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ABSTRACT
Honey encryption (HE) is a new technique to overcome the
weakness of conventional password-based encryption (PBE).
However, conventional honey encryption still has the limi-
tation that it works only for binary bit streams or integer
sequences because it uses a fixed distribution-transforming
encoder (DTE). In this paper, we propose a variant of honey
encryption called visual honey encryption which employs an
adaptive DTE in a Bayesian framework so that the proposed
approach can be applied to more complex domains includ-
ing images and videos. We applied this method to create a
new steganography scheme which significantly improves the
security level of traditional steganography.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption

Keywords
Honey encryption (HE), Password-based encryption (PBE),
Steganography

1. INTRODUCTION
Password-based encryption (PBE) schemes have many prac-

tical applications, particularly when the encryption and de-
cryption keys should be memorized by the user. For exam-
ple, PBE is used to protect Android phone owners’ sensitive
data; the disk or volume encryption key is derived from a
user’s screen-unlock password and a salt value [13]. Unlike

∗Yoon insisted his name be first and he is a corresponding
author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IH&MMSec’15, June 17–19, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM 978-1-4503-3587-4/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2756601.2756606.

biometrics and cryptographic keys, passwords are easy to
implement and do not require additional hardware support.
However, passwords too have their own inherent limitations
– namely, memorability and security. A password that is
difficult to guess is also likely to be hard to remember.

Thus, as one would imagine, many users tend to choose
passwords that are easy to remember without really paying
close attention to the security implications. Trivial pass-
words such as ‘password’ and ‘abcd1234’ are often used by
casual users. As a result, the real password space is much
smaller than the theoretical one [4, 11], making brute-force
and dictionary attacks possible and effective. For exam-
ple, a study of 544, 960 passwords collected from real users
showed that the average entropy of user passwords was ap-
proximately 40.5 bits, smaller than the 128 or 192 bit stan-
dard used by many systems [6]. That is, when a PBE scheme
is used, attackers may search amongst only a small subset
of the theoretically possible passwords, the most commonly
used ones, and crack encrypted information by guessing the
password used to derive the encryption key [7].

Honey encryption (HE) was introduced to overcome lim-
itations of PBE schemes [9, 8]. Honey encryption generates
a ciphertext that can be decrypted with not only the cor-
rect password but also wrong passwords. In this scheme,
wrong passwords can yield fake but valid-looking plaintext
to confuse an attacker who is trying to decrypt the cipher-
text through a brute force attack. Thus, the attacker is
unable to identify the original plaintext even after trying all
possible password combinations. Juels and Ristenpart [9]
presented a general framework to construct a honey encryp-
tion scheme using a new (randomized) message encoding
using distribution-transforming encoders (DTE) for binary
bit stream and integers only. However, the scheme still has
practical limitations because it uses a fixed simple DTE for
encoding and decoding. That is, Juels and Ristenpart [9]’s
honey encryption scheme cannot be flexibly used for numer-
ous application domains including natural language-based
texts, sounds, and images since such data has its their own
synthetic or semantic structure. For example, a lot of mul-
timedia data transferred in the Internet can be interpreted
as a spatial grid structured field. Because of this image
structure neighboring pixels have more similar colour than
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distant ones. Since such complicated data cannot be directly
encrypted with original honey encryption, a new honey en-
cryption system is needed for such structured data. We sim-
ply name such data multi-dimensional data in that images
are well-known as being a two-dimensional data type and
films can be regarded as a three-dimensional one.

In this paper, we introduce a new variation of honey en-
cryption which can be applied to such complicated multidi-
mensional data using a two-dimensional Markovian process
in a Bayesian scheme. The Markovian process for 2D images
is a well-known mathematical model for designing and inter-
preting the synthetic structure of images. In this paper, to
distinguish it from original honey encryption, we name this
algorithm visual honey encryption since we mainly consider
visual 2D images. For a specific application domain using
images, we made a connection between multi-dimensional
honey encryption and steganography since steganography is
one of the best-known applications which deal with images
in security area. From this perspective, we introduce a new
type of steganography based on visual honey encryption. In
this paper, for simplicity, we also name this new steganog-
raphy honey steganography.

Eventually, there are three contributions in this paper.
First, we introduce an adaptive scheme of DTE for honey
encryption. Thus, we do not need to fix or predetermine
the DTE as conventional honey encryption does. The sec-
ond contribution is that we introduce a new variation of
honey encryption which removes the practical limitation and
weakness of the original using adaptive DTE and a Bayesian
framework design. Thereby, we can apply honey encryption
to more complicated data including natural language-based
texts and multimedia data. We name this new flexible honey
encryption visual honey encryption. The final contribution
is that we introduce a new steganography based on visual
honey encryption which improves on the security of conven-
tional steganography in terms of time complexity.

2. BACKGROUND

2.1 Honey Encryption
Honey encryption (HE), introduced by Juels and Ristepart

[9], is a symmetric encryption scheme such as password-
based encryption (PBE). In HE, the encryption algorithm
encrypts a message into a randomized ciphertext by using
a key, and the decryption algorithm decrypts the ciphertext
into the original message by using the key in a similar man-
ner to normal encryption schemes. The notable difference
between honey encryption and conventional symmetric en-
cryption is the output of the decryption algorithm when an
invalid key is used; whereas conventional encryption gives
an error symbol, HE gives a plausible message.

HE provides two security properties. If the keys used with
HE are sufficiently unpredictable, HE provides semantic se-
curity, in which computationally bounded adversary can-
not recover meaningful information from ciphertexts. Ad-
ditionally, HE provides message recovery security, so that a
computationally unbounded adversary who can decrypt the
ciphertext by trying all possible keys is still unable to distin-
guish whether the recovered message is valid or not. In this
way, HE can provide security against brute-force attacks. A
general methodology for building HE schemes is to apply
a distribution-transformation encoder (DTE) to a message
and then encrypt the results of the encoding using a key

such as a password. A DTE is a message encoding scheme
and the DTE decoding algorithm can sample a message in
the original distribution even when a random input value is
given. Juels and Ristepart showed that credit card numbers
and RSA private keys can be securely protected with HE.

2.2 Steganography
Cover modification is a well-known approach in steganog-

raphy and a cover image embeds and conveys a desired secret
message. Given the cover image, Alice modifies the cover im-
age by embedding the hidden secret messages. The commu-
nication between Alice and Bob can be performed with the
set of all possible cover images and the sets of the keys and
messages. Let C, K, M, and S denote a set of covers, a set
of all stego keys, a set of all messages, and a set of stego im-
ages respectively. In general, since a steganographic scheme
is a pair of embedding and extraction functions EMB and
EXT , we have EMB : C×K×M→ S, and EXT : S×K →
M such that EXT (EMB(c,k,m),k) = m for all c ∈ C,
m ∈ M, and k ∈ K. Here, let s = EMB(c,k,m) be the
stego image for s ∈ S. In steganography and steganaly-
sis, much research has been focused on creating perfectly
secure steganography in which the characteristics of the dis-
tribution of the stego images ps is that of distribution of
cover images pc. Kullback Leibler (KL) distance is a well-
known measure for perfectly secure steganography and is

defined by DKL(pc||ps) =
∑

c∈C pc(c) log pc(c)
ps(c)

. Given the

KL divergence, we can say that Alice’s steganosystem is
perfectly secure when DKL(pc||ps) = 0. In this case, the
malicious person Eve cannot distinguish between cover im-
ages and stego images. However, it is often impractical to
build such perfectly secure steganography and many prac-
tical stegano-systems are not perfectly secure. Nevertheless
they are ε-secure with the constraint DKL(pc||ps) < ε. In
this paper, we show three additional measures to KL diver-
gence: root mean square error (RMSE), peak signal to noise
ratio (PSNR), and structural similarity (SSIM) [16].

2.3 Multi-dimensional Data
We define some terms related to multi-dimensional data

for better understanding of the difference between conven-
tional HE and our proposed scheme. Thus, in this paper,
One dimensional data means both binary bit streams like
‘1011001’ and integer sequences like ‘01028553945’. Multi-
dimensional data means more complicated data including
images, natural language based texts and films.

To date, HE handles only one dimensional data and gen-
erates one dimensional honeywords (fake data). However, as
computer performance increases, multi-dimensional data be-
comes more popular. Multi-dimensional data, which include
images and films, is the most common form of multimedia
data, but cannot be encrypted with conventional honey en-
cryption as it can only handle on-dimensional data. Thus,
multi-dimensional honey encryption should be developed for
honey encryption to become applicable to most multimedia
data. In order to distinguish between conventional one di-
mensional honey encryption and our proposed approach, in
this paper, we name the proposed approach Visual honey
encryption (VHE).

In VHE, a honey multimedia data set generated via the
encoding operation under encryption with incorrect pass-
words cannot be distinguished from the original multimedia
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datum, which can be decrypted and decoded with the cor-
rect key alone.

3. THREAT MODEL
In this section, we discuss the threat model and assump-

tions.
The adversary can access the encrypted data and has full

knowledge of our encryption scheme, but lacks the key used
for encrypting data. We assume a computationally bounded
adversary running in a polynomial time, incapable of break-
ing the encryption algorithm without knowing the key used
for encryption; however, the adversary is capable of break-
ing a steganographic scheme in a limited time T (n) where n
is the size of the image being used. This assumption is rea-
sonable since most steganographic techniques have been bro-
ken by effective steganalysis given enough resources [1] while
breaking advanced encryption algorithms (e.g., AES [5]) is
computationally infeasible for even the most powerful super-
computers.

We also assume that the encryption key used for our
scheme is derived from a user-chosen password. This is a
common method in practice when using encryption algo-
rithms for user applications. In particular, Password-Based
Key Derivation Function 2 (PBKDF2) [10] is popularly used
as a key derivation function that is part of RSA Laborato-
ries’ Public-Key Cryptography Standards (PKCS) series.

However, in practice, many users choose passwords that
are easy to remember without paying close attention to the
security implications. Therefore, the actual password space
used is much smaller than the theoretical one [4, 11], and
this dramatically increases the likelihood of attacker com-
promising a password through guessing attacks. That is, we
assume the adversary can iteratively guess the user-chosen
password and try to derive the encryption key to decrypt the
encrypted data. We use Ψ to represent the actual password
space which is much smaller than the theoretical password
space. We note that |Ψ| represents the size of the actual
password space.

Given the above threat model and assumption, our goal
is to protect the user’s secret message in the encrypted im-
age so that the adversary only knows the presence of the
encrypted data and its characteristics (e.g., creation time,
size, etc.) but not the secret message itself.

4. PROPOSED APPROACH
In this section, we first demonstrate the main concept

and structure of VHE. Then, we present a new procedure to
build VHE’s DTE to accommodate multi-dimensional data.
Afterwards, we show how to encode and decode the values
using the VHE’s DTE.

4.1 Concepts
VHE encodes and decodes senders’ and receivers’ data

using a codebook that is extracted from the statistical prop-
erties of the multi-dimensional data. In this process, only
authorized users with correct passwords or keys are able
to obtain correct data (images/videos). In contrast, non-
authorized users without correct passwords cannot obtain
the information about the original data. Instead, they will
obtain a wrong but valid-looking multi-dimensional datum
that is generated by the rules of our statistical codebook and
DTE.

Without loss of generality, in this paper, we particularly
focus on applying VHE to images because they are represen-
tative of multi-dimensional data type. Note that our VHE
does not encrypt and encode the header information of the
multimedia but the internal pixel values only. From this
point of view, our proposed VHE can be regarded as a file
encryption system rather than channel encryption although
VHE is also considered for communication channels. In ad-
dition, unlike text data, pixels have a high degree of simi-
larity. That is, pixel values of real images are not random
but highly connected with their neighbors. This neighbor-
ing property provides many useful mathematical properties
of the image of practical use. For example, a Markov ran-
dom field (MRF) is used for modeling such a neighboring
structure in order to reduce the time complexity of image
computation. In this paper, given this mathematical prop-
erty, we make an adaptive DTE from the images using the
Markovian rule.

4.2 Structure of VHE
VHE consists of a sequential processes: (1) selection of

data, (2) construction of a codebook using statistical for-
mula, (3) encoding and decoding using the codebook, (4)
encryption with a key/password K1, and (5) transmission
of the encrypted message. Each process is described in de-
tails:

1. Selection of data: To begin with, we select two types
of images for a plain image, p and dc public images,
Ys. The plain image has the same format and size as
the fake images. The plain image is a hidden informa-
tion while the fake images are in public. The public
images are shared between Alice and Bob in order to
use them to construct a DTE. This is known even to
Eve who is a malicious subject. Since the encoder and
decoder should use an identical DTE, the fake images
should be shared between Alice and Bob before com-
munication.

2. Construction of a codebook using statistical for-
mula: Let x, Y, and θ denote the encoding space,
a set of public images, and other public parameters
of the model. In this stage, using the selected im-
age Y and other known parameters, VHE constructs
a full joint target posterior distribution p(x|Y, θ) for
a statistical codebook and the distribution is used as
a DTE is in conventional honey encryption. VHE sys-
tematically uses a conditional posterior distribution,
p(xi|xne(i),Y, θ), rather than the full joint target dis-
tribution since every pixel is sequentially coded in a
pixel-by-pixel order where ne(i) denotes a set of in-
dexes of the ith pixel’s neighbors. As soon as the
conditional posterior of the i-th pixel is constructed,
VHE builds the corresponding cumulative mass func-
tion (CMF) of the conditional target posterior. Let
pi ∈ {0, 1}dp and ci ∈ {0, 1}dc be the i-th plain image
and the i-th encoded data respectively. For simplicity,
dc becomes either 8 for gray-scale images or 24 for true
color images.

3. Encoding and decoding using the codebook: In
the encoding and decoding stages, VHE uses the sta-
tistical codebook, CMF(·), to encode pi into ci or to
decode ci into pi. This CMF works as a statistical
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codebook by

ci = CMF(pi) , for encoding and ci ∈ {0, 1}dc
pi = CMF−1(ci) , for decoding pi ∈ {0, 1}dp (1)

where dp ≤ dc. That is, input values with dp binary
digits are encoded into dc binary digits via CMF(·)
and CMF−1() is the inverse operation. Therefore, each
pixel value in a plain image can be encoded or decoded
in terms of the statistical properties of the shared pub-
lic images.

4. Encryption with an encryption key K1 and de-
cryption with a decryption key K2: Encryption
is performed using conventional encryption algorithms
like AES, RSA, and so on. If K2 = K1 in the symmet-
ric crypto-system for an appropriate receiver, Bob, the
encrypted cipher will be correctly decrypted and then
decoded to the hidden plain image p via our DTE.
Otherwise, the encrypted cipher will be decrypted to
a random sequence which is different from the actual
bit-streams because K1 6= K2 and the malicious sub-
ject Eve obtains variations of fake images h which are
decoded from the random sequence.

5. Transmission of the encrypted data

For instance, we have a hidden plain image p of Figure
1-(a) and a public image Y of Figure 1-(b). As shown in
Figure 1-(c) and -(d), for a symmetric encryption system,
the receiver can obtain a correct hidden image when K1

and K2 are identical. However, the receiver will obtain a
number of fake images with some variation when K1 6= K2.
That is, there is only one p but there are |Kenc/dec| h where
|Kenc/dec| is the cardinality of the key or password space for
encryption or decryption for K1 ∈ Kenc and K2 ∈ Kdec.

Input (sender) Output (receiver)

(a) p (b) Y (c) p (d) h
if K1 = K2 if K1 6= K2

Figure 1: Input and output of pseudo-VHE where
K1 and K2 are the passwords for encryption and de-
cryption in a symmetric crypto-system.

4.3 Connection to Steganography
Figure 1 shows that, when the cipher is decrypted and

decoded with incorrect passwords, Eve obtains a false image
which has similar properties to the desired real image. The
power of visual honey encryption (VHE) is that Eve does
not obtain meaningless random images at all. However, the
VHE may not be useful in practice for two reasons: 1) Fig-
ures 1-(c) and -(d) are different, their histograms will be
different so, a machine will be able to distinguish them; and
2) although there are various fake or deception images h as
shown in Figure 1-(d), they are much closer to the public
image Y than the original plain image p of Figure 1-(c).
Therefore, our proposed visual honey encryption is not per-
fect honey encryption. However, we realized that there is a
simple but practical solution to address this problem. The

solution is that p is replaced by Y. In this case, the differ-
ence between the receiver’s outputs p and h is dramatically
reduced such that |p−h| of Figure 2 is smaller than |p−h|
of Figure 1.

Input (sender) Output (receiver)

(a) p (b) Y (c) p (d) h
if K1 = K2 if K1 6= K2

Figure 2: Input and output of practical VHE

Figure 2 shows how to make practical VHE. However, in
this case, we cannot select a hidden image to be sent by
ourselves as shown in Figure 1 since p should be a variation
of public images Y, i.e., p ≈ Y. Interestingly, we found
that this practical shortcoming of VHE can be removed by
combining it with steganography. We can embed a secret
message m into p which now becomes a cover image c, i.e.,
s=Emb(c, m). In this case, p = s ≈ Y and m =Ext(s) but
m 6=Ext(h).

With this combination of steganography and practical VHE,
a new powerful steganography algorithm is introduced as
shown in Figure 3. The Figure presents three different mod-
els of steganography. Figure 3-(1) is the traditional steganog-
raphy model in which the stego-image is directly transmitted
to Bob without any encryption. The attacker performs only
steganalysis to extract the hidden message with the stego-
image. Figure 3-(2) is more complicated model than (1)
since an encryption process is added during communication.
Although in practice many systems follow this model as com-
munication channels are increasingly encrypted, it contains
no theoretical improvements in either steganography or en-
cryption, and has therefore not been widely discussed in the
literature. Figure 3-(3) depicts our proposed model which is
a variation of Figure 3-(2) in which the traditional ASCII en-
coder and decoder are replaced by our proposed DTE based
encoder and decoder.

4.4 Construction of Encoding/Decoding Dis-
tribution

Before describing the main algorithm of the new steganog-
raphy scheme based on VHE as depicted in Figure 3-(3), we
define the symbols which are used in the algorithm.

In this table, p for a stego image and Y for a fake image
are matrices of L1 × L2 size, and x and y are their corre-
sponding vectorized forms with L1L2 × 1 for L = L1L2.

The underlying concept behind our proposed approach is
the use of statistical coding schemes instead of the tradi-
tional ASCII coding schemes. Given a stego-image s and a
fake image Y, we can make encoding or decoding procedures
by reconstructing the underlying probability density func-
tion. In this paper, denote p(x|Y, θ) by the density function,
similar to the DTE of Honey Encryption. This distribution
can be interpreted well in a Bayesian framework. For a sim-
plified representation, we vectorized the matrices to build x
and y, transforming x = V(s) and y(n) = V(Y(n)), which
are more familiar forms for conventional Bayesian statistics.
In this vectorized form x denotes x1:L1L2 = {xi}L1L2

i=1 . By
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(1) Steganography without encryption module

(2) Steganography with encryption module

(3) Proposed Honey steganography

Figure 3: Various steganography schemes: (1) Steganography without an encryption module, (2) Steganog-
raphy with an encryption module, (3) Proposed Honey steganography. In this Figure, green solid arrows
represent the flow of appropriate communication between Alice and Bob while red dotted arrows represent
an inappropriate flow between Alice and Eve. There are six steps in the Figure: (a) embedding messages to
cover image, (b) encoding, (c) encryption, (d) decryption, (e) decoding, and (f) extracting messages.

Table 1: Definition of the used symbols
Symbols Definition

N the number of public images or
duplicates of a public image

dp the number of binary bits of
plain texts for each operation

dc the number of binary bits of
cipher texts for each operation

m a secret message to be sent
c a cover image in which the secret

message will be embeded
s Stego-image with c and m
z Encoded data from s
p a hidden stego image to be sent, p = s
Y public image(s)
V(·) a transformation function

from matrix to vector
x a vectorized form that encodes s
y a vectorized form that encodes Y
u encrypted data

using the Bayesian chain rule, we now have

p(x|y, θ) =

L∏
i=1

p(xi|x1:i−1,y, θ) (2)

where L = L1L2. In general, images have a special grid
structure and this is often modeled with a two dimensional
the Markovian structure because it can reduce the time and
space complexity of the computation using Markovian blan-
kets. Therefore, we have a target distribution and it is fac-
torized as

p(x|y, θ) =

L∏
i=1

p(xi|xMB(i),y, θ) =

L∏
i=1

p(xi|xne(i),y, θ).

(3)
Here, xi is the i th pixel value. MB(i) and ne(i) denote
Markov blanket and neighbors of the ith pixel for depen-
dency. Note that our proposed approach performs the en-
coding and decoding procedures sequentially. Therefore, our
immediate goal is to construct the conditional distribution
of the ith pixel instead of the full joint distribution of a full
image, p(xi|xne(i),y). This conditional distribution means
that the ith pixel is influenced by neighboring pixels and
values of the fake image.

The conditional density of the ith pixel can be further re-
duced by assuming independence of pixels in the fake image
such that

p(xi|Xne(i),y, θ) = p(xi|xne(i), yi,y∼i, θ) (4)

where yi is the ith pixel of the clean fake image correspond-
ing to xi and y∼i denotes the vectorized form of y except
yi. That is, y = yi ∪ y∼i and yi ∩ y∼i = {}. Now this
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distribution can be rewritten by

p(xi|Xne(i),y, θ) = p(xi|xne(i), yi,y∼i, θ)
∝ p(yi|xi, θ)p(xi|xne(i), θ). (5)

In Equation (5), we now have two key factors: likelihood
function p(yi|xi, θ) and the prior function p(xi|xne(i), θ). These
are explained in a Bayesian framework. The first factor is
the likelihood function p(yi|xi, θ) that is the probability of
how xi well fits the fake pixel yi. The other factor is a prior
term that is constructed with neighboring values. In the im-
age application, this prior is often designed with a Markov
random field [2, 3, 12].

Note that equations (2) and (5) are basically targeted to
a single fake image Y and its vectorized form y. In this
single image case, the prior and likelihood can have exactly
the same influence on building the posterior. However, we
could have multiple fake images instead of a single one. In
this case, the equations can be rewritten by Y = y(1:N) =
y(1),y(2), · · · ,y(N):

p(x|Y, θ) =

L∏
i=1

p(xi|xne(i),Y, θ)

∝
L∏
i=1

[
N∏
n=1

p(y
(n)
i |xi, θ)

]
p(xi|xne(i), θ) (6)

where y
(n)
i represents the ith pixel value of the nth fake im-

age. Returning to the conditional posterior of the ith pixel
for the multiple fake images, we have p(xi|xne(i),Y, θ) =[∏N

n=1 p(y
(n)
i |xi, θ)

]
p(xi|xne(i), θ). In this paper, we define

the likelihood and prior using well-known normal distribu-
tion by

p(y
(n)
i |xi, θ) = N (y

(n)
i ;xi, r

2) = N (xi; y
(n)
i , r2)

p(xi|xne(i), θ) = N (xi; f(xne(i)), ρ
2) (7)

where σ ∈ θ and ρ ∈ θ are the standard deviations of each
distribution and N (·; a, b) is the normal distribution with
a mean a and a variance b. f(·) is any linear/nonlinear
function.

It is known that the product of the normal distributions
becomes a normal distribution as shown in appendix A.
Therefore, p(xi|xne(i),Y, θ) from equation (7) is unified in
a collapsed normal distribution by

p(xi|xne(i),Y, θ) = N (xi;µ, σ
2) (8)

where

σ =

√√√√( N∑
n=1

1

r2
+

1

ρ2

)−1

µ = σ2

(∑N
n=1 y

(n)
i

r2
+
f(xne(i))

ρ2

)
.

In addition, one fake image can be used for multiple fake
images by duplicating it to N copies. In this paper, we
make N images using one fake image in this way. In the
result section, we show that the degree of influence varies as
N varies.

4.5 Encoding and decoding schemes
Each pixel has 8 bits for single channel or gray-scale im-

ages so xi ∈ {0, 1, · · · , 28 − 1}. The basic idea of honey en-
cryption is to change the encoding and decoding rules from

traditional ASCII to distribution based coding scheme. Each
value can be encoded and decoded with different weights in
the statistical coding scheme. This means that some values
can have more weight than others. In order to provide these
varying weights, the length of the encoded data should be
increased. In other words, in order to encode values in a
dc bit system (dc = 8 for image pixels), longer bits are re-
quired to encode the value, i.e. dp ≤ dc. Now let’s return to
our single channel image. In this case, we encode 2dp values
into 2dc binary codes. This also means that dc bit images
are quantized to dp bit pixels. In the results section, we set
dp = 4 and dc = 8. The set of 2dp values can be defined
manually or automatically by Z = {z0∪z1∪ ...∪z2dp−1}. In

general, minZ ≤ 0 and 2dc > maxZ for dc bit images. We
first discretize and quantize the conditional posterior distri-
bution p(xi = z|xne(i),Y, θ) of equation (8) to represent the

probability masses function (PMF) of the 2d = 16 discrete
values for z ∈ Q. Now the cumulative mass function of the
ith pixel is defined by

p
(i)
cmf (zk) =

2k−1∑
k=0

p(xi = zk|xne(i),Y, θ)∑2d−1
j=0 p(xi = zj |xne(i),Y, θ)

. (9)

Before encoding or decoding the values using the CMF of
the equation (9), we need to modify the CMF to maintain
the consistency of the encoders and decoders. As already
mentioned, 2dp values(symbols) are encoded to correspond-
ing dc-digit values with different weights. Symbols with a
higher PMF. will cover more values among 2dc values and
some symbols with a relatively low PMF will cover less.
These are the characteristics of DTE of honey encryption
which cause its power. However, they cause inconsistencies
in the encoding and decoding operations. If the PMF of
some symbols are lower than 1/2dc , then we cannot encode
them. Therefore, we need to change the PMF and CMF to
ensure that the PMF of any symbol is larger than 1/2dc . In
order to achieve this, we reduce the probability of symbols
with dominant weights and the removed weights are added
to other symbols with low weights.

Figure 4: PMF (dark blue bars) and CMF (bright
green bars) for encoding and decoding. For dp = 4
and dc = 6, 16 symbols with 4 bits digit are encoded
into 6 bit digits.

Figure 4 displays three informative plots about an encoder
from dp bit digits to dc bit digits and a decoder from dc digits
to dp digits. The dark blue bars represent the probability
mass function of p(xi|xne(i),Y, θ) of equation (8) and the
green bars represent their corresponding CMF. Last, each
bar of CMF indicates the dc bit codes. That is, the 2dp

values of p(i) are encoded to 2dc binary digits of ci via ci =
CMF (pi). For instance, we set dp = 4 and dc = 6 for
simplicity in Figure 4.
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4.6 Necessity of pre-processing
In the previous section, we described the process of the

cumulative mass function (CMF) and the way to assign the
bit array. Assigning the bit array to each case seems easy,
but for exact encoding and decoding there is one problem to
solve; every case must be matched with at least one bit ar-
ray. In practice, there are various probabilities and some are
really small values or extremely dominating. However even a
small value has to be presented with at least one bit array. If
a small value is not matched to one bit array then we cannot
express it. Therefore, in this step, we need to assign a one
bit array to even negligibly small probabilities. This step is
necessary but it changes probabilities of cases and the CMF
is also modified. The probabilities with smaller values than
1/2dc are reassigned to 1/2dc and dominating probabilities
have their values reduced. Since small probability cases are
assigned the probability 1/2dc , an output image h that has
been decrypted and decoded with an incorrect key has shot
noise.Therefore, unfortunately, the attacker can distinguish
between p and hs easily. We tackle this problem, as shown
in Figure 5, by adding a pre-processing step in which the
sender’s cover image c is replaced by one of hs obtained by
decoding a random image r. Then, the receiver’s s and h can
be distinguished neither by human beings nor by machine,
satisfying the property of honey encryption with ε-bound,
i.e., |s − h| − ε < 0 for an extremely small ε. Finally, we
can make a pseudo-algorithm for our honey steganography,
algorithm 1 for Alice and algorithm 2 for Bob and Eve as
shown.

Algorithm 1 Sender’s view of honey steganography

Require: Public: shared clean images Y
Require: Private: a message m and an encryption key K1.
1: Generate a random image r ∈ R.
2: for i = 1 to L do
3: Infer a conditional posterior p(xi|xne(i),Y, θ).
4: Obtain a CMF(i) by cumulating the posterior.
5: Build DTE(i) for encoder and decoder using CMF(i).
6: ci =Decode(DTE(i), ri) � Decode r into c ∈ C.
7: end for
8: s = c⊕m � Make a stego-image s ∈ C with m and c.
9: z =Encode(DTE, s) � Encode the stego-image s.

10: u =Encrypt(z, K1) � Encrypt the encoded sequence
with a secret key K1.

5. RESULTS

5.1 Description of Data
Top (Einstein), middle (Rome), and bottom (Lena) of

Figure 6-(a) are the raw images used in this paper. We
let IEinstein, IRome, and ILena denote Einstein, Rome, and
Lena images respectively. The size of every image is 128 ×
128, i.e. L1 = 128 and L2 = 128 and they are all grayscale
images because only the red channel of the true colors is
used.

5.2 Parameters Used in Experiments
In the simulation, we simplify f(xne(i)) to a running aver-

age filter for the Gaussian Markov random field (GMRF) by
f(xne(i)) = 1

|ne(i)|
∑
j∈ne(i) xj to satisfy xi = 1

|ne(i)|
∑
j∈ne(i) xj+

εi where noise εi ∼ N (·; 0, ρ2) and | · | is the cardinality

Algorithm 2 Receiver’s view of honey steganography

Require: Public: shared clean images Y and encrypted
message u

Require: Private: an decryption key K2.
1: for i = 1 to L do
2: Infer a conditional posterior p(xi|xne(i),Y, θ).
3: Obtain a CMF by cumulating the posterior.
4: Build DTE for encoder and decoder using CMF.
5: end for
6: if K2 is a correct decryption key then
7: z =Decrypt(u, K2) � Decryption
8: s =Decode(DTE, z) � Decoding
9: m =Extraction(s) � Extraction from stego-images

10: else
11: z̃ =Decrypt(u, K2) � Decryption

12: h̃ =Decode(DTE, z̃) � Decoding

13: Apply steganalysis to extract m from h̃

Extraction(h) � Extraction from stego-images

14: end if

of a set. With this model, we fix r ∈ θ and ρ ∈ θ of
equation (7) at r = 1 and ρ =

√
1/|ne(i)| for simplicity.

Then, the conditional posterior distribution of our interest is
formed by p(xi|xne(i),Y, θ) = N (xi;µi, σ

2
i ) where σi = (N+

|ne(i)|)−1/2 and µi = (N+|ne(i)|)−1
(∑N

n=1 y
(n)
i +

∑
j∈ne(i) xj

)
.

5.3 Evaluation Metrics
There is an important issue to be addressed to validate our

proposed approach. Since this honey steganography also in-
herits the characteristics of honey encryption, for an ε-secure
stegosystem, we need to check that the images obtained
with incorrect keys or passwords are machine indistinguish-
able from one obtained with correct keys/passwords. There
are various metrics to measure this based on similarities or
differences between the images: Kullback Leibler distance
(KLD), Peak Signal to Noise Ratio (PSNR), Root Mean
square error (RMSE), and structural similarity (SSIM) [15,
14]. The details of the similarity measures are described in
[16]. From now on we set type ∈ {KLD,PSNR,RMSE,SSIM}.
Given these metrics, there are two different cases that should
be evaluated:

• Dtype(Y, s) and {Dtype(Y,h(j))}Rj=1: this is the set
of distance between a public image Y and a decoded
stego-image with a correct decryption s and decoded
honey images with R incorrect decryption, h(1:R).

• {Dtype(s,h(j))}Rj=1 and {Dtype(h(i),h(j))}Ri,j=1,i6=j : this
is the set of the distance between decoded images.

Given this setting, we estimate the p-values of each metric
to evaluate the distinguishability.

5.4 Steganography with Visual Honey Encryp-
tion (Honey Steganography)

Figure 6 demonstrates several input and output images
obtained from honey steganography of three images. Figure
6-(a), (b), and (c) are handled by a sender, Alice. The
other sub-figures can be obtained by two different types of
receivers: an appropriate receiver Bob of Figure 6-(d) and a
malicious receiver Eve of Figure 6-(e).
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Figure 5: Proposed approach satisfies the indistinguishableness of images decrypted and decoded with a
correct key and with incorrect passwords when a pre-processing procedure is adopted. Here, Y is a public
image.

(a) (b) (c) (d) (e)

Figure 6: Procedure of VHE for three exam-
ples: (a)→(b)→(c)→(d) with a correct key and
(a)→(b)→(c)→(e) with an incorrect key. Each
columns are (a) public image Y, (b) noisy cover im-
age c, (c) noisy stego image s, (d) correctly decoded
image s̃, and (e) incorrectly decoded image h

The three images of Figure 6-(a) are the public clean im-
ages Y used to construct DTE with inferred conditional tar-
get posterior p(xi|xne(i),Y, θ) for i ∈ {1, 2, · · · , L}. As we
can see the images, clean images are used in this paper al-
though, in practice, Y could be noisy or random images. In
order to build DTE, Y is shared between Alice and Bob and
it does not have to be shared privately. Therefore, Y is pub-
lic information and even the malicious user Eve can access it.
Figure 6-(b) demonstrates the three cover images obtained
by decoding random images using our DTE. That is, we
have c =Decode(DTE, r) where c ∈ C and r ∈ R. These are
used for embedding the hidden messages m. Through the
steganographic process, we obtain steg-images s of Figure
6-(c), which consist of the cover images c and messages m.
Figure 6-(d) and -(e) represent the images decrypted with
correct passwords and with incorrect passwords respectively.
By eye, it looks as if there is no difference betwen them. For
a more scientific measurement, we calculated four different
metrics to measure the similarity distances between s, s̃ and

h. Table 2 shows the similarity distances and their p-values
between images, Dtype(Y, s̃) and {Dtype(Y,h(j))}200j=1. As
can be seen in the table, all p-values are larger than 0.05, a
standard significance level used for hypothesis testing. That
is, we can say that the stego-images are ε-bound in their
difference from public images, i.e., |(Y− s̃)− (Y−h)| < ε.

Table 2: Similarity distance and its p-value between
images, Dtype(Y, s) and {Dtype(Y,h(j))}200j=1

IEinstein IRome ILena
DKLD(Y, s) 0.036 0.056 0.041

(p-value) (0.685) (0.055) (0.735)
DPSNR(Y, s) 1.02 0.911 0.974

(p-value) (0.935) (0.485) (0.55)
DRMSE(Y, s) 24.38 31.31 27.05

(p-value) (0.895) (0.465) (0.555)
DSSIM (Y, s) 0.762 0.876 0.833

(p-value) (0.85) (0.41) (0.52)

However, table 2 is an indirect metric for the honey prop-
erty. In theory, honey encryption is defined by |s̃ − h| < ε.
Therefore, we calculate the distances between s̃ and hs and
present them in table 3. The average distance between s̃
and hs and are closely located at the mode of the distri-
bution, which means that expected p-values are larger than
the significance level 0.05. Therefore, we have shown that
|s̃−h| < ε and conclude that practically our proposed VHE
becomes honey steganography.

5.5 Security Analysis of Honey Steganography
As already referred to, Figure 3 shows three different frame-

works for steganography:1) steganography without encryp-
tion modules, 2) steganography in an encrypted channel,
and 3) our proposed Honey steganography. The outstanding
performance of our proposed Honey steganography is shown
by its high security compared to the other two approaches.
From the attackers’ point of view, we first define four func-

72



Method Time Complexity for attack
Steganography without encryption modules Tstego(n)

Steganography in an encrypted channel |Ψ|{Tgenerate(n) + Tdecrypt(n) + Trand(n)}+ Tstego(n)
= |Ψ|{Tgenerate(n) + Tdecrypt(n)}+ |Ψ| Trand(n) + Tstego(n)

Our proposed honey steganography |Ψ|{Tgenerate(n) + Tdecrypt(n) + Tstego(n)}
= |Ψ|{Tgenerate(n) + Tdecrypt(n)}+ |Ψ| Tstego(n)

Table 4: Time comparison of various steganography for attack, n is the parameter for the size of image and
|Ψ| is the possible number of passwords or keys

Table 3: Similarity distances between images,
{Dtype(s,h(j))}Rj=1 and {Dtype(h(i),h(j))}Ri,j=1,i6=j

IEinstein IRome ILena
E[DKLD(s,h)] 0.052 0.060 0.053

(E[p-value]) (0.523) (0.552) (0.528)
E[DPSNR(s,h)] 0.915 0.866 0.897

(E[p-value]) (0.593) (0.570) (0.527)
E[DRMSE(s,h)] 30.99 34.70 32.29

(E[p-value]) (0.5924) (0.568) (0.526)
E[DSSIM (s,h)] 0.584 0.807 0.716

(E[p-value]) (0.597) (0.557) (0.530)

tions which count the elapsed times: (1) Tgenerate(n): Con-
sumed time when generating a key from a password of which
size is |Ψ|, (2) Tdecrypt(n): Consumed time when decryption,
(3) Trand(n): Consumed time when checking the random-
ness of the images, and (4) Tstego(n): Consumed time when
using stegoanalysis to extract the hidden messages. In this
paper, let |Ψ| be the number of possible passwords, password
space. In general, Tgenerate(n) and Tstego(n) are much larger
than Tdecrypt(n) and Trand(n) since often several hashing op-
erations are used when generating a key from the password
and steganalysis is known to be a time consuming opera-
tion. We simply assume that Trand(n) < Tdecrypt(n) <<
Tgenerate(n) << Tstego(n). Given this assumption, the time
taken for steganalysis to identify the stego-images and to
extract the hidden messages are compared in table 4. As
shown in the table, our proposed honey steganography needs
(|Ψ|−1)Tstego(n) times more execution time because all de-
coded images should be processed by steganalysis because
of their indistinguishability. In traditional steganographic
algorithms, this is unnecessary because all decrypted and
decoded images with incorrect passwords or keys are ran-
dom except for the image decrypted with correct passwords
or keys. Figure 7 displays the results of simulating the execu-
tion time complexities in table 4. As expected, an attack on
our proposed approach requires much more execution time
and therefore our approach is more secure.

6. IMPLEMENTATION ISSUES

6.1 The Effects of Different N
Since we are using a single image instead of N multiple

public images, Alice and Bob should share the correct value
of N . If Alice and Bob have different N , then Bob will not
be able to obtain the correct data. In addition, we simulated
the system with varying N . As can be seen in Figure 8, the
decoded image becomes closer to the original fake one since

the distribution is constructed with more fake images but
the neighboured pixels’ value is fixed.

(a) N = 10 (b) N = 50 (c) N = 500

Figure 8: The clarity with various N

6.2 Simplified DTE for Honey steganography
With equation (3) for a single fake image and (6) for mul-

tiple fake images, the curvature space x is assumed to be
a d-th order Markovian model in order to allow for the
smoothness and reality of the physical images. That is,
p(xi|x1:i−1,Y) can be reduced to p(xi|xne(i),Y) causing
much lighter computation. However, we can still simplify
the modeling by assuming the independence between xi⊥xj
although xj ∈ ne(i) and the prior of xi may follow a uniform
distribution. Then, the target distribution using N multiple

fake images becomes p(x|Y, θ) =
∏L
i=1

[∏N
n=1 p(y

(n)
i |xi, θ)

]
×

p(xi|θ) =
∏L
i=1

∏N
n=1 p(y

(n)
i |xi, θ). In this case, the fake im-

ages are the significant factors to consider when constructing
the distribution.

7. CONCLUSIONS
It is known that conventional honey encryption only works

in limited domains such as binary bit streams and integer
sequences. However, there are many more complicated data
types which have a synthetic or semantic structure including
natural language based texts, images, videos. In this paper,
we introduced a new variation of honey encryption which can
be applied to such complicated data types. The proposed
approach has been designed in a Bayesian framework and
can be applied to create a new steganography scheme which
requires a high time complexity for stegano-analysis. Using
this new steganography scheme, this new steganography is
more secure than any conventional steganography.
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(a) |Ψ| = 104 (b) |Ψ| = 108 (c) |Ψ| = 1010

(d) Tstego(n) = 106 (e) Tstego(n) = 108 (f) Tstego(n) = 1010

(log scale) (log scale) (log scale)

Figure 7: Time comparison with varying a key size |Ψ| and Tstego(n)
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APPENDIX
A. COLLAPSING MULTIPLE NORMAL DIS-

TRIBUTIONS
If we have two normal distributionsN (x;µ1, σ

2
1) andN (x;µ2, σ

2
2),

the collapsed normal distribution is as follows: N (x;µ, σ2) =

N (x;µ1, σ
2
1)N (x;µ2, σ

2
2) where σ =

√
(1/σ2

1 + 1/σ2
2) and

µ = σ2(µ1/σ
2
1 + µ2/σ

2
2).

For multiple normal distributions, we can generalize the
product of the multiple normal distributions: N (x;µ, σ2) =∏N
n=1N (x;µn, σ

2
n) where σ =

√(∑N
n=1

1
σ2
n

)−1

and µ =

σ2∑N
n=1

µn

σ2
n

.
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