with full adaptive security and very short ciphertexts (only a
single element from a bilinear group), and the first digital signature scheme with
full adaptive security and very short signatures (again, only single element from
a bilinear group).

A second major difference is that the security proofs in [40] require to know
the running time tA and success probability εA of an adversary explicitly, and
thus are only “nearly” black-box. We also start with the same setting, but merely
for simplicity, as it isolates the core proof technique that exploits continuous
collision resistance. Then we show how our results can be easily lifted to the
fully black-box setting, which does not require any prior knowledge about the
adversary. We also discuss why a similar lifting seems not possible for the known
ELF instantiations from [40].

On assuming exponential hardness. Both the work of Zhandry [40] and our
work assume exponential hardness of the underlying computational problems.
The construction of ELFs from [40] assumes the exponential hardness of the
DDH assumption in suitable algebraic groups. This is a strong assumption, but
it appears reasonable e.g. in certain elliptic curve groups, where the best known
algorithms for solving the DDH problem have exponential complexity. Further-
more, note that this matches the choice of elliptic curve groups in practice, where
typically a group of prime order ≈ 22k is expected to achieve “k-bit security”.

Similarly, we assume that for a cryptographic hash function there exists no
significantly better collision attack than the generic birthday collision algorithm,
which also has exponential complexity. Note also that the standard way to choose

3



the output size of a hash function in practice is to take twice the desired “se-
curity in bits”, which means that one essentially assumes already that there is
no significantly better full collision attack than the generic birthday algorithm,
and that this seems achievable by “good” hash functions like SHA-3. Our new
complexity assumption generalizes this assumption to prefixes of the hash value.
This appears very reasonable for standard hash functions like SHA-3, where find-
ing a significantly more efficient collision attack, even only for prefixes, would
already be a major cryptanalytic achievement.

We point out that achieving adaptive security from selective security is some-
times also possible by directly assuming the exponential hardness of breaking
the underlying selectively-secure scheme, and then using complexity leveraging.
The main advantage of the modular approach of [40] and this work is that it
outsources the exponential hardness assumption to a single and generic cryp-
tographic primitive, where this assumption may be much more plausible, and
which can also be applied to constructions that are based on hardness assump-
tion for which the exponential hardness assumption does not hold.

Applications to identity-based key encapsulation. Recall that the commonly ac-
cepted standard security notion for identity-based key encapsulation (ID-KEM)
is adaptive chosen-ID security (IND-ID-CPA), where the adversary in the security
experiment may adaptively choose both the “challenge identity” (i.e., the identity
for which it receives a challenge ciphertext) and the “key-query identities” (i.e.,
the identities for which it requests a user secret key). A much weaker common
standard security notion is selective challenge-ID security (IND-sID-CPA), where
the adversary has to announce the challenge identity and at the very beginning
of the security experiment, even before seeing the master public key, but may
adaptively query the for user secret keys.

In this work, we consider the even weaker notion with selective challenge-
identity and non-adaptive key-queries (IND-snaID-CPA), where the adversary
has to announce both the challenge identity and the key-query identities at the
very beginning of the security experiment, even before seeing the master public
key (see Section 3.1 for formal definitions). Existing standard techniques to build
an adaptively-secure ID-KEM from a selectively-secure one, e.g. by using admis-
sible [8] or programmable [31, 39] hash functions, work only non-generically for
certain schemes with specific properties. The standard generic way to turn a
IND-snaID-CPA-secure scheme into a fully IND-ID-CPA-secure one is to use the
programmable ROM.

As a first application of continuous collision resistance, we describe a simple
generic construction of fully adaptively IND-ID-CPA-secure ID-KEM from any
ID-KEM which is only IND-snaID-CPA-secure. This shows that if continuously
collision-resistant hash functions exist, then ID-KEMs with full IND-ID-CPA-
security are implied by IND-snaID-CPA-secure ID-KEMs. The latter are usu-
ally significantly easier to construct. This result also introduces a technique for
leveraging continuous collision-resistance (CCR) in security proofs. The generic
conversion is relatively efficient: it increases the size of public parameters, user
secret keys, and ciphertexts by a factor of only O(log k), where k is the secu-
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rity parameter. Its major drawback is that the security reduction is extremely
non-tight (but polynomial-time).1

We also show how CCR can be used to obtain the first ID-KEM with full
IND-ID-CPA-security in the nearly black-box setting, without random oracles,
and with very short ciphertexts, where the ciphertext overhead is only a single
element from a prime-order group. The only previously known ID-KEM with
such short ciphertexts and adaptive security is the construction of Boneh and
Franklin [11], which only has a security proof in the ROM. Our scheme is based
on the selectively-secure Boneh-Boyen IBE scheme [7] and proven secure under
a very strong (but non-interactive) q-type assumption, therefore we only view
this as a feasibility result that shows that adaptively-secure ID-KEMs with such
short ciphertext overhead exist.

Applications to digital signatures. Recall that the commonly accepted security
notion for digital signatures is existential unforgeability under adaptive chosen-
message attacks (EUF-CMA). There are several different ways to turn signa-
tures schemes with weaker security properties into one with full EUF-CMA-
security, even without random oracles. These are either based on one-time sig-
natures [24] or chameleon hash functions [35, 15, 38], and work generically for
any signature scheme. However, all these generic constructions start from an
existentially-unforgeable scheme, where the adversary has to select the “chosen-
message queries”, for which it requests a signature, even before seeing the public
key, but is able to choose the “target-message” for which it forges a signatures
adaptively (EUF-naCMA-security, see Section 4.1 for formal definitions).

In this work, we consider the much weaker notion of selective unforgeability
under non-adaptive chosen-message attacks (SUF-naCMA) [32, 16], where the
adversary has to select both the “target-message” for which it forges a signa-
tures and the chosen-message queries for which it requests a signature already
before seeing the public key. We describe a generic construction of EUF-CMA-
secure digital signatures from signatures that are only SUF-naCMA-secure. This
construction is also relatively efficient: it increases the size of public keys, secret
keys, and signatures by a factor of only O(log k), where k is the security pa-
rameter. Again, the major drawback is that the security reduction is extremely
non-tight (but polynomial-time).

We also consider the construction of digital signature schemes with very short
signatures. The first scheme where a signature consists only of a single element
of a prime-order bilinear group and which achieves full EUF-CMA-security is due
to Boneh, Lynn and Shacham [13, 14]. However, this scheme is only known to
be secure in the programmable ROM. A scheme with standard-model security
proof and very short signatures of only a single group element is due to Boneh
and Boyen [9]. This scheme can be proven secure without random oracles, but
it achieves only non-adaptive EUF-naCMA-security. One can make this scheme

1 However, we note that a corresponding ELF-based construction seems to incur a
tightness loss of similar size. Even constructions in the random oracle model often
require an inherent security loss [22, 34, 1], but smaller than in our case.
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adaptively-secure in the standard model by applying the aforementioned generic
conversions [24, 35, 15, 38], however, all these constructions increase the size of
signatures by adding at least one additional element of bit-size Ω(k), where k
is the security parameter. There are direct constructions of adaptively-secure
signature schemes for bilinear groups, but for all these schemes the size of signa-
tures is larger than one group element. This includes, for instance, the scheme
of Waters [39] and its variants [30, 6], where a signature consists of two group
elements, or the short signature schemes from [31, 29], where a signature consists
of one group element plus an additional random string (whose size depends on
an upper bound on the number of signatures to be issued per public key).

In summary, prior to the present work it was not clear that it is even possible
to construct a digital signature scheme over bilinear groups, where signatures
consist of only a single group element, and which achieves full EUF-CMA-security
based on a non-interactive complexity assumption in the standard model. Con-
structing such a scheme is a major open problem in the domain of digital signa-
tures. We give a construction which is based on the short signature scheme of
Boneh and Boyen [9], but applies a continuously collision-resistant hash function
to achieve adaptive security in the nearly black-box setting and without random
oracles. Again, this scheme is based on a very strong (but non-interactive) q-type
assumption and should be seen as a feasibility result.

Leveraging continuous collision resistance. In order to sketch how continuous
collision resistance can be used in a security proof, let us consider the case of
short digital signatures as an example. We work in the bilinear group setting,
where we have groups G1,G2,GT of prime order p, and an efficiently computable
bilinear map e : G1 × G2 → GT . Signatures consist of only one element of G1.
A secret key consist of ` = log 4(k + 1) elements x1, . . . , x` ∈ Zp, where k is
the security parameter. The corresponding public key consists of one element
of G1 plus 4(k + 1) elements of G2. Thus, public keys are larger than for the
random-oracle-based short signature scheme of Boneh, Lynn, and Shacham [14],
but the signature size is identical.

Computing a signature on a message m works as follows. For a cryptographic
hash function H : {0, 1}∗ → {0, 1}4(k+1), let us write H2j (m) to denote the first
2j bits of H(m). In order to sign a message m, we first compute

G(m) =
∏̀
j=1

(xj +H2j (m)) mod p

Note that one can perform this computation very efficiently, as it involves only
elementary operations over Zp. Finally, the signature for m is

σ = g
1/G(m)
1 ∈ G1

where g1 ∈ G1 is a generator. Thus, computing a signature requires to perform
only a single exponentiation in G1, plus a small number of additional operations
in Zp.

6



A signature can be verified by first computing g
G(m)
2 ∈ G2 from the group

elements contained in the public key, which involves O(k) operations in Zp, O(k)
multiplications in G2, and then testing whether

e(σ, g
G(m)
2 )

?
= e(g1, g2)

Note that this test requires only a single application of the bilinear map e to com-

pute e(σ, g
G(m)
2 ), because the term e(g1, g2) is independent of the given message

and signature, and can thus be precomputed.
In order to sketch how continuous collision resistance is used in the security

proof of this scheme, note that a signature of this scheme has the form

σ = g
1/

∏`
j=1(xj+H2j (m))

1 (1)

which can be viewed as an aggregation of ` signatures of the form

σj = g
1/(xj+H2j (m))
1 (2)

In order to describe the intuition behind the security proof, let us view a sig-
nature σ therefore as an `-tuple σ = (σ1, . . . , σ`) for now, where σj is as in (2).
We describe later how these signatures can be aggregated to obtain our actual
scheme. Note that each σj is a Boneh-Boyen signature [9] over the first 2j bits
of H(m). In the security proof, we will choose j such that it simultaneously
achieves the following two properties.

1. The index j is sufficiently small. Let m∗ be the message for which the as-
sumed adversary A forges a signature. We want that j is small enough, such
that that we can guess H2j (m

∗) ∈ {0, 1}2j with reasonable success proba-
bility, even before the security experiment starts, and we are able to prepare
signatures for all other values {0, 1}2j \H2j (m

∗).
2. At the same time, we will make sure that the index j is sufficiently large, such

that it is “sufficiently unlikely” that the adversary finds a collision for H2j .
More precisely, we want that it is “sufficiently unlikely” that the adversary
ever requests a signature for a message mi and then outputs a forgery for
message m∗ with H2j (mi) = H2j (m

∗).

The main difficulty of our security analysis lies in the second property, therefore
let us consider this one more closely. Continuous collision resistance basically
guarantees that there is no algorithm that finds collisions with significantly better
time-to-success ratio than the standard birthday collision algorithm, even when
prefixes H2j (x) of hash values H(x) are considered. Of course we will not be able
to choose j such that the probability that A finds a collision is negligibly small
– at least not without sacrificing the first condition, which we cannot afford.
However, we will be able to choose j such that we can argue that the probability
that A finds a collision for H2j is at most ε/2, where ε is the success probability
of A in breaking our signature scheme. This is “sufficiently unlikely”, because
it means: while sometimes A may break the security of the signature scheme
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by finding a collision, at least sometimes (more precisely: with probability at
least ε/2) the adversary will also be able to break the signature scheme without
finding a collision. This allows us to reduce the full EUF-CMA-security of our
scheme to the SUF-naCMA-security of the underlying Boneh-Boyen scheme.

Since Boneh-Boyen signatures are not known to be efficiently aggregable
in the sense of [12, 36], we have to overcome another hurdle to obtain a short
signature scheme. However, this is relatively simple. Note that computing a
signature that satisfies (1) essentially yields a “polynomial in the exponent” in
unkowns x1, . . . , x` of degree `. In order to verify whether a given value σ indeed
satisfies (1) using a bilinear map, we therefore must to be able to compute group
elements of the form

gx
b1
1 ···x

b`
` (3)

for all possible values of b1, . . . , b` ∈ {0, 1}. Note that these are 2` different
values, but we have ` = O(log k) This allows us to include all required values of
the form (3) in the public key, which yields a public key of size O(k).

Further related works. Further works which aim at instantiating random oracles
include the work of Bellare, Hoang, and Keelvedhi [2] proposes a new security
property of hash functions, called Universal Computational Extractors. This is
not a single assumption, but rather a framework of very strong assumptions,
some of which are unattainable or have seriously been questioned [17, 5]. It is
currently unclear and subject to ongoing research how “strong” or “realistic”
these assumptions exactly are. Furthermore, the programmable hash functions
(PHFs) of Hofheinz and Kiltz [31] realize a (restricted, but very useful) form of
programmability in the standard model. All known constructions of PHFs [31,
29, 27, 21] are based on algebraic public-key techniques.

There exists several generic and semi-generic constructions of strongly-secure
signatures from signatures with weaker security [24, 15, 38, 32, 16]. All these works
have in common that they can be applied only to signature scheme, but not
to identity-based schemes like ID-KEMs, because they are either probabilistic
(e.g., based on ephemeral one-time signatures or chameleon hash functions),
or consider a setting with a non-adaptive adversary, which is forced to output
all chosen-message queries before seeing the public key. The main difference be-
tween our work and the prefix-guessing technique of [32, 16] is that we essentially
guess a short prefix of the hash of the “target message” directly, exploiting the
continuous collision resistance to argue that this hash can not be equal to the
hash of any chosen-message query. We do not have to know any chosen-message
queries of the adversary to do this, which makes the technique also applicable to
identity-based schemes like ID-KEMs. In contrast, the prefix-guessing technique
of [32, 16] guesses the shortest prefix of the target message that is not equal
to a prefix of a chosen-message query, which depends on the chosen-message
queries made by the adversary and therefore can only be used to construct non-
adaptively secure signatures (adaptive security is then achieved in a second step,
e.g. using [24]).
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2 Continuous Collision-Resistant Hashing

In this section we will formalize our new security notion for cryptographic hash
functions. Intuitively, we will need a hash function H with the property that
there exists no algorithm which finds collisions with significantly better “work
factor” [3] than the trivial birthday collision algorithm. This should hold even if
the output of the hash function is truncated.

Computational model. We consider algorithms as Turing machines, which oper-
ate on a binary alphabet and write their output bit-by-bit to an output tape,
where each written bit takes one elementary machine operation. The running
time of an algorithm is defined as the number of elementary operations per-
formed by this machine.

Continuous collision resistance. LetH be a family of hash functions with domain
{0, 1}∗ and range {0, 1}α. For H ∈ H let Hi denote the function obtained by
evaluating H and truncating its output to the first i bits. Thus, H1(x) consists
of the first bit of H(x), and Hα(x) = H(x) for all x ∈ {0, 1}∗.

Definition 1. We say that H is a family of continuously collision resistant
(CCR) hash functions, if for each adversary B that runs in time tB holds that

Pr

[
H

$← H, (x0, . . . , xq)
$← B(H) :

∃u, v s.t. Hi(xu) = Hi(xv) ∧ xu 6= xv

]
≤ tB(tB − 1)

2i+1

for all i ∈ {1, . . . , α}.

The bound tB(tB − 1)/2i+1 in the above definition is derived from the birthday
bound, which states that an adversary which evaluates a random function with
range 2i at most q times will find a collision with probability at most q(q −
1)/2i+1. Thus, Definition 1 requires essentially that no adversary is able to find
collisions significantly better than by executing a standard birthday attack.

Constructing hash families from standard hash functions. Let H ′ be any stan-
dard cryptographic hash function, such as SHA-3, for example. We can construct
a hash function family H as

H := {H : H(x) := H ′(r||x), r ∈ {0, 1}k}

A uniformly random hash function H from the family is chosen by selecting
a uniformly random bit string r ∈ {0, 1}k. H(x) is evaluated by computing
H ′(r||x).

Strength of the CCR assumption. We view continuous collision resistance as a
very natural security property for cryptographic hash functions. In particular,
it seems to be satisfied by standard hash functions like SHA-256 or SHA-3. The
standard way to determine the size of the output of a hash function in practice

9



is to fix a security parameter k, and to take a hash function of output size 2k.
For example, choosing SHA-256 (which has 256-bit hash values) for k = 128
is considered an adequate choice in practice, if collision-resistance is required.
Note that one essentially assumes here already that there is no significantly
better collision attack than the generic birthday algorithm. Our new complexity
assumption generalizes this assumption to prefixes of the hash function, which
appears very reasonable for standard hash functions.

We also note that for our applications given below we will require hash func-
tions with output length of 4(k+1), rather than the “minimal” 2k. For example,
for k = 127 we would use SHA-512.

Choice of computational model and weakening the CCR assumption. Assume
a computational model where an algorithm is able to output many pairwise
distinct values x0, . . . , xq in a single elementary machine operation, and thus
within a single time unit. Note that such an algorithm would be able to trivially
break the CCR-assumption. To overcome this obstacle, we are working in a
computational model where algorithms are assumed to write their output bit-
by-bit to an output tape.

In order to generalize this is to a computational model where algorithms are
able to output any constant number of bits in parallel in a single step, we can
weaken Definition 1 by increasing the size of the prefix for which the adversary
has to find a collision. To this end, one would replace the requirement

Hi(xu) = Hi(xv)

in Definition 1 with
Hi+c(xu) = Hi+c(xv)

for some small constant value c (e.g., c ∈ {1, ..., 10}). This also allows to add
some additional “safety margin” to the CCR assumption, if desired, at the cost
of an additional constant tightness loss factor of 2c in the security proofs of
our constructions. In the remainder of the paper, we will work with the original
Definition 1, as it simplifies the exposition of our main results.

Useful technical lemma. We now state a technical lemma, which will be useful to
leverage continuous collision resistance in security proofs. Intuitively, the lemma
will provide bounds to ensure in our security proofs that for each adversary
with some running time t and success probability ε there always exists a “good”
index j such that H2j is “sufficiently collision-resistant”, but at the same time
the range {0, 1}2j of H2j is “sufficienly small”. As usual, all logarithms are to
base 2 in the sequel.

Lemma 1. Let t ∈ N and ε ∈ (0, 1] with t/ε < 2k, and j :=
⌊
log log(4t2/ε)

⌋
+ 1.

Then it holds that

j ∈ {1, . . . , log 4(k + 1)} and
4t2

22j+1
<
ε

2
and 22

j

≤
(

4t2

ε

)2
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Proof. We first show that j ∈ {1, . . . , 2 + log(k + 1)}. Since ε 6= 0, we trivially
have j ≥ 1. Additionally using that ε ∈ (0, 1] and t/ε < 2k, we obtain

j =
⌊
log log(4t2/ε)

⌋
+ 1 ≤ log log(4t2/ε) + 1

< log log(22k+2) + 1 = log 4(k + 1)

To show 4t2/22
j+1 < ε/2, we compute

4t2

2 · 22j
=

4t2

2 · 22blog log(4t2/ε)c+1
<

4t2

2 · 22log log(4t2/ε)
=

4t2

2 · (4t2/ε)
=
ε

2

Finally, we get 22
j ≤

(
4t2/ε

)2
from

22
j

= 22
blog log(4t2/ε)c+1

≤ 22·2
log log(4t2/ε)

= (4t2/ε)2

�

3 Identity-based key encapsulation

In this section, we show how continuous collision resistance yields a generic
construction of adaptively-secure ID-KEMs from ID-KEMs with weaker security,
and a construction of ID-KEMs with very short ciphertexts and without random
oracles.

3.1 Definitions and security notions

Definition 2. An ID-KEM consists of the following four PPT algorithms:

Setup(1k) returns the public parameters PP and the master secret key MSK.
We assume that PP defines (implicitly or explicitly) an identity space I, a
key space K and a ciphertext space C.

KeyGen(MSK, id) returns the user secret key USKid for identity id ∈ I.

Encap(PP, id) returns a tuple (C,K), where K ∈ K is a key and C ∈ C is a
ciphertext encapsulating K with respect to identity id.

Decap(USKid, C, id) returns the decapsulated key K ∈ K or an error symbol ⊥.

For perfect correctness we require that for all k ∈ N, all pairs (PP,MSK) gen-
erated by Setup(1k), all identities id ∈ I, all (K,C) output by Encap(PP, id) and
all USKid generated by KeyGen(MSK, id):

Pr[Decap(USKid, C, id) = K] = 1.
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IND-snaID-CPAq,AΠ (k) IND-ID-CPAq,AΠ (k)

b
$← {0, 1}

(id∗, id1, ..., idq, st1)← A1(1k)

(PP,MSK)
$← Setup(1k)

USKidi
$← KeyGen(MSK, idi) ∀i ∈ [q]

K0
$← K; (C,K1)

$← Encap(PP, id∗)

b′ ← A2(st1, (USKidi)i∈[q], C,Kb)

Return (b′ == b)

b
$← {0, 1}

(PP,MSK)
$← Setup(1k)

(id∗, st)← AKeyGen(MSK,·)
1 (1k, PP )

K0
$← K; (C,K1)

$← Encap(PP, id∗)

b′ ← AKeyGen(MSK,·)
2 (st, C,Kb)

Return (b′ == b)

Fig. 1. The security experiments for ID-KEMs, executed with scheme
Π = (Setup,KeyGen,Encap,Decap) and adversary A = (A1,A2). The oracle

KeyGen(MSK, id) returns USKid
$← KeyGen(MSK, id) with the restriction that A is

not allowed to query oracle KeyGen(MSK, ·) for the target identity id∗.

Adaptive security. Let us first recall the standard CPA-security notion for ID-
KEMs. To this end, consider the IND-ID-CPA security experiment depicted in
Figure 1. Note that the adversary may choose both the challenge-identity id∗

and the chosen-key query identities id1, . . . , idq adaptively.

Definition 3. We say that adversary A (tA, q, εA)- breaks the IND-ID-CPA se-
curity of Π, if

Pr[IND-ID-CPAq,AΠ (k)⇒ 1]− 1

2
≥ εA

and tA is the running time of A including the IND-ID-CPA security experiment.

Remark 1. Including the running time of the security experiment into the run-
ning time of the adversary A will later allow us to simplify the analysis of our
security reduction.

Selective and non-adaptive security. We also define a very weak security no-
tion for ID-KEMs. Consider the IND-snaID-CPA security experiment depicted in
Figure 1, where the attacker has to commit to both the challenge-ID id∗ the key-
query identities id1, . . . , idq non-adaptively and even before receiving the master
public key PP .

Definition 4. We say that A (tA, q, εA)-breaks the IND-snaID-CPA security of
Π, if it runs in time tA and

Pr[IND-snaID-CPAq,AΠ (k)⇒ 1]− 1

2
≥ εA.

3.2 From weak security to adaptive security

Construction. Let H be a family of continuously collision-resistant hash func-
tions H : {0, 1}∗ → {0, 1}4(k+1) and let

` := log(4(k + 1))

12



Let Π ′ = (Setup′,KeyGen′,Encap′,Decap′) be an ID-KEM. We construct scheme
Π = (Setup,KeyGen,Encap,Decap) as follows. Below we will prove that the
IND-ID-CPA-security of Π is implied by the IND-snaID-CPA-security of Π ′.

Setup. Compute (PPi,MPKi)
$← Setup′(1k) for all i ∈ {1, . . . , `}, choose H

$←
H and define

PP = (PP1, . . . , PP`, H) and MSK = (MSK1, . . . ,MSK`, H).

and output (PP,MSK).
User Key Generation. To create a private key for the identity id, compute

USKi
$← KeyGen′(MSKi, H2i(id)) for all i ∈ {1, . . . , `}. Define

USKid := (USK1, . . . , USK`)

and output USKid.

Encapsulation. On input PP = (PP1, . . . , PP`, H) and id, compute (Ki, Ci)
$←

Encap′(PPi, H2i(id)) for all i ∈ {1, . . . , `}. Then define

K :=
⊕̀
i=1

Ki,

where
⊕

denotes the XOR-operation and output (C,K) = ((C1, ..., C`),K).
Decapsulation. On input C = (C1, ...C`) and USKid, compute

Ki = Decap′(uski, Ci).

for all i ∈ {1, . . . , `} and output

K :=
⊕̀
i=1

Ki.

The correctness of Π follows immediately from the correctness of Π ′.

Security analysis. Recall that we have ` := log 4(k+1), and that Lemma 1 shows
that for each adversary A with tA/εA < 2k, there exists an index j ∈ {1, . . . , `}
such that

j =
⌊
log log 4t2A/εA

⌋
+ 1 (4)

is satisfied. The following theorem assumes that this value of j is given. Thus,
exactly as in Zhandry’s ELF paper [40], the reduction is non-black-box. Since
only an approximation of running time and success probability of the adversary
is required, this was called “nearly” black-box in [40]. We will later generalize
this to fully black-box reductions.

13



Theorem 1. Let A be an adversary that (tA, qA, εA)-breaks the IND-ID-CPA-
security of Π with εA > 0 and tA/εA < 2k. Given A and an index j such that
(4) is satisfied, we can construct an adversary Bj that (tB, qB, εB)-breaks the
IND-snaID-CPA-security of Π ′ with

tB = O(t4A/ε
2
A), qB < 4t4A/ε

2
A and εB ≥

ε3A
32t4A

.

Note that the theorem considers adversaries that for a given security parame-
ter k have “work factor” tA/εA below 2k. This deviates from the common asymp-
totic definition, where tA is polynomially-bounded and εA is non-negligible. As-
suming tA/εA < 2k is an alternative way of expressing that a cryptosystem is
secure with respect to a given security parameter k that originates from the
“concrete security” approach of Bellare and Ristenpart [3]. Note also that the
security loss of reduction B is polynomially-bounded, but relatively large.

Proof. Before we are able to construct Bj , we have to make a couple of modifi-
cations to the IND-ID-CPA security experiment. Consider the following sequence
of games, where we denote with Gi the event that Game i outputs 1.

Game 0. This is the IND-ID-CPAq,AΠ (k) security experiment. By definition, we
have

Pr [G0] = Pr
[
IND-ID-CPAq,AΠ (k)⇒ 1

]
.

Game 1. From this game on, we use that an index j ∈ {1, . . . , `} is given, such
that (4) is satisfied. Furthermore, we define event collj , which occurs when the
adversary A in the IND-ID-CPA experiment ever finds a collision for H2j . More
precisely, A queries a user secret key or challenge ciphertext for identities id, id′

such that id 6= id′, but

H2j (id) = H2j (id
′).

If collj occurs, then Game 1 outputs a random bit and aborts.
Note that Pr [G1 ∧ ¬collj ] = Pr [G0 ∧ ¬collj ], and therefore

|Pr [G0]− Pr [G1]| ≤ Pr [collj ]

by the Difference Lemma [37]. In particular, since Pr [G0] ≥ Pr [G1] (as Game 0
considers an adversary with advantage that can only be decreased by our abort
condition), we have

Pr [G1] ≥ Pr [G0]− Pr [collj ] = 1/2 + εA − Pr [collj ] .

We use the continuous collision resistance of H to show Pr [collj ] ≤ ε/2.
Consider an algorithm C, which runs the IND-ID-CPA security experiment with
A and outputs the list of identities (id1, . . . , idq, id

∗) for which A requests a user
secret key or the challenge ciphertext. Note that the running time of C is at
most 2 · tA, since tA includes the running time of the security experiment (cf.
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Definition 3) and the only additional operation performed by C is to output the
list of identities, which takes at most time tA. By construction, C finds a collision
for H2j if and only if collj occurs. Continuous collision resistance guarantees that

this probability is at most 2tA(2tA − 1)/22
j+1, which yields

Pr [collj ] ≤ 2tA(2tA − 1)/22
j+1 ≤ 4t2A/2

2j+1 < ε/2,

where the last inequality applies Lemma 1 and the choice of j. This shows that

Pr [G1] > 1/2 + εA/2.

Game 2. In Game 2, we additionally guess ID∗
$← {0, 1}2j uniformly random,

and raise event abortchal, output a random bit, and abort, if adversary A requests
a challenge ciphertext for identity id∗ with H2j (id

∗) 6= ID∗.
Since ID∗ is chosen uniformly random and independent of the view of the

adversary, and G2 ∧ ¬abortchal ⇐⇒ G1 ∧ ¬abortchal we have

Pr [G2] = Pr [G2 | abortchal] · Pr [abortchal] + Pr [G2 ∧ ¬abortchal]
= Pr [G2 | abortchal] · Pr [abortchal] + Pr [G1 ∧ ¬abortchal]
= 1/2 · (1− Pr [¬abortchal]) + Pr [G1] · Pr [¬abortchal]
= 1/2 + (Pr [G1]− 1/2) · Pr [¬abortchal]

> 1/2 +
εA
2
· Pr [¬abortchal] .

Since ID∗ is chosen uniformly random from a set of size 22
j

, the probability
of guessing ID∗ correctly is Pr [¬abortchal] = 2−2

j

. By applying Lemma 1, which

guarantees that 22
j ≤

(
4t2

ε

)2
for our choice of j, we get

Pr [G2] > 1/2 +
εA
2
· Pr [¬abortchal] = 1/2 +

εA
2
· 1

22j
≥ 1/2 +

ε3A
32t4A

.

Now we are ready to construct our reduction algorithm Bj , which simulates
Game 2 for A.

Construction of algorithm Bj. Algorithm Bj receives as input a security param-
eter k from the IND-snaID-CPA experiment. It simulates Game 2 (including the
handling of events collj and abortchal) as follows.

Bj samples a challenge identity ID∗
$← {0, 1}2j uniformly random and defines

22
j − 1 identities ID1, . . . , ID22

j−1, consisting of all values in {0, 1}2j \ {ID∗}.
It outputs these values to the IND-snaID-CPA experiment, which then gener-

ates and responds with a key pair (PP ′,MSK ′)
$← Setup′(1k), user secret keys

USK ′IDi , i ∈ {1, . . . , 2
2j − 1}, for the requested identities, and a challenge ci-

phertext (C ′,K ′), where (C ′,K)
$← Encap′(PP ′, ID∗) and either K ′ = K or K ′

is uniformly random.
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Simulation of the public key. In order to simulate the public key, Bj generates

(PPi,MPKi)
$← Setup′ for all i ∈ {1, . . . , `} \ {j} and sets

PP = (PP1, ..., PPj−1, PP
′, PPj+1, ..., PPl).

Finally, Bj outputs PP to A. Note that this is a correctly distributed master
public key for scheme Π.

Answering key queries. Bj knows MSKi for all i 6= j and user secret keys for

USK ′IDs for all IDs ∈ {0, 1}2
j \ {ID∗}. Therefore it is able to compute and

return valid user secret keys to A for all identities idz with H2j (idz) 6= ID∗.

More precisely, whenever A requests a user secret key for an identity idz ∈
{0, 1}∗, Bj proceeds as follows. Bj will first check if H2j (idz) = H2j (id

∗) (if id∗

is already defined), or there exists an index z′ ∈ {1, . . . , q} such that H2j (idz) =
H2j (idz′). If this holds, then Bj raises event collj, aborts the simulation and
outputs a random bit. Furthermore, if H2j (idz) = ID∗ then Bj raises event
abortchal, aborts and outputs a random bit.

If there is no abort, then Bj computes (USKi)
$← KeyGen′(MSKi, H2i(idz))

for all i ∈ {1, . . . , `} \ {j}. Recall that Bj has requested user secret keys for all

values H2j (idz) ∈ {0, 1}2
j

with H2j (idz) 6= ID∗, in particular for IDs ∈ {0, 1}2
j

such that IDs = H2j (idz). Therefore it is able to efficiently determine and output

USKidz = (USK1, ..., USKj−1, USK
′
IDs , USKj+1, ..., USKl).

Computing the challenge ciphertext. When adversary A outputs a challenge
identity id∗, Bj will first check if there exists an index z ∈ {1, . . . , q} such
that H2j (idz) = H2j (id

∗). If this holds, then Bj raises event collj , aborts the
simulation and outputs a random bit. Else Bj checks whether H2j (id

∗) = ID∗

and if this does not hold then, Bj raises event abortchal and aborts, outputting

a random bit. Otherwise, for all i ∈ {1, . . . , `} \ {j} it computes (Ci,Ki)
$←

Encap′(PPi, H2i(id
∗)), and then

K :=
⊕̀

i=1,i6=j

Ki ⊕K ′ and C := (C1, . . . , Cj−1, C
′, Cj+1, . . . , C`),

where (C ′,K ′) is the tuple received from the IND-snaID-CPA-experiment. Bj
returns (C,K) to A and outputs whatever A outputs.

Success probability of Bj. Note that if K ′ is a “real” key, which holds with
probability 1/2, then so is K, while if K ′ is “random”, then so is K. Hence, Bj
simulates Game 2 perfectly, and we have

Pr
[
IND-snaID-CPA

q,Bj
Π′ (k)⇒ 1

]
= Pr [G2] > 1/2 +

ε3A
32t4A

.
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Running time of Bj. The running time tBj of Bj consists of the time needed
to execute A, the time required to simulate the IND-ID-CPA security experi-
ment, and the time required to request the 22

j − 1 user secret keys from the
IND-snaID-CPA experiment, plus a minor number of additional operations. Mak-
ing use of Lemma 1, we get

tj ≈ tA +O
(
22
j

− 1
)
≈ tA +O

( t4A
ε2A

)
= O

( t4A
ε2A

)
.

Note also that Bj issues qB = 22
j − 1 < 4t4A/ε

2
A user key queries. This completes

the proof of Theorem 1. �

From “nearly” black-box to full black-box. Recall that Theorem 1 assumes that
an index j ∈ {1, . . . , log 4(k + 1)} is given that satisfies j =

⌊
log log 4t2A/εA

⌋
+ 1

for adversary A. Therefore the reduction Bj constructed to prove Theorem 1
is only “nearly black-box” in the sense of [40], because it essentially needs to
know at least sufficiently close approximations of the running time tA and the
advantage εA of A. We will show that we can also construct a reduction B that
simply guesses this value j, and otherwise proceeds exactly like the algorithm Bj
from the proof of Theorem 1. This is possible in our setting, because the choice
of j is completely oblivious to the adversary A, unless the game is aborted. This
holds even for computationally unbounded adversaries, because Bj provides a
perfect simulation of the original security experiment, provided that it does not
abort. We construct an algorithm B which simply guesses an index j uniformly
random from {1, . . . , log 4(k+1)} and then proceeds exactly like Bj , hoping that
j satisfies (4).

A minor difficulty that we face here is that the running time tB of B depends
exponentially on j, such that we can only get a reasonable bound on tB if the
guessed value of j approximates the running time and advantage of the adversary
well-enough via the bounds from (4). The reduction may become inefficient if it
guesses j too large, and may cease to have reasonable advantage if j is too small.
Therefore, strictly speaking, adversary B is not an algorithm that runs in strict or
expected polynomial time in terms of classical complexity theory. Nevertheless,
if it guesses j correctly, which happens with probability at least 1/(log 4(k+ 1)),
then it has a polynomially-bounded running time and non-negligible advantage.
This yields a somewhat cumbersome formulation of the following theorem, but
is still sufficient to establish that we can turn any efficient adversary A against
Π into an efficient adversary B against Π ′, and thus to prove the construction
secure without requiring a priori knowledge about A’s running time or success
probability.

Theorem 2. Let A be an adversary that (tA, qA, εA)-breaks the IND-ID-CPA-
security of Π with εA > 0 and tA/εA < 2k. Given A, we can construct an
adversary B that (tB, qB, εB)-breaks the security of Π ′ in the IND-snaID-CPA-
security experiment such that when B is executed, then with probability at least
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1/ log 4(k + 1) all the following bounds hold simultaneously:

tB ≈ O
(
t4A
ε2A

)
, qB < 4t4A/ε

2
A and εB ≥

ε3A
32t4A

.

Thus, the total advantage of B is at least 1ε3A/(32t4A log 4(k + 1)).

Proof. Adversary B picks j
$← {1, ..., log 4(k + 1)} uniformly random. Then it

proceeds exactly like adversary Bj from the proof of Theorem 1.

Success probability of B. To analyze the probability of B, let corr denote the
event that B guesses j correctly, that is, the value of j chosen by B satisfies (4)
with respect to A. Furthermore, write

X := IND-snaID-CPAq,BΠ′ (k)⇒ 1

and set ` := log 4(k + 1) to simplify our notation. Then we have

Pr [X] = Pr [X | corr] · Pr [corr] + Pr [X | ¬corr] · Pr [¬corr]

= Pr [X | corr] · 1

`
+ Pr [X | ¬corr] ·

(
1− 1

`

)
= Pr [X | ¬corr] +

1

`
· (Pr [X | corr]− Pr [X | ¬corr]) .

Writing Pr [X | ¬corr] = 1/2 + α for some α ∈ [−1/2, 1/2], we obtain

Pr [X] = 1/2 + α+
1

`
· (Pr [X | corr]− 1/2− α)

= 1/2 +
1

`
· (Pr [X | corr]− 1/2) +

`− 1

`
α

= 1/2 +
1

`
· ε3A

32t4A
+
`− 1

`
α,

where the last line follows from the bound on the advantage of Bj given by
Theorem 1. In order to prove the theorem, it suffices to show that it always
holds that α ≥ 0. To this end, let us consider the probability Pr [X | ¬corr],
recalling that

1/2 + α = Pr [X | ¬corr] .

That is, we consider the probability of event X, given that B did not guess j
such that (4) is satisfied. We distinguish between two cases:

1. Adversary Bj aborts. Note that then it outputs a uniformly random bit, and
therefore we have α = 0.

2. Adversary Bj does not abort. Even though j is not guessed correctly, the
view simulated by B to A is perfectly indistinguishable from the original
security experiment, and thus we have α ≥ 0.
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More formally, let denote abort the event that Bj aborts the simulation. Then
we can compute

1/2 + α = Pr [X | ¬corr]
= Pr [X | ¬corr ∧ abort] · Pr [abort | ¬corr]
+ Pr [X | ¬corr ∧ ¬abort] · Pr [¬abort | ¬corr]
=1/2 · Pr [abort | ¬corr] + (1/2 + εA) · Pr [¬abort | ¬corr]
=1/2 + εA · Pr [¬abort | ¬corr]
≥1/2.

Running time of B. Assuming that the guess of j was right in the sense of (4)
we get the same running time like for Bj in Theorem (1). This happens with
probability 1/ log 4(k + 1). �

Adopting this approach to the ELF-based setting [40]. A natural question to ask
is why our result can be lifted from the “nearly” black-box to the fully black-box
setting, while this seems not possible for the ELF-based constructions of [40].
The reason is that [40] uses a hybrid argument with a sequence of “DDH-steps”,
where the number of these steps depends on the guess of tA and εA (which
corresponds to our guessing of index j), and is not information-theoretically
hidden from A. Thus, even if the simulation is not aborted, the view of the
adversary is not independent of this guess. Hence, it may be possible that a
given adversary A has a positive advantage only if the guess is correct, but a
negative advantage if the guess is incorrect, such that in total the advantage of
the reduction becomes void.

3.3 Adaptively secure ID-KEM with short ciphertexts

The generic construction of adaptively-secure ID-KEMs described in Section 3.2
increases the size of keys and ciphertexts by a factor of O(log k). This overhead
is not overly huge, but it is still interesting to ask whether it is possible to obtain
more efficient schemes based on specific, number-theoretic constructions. In this
section we describe a variant of the Boneh-Boyen IBE scheme [7] with extremely
short ciphertexts consisting of only a single group element and full adaptive
security.

Building block: simplified Boneh-Boyen ID-KEM. The following ID-
KEM is based on the IBE scheme of Boneh and Boyen [7]. Let G1,G2,GT be
groups of prime order p and let e : G1 × G2 → GT an efficiently computable
pairing. We will use the implicit notation of Escala et al. [23], and write [x]s
shorthand for gxs for all s ∈ {1, 2, T} and generators g1, g2, gT of G1,G2,GT ,
respectively.
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Simple ID-KEM based on the Boneh-Boyen IBE scheme. We use the following
scheme as a building block for our adaptively-secure ID-KEM.

Setup Choose random generators [1]1 ∈ G1, [1]2 ∈ G2 and two random elements
x, y ∈ Zp. Then define X = [x]1 and ν = e([1]1, [1]y2). The published public
parameters PP and the master secret key MSK are defined as

PP = ([1]1, [x]1, ν) and MSK = (x, y)

Key Generation To create a private key for identity id ∈ Zp, compute and
return

USKid = [y/(id+ x)]2.

Encapsulation. To encapsulate a key K ∈ GT under public key id ∈ Zp, pick
a random r ∈ Zp and output

(C,K) = ([id+ x]r1, ν
r) ∈ G1 ×GT

Decapsulation. To decapsulate C using the private key USKid, compute and
output

e(C,USKid)

Correctness. This follows from

e([id+ x]r1, [y/(id+ x)]2) = e([1]1, [y]2)r = νr.

Proving security of the simplified Boneh Boyen IBE. Consider the following
experiment q-BDDHI(1k), which was generalized to asymmetric bilinear groups
in [10]. With regard to the security parameter k, the challenger generates an
asymmetric pairing group and chooses x ∈ Zp uniformly at random. Then it

chooses T
$← GT and defines

T0 := ([1]1, [x]1, [1]2, [x]2, . . . [x
q]2, T )

T1 := ([1]1, [x]1, [1]2, [x]2, . . . [x
q]2, e([1]1, [1]2)

1
x ).

Finally, it flips a fair binary coin β and outputs Tβ to the adversary. The task
of adversary B is to determine β.

Definition 5. We say that adversary B (t, ε)-solves the q-BDDHI problem, if it
runs in time t and

|Pr [B(T0)]− Pr [B(T1)]| ≥ ε

It is straightforward to prove the IND-snaID-CPA-security of our simplified
Boneh-Boyen using standard techniques from [7, 10], therefore we state the fol-
lowing theorem without proof.

Theorem 3. From an adversary A that (tA, qs, εA)-breaks the IND-snaID-CPA-
security of the simplified Boneh-Boyen ID-KEM one can construct an algorithm
B that (tB, εB)-solves the q-BDDHI problem with q = qs + 1 such that

tB ≈ tA and εB = εA
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Adaptively-secure construction.

Encoding elements of {0, 1}4(k+1) as Zp-elements. In the scheme described be-
low, identities are elements in Zp. In order to simplify the notation and descrip-
tion of the construction and its security analysis, we will henceforth make the
implicit assumption that elements of {0, 1}4(k+1) can be injectively encoded as
elements of Zp. This is of course easily possible by choosing p large enough,
such that p > 4(k + 1). However, this would yield an unnaturally large group
order (a typical choice in practice is 2k). In practice, one would map elements
of {0, 1}4(k+1) to elements in Zp by using a collision-resistant hash function
h : {0, 1}4(k+1) → Zp, which for our purposes is as good as an injective map.
However, to simplify the description of our scheme and its security proof we do
not make h explicit in the sequel.

The construction. In the sequel, let H be a family of continuously collision-
resistant hash functions H : {0, 1}∗ → {0, 1}4(k+1) and define

` := log 4(k + 1)

We construct ID-KEM scheme Π = (Setup,KeyGen,Encap,Decap) as follows.

Setup. Sample H
$← H and select random generators [1]1 ∈ G1, [1]2 ∈ G2 and

random elements y, x1, . . . , x` ∈ Zp and define the master secret key MSK
as

MSK = (y, x1, . . . , x`, H) ∈ Z`+1
p .

Define bi(n) for positive integers i as the function that, on input of integer
n ≥ 0, outputs the i-th bit of the binary representation of n. Let F (MSK,n)
be the function that on input of MSK = (x1, . . . , x`) and an integer n ≥ 0
outputs

F (MSK,n) =
∏̀
i=1

x
bi(n)
i .

The public parameters are defined as

PP = ([F (MSK, 0)]1, [F (MSK, 1)]1, . . . , [F (MSK, 2` − 1]1, [1]2, ν,H),

where ν = e([1]1, [1]2)y.
Key Generation. The private key for identity id is computed as

USKid = [y/u(id)]2,

where

u(id) =
∏̀
i=1

(H2i(id) + xi) ∈ Zp. (5)
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Encapsulation. Observe that

u(id) =
∏̀
i=1

(H2i(id) + xi) = d0 +

2k+1∑
n=1

(
dn
∏̀
i=1

x
bi(n)
i

)
,

where the constants di are efficiently computable from H(id).

To encapsulate a key, first [u(id)]1 is computed. Note that this is possible
from H(id) and the values F (MSK,n) contained in the public parameters
(in particular, without knowing x1, . . . , x` explicitly), by computing

[u(id)]1 =

[
d0 +

2k+1∑
n=1

(
dn
∏̀
i=1

x
bi(n)
i

)]
1

= [d0]1 ·
2k+1∏
n=1

[F (MSK,n)]dn1 .

Finally, the ciphertext and key are computed as

(C,K) = ([u(id)]r1, ν
r) ∈ G2

T .

for uniformly random r
$← Zp.

Decapsulation. To recover K from a ciphertext C for identity id and a match-
ing user secret key [y/(u(id))]2, compute and output e(C,USKid).

Correctness. The correctness follows from

e(C,USKid) = e([u(id)]r1, [y/u(id)]2) = e([1]1, [y]2)r = ν.

Note that the scheme described above has extremely short ciphertexts of size
only one element of G1, and also very efficient decapsulation, which takes only
a single pairing evaluation. However, the public parameters have size O(k), and
encapsulation is relatively expensive, as it costs O(k) exponentiations.

Again we consider the “nearly” black-box case first. The adoption to full
security works then exactly as for Theorem 2.

Theorem 4. Let A be an adversary that (tA, qA, εA)-breaks the IND-ID-CPA-
security of Π with εA > 0 tA/εA < 2k. Given A and an index j satisfying (4),
we can construct an adversary Bj that (tB, qB, εB)-breaks the IND-snaID-CPA-
security of the simplified BB ID-KEM Π ′ = (Setup′,KeyGen′,Encap′,Decap′)
with

tB = O(t4A/ε
2
A), qB < 4t4A/ε

2
A and εB ≥

ε3A
32t4A

Proof. The proof of Theorem 4 is almost identical to the proof of Theorem 1.
The main difference is that we additionally use the algebraic structure of the
underlying Boneh-Boyen ID-KEM to achieve short ciphertexts:
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Setup and initial input. Just like in the proof of Theorem 1, B picks a ran-

dom value ID∗
$← {0, 1}2j and requests a challenge ciphertext for identity

ID∗ and user secret keys for all 4t4A/ε
2
A − 1 identities in the set {0, 1}2j \

{ID∗}. In response, B receives public parameters PP ′ = ([1]1, [xj ]1, ν) from
the IND-snaID-CPA experiment, as well as user secret keys

[y/(ID + xj)]2

for all ID 6= ID∗ and a challenge ciphertext (C,K).
Additionally, B chooses `− 1 integers xi for all i ∈ {1, . . . , `} \ {j}.

Simulation of the public parameters. Note that B is not able to compute the

function F ((x1, . . . , x`), n) =
∏`
i=1 x

bi(n)
i for all values of n efficiently, since it

does not know xj . However, B is able to efficiently compute

[F ((x1, . . . , x`), n)]1 =

[∏̀
i=1

x
bi(n)
i

]
1

for all values of n from [xj ]1 and the xi, i ∈ {1, . . . , `} \ {j}. This is sufficient to
properly simulate a public key of scheme Π.

Simulation of user secret keys. Using the user secret keys received from the
IND-snaID-CPA challenger, B is able to answer all secret key queries for all iden-
tities id with H2j (id) 6= ID∗. To this end, it computes

USKid =

[
y/
∏̀
i=1

(H2i(id) + xi)

]
2

= [y/(H2j (id) + xj)]
1/(

∏`
i=1,i 6=j(H2i (id)+xi))

2 .

Creating the challenge ciphertext. B creates the challenge ciphertext as follows.
If A has selected a target identity id∗ with H2j (id

∗) = ID∗, then B computes

C := C ′
∏`
i=1,i 6=j(H2i (id

∗)+xi) and outputs (C,K). Note that

C = [(H2j (id
∗) + xj)]

r
∏`
i=1,i 6=j(H2i (id

∗)+xi) =

[∏̀
i=1

(H2i(id
∗) + xi)

]r
1

such that C is a correctly distributed challenge ciphertext, and K is either “real”
or “random”, depending on the choice of the IND-snaID-CPA security experiment.

Analysis. The analysis of the success probability of B is identical to the analysis
from the proof of Theorem 1, and yields identical bounds for Theorem 4. �

From “nearly” black-box to full black-box. This works exactly as in the proof of
Theorem 2, without any significant modifications.
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SUF-naCMAq,AΣ (k) EUF-CMAq,AΣ (k)

(m∗,m1, ...,mq, st1)← A1(1k)

(pk, sk)
$← Gen(1k)

σi
$← Sign(sk,mi) ∀i ∈ [q]

(m∗, σ∗)← A2(st1, (σi)i∈[q])

If (∃i ∈ [q] : m∗ == mi) return 0

else return Vfy(pk,m∗, σ∗)

(pk, sk)
$← Gen(1k)

(m∗, σ∗)← ASign(sk,·)(1k, pk)

If (∃i ∈ [q] : m∗ == mi) return 0

else return Vfy(pk,m∗, σ∗)

Fig. 2. The security experiments for digital signature schemes, executed with scheme
Σ = (Gen, Sign,Vfy) and adversary A = (A1,A2). The oracle Sign(sk,m) returns

σ
$← Sign(sk,m) with the restriction that A is not allowed to query oracle Sign(sk,m∗)

for the challenge-message m∗ and not more than a total of q queries.

4 Digital signatures

In this section, we show how continuous collision resistance can be applied to
obtain a generic construction of adaptively-secure digital signatures from signa-
tures with only very weak security, and a concrete number-theoretic construction
of an adaptively-secure signature scheme over bilinear groups, where signatures
consist of only a single group element.

4.1 Definitions and security notions

Definition 6. A digital signature scheme consists of three PPT algorithms with
the following syntax.

Gen(1k) outputs a key pair (pk, sk). We assume that pk implicitly defines a
message space M.

Sign(sk,m) on input of sk and message m ∈M outputs a signature σ.
Vfy(pk,m, σ) outputs 1 if σ is a valid signature for m with respect to pk and

else 0.

Adaptive security. We recall the standard security notion existential unforgeabil-
ity under adaptive chosen message attack (EUF-CMA) depicted in Figure 2. Note
that the adversary may choose the challenge-message m∗ after it has received
the public key pk and may adaptively query signatures for messages mi 6= m∗

Definition 7. We say that adversary A (tA, q, εA)- breaks the EUF-CMA secu-
rity of Σ = (Gen,Sign,Vfy), if it runs in time tA and

Pr[EUF-CMAq,AΣ (k)⇒ 1] ≥ εA.

and tA is the running time of A including the EUF-CMA security experiment.
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Selective and non-adaptive security. We also define a very weak security notion
for digital signature schemes. Consider the SUF-naCMA security experiment de-
picted in Figure 2, where the attacker has to commit to both the challenge-
message m∗ the signing-query messages m1, . . . ,mq non-adaptively and even
before receiving the public key pk.

Definition 8. We say that A (tA, q, εA)-breaks the SUF-naCMA security of Σ,
if it runs in time tA and

Pr[SUF-naCMAq,AΣ (k)⇒ 1] ≥ εA.

4.2 From weak security to adaptive security

Construction. LetH be a family of continuously collision-resistant hash functions
H : {0, 1}∗ → {0, 1}4(k+1) and Σ′ = (Gen′,Sign′,Vfy′) a SUF-naCMA secure
digital signature scheme. In the sequel, let

` := log 4(k + 1)

We construct our EUF-CMA digital signature Σ = (Gen,Sign,Vfy) as follows.

– Key Generation. Algorithm Gen samplesH
$← H and computes (pki, ski)

$←
Gen′(1k) for all i ∈ {1, . . . , `}, defines

pk := (pk1, . . . , pk`, H) and sk = (sk1, . . . , sk`, H)

and outputs (pk, sk).

– Signing. To sign a message m, compute σi
$← Sign′(ski, H2i(m)) for all

i ∈ {1, . . . , `}, and return the signature

σ = (σ1, . . . , σ`).

– Verification. To verify a signature σ = (σ1, . . . , σ`), compute and return

∧̀
i=1

Vfy′(pki, H2i(m)) = 1

Again, we consider the “nearly” black-box case first, because it is contains the
core idea behind the proof. The step to full black-box will then be much simpler
than for the ID-KEM case, essentially because forging signatures is a “search”
problem, while distinguishing ID-KEM ciphertexts is a “decisional” problem.

Theorem 5. Given an adversary A that (tA, qAεA)-breaks the EUF-CMA-security
of Σ = (Gen,Sign,Vfy) with εA > 0 and tA/εA < 2k and an index j that satisfies
(4), we can construct an adversary Bj that (tB, qB, εB)-breaks the SUF-naCMA-
security of Σ′ = (Gen′,Sign′,Vfy′) with

tB = O(t4A/ε
2
A), qB < 4t4A/ε

2
A and εB ≥

ε3A
32t4A

.
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The proof of Theorem 5 is nearly identical to the proof of Theorem 1, ex-
cept that some arguments and computing some bounds works slightly differently,
because in the ID-KEM setting from Theorem 1 we are considering an “indis-
tinguishability” security experiment, while in the digital signature setting of
Theorem 5 we consider a “search problem”. Therefore we give the full proof for
completeness.

Proof. Again, before we are able to construct B, we have to make a couple
of modifications to the EUF-CMA security experiment. Consider the following
sequence of games, where we denote with Gi the event that Game i outputs 1.

Game 0. This is the EUF-CMAq,AΣ (k) security experiment. By definition, we have

Pr [G0] = Pr
[
EUF-CMAq,AΣ (k)⇒ 1

]
.

Game 1. In this game, we assume that an index j ∈ {1, . . . , `} is given, such
that (4) is satisfied. Furthermore, we define event collj , which occurs when the
adversary A ever finds a collision for H2j . More precisely, collj occurs if A queries
a signature for message m and forges a signature for message m∗ such that
m 6= m∗, but

H2j (m) = H2j (m
∗).

If collj occurs, then Game 1 is aborted. With the same arguments as in Game 1
from the proof of Theorem 1, we have

Pr [G1] ≥ εA − Pr [collj ] .

We use the continuous collision resistance of H to show Pr [collj ] ≤ ε/2. Con-
sider an algorithm C, which runs the EUF-CMA security experiment with A and
outputs the list of messages (m∗,m1, . . . ,mq) for which A forges a message or
requests a signature. The running time of C is at most 2 · tA, since tA includes
the running time of the security experiment (cf. Definition 7) and the only addi-
tional operation performed by C is to output the list of messages, which takes at
most time tA. By construction, C finds a collision for H2j if and only if collj oc-
curs. Continuous collision resistance guarantees that this probability is at most
2tA(2tA − 1)/22

j+1. This yields

Pr [collj ] ≤ 2tA(2tA − 1)/22
j+1 ≤ 4t2A/2

2j+1 < ε/2,

where the last inequality applies Lemma 1 and the choice of j. Thus we have

Pr [G1] > εA/2.
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Game 2. In Game 2, we additionally guess M∗
$← {0, 1}2j uniformly random,

and raise event abortsign and abort, if adversary A forges a signature for message
m∗ with H2j (m

∗) 6= M∗.
Since M∗ is chosen uniformly random and independent of the view of the

adversary, and G2 ∧ ¬abortsign ⇐⇒ G1 ∧ ¬abortsign we have

Pr [G2] = Pr [G2 | abortsign] · Pr [abortsign] + Pr [G2 ∧ ¬abortsign]
= Pr [G2 | abortsign] · Pr [abortsign] + Pr [G1 ∧ ¬abortsign]
= Pr [G1] · Pr [¬abortsign]

>
εA
2
· Pr [¬abortsign] .

M∗ is chosen uniformly random from a set of size 22
j

, so that the probability
of guessing M∗ correctly is Pr [¬abortsign] = 2−2

j

. By applying Lemma 1, which

guarantees that 22
j ≤

(
4t2

ε

)2
for our choice of j, we get

Pr [G2] >
εA
2
· Pr [¬abortsign] =

εA
2
· 1

22j
≥ ε3A

32t4A
.

Now we are ready to describe our reduction algorithm Bj , which simulates
Game 2 for A.

Construction of Bj. Bj samples a random bit string M∗
$← {0, 1}2j and defines

22
j − 1 messages M1, . . . ,M22

j−1 that cover all values in {0, 1}2j \ {M∗}. Then
it outputs

(M∗,M1, . . . ,M22
j−1).

The SUF-naCMA experiment responds with a public key pk′ and 22
j − 1

signatures σ′i ← Sign′(sk′,Mi) for all i ∈ {1, . . . , 22j − 1}.

Simulation of the public key. In order to simulate a full public key of scheme Σ,

Bj additionally computes (pki, ski)
$← Gen′(1k) for all i ∈ {1, . . . , `} \ {j} and

outputs

pk = (pk1, ..., pkj−1, pk
′, pkj+1, ..., pk`).

Simulation of signatures. Whenever A requests a signature for a message m ∈
{0, 1}∗, Bj proceeds as follows. If H2j (m) = M∗, then Bj raises event abortsign
and aborts. Otherwise, it proceeds as follows. Bj has requested signatures for

all values H2j (m) ∈ {0, 1}2j \ {M∗}. It generates σi
$← Sign′(ski,m) for all

i ∈ {1, . . . , `} \ {j} and outputs

σ = (σ1, ..., σj−1, σ
′, σj+1, ..., σ`),

where σ′ is the signature for H2j (m) obtained from the SUF-naCMA-experiment.
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Extraction. If A outputs (m∗, σ∗), then Bj proceeds as follows. It first checks
whether H2j (m

∗) = M∗. If this does not hold, then Bj raises event abortsign and
aborts. Otherwise it returns M∗ and the j-th element σj of σ∗. Note that if σ∗

is a valid forgery with respect to Σ, message m∗ and public key pk, then σj is a
valid forgery for Σ′, message M∗, and public key pk′.

Success probability of Bj. Note that Bj simulates Game 2 perfectly, thus we have

Pr
[
SUF-naCMA

q,Bj
Σ′ (k)⇒ 1

]
= Pr [G2] >

ε3A
32t4A

.

Running time of Bj. The running time tBj of Bj consists of the time needed
to execute A, the time required to simulate the EUF-CMA security experiment,
and the time required to request the 22

j − 1 messages from the SUF-naCMA
experiment, plus a minor number of additional operations. Making use of Lemma
1, we get

tj ≈ tA +O
(

22
j

− 1
)
≈ tA +O

(
t4A
ε2A

)
= O

(
t4A
ε2A

)
.

Note also that B issues qB = 22
j − 1 < 4t4A/ε

2
A signing queries. This completes

the proof. �

From “nearly” black-box to full black-box. Theorem 5 is only “nearly black-box”,
as it assumes that an index j ∈ {1, . . . , log 4(k + 1)} is given that satisfies j =⌊
log log 4t2A/εA

⌋
+ 1 for adversary A. We will show that we can also construct a

reduction B that simply guesses this value j, and otherwise proceeds exactly like
the algorithm Bj from the proof of Theorem 5. In the case of digital signatures
this will be simpler than for ID-KEMs as considered above, because we will not
have to argue that the view of A is independent of j. Reduction B simply guesses
an index j uniformly random from {1, . . . , log 4(k+1)} and then proceeds exactly
like Bj , hoping that j satisfies (4). If j is guessed correctly, which happens with
probability at least 1/(log 4(k+1)), then Theorem 5 will provide a suitable lower
bound on the success probability of the reduction. In contrast to the setting
with a “distinguishing” problem considered for ID-KEMs, we do not have to
worry that guessing j incorrectly may decrease the advantage. Therefore it seems
also possible to lift the results from [40] from the “nearly black-box” setting to
the fully black-box setting, if “search problems” like the problem of forging
signatures are considered.

Again, the running time tB of B depends exponentially on j, such that we
can only get a reasonable bound on tB if the guessed value of j approximates
the running time and success probability of the adversary well-enough via the
bounds from (4). Thus, again, strictly speaking, adversary B is not an algorithm
that runs in strict or expected polynomial time in terms of classical complexity
theory, but it is sufficient to establish that we can turn any efficient adversary
A against Σ into an efficient adversary B against Σ′, and thus to prove the
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construction secure without requiring a priori knowledge about A’s running
time or success probability.

Theorem 6. Given an adversary A that (tA, qAεA)-breaks the EUF-CMA-security
of Σ = (Gen,Sign,Vfy) with εA > 0 and tA/εA < 2k and an index j that satisfies
(4), we can construct an adversary Bj that (tB, qB, εB)-breaks the SUF-naCMA-
security of Σ′ = (Gen′,Sign′,Vfy′) such that when B is executed, then with prob-
ability at least 1/ log 4(k + 1) all the following bounds hold simultaneously:

tB = O(t4A/ε
2
A), qB < 4t4A/ε

2
A and εB ≥

ε3A
32t4A

.

Thus, the total success probability of B is at least ε3A/(32t4A log 4(k + 1)).

Proof. Adversary B picks j
$← {1, ..., log 4(k + 1)} uniformly random. Then it

proceeds exactly like adversary Bj from the proof of Theorem 5.

Success probability of B. To analyze the probability of B, let corr denote the
event that B guesses j correctly, that is, the value of j chosen by B satisfies (4)
with respect to A. Furthermore, write

X := SUF-naCMAq,BΣ′ (k)⇒ 1

and set ` := log 4(k + 1) to simplify our notation. Then we have

Pr [X] ≥ Pr [X ∩ corr] = Pr [X | corr] · Pr [corr] ≥ ε3A
32t4A

· 1

`
,

where the last step follows from the bound on the success probability of Bj given
by Theorem 6. Note that the first step in the above inequality is not as simple
if a decisional problem is considered.

Running time of B. Assuming that the guess of j was right in the sense of (4)
we get the same running time like for Bj in Theorem (6). This happens with
probability 1/` = 1/ log 4(k + 1). �

4.3 Very short signatures with adaptive security

The generic construction of adaptively-secure digital signature schemes described
in Section 4.2 increases the size of keys and signatures by a factor of O(log(k)).
As for ID-KEMs it is possible to obtain a more efficient scheme based on spe-
cific, number-theoretic constructions. In this section we describe a variant of the
Boneh-Boyen signature scheme [9] with a signature consisting of only a single
group element and full adaptive security.

Building block: simplified Boneh-Boyen signatures. Again we use the
“implicit notation” introduced by Escala et al. [23] to simplify our notation, see
Section 3.3 for a definition.
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Construction. The Boneh-Boyen signature scheme [9] consists of the following
algorithms Σ′ = (Gen′,Sign′,Vfy′).

Key generation. Algorithm Gen′(k) chooses a random integer x and defines
the keys as

pk := ([1]1, [x]1, [1]2) and sk := x.

Signing. Algorithm Sign′ receives as input sk = x and message m ∈ Zp, and
computes and returns

σ := [1/(x+m)]2 ∈ G2.

Verification. Algorithm Vfy′ takes as input a public key

pk = ([1]1, [x]1, [1]2) ∈ G2
1 ×G2,

message m ∈ Zp, and σ ∈ G2. It returns 1 if and only if

e ([x]1 · [1]m1 , σ) = e ([1]1, [1]2) .

Security. The original paper by Boneh and Boyen [9] proves security of this
scheme in the sense of existential unforgeability under non-adaptive chosen-
message attacks (EUF-naCMA), under the strong (or “flexible”) q-Diffie-Hellman
assumption. We will require only a weaker notion of security, in the sense of selec-
tive unforgeability against non-adaptive chosen message attacks (SUF-naCMA),
which is achievable under a weaker, “non-flexible” q-type assumption.

Definition 9. We say that adversary A (εA, tA)-breaks the q-Diffie-Hellman
assumption in group G of order p, if it runs in time tA and

Pr
[
h

$← A([1], [x], [x2], . . . , [xq]) : h = [1/x]
]
≥ εA,

where the probability is taken over the random coins of A and x
$← Zp.

The above assumption is also known as the q-Diffie-Hellman Inversion assump-
tion [41]. By using the “generator-shifting” technique of Hofheinz et al. [29], one
can prove the following theorem along the lines of the original proof of Boneh
and Boyen [9].

Theorem 7. From an adversary A that (tA, qs, εA)-breaks the SUF-naCMA-
security of Σ′ chosen-message queries, one can canstruct an adversary B that
(tB, εB)-breaks the q-Diffie-Hellman assumption with q = qs + 1 and

tB ≈ tA and εB = εA.

Encoding elements of {0, 1}4(k+1) as Zp-elements. In the scheme described be-
low, messages m are elements in Zp for some prime p. In order to simplify the
notation and description of the construction and its security analysis, we will
henceforth make the implicit assumption that elements of {0, 1}4(k+1) can be
injectively encoded as elements in Zp (see also the more detailed comment in
Section 3.3).
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Construction. Let k ∈ N be a security parameter, and let G1, G2, GT be groups
of prime order p. Let e : G1 × G2 → GT be a non-degenerate, efficiently com-
putable bilinear map. Let H be a family of continuously collision-resistant hash
functions H : {0, 1}∗ → {0, 1}4(k+1) and ` = log 4(k+1). We construct signature
scheme Σ = (Gen,Sign,Vfy) as follows.

Key generation. Algorithm Gen(k) chooses H
$← H and ` random integers

x1, . . . , x`
$← Zp and defines the secret key as

sk := (x1, . . . , x`, H) ∈ Z`p.

Note that sk contains only ` = log 4(k + 1) elements.
The public key is computed as follows. For a positive integer i ≥ 1, let bi(n)
be the function that, on input of integer n ≥ 0, outputs the i-th bit of the
(canonical) binary representation of n. Let F (sk, n) be the function that, on
input of sk = (x1, . . . , x`) and integer n ≥ 0, outputs

F (sk, n) :=
∏̀
i=1

x
bi(n)
i .

The public key is defined as

pk := ([F (sk, 0)]1, . . . , [F (sk, 2` − 1)]1, [1]2, H).

It contains the group element [
∏
x∈X x]1 for each possible subset X ⊆

{x1, . . . , x`}.
Signing. Algorithm Sign receives as input sk = (x1, . . . , x`) and message m ∈
{0, 1}∗. Let u(m) be the function

u(m) :=
∏̀
i=1

(xi +H2i(m)) ∈ Zp, (6)

where bit strings H2i(m) are interpreted canonically as integers in Zp. Recall
here that by our assumption on p this is injective for all i ∈ {1, . . . , `}.
The signing algorithm computes and returns

σ := [1/u(m)]2 ∈ G1.

Note that computing signatures is extremely efficient. It involves only the
computation of 1/u(m) ∈ Zp, which can be performed over the integers
modulo p, where p is the group order, and then a single exponentiation in

G1 to compute g
1/u(m)
1 ∈ G1.

Verification. Algorithm Vfy takes as input a public key

pk = ([F (sk, 0)]1, . . . , [F (sk, 2` − 1)]1, [1]2),

message m ∈ {0, 1}∗, and σ ∈ G2. Note here that [F (sk, 0)]1 = [1]1. The
algorithm returns 1 if and only if

e ([u(m)]1, σ) = e ([1]1, [1]2) . (7)
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Here [u(m)]1 is computed as follows. Viewing u(m) =
∏`
i=1(xi +H2i(m)) as

a polynomial in ` unknowns x1, . . . , x`, we can expand the product from (6)
to obtain the equation

u(m) =
∏̀
i=1

(xi +H2i(m)) = d0 +

2`−1∑
n=0

(
dn
∏̀
i=1

x
bi(n)
i

)
(8)

for integers di which are efficiently computable from H(m). This yields the
equation

[u(m)]1 =

d0 +

2`−1∑
n=0

(
dn
∏̀
i=1

x
bi(n)
i

)
2

= [d0]2 ·
2`−1∏
n=0

[F (sk, n)]dn2 . (9)

Therefore the verification algorithms proceeds as follows:
1. From H(m) it computes the integers di as in (8) .
2. Then it computes [u(m)]1 as in (9) from the group elements [F (sk, n)]1

contained in the public key.
3. Finally, it outputs 1 if and only if Equation (7) holds.

Theorem 8. Let k ∈ N be a security parameter. Given an adversary A that
(tA, qA, εA)-breaks the EUF-CMA-security of Σ with tA/εA < 2k and an in-
teger j that satisfies (4), we can construct an adversary B that (tB, q,B, εB)-
breaks the SUF-naCMA security of the Boneh-Boyen signature scheme Σ′ =
(Gen′,Sign′,Vfy′) with

tB = O(t4A/ε
2
A), qB < 4t4A/ε

2
A and εB ≥

ε3A
32t4A

.

The proof of Theorem 8 is almost identical to the proofs of Theorems 4 and 5,
therefore we only sketch it.

Proof sketch. Like in the proof of Theorem 4, we will use the algebraic structure
of the underlying Boneh-Boyen signature scheme to achieve short signatures.

Setup and initial input. Like in the proof of Theorem 5, B picks a random value

M∗
$← {0, 1}2j and submits it to the SUF-naCMA experiment. Furthermore it

queries signatures for all 4t4A/ε
2
A − 1 messages in the set {0, 1}2j \ {M∗}. In

response, B receives the public key pk′ = ([1]1, [xj ]1, [1]2) from the SUF-naCMA
experiment, as well as signatures

[1/(xj +M)]2

for all M 6= M∗.
Additionally, B chooses `− 1 integers xi for all i ∈ {1, . . . , `} \ {j}.
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Simulation of the public parameters. Note that B is not able to compute the

function F ((x1, . . . , x`), n) =
∏`
i=1 x

bi(n)
i for all values of n efficiently, since it

does not know xj . However, B is able to efficiently compute

[F ((x1, . . . , x`), n)]1 =

[∏̀
i=1

x
bi(n)
i

]
1

for all values of n from [1]1,[xj ]1 and the xi, i ∈ {1, . . . , `}\{j}. This is sufficient
to properly simulate a public key of scheme Σ.

Simulation of signatures. Using the signatures received from the SUF-naCMA
challenger, B is able to answer all signature queries for all messages m with
H2j (m) 6= M∗. To this end, it computes

σm =

[
1/
∏̀
i=1

(H2i(m) + xi)

]
2

= [1/(H2j (m) + xj)]
∏`
i=1,i 6=j(H2i (m)+xi)

2 .

Extraction. If A outputs (m∗, σ∗), then Bj proceeds as follows. If A has selected
a message m∗ with H2j (m

∗) = M∗, then B computes and outputs

σ′ = (σ∗)
∏`
i=1,i 6=j(xi+H2i (m

∗)).

Note that this is efficiently computable by B, because it ”knows” xi for all i 6= j.
Note also that if σ∗ is a valid forgery with respect to Σ, message m∗, and public
key pk, then we have

σ′ = (σ∗)
∏`
i=1,i 6=j(xi+H2i (m

∗))

= [1/u(m∗)]
∏`
i=1,i 6=j(xi+H2i (m

∗))

2

= [1/
∏̀
i=1

(xi +H2i(m
∗))]

∏`
i=1,i 6=j(xi+H2i (m

∗))

2

= [1/(xj +H2j (m
∗))]2 = [1/(xj +M∗)]2.

Thus, σ′ is a valid forgery for the Boneh-Boyen scheme Σ′, message M∗, and
public key pk′.

Analysis. The analysis of the success probability of B is identical to the analysis
from the proof of Theorem 5, and yields identical bounds.
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