
Fast Montgomery-like Square Root Computation
over GF(2m) for All TrinomialsI

Yin Lia, Yu Zhanga,∗

aDepartment of Computer Science and Technology, Xinyang Normal University, Henan, P.R.China

Abstract

This letter is concerned with an extension of square root computation over GF(2m) defined by irreducible trinomials.
We introduce a new type of Montgomery-like square root formulae, which is more efficient compared with classic
square root operation. By choosing proper Montgomery factor regarding to different types of trinomials, the space
and time complexities of our proposal outperform or match the best results. Furthermore, a practical application of
the Montgomery-like square root in exponentiation computation is also presented.

Keywords: Finite field, Square root, Exponentiation, Cryptography

1. Introduction

Arithmetic in finite field GF(2m) has many important
practical applications such as public key cryptography
and coding theory [1, 2]. These applications usually re-
quire high efficient implementations of such arithmetic
operations, e.g., field addition, multiplication, inversion
and squaring. Particularly, square root operation has at-
tracted many attentions during recent years as it has be-
come an important building block in the design of some
elliptic curve primitives [4, 5]. In addition, since the
square root is somewhat analogous to squaring, it has
been applied in some parallel multiplicative inversion or
exponentiation algorithms [6, 8], where both squaring
and square root are utilizing as main building blocks.

Generally speaking, the efficiency of hardware imple-
mentation of field arithmetic is evaluated by space and
time complexity. The former is expressed as the num-
ber of logic gates (XOR and AND) and the latter is ex-
pressed as the total gates delay of the circuit, denoted by
TA and TX , respectively.

Consider an irreducible polynomial f (x) over F2.
Then, a binary extension field can be defined as
GF(2m) � F2[x]/(f (x)). Let A be an arbitrary element
in the field GF(2m). The field square root computation

IThis work is supported by the Natural Science Foundation of Chi-
na (No.61402393, 61601396).
∗Corresponding author
Email addresses: yunfeiyangli@gmail.com (Yin Li),

willow1223@126.com (Yu Zhang)

of A, denoted as
√

A or A1/2, is to find D ∈ GF(2m) such
that D2 = A. Note that square root operation is simply
a circular operation under normal base (NB) representa-
tion. Hence, most works for efficient square root com-
putation are based on polynomial representation (PB).

Obviously, a straightforward approach for square
root computation is based on Fermat’s Little Theo-
rem [3], which requires m − 1 squarings in all. Fong
[7] proposed more efficient algorithms by utilizing the
pre-computation value x1/2. However, this algorith-
m requires one m/2 bits field multiplication by a pre-
computed constant x1/2, which is still an expensive op-
eration. In [8], Rodrı́guez-Henrı́quez et al. proposed
an alternative method using the inversion of the multi-
plicative matrix, which is constructed for squaring oper-
ation. Their approach theoretically can be applied to any
type of generating polynomials. When the generating
polynomial f (x) is a trinomial, they derived the explicit
formulae for square root computation. It is shown that
such square root operations can be implemented with
no more logic gates than those associated with squar-
ing of the same field. Based upon this assertion, the
authors [8] also proposed a parallel exponentiation that
performs squaring based and square root based expo-
nentiation algorithms, simultaneously. Therefore, such
an algorithm could achieve twice implementation effi-
ciency compared with classic squaring based exponen-
tiation.

Rodrı́guez-Henrı́quez et al. approach is efficient. N-
evertheless, for certain type of irreducible trinomials,

Preprint submitted to Elsevier August 10, 2017

the circuit delay of the square root and squaring is d-
ifferent. For example, if f (x) = xm + xk + 1 with odd
m and even k, the squaring costs TX delay while square
root costs 3TX . In this case, if these two operations are
applied to perform parallel exponentiation (inversion),
the slower one will influence the performance of the
whole algorithm. In this contribution, we consider a
new type of square root operator by adding a specific
Montgomery-like factor. Explicit formulae of such op-
erations are presented when GF(2m) is generated with
an irreducible trinomial. As a result, it is shown that
these formulae are quite simple and have smaller space
and time complexities in parallel implementation. Coin-
cidentally, this type of Montgomery-like square root op-
erator has the same circuit delay compared with Mont-
gomery squaring [9] that defined in the same finite field.
Therefore, we then describe an improved parallel expo-
nentiation algorithm that using Montgomery squaring
and Montgomery-like square root operation.

The rest of this paper is organized as follows: in Sec-
tion 2, we introduce the definition of the Montgomery-
like square root and some other notations. Then, explicit
formulae for this type of square root operation are given
in section 2. In addition, the space and time complex-
ities are also evaluated. Section 3 describes a parallel
exponentiation algorithm based on Montgomery squar-
ing and Montgomery-like square root operators. Final-
ly, some conclusions are drawn in Section 4.

2. Montgomery-like Square Root

Let A =
∑m−1

i=0 aixi be an arbitrary element of GF(2m)∗

using PB representation. To compute the square root of
A, we first partition A into two parts according to the
degree parity of its intermediate, i.e.,

A = A2
even + xA2

odd,

where Aeven =
∑(m−1)/2

i=0 a2ixi, Aodd =
∑(m−3)/2

i=0 a2i+1xi, (m is odd),

Aeven =
∑m/2−1

i=0 a2ixi, Aodd =
∑m/2−1

i=0 a2i+1xi, (m is even).

Therefore, the square root of A is given by

A
1
2 = Aeven + x

1
2 Aodd. (1)

It is obvious that the computation of x1/2 is crucial to
the square root computation. Actually, the element x1/2

is a constant that can be pre-computed. Thus, the square
root operation can be implemented as performing a field
multiplication between Aodd and x1/2 and then adding

with Aeven [7]. However, this method requires a con-
stant multiplication, which is still an expensive opera-
tion. Inspired by Montgomery squaring operation, we
multiply the square root by a proper factor and intro-
duce a Montgomery-like square root operation. Such
a factor can help us simplify the calculation of x1/2 and
avoid previous complex operation, which can accelerate
the implementation of the Montgomery-like square root
operation.

We first give the definition of this new type of square
root operation.

Definition 1. Let A be an arbitrary element and ω
be a fixed element of GF(2m)∗, respectively. Then the
Montgomery-like square root of A is defined as A1/2 ·ω,
while ω is named as the Montgomery-like factor.

Let D be the result of A1/2 · ω. When GF(2m) is de-
fined by an irreducible trinomial f (x) = xm + xk + 1,
we investigate the choice of ω and the explicit formulae
with respect to D. Note that here x = xm + xk and

x
1
2 = x

m
2 + x

k
2 .

It follows that the optimal ω relies on the computation
of x1/2, which varies according to the parities of m and
k. Thus, four cases are considered:

Case 1: m even, k odd. In this case, we know that
2 | m, but 2 - k. Let n = m/2, then we have

x
1
2 = xn · x

1
2 + x

k+1
2

⇒ x
k+1

2 = (1 + xn) · x
1
2 ,

⇒ x
1
2 = (1 + xn) · x−

k−1
2 .

Plug the above expression to (1), one can check that

A
1
2 = Aeven + x

1
2 Aodd = Aeven + (Aodd + Aodd xn) · x−

k−1
2 .

Note that Aodd consists of n terms, thus, there is no over-
lap between Aodd and Aodd xn. Let ω be x(k−1)/2, the
Montgomery-like square root of this case is

A
1
2 · ω = A

1
2 · x

k−1
2 = Aevenx

k−1
2 + (Aodd + Aodd xn).

Since the degree of Aeven and Aodd are n − 1,
deg(Aevenx(k−1)/2) = n − 1 + (k − 1)/2 ≤ n + (m − 1)/2 =

m−1 and deg(Aodd +Aodd xn) = n+n−1 = m−1. There-
fore, no further reduction is needed in above expression.
At this time, D =

∑m−1
i=0 dixi = A1/2 · x(k−1)/2. Then,

di =

a2i+1, 0 ≤ i ≤ k−3

2 ,

a2i−k+1 + a2i+1,
k−1

2 ≤ i ≤ n − 1,
a2i−k+1 + a2i+1−m, n ≤ i ≤ n − 1 + k−1

2 ,

a2i+1−m, n + k−1
2 ≤ i ≤ m − 1,

(2)

2

where 0 < k ≤ m − 1. In addition, if k = m − 1, (2) can
be simplified further:

di =

{
a2i+1, 0 ≤ i ≤ n − 1,
a2i−m + a2i+1−m, n ≤ i ≤ m − 1 (3)

Case 2: m even, k = m/2 odd. This case is actually
a special case of Case 1. It is easy to check that x1/2 =

(1 + xk) · x−(k−1)/2. Also notice that m = 2k and xm =

xk +1. Hence, the preceding expression can be rewritten
as x1/2 = x2k−(k−1)/2. So,

A
1
2 = Aeven + Aodd xk+ k+1

2 .

Notice that there are at most (k+1)/2 terms of which de-
grees are out of the range [0,m− 1] and the reduction is
relatively simple. Thus, let ω = 1 and D =

∑m−1
i=0 dixi =

A1/2, we have

di =

a2i + a2i+k, 0 ≤ i ≤ k−1

2 ,

a2i,
k+1

2 ≤ i ≤ k − 1
a(2i+k) mod m, k ≤ i ≤ m − 1.

(4)

This formula simply coincides with the result presented
in [8].

Case 3: both m and k are odd. Let n = m+1
2 , then

x
1
2 = xn + x

k+1
2 .

One can check that the above formula is very easy and
the corresponding square root computation needs no ω
to simplify its computation. Analogous with Case 2, let
ω = 1 and D =

∑m−1
i=0 dixi = A

1
2 , then

di =

a2i, 0 ≤ i ≤ k−1

2 ,

a2i + a2i−k,
k+1

2 ≤ i ≤ m−1
2 ,

a2i−k, k ≤ i ≤ m − 1.
(5)

Case 4: m odd, k even. Let n = m−1
2 , then

x
1
2 = xn+1 + x

k
2 · x

1
2

⇒ xn+1 = (1 + x
k
2) · x

1
2 ,

⇒ x−
1
2 = (1 + x

k
2) · x−(n+1),

⇒ x
1
2 = (1 + x

k
2) · x−n.

Plug the above expression to (1), then

A
1
2 = Aeven + x

1
2 Aodd

= Aeven + (Aodd + Aodd x
k
2) · x−n

Let ω be xn, then the Montgomery-like square root is

A
1
2 · ω = A

1
2 xn = Aevenxn + Aodd + Aodd x

k
2 .

Please note that Aodd consists of n terms and Aeven con-
sists of n + 1 terms. Thus, Aevenxn and Aodd are non-
overlapping with each other. Also notice that deg Aodd =

n − 1, deg Aeven = n and k < m, so deg Aodd x
k
2 = n − 1 +

k/2 ≤ n + (m−1)/2 = m − 1, deg Aevenxn = 2n = m − 1.
Therefore, no further reduction is required by A1/2xn.
Let D =

∑m−1
i=0 dixi = A

1
2 · xn, then

di =

a2i+1, 0 ≤ i ≤ k

2 − 1,
a2i+1 + a2i+1−k,

k
2 ≤ i ≤ n − 1,

a2i+1−k + a2i−m+1, n ≤ i ≤ n + k
2 − 1,

a2i−m+1, n + k
2 ≤ i ≤ m − 1.

(6)

where 0 < k < m − 1. If k = m − 1, then

di =

a2i+1, 0 ≤ i ≤ n − 1,
a2i−m+1 + a2i−m+2, n ≤ i ≤ m − 2,
a2i−m+1, i = m − 1.

(7)

According to expression (2) to (7), we summarize the
space and time complexities of the Montgomery-like
square root in Table 1. As a comparison, the space and
time complexities of ordinary square root operation [8]
are also given. Specially, we also give the complex-
ities for Montgomery squaring A2x−k mod xm + xk + 1
for 1 ≤ k ≤ m/2, which had been investigated in [9].

It is clear that, by choosing proper factor ω, the
Montgomery-like square root costs at most m/2 (or
(m − 1)/2) XOR gates with only 1 TX gate delay, which
outperforms or matches the best square root computa-
tion algorithms [8]. Moreover, the proposed new type of
square root coincidentally has the identical circuit delay
compared with Montgomery squaring, while their space
complexities are almost the same.
Example: Consider a finite field GF(29) defined by x9 +

x4 + 1. According to previous description, x9 + x4 + 1
satisfies case 4, we have ω = x(9−1)/2 = x4. Given an
arbitrary element A =

∑8
i=0 aixi, the Montgomery-like

square root of A is A1/2 · x4 =
∑8

i=0 dixi, where

d0 = a1, d3 = a7 + a3, d6 = a4,
d1 = a3, d4 = a0 + a5, d7 = a6,
d2 = a5 + a1, d5 = a2 + a7, d8 = a8.

The computation of above coefficients di requires 4 X-
OR gates and TX in parallel.

3. Exponentiation based on Montgomery squaring
and square root

In [8], the authors proposed a parallel exponentiation
algorithm over GF(2m). Their algorithm comprises two
sub-exponentiations that based on squaring and square

3

Table 1: Space and time complexities for different square root operations and squaring operations

Montgomery square root Ordinary[8] Montgomery squaring [9] Squaring [8]

Cases ω #XOR Delay #XOR Delay #XOR Delay #XOR Delay

1. m even, k odd x
k−1

2 m
2 TX

m+k−1
2 2TX

m
2 TX

m+k−1
2 2TX

2. m even, k= m
2 odd 1 m+2

4 TX
m+2

4 TX
m
2 TX

m+2
4 TX

3. m, k odd 1 m−1
2 TX

m−1
2 TX

m−1
2 TX

m−1
2 2TX

4. m odd, k even x
m−1

2 m−1
2 TX

m+k−1
2 3TX

m−1
2 TX

m+k−1
2 TX

root operation, respectively. For square root based ex-
ponentiation, it mainly utilized the equation

A2m−i
= A2−i

, i = 1, 2, · · · ,m − 1,

where A ∈ GF(2m) is an arbitrary nonzero element. The
above equation can be easily proved using Fermat Lit-
tle Theorem [3]. Let e = (em−1, · · · , e1, e0)2 be a m-bit
nonzero integer. By substituting half the squaring op-
erations with square root operations, the exponentiation
Ae can be written as

Ae =
∏m−1

i=0 A2iei =
∏m−1

i=n A2iei ·
∏n−1

i=0 A2iei

=
∏m−1

i=n A2−(m−i)ei ·
∏n−1

i=0 A2iei .

where 0 < n < m. In [8], the parameter n is chosen as
bm

2 c. One can check that the two sub-exponentiations p-
resented in above expression can be performed simulta-
neously, thus, the whole algorithm achieved better per-
formance compared with the classic one. As shown in
Table 1, we note that the Montgomery-like square root
operator and Montgomery squaring are usually faster
than ordinary square root and squaring operations. Al-
gorithm 1 describes an improved exponentiation algo-
rithm for Ae, which utilized Montgomery squaring and
square root operator.

Algorithm 1 Exponentiation based on Montgomery
squaring and Montgomery-like Square root
Input: A ∈ GF(2m), f (x), e = (em−1, em−2, · · · , e1, e0)2
Output: B = Ae mod f (x)
1: B = C = 1;
2: em = 0;
3: n = dm

2 e;
4: for i = n − 1 down to 0 do for j = n to m do
5: B = B2 · x−k; C = C

1
2 · ω;

6: if ei == 1 then if e j == 1 then
7: B = B · A mod f (x); C = C · A mod f (x);
8: end if end if
9: end for end for

10: B = B ·C;
11: B = B · ω∗;
12: return B;

Description: The two procedures presented in steps
4-9 are running in parallel. Also notice that the choice
of n in step 3 is slightly different from [8], as we found
that this selection can make the number of squaring and
square root almost equal, which can save the whole al-
gorithm delay. Since we utilize the Montgomery squar-
ing and Montgomery-like square root operator instead
of the original ones, ω∗ in step 11 is a compensatory
parameter that used to correct the final exponentiation.
The form of ω∗ is given in following proposition.

Proposition 1. The compensatory parameter ω∗ in Al-
gorithm 1 can be obtained as

ω∗ = ω2n−2 · (xk)2n−1. (8)

Proof. According to steps 4-7 of Algorithm 1, it totally
perform m − n + 1 Montgomery-like square root opera-
tions and n Montgomery squarings. Each time we exe-
cute the body in the loops, there are one x−k (for squar-
ing) and one ω (for square root) multiplying the results.
In the end, it follows that the extra parameter is

ω · ω
1
2 · ω

1
4 · · ·ω

1
2m−n · x−k · (x−k)2 · · · (x−k)2n−1

= ω2−2−(m−n)
· (x−k)2n−1 = (ω)2−2n

· (xk)1−2n

= ω2−2n
· (xk)1−2n

(9)

Since ω∗ is the compensatory parameter that used to
correct the final result, then we know that (9) is equal
to the inversion of ω∗. Then, the result is direct.

According to proposition, the explicit formula of ω∗

depends on the form of ω. For example, when m, k
satisfy the condition of case 1, we have ω = x(k−1)/2

and n = m/2. Plug these formulae into expression
(8), we have ω∗ = x(k−1)(2n−1−1)+k(2n−1). The explicit for-
mulae for ω∗ of other cases are summarized in Table
2. Furthermore, the constant multiplication B · ω∗ can
be performed using Mastrovito approach. Since ω∗ is
constant, the corresponding product matrix is fixed, no
AND gate is needed. Only certain XOR gates are re-
quired by corresponding matrix-vector multiplication,

4

Table 2: Explicit formulae of ω∗

Cases ω∗

1. m even, k odd x(k−1)(2n−1−1)+k(2n−1)

2. m even, k= m
2 odd xk(2n−1)

3. m, k odd xk(2n−1)

4. m odd, k even x(m−1)(2n−1−1)+k(2n−1)

which leads to no more than m2 − m XOR gates with
at most dlog2 me XOR gate delay.

Then we give a comparative analysis between the o-
riginal exponentiation algorithm [8] and ours. On the
one hand, both their algorithm and ours cost W(e) mul-
tiplications, m− n + 1 square root and n squaring opera-
tions (classic or Montgomery), where W(·) is the Ham-
ming weight of the binary representation of e. In ad-
dition, our algorithm requires one more extra constant
multiplication. Assume that the number of bit opera-
tions for a multiplication and a constant multiplication
are 2m2 − 1 and m2 − m 1, respectively. We compare
the bit operations of the two algorithms in the follow-
ing table. As shown in the table, our algorithm roughly

Table 3: The bit operations for different exponentiation

Algorithms Bit operations

[8] (2m − 1) ·W(e) + O(m2/2)

This paper (2m − 1) ·W(e) + O(3m2/2)

costs m2 more bit-operations than that in [8]. In fact, we
have checked the space complexity of B · ω∗ in GF(2m)
defined by all the trinomials of degree m ∈ [100, 1023]
with cryptographic interests. It is argued that B ·ω∗ only
costs less than m2/2 XOR gates in roughly two thirds of
such finite fields. In this case, our algorithm only costs
about m2/2 more bit-operations.

On the other hand, according to Table 1, it is clear
that the gate delays for the ordinary squaring and square
root are identical only when m, k satisfy case 2. Note
that the circuit delay for parallel implementation of or-
dinary squaring and square root is in fact equal to that
of the slower operation. Thus, in other cases, it requires
at least 2TX . Conversely, our algorithm can save at least
one TX for each squaring (square root) computation in
the loop. Note that the constant multiplication present-
ed in step 11 requires at most dlog2 me extra XOR gate

1The constant multiplication needs no AND gates for bitwise mul-
tiplication, as the product matrix is fixed.

delays. We finally save at least (dm
2 e − dlog2 me)TX cir-

cuit delay except case 2. In case 2, the algorithm in
[8] is preferred to ours, as it has smaller space and time
complexities. Notwithstanding, in other cases, our al-
gorithm takes slightly more space but less time.

4. Conclusion

In this paper, we have proposed a new type of
Montgomery-like square root operation. By choosing
a proper Montgomery factor, the proposed scheme has
only one TX delay and its space complexity is at least as
good as the best result. As an important application, we
show that this type of square root combined with Mont-
gomery squaring can speed up parallel exponentiation
algorithm that based on ordinary squaring and square
root.

References

[1] R. Lidl and H. Niederreiter, Introduction to finite fields and their
applications. Cambridge University Press, New York, NY, USA,
1994.

[2] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University
Press, New York, NY, USA, 1996.

[3] J.V.Z. Gathen and J. Gerhard, Modern Computer Algebra (3rd
ed.). Cambridge University Press, New York, NY, USA, 2013.

[4] D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic
Cryptography, Springer-Verlag, 2004.

[5] R. Schroeppel, C. Beaver, R. Gonzales, R. Miller and T. Drae-
los, A Low-Power Design for an Elliptic Curve Digital Signature
Chip, Proc. Fourth Int’l Workshop Cryptographic Hardware and
Embedded Systems, 2002, pp. 366-380.

[6] F. Rodrı́guez-Henrı́quez, G. Morales-Luna, N. Saqib,and
N. CruzCortés, Parallel Itoh-Tsujii Multiplicative Inversion Algo-
rithm for a Special Class of Trinomials, Reconfigurable Comput-
ing: Architectures, Tools and Applications, LNCS 4419, 2007, pp.
226-237.

[7] K. Fong, D. Hankerson, J. López, and A. Menezes, Field Inver-
sion and Point Halving Revisited, IEEE Trans. Computers, 2004,
53, (8), pp. 1047-1059.

[8] F. Rodrı́guez-Henrı́quez, G. Morales-Luna and J. Lópz, Low-
Complexity Bit-Parallel Square Root Computation over GF(2m)
for All Trinomials, IEEE Transactions on Computers, 2008, 57,
(4), pp. 1-9.

[9] H. Wu, Montgomery multiplier and squarer for a class of finite
fields, IEEE Transactions on Computers, 2002, 51, (5), pp. 521-
529.

[10] Recommended Elliptic Curves for Federal Government Use,
special publication, Nat’l Inst. Standards and Technology, http://
csrc.nist.gov/csrc/fedstandards.html, July 1999.

5

	Introduction
	Montgomery-like Square Root
	Exponentiation based on Montgomery squaring and square root
	Conclusion

