
1

Crypt-DAC: Cryptographically Enforced
Dynamic Access Control in the Cloud

Saiyu Qi∗, Yichen Li†, Yuanqing Zheng‡ and Yong Qi† ∗School of Cyber Engineering, Xidian
University, China †Department of Computer Science and Technology, Xi’an Jiaotong University, China

‡Department of Computing, The Hong Kong Polytechnic University, Hong Kong
email: syqi@connect.ust.hk, 245703424@qq.com, csyqzheng@comp.polyu.edu.hk, qiy@xjtu.edu.cn

Abstract

Enabling access controls for data hosted on untrusted cloud is attractive for many users and organizations. Recently,
many works have been proposed to use advanced cryptographic primitives such as identity-based encryption, attribute-
based encryption, and predicate encryption to enforce data access control on the potentially untrusted cloud. However,
designing efficient cryptographically enforced dynamic access control system in the cloud is still a challenging issue.
In this paper, we propose Crypt-DAC, a system that provides practical cryptographic enforcement of dynamic access
control. Crypt-DAC uses delegation-aware encryption and symmetric onion encryption, which enable access revocation
to be executed at the cloud side in a secure manner. Crypt-DAC further uses lazy de-onion encryption to facilitate file
access without incurring obvious overhead. As a result, Crypt-DAC enforces dynamic access control that provides
efficiency, as it does not require expensive decryption/re-encryption and uploading/re-uploading of large data at
customer side, and security, as it immediately revoke access permissions, while operating under a similar threat
model of previous comparable systems. We use formalization framework and system implementation to demonstrate
the security and efficiency of our construction.

I. INTRODUCTION

With the considerable advancements in cloud computing, users and organizations are finding increasingly ap-
pealing to rely on cloud services for storing file data and sharing them with others. In such contexts, a critical
issue is how to enforce data access control on the potentially untrusted cloud. Indeed, commercial cloud providers
such as Google, Microsoft, Apple, and Amazon provide abundant cloud based services, ranging from small-scale,
personal services to large-scale, industrial services. However, the near-constant media coverage of data breaches,
such as releases of private photos [8], has raised concerns regarding the privacy and access control of cloud-hosted
data. Therefore, despite its economic and ease-of-use benefits, outsourcing file data to the cloud raises new issues
regarding the enforcement of data access control and confidentiality

In response to these security issues, numerous works [1]–[7] have been proposed to support access control
on the untrusted cloud by leveraging cryptographic primitives. Advanced cryptographic primitives are well-suited
for enforcing many access control paradigms. For example, attribute-based encryption (ABE) [9] is a natural fit
for enforcing attribute-based access control (ABAC) model [13]. However, much of the literature concerns static
scenarios in which access control policies are rarely changed. Such scenarios are not representative of real-world
systems, and previous works oversimplify issues incurred by revocation that can carry substantial practical overheads.
Although the development of key revocation [10] and delegated re-encryption [11], [12] support a level of dynamism
for current advanced cryptographic primitives, these techniques are not compatible with hybrid encryption, which
is necessary from an efficiency perspective.

In IEEE S&P 2016, Garrison et al. [14] explored the practical implications of using these types of cryptographic
primitives to enforce a type of prevalent access control model: role based access control model (RBAC0) [15]. They
concluded that the cryptographic enforcement of dynamic access control on untrusted cloud incurs prohibitive costs
in practice. In specific, dynamic change of access policy includes two aspects: assignment of access permission
and revocation of access permission. Assigning an access permission is easy as it is sufficient to give the newly
authorized user access to the key. On the other hand, revoking an access permission is a completely different
problem [14]. there are two challenging issues in the revocation of access permission.

The first challenge is the prohibitive overhead in policy data updating. Policy data updating entails, for an
access control administrator, generating new keys, creating new policy data to encrypt the keys, and uploading the
policy data to re-distribute the keys to the users who still hold permissions. Due to multi-to-one property of access
permission relations among users, roles and files, the administrator needs to create large amounts of policy data
to revoke the permission of even a single user, incurring prohibitive overhead in terms of public encryption and
signing operations.

2

The second challenge is the prohibitive overhead in file data updating. File data updating entails, also for the
administrator, downloading the file data, decrypting it, re-encrypting it with the new keys, and re-uploading the
file data. This immediate re-encryption strategy incurs prohibitive overhead due to decrypting/re-encrypting and
downloading/ re-uploading file data, which becomes even more expensive in emerging big data contexts. To reduce
the overhead, Garrison et al. [14] suggest to use a deferred re-encryption strategy, in which file data is re-encrypted
by the next users to write to it. This solution, however, comes with a security penalty as the success of revocation
is delayed to the next writing. As a result, there is a tension between efficiency and security in access revocation.

To address these two challenges, we present Crypt-DAC, a cryptographically enforced dynamic access control
system on untrusted cloud. The central goal of Crypt-DAC is to balance the tension by avoiding expensive updating
of policy and file data at the administrator side, while enabling immediate access permission revocations. Crypt-DAC
addresses the two challenges using three key techniques:

First, we delegate the cloud to update the policy data in a privacy and verifiability-preserving manner. To this end,
Crypt-DAC uses a delegation-aware encryption strategy, which is built on a combination of proxy re-encryption
scheme [16] and sanitizable signature scheme [20] in a novel way. By adapting delegation-aware encryption strategy,
Crypt-DAC encrypts and signs policy data in a way that allows the cloud to update policy data without decryption.

Second, to avoid executing expensive re-encryptions of file data at the administrator side, Crypt-DAC proposes
symmetric onion encryption strategy, which is a novel way to encrypt a file through a symmetric key list in a onion
manner. By adapting symmetric onion encryption, the administrator only needs to request the cloud to encrypt the
file data with a new layer of symmetric encryption and update the encrypted symmetric key list accordingly.

With the symmetric onion encryption deployed, a problem is that as the revocations continuously happen, the
encryption layers of the involved files and the length of the corresponding symmetric key list increases, incurring
additional overhead in file reading. To remove this overhead without incurring obvious overhead, Crypt-DAC uses
a lazy de-onion encryption strategy, in which the next user to write to the file encrypts the writing content by a
new symmetric key list containing a single key, and updates the symmetric key list accordingly. We show that lazy
de-onion encryption facilitates file reading operations with moderate overhead.

We compare the security and efficiency of Crypt-DAC with two versions of the construction in [14]: IMre,
which adopts immediate re-encryption strategy, and DEre, which adopts deferred re-encryption strategy. Crypt-
DAC operates under the similar threat model of IMre. Regarding security, we use an access control expressiveness
framework [43] to prove that IMre and Crypt-DAC achieve the same security properties, while DEre cannot achieve
safety. Regarding efficiency, we implement IMre, DEre and Crypt-DAC on Alicloud and show that the performance
of Crypt-DAC is comparable with DEre.

The remainder of this paper is organized as follows. In Section II, we discuss related work. Section III introduces
our system model and assumptions, background on RBAC0 and the cryptographic techniques used in our system
design. In Section IV, we identify several critical issues for cryptographically enforced dynamic access control, from
which we derive the principles of Crypt-DAC. Section V describes the design details of Crypt-DAC. Section VI
presents complexity and security analysis of Crypt-DAC. In Section VII, we formally analyze the security of Crypt-
DAC. In Section VIII, we compare the performance of Crypt-DAC as well as IMre and DEre through experiments.
Section IX details our conclusions.

II. RELATED WORK

Cryptography provides a natural way to enforce access controls on untrusted cloud storage. Encryption schemes,
ranging from basic schemes including symmetric and public encryptions, to more advanced schemes including
identity-based encryption [23], attribute-based encryption [7], and predicate encryption [26], [27], support a number
of access control functionalities. At a high level, these encryption schemes bound data to a policy through encryption,
and only users who have secret keys satisfying the policy can decrypt. There has been significant work on using
cryptography to enforce access control.

hierarchy access control: Gudes et al. [34] investigate how to enforce hierarchy access control structure using
cryptography, but does not address issue of policy updates. Akl et al. [35] propose a key assignment scheme to
simply key management in hierarchical access control policy. Again, this work does not consider policy update
issues. Later work in key hierarchies by Atallah et al. [36] proposes a method that allows policy updates, but in
the case of revocation, all descendants of the affected node in the access hierarchy must be updated, and the cost
of such an operation is not discussed.

Role based access control: Ibraimi et al. [39] cryptographically support role based access control structure using
mediated public encryption. However, their revocation operation relies on additional trusted infrastructure and an
active entity to re-encrypt all affected files under the new policy. Similarly, Nali et al. [40] enforce role based access
control structure using public-key cryptography, but requires a series of active security mediators. Ferrara et al. [41]

3

Policy
data

Organization Cloud

Admin
File
data

Users
……

Policy
data

File
data

……

……

Access policy
update

File data
read/write

Fig. 1: Cloud enabled data access control.

define a secure model to formally prove the security of a cryptographically-enforced RBAC system. They next show
that an ABE-based construction is secure under such model. However, their work is a theoretical implementation
without evaluation.

Attribute based access control: Pirretti et al. [42] propose an optimized ABE-based access control for distributed
file systems and social networks, but their construction does not consider dynamic revocation. Sieve [28] is a attribute
based access control system that allows users to selectively expose their private data to third web services. Sieve
uses ABE to enforce human-understandable access policies and homomorphic symmetric encryption [31] to encrypt
data. With homomorphic symmetric encryption, a data owner can delegate revocation tasks to the cloud assured
that the privacy of the data is preserved. A problem of homomorphic symmetric encryption, however, is that its
efficiency is comparable with public key encryption schemes. Using homomorphic symmetric encryption to encrypt
large files incurs prohibitive computation overhead.

Access matrix: GORAM [32] allows a data owner to enforce an access matrix for a list of users to regulate
who can access its data stored on the cloud. GORAM provides strong data privacy in two folds. First, user access
patterns are hidden from the cloud by using ORAM techniques [33]. Second, policy attributes are hidden from
the cloud by using attribute-hiding predicate encryption [26], [27]. The usage of these advanced cryptographic
techniques, however, incurs additional performance cost in data communication, encryption and decryption. Also
GORAM does not support dynamic policy update. A data owner has to determine a priori the maximum number
of users in the list; and if this list changes, the owner must re-build its data.

III. BACKGROUND AND ASSUMPTIONS

In this section, we first define the system and threat models in which we consider this problem. We then specify
the RBAC0 model that we propose to enforce. Finally we define the classes of cryptographic primitives that will
be used in our design.

A. System model
The system model that we consider is depicted in Figure 1. The system consists of three types of entities: an

access control administrator, a large number of users, and a cloud provider. Our system model describes a scenario
in which a single cloud provider is contracted by an organization. This is analogous to companies contracting with
providers like Microsoft to outsource enterprise storage. The cloud provider is contracted to manage the data storage
requirements of an organization. The data includes file data of users in the organization, as well as policy data
protecting these files. The access control administrator is responsible for managing access policies of the file data.
In specific, the administrator controls the assignment of access permissions, which entails the creation, distribution,
and revocation of cryptographic keys used to encrypt files in a role-based manner. Policy data is used to distribute
keys and is stored in encryptions on the cloud provider. Users may download any policy/file data from the cloud,
but may decrypt and read only the files for which they have appropriate permissions (role-based keys). File data is
encrypted prior to being uploaded to the cloud provider. Finally, we assume that all parties can communicate via
pairwise authenticated and private channels (e.g., SSL/TLS tunnels).

4

B. Threat model
In our threat model, the cloud provider is not trusted to protect the privacy and enforce read access permissions of

the file data. Instead, read access permissions should be enforced by the access policies defined by the administrator.
This is the reason why we need to use cryptography to enforce file access control.

On the other hand, we want to put some reasonable trust assumptions on the cloud provider as several recent
constructions [14], [28] to simplify our system design. We explain these assumptions as follows.

First, the cloud provider behaves honestly in access policy updating procedure. This assumption is critical to
design efficient yet secure access control system on the cloud. From the efficiency aspect, this assumption enables
us to leverage the computing ability of the cloud provider, which is one of the most attractive advantages of cloud
computing paradigm. From the security aspect, as policy/file data is stored by the cloud provider, we have to rely
on it to honestly replace existing policy/file data with their updated versions to complete access policy updating.
For instance, in IMre, although the administrator re-encrypts file data by itself in a revocation, the administrator still
needs to rely on the cloud provider to honestly replace existing file data with its re-encrypted version. Otherwise,
the cloud provider can just retain a copy of the existing file data for revoked users to continuously access.

Second, the cloud provider is trusted to enforce write access permissions that validates write privileges of users
prior to file updates. As file data is stored at the cloud, we have to rely on the cloud provider to execute writing
operations submitted by users over the data. To regulate the behaviours of the cloud provider in this procedure,
several constructions [29], [30], [37], [38] have been proposed, which can be integrated into our system. As a result,
we use this assumption to simplify our system design.

Third, the cloud provider is trusted to ensure availability of policy/file data. Providing data availability is a basis
for cloud providers to attract customers to use their services. Current commercial cloud providers promise data
availability for their customers through their Service Level Agreements (SLAs). For instance, S3’s SLA [21] and
Azure’s SLA [22] guarantee availability: if availability falls below 99.9%, customers are reimbursed a contractual
sum of money. As a result, we use this assumption to simplify our system design.

We believe that our threat model is a fundamental start point to investigate practical cryptographically enforced
access control system. Currently, how to design new secure access control system with reduced trust assumptions
on the cloud provider while preserving practicality is still an open question.

C. Role based access control
We describe a role-based access control model named (RBAC0) [15], given the prevalence of role based access

control systems in practical applications. RBAC0 model describes permission management through the use of
abstraction: roles describe the access permissions associated with a particular (class of) job function, users are
assigned to the set of roles entailed by their job responsibilities, and a user is granted access to an object if they
are assigned to a role that is permitted to access that object. More formally, the state of an RBAC0 model can be
described as follows:

– U: a set of users
– R: a set of roles
– P: a set of permissions (e.g., (file, op))
– PA ⊆ R × P: a permission assignment relation
– UR ⊆ U × R: a user assignment relation
– auth(u, p) = ∃ r: [(u, r) ∈ UR] ∧ [(r, p) ∈ PA]: the authorization predicate auth: U × P → B determines

whether user u has permission p
The access permissions in RBAC0 model renders a multi-to-one property among users, roles, and objects: multiple

users are member of a role and multiple roles have permissions to an object.

D. Cryptographic tools
Symmetric-key encryption scheme: Our construction makes use of symmetric-key encryption scheme (GenSym,

EncSym, DecSym).
Proxy re-encryption scheme: We use public-key encryption scheme (GenPub, EncPub, DecPub, ⊕) supporting

proxy re-encryption operation.
GenPub(ln) → (ek, dk): on input ln, this algorithm outputs an encryption key pair (ek, dk).
EncPub(ek, m) → c: on input an encryption key ek and a message m, this algorithm outputs a ciphertext c.
DecPub(dk, c) → m: on input a decryption key dk and a ciphertext c, this algorithm outputs a message m.
⊕ (Proxy re-encryption): Given two encryption key pairs: (ek1, dk1) and (ek2, dk2), this algorithm outputs a

re-key rek. With rek, a proxy can transform a ciphertext by ek1 to a ciphertext by ek2 without decryption.

5

Proxy re-encryption scheme can support different types of proxy functions. We describe an instantiation of proxy
re-encryption scheme [16] supporting unidirectional and multi-use proxy re-encryption, which is suitable for our
construction.

The scheme is based on El Gamal encryption scheme [19]. let G be a polynomial-time algorithm that, on input
1n, outputs a description of a cyclic group G, its order q (with |q| = n), and a generator g. On input ln, the key
generation algorithm runs G(1n) to obtain (G, q, g). The algorithm then chooses a random x← Zq and computes h:
= gx. The encryption key ek is h and the decryption key dk is x. On input an encryption key ek = h and a message
m ∈ G, the encryption algorithm chooses a random y ← Zq and outputs the ciphertext c:

c = (gy , hym)

On input a decryption key dk = x and a ciphertext c = (gy , hym), the decryption algorithm outputs:

m = hym/gyx = hym/hy

Given two encryption key pairs: (ek1 = h1, dk1 = x1) and (ek2 = h2, dk2 = x2), the proxy algorithm computes the
re-key rek = x2 – x1, the proxy re-encryption operation is then:

EncPub
ek1

(m)⊕ rek

= (gy, hy1m)⊕ (x2 − x1) = (gy, hy1mgy(x2−x1))

= (gy, gyx2m) = (gy, hy2m)

= EncPub
ek2

(m)

Sanitizable signature scheme: Sanitizable signature [20] is a special signature scheme (GenSign, Sign, Verify,
Sanitize) that a signer can delegate a proxy to modify a certain portion of a signed message. We next describe the
algorithms of this scheme:

GenSign(1n) → (sksign, vksign), (sksan, vksan): On input a security parameter 1n, this algorithm outputs two
types of key pairs: a signing key pair (sksign, vksign) for a signer and a sanitization key pair (sksan, vksan) for a
proxy.

Sign(m, sksign, vksan) → sign: On input a message m, a signing key sksign, a sanitization verification key
vksan, this algorithm produces a signature sign. During the signing procedure, the signer can choose which part of
m can be changed by the proxy owning the sanitization signing key sksan.

Verify(m, sign, vksign, vksan) → Accept/Reject: On input a message m, a possibly valid signature sign on m, a
verification key vksign and a sanitization verification key vksan, outputs Accept or Reject.

Sanitize(m, sign, vksign, sksan, m’) → sign’: On input a message m, a signature sign on m under signing key
sksign, a verification key vksign, a sanitization signing key sksan, and a new message m’, produces a new signature
sign’ on m’.

IV. DESIGN PRINCIPLE

In this section, we begin with the construction of [14] for cryptographic access control enforcement, from which
we derive a variety of issues for access revocation that must be addressed. We then give an overview of our system,
Crypt-DAC, which addresses these issues.

A. Previous design
We now overview the construction of [14], which allow us to highlight a variety of issues for revocation. We

simplify the construction with the main design principles preserved for clarity and ease of understanding.
Registration: When a user u enters the system, it carries out an initial registration process with the administrator.

In the process, u generates two key pairs: enku=(eku, dku) ← GenPub(1n) and siku=(sku, vku) ← GenSign(1n),
and submits (eku, vku) to the administrator for storage.

Role Administration: For each role r, the administrator generates two key pairs: enkr,vr
= (ekr,vr

, dkr,vr
) ←

GenPub(1n) and sikr,vr
=(skr,vr

, vkr,vr
) ← GenSign(1n) for r. vr is a version number representing the current

version of the key pairs. initially, vr=1. For each user u that is a member of r (i.e., for each (u, r) ∈ UR in the
RBAC0 state), the administrator creates and uploads a role key (RK) tuple:

〈RK, u, (r, vr), EncPub
eku

(dkr,vr , skr,vr), signSU 〉

6

This tuple provides u with cryptographically-enforced access to the decryption key dkr,vr and signing key skr,vr of
r. RK is a label indicating that this is a role key tuple; and signSU is a signature over the whole RK tuple signed
by the administrator (as a super user).

File Administration: When a user u wants to upload a file f, u creates and uploads a file (F) tuple:

〈F, fn, vfn , EncSym
k (f), signu〉

This tuple encrypts f by a symmetric file key k ← KeyGenSym(1n). F is a label indicating that this is a file tuple;
fn is the file name of f ; vfn is a version number representing the current version of k; and signu is a signature
over the whole F tuple signed by the signing key sku of u. u also uploads a file key (FK) tuple:

〈FK, SU, (fn, vfn , RW), EncPub
ekSU

(k), signu〉

This tuple provides the administrator with cryptographically-enforced access to the file key k for f. FK is a label
indicating that this is a file key tuple; and RW means that the administrator can read/write the FK tuple.

Next, for each role r with permission to f (i.e., for each (r, (f, op)) ∈ PA in the RBAC0 state), the administrator
creates and uploads a file key (FK) tuple:

〈FK, (r, vr), (fn, vfn , op), EncPub
ekr,vr

(k), signSU 〉

This tuple provides r with cryptographically-enforced access to the file key k for f. FK is a label indicating that
this is a file key tuple; op is the permitted operation: either Read or RW; and signSU is a signature over the whole
FK tuple signed by the administrator.

File Access: If a user u with authorization to read a file f (i.e., ∃r: (u, r) ∈ UR ∧ (r, f, Read) ∈ PA) wishes to
do so, u first downloads an RK tuple for the role r to decrypt the decryption key dkr,vr

by dku. u then downloads
an FK tuple for the file f to decrypt the file key k by dkr,vr

. Finally, u downloads a F tuple to decrypt the file f
by k.

If a user u with authorization to write to a file f via membership in role r (i.e., ∃r: (u, r) ∈ UR ∧ (r, f, RW) ∈
PA) wishes to do so, u uploads a new F tuple: 〈F, fn, vfn , EncSym

k (f ’), signr,vr
〉 to replace the existing F tuple

for f. On the other hand, the cloud provider checks (1) if there is an RK tuple assigning u as a member of r and
an FK tuple assigning r with permission RW to f ; and (2) the uploaded F tuple contains a valid signature signed
by r. If both checks passed, the cloud provider executes the writing operation.

Access Revocation: The administrator may need to revoke a permission of a role, or revoke a membership of a
user.

Revoking a permission of a role entails two tasks: (1) creating new FK tuples; and (2) re-keying and re-encrypting
F tuples. Suppose the revoked role has permission to m files. In the first task, for each of the m files, the administrator
creates a new file key k’ ← KeyGenSym(1n) and uploads new FK tuples encrypting k’ for each role r whose access
to the file has not been revoked:

〈FK, (r, vr), (fn, vfn + 1, op), EncPub
ekr,vr

(k’), signSU 〉

The administrator adopts a deferred re-encryption strategy to complete the second task for efficiency consideration.
That is, the next users writing to the F tuples of the m files re-encrypt the F tuples with the new file keys. When
a user u writes to one of the F tuples, u decrypts the new file key k’ from the new FK tuple, encrypts the writing
content by k’, and uploads a new F tuple to the cloud provider:

〈F, fn, vfn+1, EncSym
k′ (f), signr,vr 〉

Removing a user u from a role r entails (1) creating new RK tuples and FK tuples; and (2) re-keying and
re-encrypting F tuples. The procedure of the first task involves three sub steps:
• The administrator informs the cloud to delete u’s RK tuple for r. The administrator then generates new key

pairs enkr,vr+1 and sikr,vr+1 for r and uploads new RK tuples encrypting dkr,vr+1 and skr,vr+1 for all the
users u’ remaining in r to replace their existing RK tuples:

〈RK, u’, (r, vr + 1), EncPub
eku′ (dkr,vr+1, skr,vr+1), signSU 〉

After this step, all the users remaining in r can access the new keys dkr,vr+1 and skr,vr+1 through the uploaded
RK tuples.

• Suppose r has permission to m files, i.e., there exists m FK tuples assigning r with permissions to the m files.
For each of the FK tuples, the administrator downloads it:

7

〈FK, (r, vr), (fn, vfn , op), EncPub
ekr,vr

(k), signSU 〉
decrypts the file key k from the tuple, re-encrypts k by the new encryption key ekr,vr+1 of role r, and uploads
a new FK tuple to the cloud to replace the existing FK tuple:

〈FK, (r, vr + 1), (fn, vfn , op), EncPub
ekr,vr+1

(k), signSU 〉
After this step, all the users remaining in r can access the file keys of the m files through the uploaded FK
tuples.

• For each of the m files, the administrator creates a new file key k’ ← GenSym() for the file and uploads new
FK tuples encrypting k’ for each role r’ (including r) with permission to the file.

For role r’: 〈FK, (r’, vr′), (fn, vfn + 1, op), EncPub
ekr′,v

r′
(k’), signSU 〉

For role r: 〈FK, (r, vr + 1), (fn, vfn + 1, op), EncPub
ekr,vr+1

(k’), signSU 〉
After this step, the next users writing to the m files can access the new file keys from the new FK tuples and
use them to re-encrypt the m files.

Similarly, the administrator also adopts the deferred re-encryption strategy to complete the second task. Later, when
a user writes to one of the m files, it re-encrypts the F tuple by k’ and uploads the new F tuple to the cloud:

〈F, fn, vfn+1, EncSym
k′ (f), signr,vr 〉

B. Design issues for revocation
Given the above construction, the authors [14] pointed out that the revocation in this construction is not suitable

for realistic dynamic access control scenario due to its prohibitive overhead. The overhead is stemmed from two
aspects.

Policy data updating: First, creating new RK and FK tuples in revocation operations incurs prohibitive overhead
at the administrator side. Due to the multi-to-one property of access permission relations among users, roles, and
objects in RBAC0 model, the administrator has to create and upload new RK tuples and FK tuples for large numbers
of unrevoked users and roles even revoking the membership of a single user from a role. The incurred overhead
includes large numbers of public encryption and signing operations, and bandwidth consumptions. For example,
suppose the administrator needs to revoke the membership of a user u from a role r with 100 users remaining in
r. The administrator needs to create 100 new RK tuples encrypting new keys of r for these users. Next, suppose
that r has permission to 100 files, and 10 roles have permissions to each of these files. For each of these files,
the administrator needs to create 10 new FK tuples encrypting a new symmetric key for the file. In summary, the
administrator needs to create 100 RK tuples and 1000 FK tuples to revoke the membership of a single user from
a role.

Such a prohibitive overhead is also validated through simulation of realistic dynamic workloads over real data
sets. As shown in [14], removing a single user from a role in a moderately-sized organization can require hundreds
or thousands of public encryption operations.

File data updating: Second, re-keying and re-encrypting F tuples incurs prohibitive overhead at the administrator
side. After updating the policy data, the administrator still needs to re-key and re-encrypt F tuples, as it ensures that
users who have been revoked permission to access the F tuples cannot later read its contents. Here, we distinguish
two versions of the construction in [14]: IMre, which adopts immediate re-encryption strategy, and DEre, which
adopts deferred re-encryption strategy. In IMre, the administrator immediately re-encrypt the F tuples to complete
the revocation. This version, however, comes with a potentially high overhead at the administrator side in the
sense that many F tuples may be re-keyed due to changes to some role, and the administrator needs to download,
decrypt, re-encrypt, and upload these F tuples. On the other hand, DEre relies on next users writing to the F tuples
to re-encrypt the F tuples, removing the overhead of re-encrypting F tuples at the administrator side. This version,
however, comes with security penalty as it delays the revocation to the next writing, creating a vulnerability window
in which revoked users can continuously access the F tuples. As a result, a challenging issue is how to design a
file data updating mechanism with the security of IMre and the efficiency of DEre.

Besides, the authors [14] also noticed that proxy re-encryptions [16]–[18] are not suitable for use in this scenario.
At a first glance, proxy re-encryption schemes allow us to remove the reliance on deferred re-encryption by delegating
the cloud provider to update encryptions in revocation operations. This would be done by generating new keys of
a role, using proxy re-encryption to transfer the RK and FK tuples from the old role keys to the new role keys.
The critical issue, here, is that such schemes are not compatible with hybrid encryption, which is essential for
efficiency consideration. In specific, hybrid encryption relieves the administrator from using expensive public key
encryption to encrypt large files by using FK tuples to publicly encrypt small symmetric keys, and using F tuples

8

Cloud

dkr, v +1, skr, v +1 eku

Cloud

rekr

For each of the n users u:

RK, u
(r, vr)

signature
dkr, v , skr, v eku

RK, u
(r, vr+1)

signature
dkr, v +1, skr, v +1 eku

For each of the m files fn:

For each of the n users u:

FK, (r, vr)
(fn, op, vf)

signature

FK, (r, vr+1)

signature
{k0, k1,…,kt} ekr, vr r

n

r

1

2

r r

r rrr

{k0, k1, …,kt} ekr, v +1

(fn, op, vf)n

r

Fig. 2: Delegation-aware encryption overview.

to symmetrically encrypt large files by the symmetric keys. As a result, using proxy re-encryption on the RK and
FK tuples and not on the F tuples would allow users to cache the small symmetric keys during file access, and
continuously access large files of which their access permissions have been revoked.

C. Our design
To alleviate the overhead of access revocation, a potential solution is to replace the symmetric encryption scheme

in the hybrid encryption with the homomorphic encryption scheme [31]. This scheme enables the administrator to
delegate the cloud to transfer F tuples from old file keys to new file keys without decryption, removing the overhead
of re-encrypting F tuples. This idea has been used in [32] to develop an attribute based access control system with
efficient revocation. The problem of homomorphic symmetric encryption, however, is that its cost is comparable
with public key encryption schemes. Using homomorphic symmetric encryption to encrypt/decrypt large files incurs
prohibitive computation overhead.

Instead, Crypt-DAC develops new techniques using lightweight symmetric encryption scheme. In specific, Crypt-
DAC uses delegation-aware encryption and symmetric onion encryption as a whole to support efficient and immediate
revocation, achieving the best of both efficiency and security. Also, Crypt-DAC uses lazy de-onion encryption
strategy to remove the overhead incurred by the symmetric onion encryption in file access without incurring obvious
overhead. In the following, we use an example of revoking the membership of a user u’ from a role r to show how
the three techniques work.

Delegation-aware encryption: To revoke the membership of a user u’ from a role r, The administrator first needs
to update the RK and FK tuples involving r. Delegation-aware encryption enables the administrator to delegate the
cloud provider to update RK and FK tuples in a privacy and verifiability-preserving manner. The administrator only
needs to send short messages for the cloud to do so instead of creating and uploading new RK and FK tuples by
itself. The observation is that proxy re-encryption scheme [16] is compatible with our symmetric onion encryption
strategy, which enables us to use proxy re-encryption to alleviate the overhead at the administrator side. We further
use sanitizable signature scheme [20] to preserve the verifiability of the RK and FK tuples while enabling the cloud
to update them.

To revoke u’ from r, the administrator updates the encryption and signing key pairs of r as: (enkr,vr
, sikr,vr

)
→ (enkr,vr+1, sikr,vr+1). Suppose there are n users remaining in r. For each of these users u, the administrator
delegates the cloud provider to update the RK tuple of u. To do so, the administrator uploads an encryption of
EncPub

eku
(dkr,vr+1, skr,vr+1) by the encryption key eku of u. With this encryption, the cloud updates the RK tuple

as:

9

Cloud

Cloud

For each of the m FK tuples:

kt+1

F
fn

signature

F

signature
c EncSym(c)

fn

For the F tuple of fn:

kt+1

FK, (r, vr)
(fn, op, vf)

signature

FK, (r, vr)

signature

n (fn, op, vf +1)n

= EncPub (k0)||...||EncPub (kt)

= EncSym(...EncSym(EncSym(f))...)c

c

1

2

c||EncPub (kt+1)c

ekr,vr ekr,vr

ekr,vr

k0k1kt

kt+1

Fig. 3: Symmetric onion encryption overview.

〈RK, u, (r, vr+1), EncPub
eku

(dkr,vr+1, skr,vr+1), signSU 〉

The updated RK tuple encrypts the new decryption and signing keys (dkr,vr+1, skr,vr+1). The procedure is shown
in Figure 2.(1).

Assume that there are m files to which r has permissions. For each of these files fn, the administrator delegates
the cloud provider to update the FK tuple of r for fn. To do so, the administrator generates a re-key rekr =
dkr,vr+1–dkr,vr

of the proxy re-encryption [16] between the new role decryption key dkr,vr+1 and the old role
decryption key dkr,vr

. With this key, the cloud can update the FK tuple through proxy re-encryption as:

〈FK, (r, vr + 1), (fn, vfn , op), c, signSU 〉

c = EncPub
ekr,vr+1

(k0)||EncPub
ekr,vr+1

(k1)||...||EncPub
ekr,vr+1

(kt)

for 0 ≤ i ≤ t: EncPub
ekr,vr+1

(ki) =
EncPub

ekr,vr
(ki) ⊕ rekr

Notice that with symmetric onion encryption strategy, an FK tuple encrypts a symmetric key list {k0, k1, ..., kt}
instead of a single file key k. After the updating, the new FK tuple encrypts the symmetric key list by the new
encryption key ekr,vr+1 of r. The procedure is shown in Figure 2.(2).

Delegating the cloud provider to update the contents of RK and FK tuples invalidate the signatures in these
tuples. This is one of the reasons why the construction in [14] requires the administrator to update RK and FK
tuples by itself. To solve this problem, our solution is to rely on sanitizable signature scheme [20], in which a signer
can delegate a proxy to modify a certain portion of a signed message, while disallowing the proxy to generate fake
signed messages. With this scheme, the administrator signs each RK/FK tuple keeping the version number part and
the ciphertext part sanitizable for the cloud provider.

Symmetric onion encryption: To complete the revocation, the administrator still needs to re-key and re-encrypt
all the F tuples to which r have permissions. With symmetric onion encryption, the administrator just needs to
request the cloud to encrypt the file data with a new layer of symmetric encryption and update the encrypted
symmetric key list accordingly. Symmetric onion encryption encrypts file data in a onion manner; and Crypt-DAC
uses the innermost encryption layer to protect the file data against the cloud provider and the outermost encryption
layer to protect the file data against the revoked users.

With symmetric onion encryption, a F tuple encrypts a file fn by a symmetric key list {k0, k1,..., kt} in a onion
manner:

10

F F F F

1th revocation 2th revocation tth revocation

k0 k1 k2 kt

Fig. 4: Evolution of encryptions of a F tuple.

〈F, fn, c, signr,vr
〉

c = EncSym
kt (...EncSym

k1 (EncSym
k0 (f))...)

Accordingly, all the FK tuples with permissions to fn encrypt the symmetric key list {k0, k1,..., kt}:

〈FK, (r, vr), (fn, vfn , op), c, signSU 〉

c = EncPub
ekr,vr

(k0)||EncPubekr,vr
(k1)||...||EncPubekr,vr

(kt)

When a user u accesses fn, u downloads one of these FK tuples, decrypts the symmetric key list, and uses the list
to decrypt the F tuple in a de-onion manner. When the F tuple is created for the first time, the symmetric key list
contains only one key {k0}. Each time the F tuple is re-keyed and re-encrypted in a revocation operation (either
user or role), a new key is inserted into the symmetric key list.

Returning to the revocation of u’ from r, for each of the files fn to which r has permissions, suppose that the
symmetric key list of the F tuple is {k0, k1,..., kt}, the administrator generates a new key kt+1 ← KeyGenSym(1n)
and sends kt+1 to the cloud provider. Suppose there are m roles with permissions to fn. The cloud provider updates
the encrypted symmetric key lists in the FK tuples of the m roles:

For role r: 〈FK, (r, vr + 1), (fn, op), vfn+1, c||c’, signSU 〉

c’ = EncPub
ekr,vr+1

(kt+1)

For other roles r’: 〈FK, (r’, vr′), (fn, op), vfn+1, c||c’, signSU 〉

c’ = EncPub
ekr′,v

r′
(kt+1)

The procedure is shown in Figure 3.(1). The administrator also requests the cloud to update the F tuple as:

〈F, fn, EncSym
kt+1 (c), signr,vr

〉

The procedure is shown in Figure 3.(2).
For a F tuple encrypted by a symmetric key list {k0, k1,..., kt}, Crypt-DAC uses the innermost encryption layer

to protect the file data against the cloud provider, as k0 is not revealed to the cloud provider during the life cycle
of the F tuple. Also, Crypt-DAC uses the outermost encryption layer to protect the file data against revoked users.
After ith user revocation, the file data is encrypted by a new key ki+1, which cannot be accessed by the revoked
user. The evolution of the encryptions of a F tuple is shown in Figure 4.

We notice that in symmetric onion encryption, the cloud provider just encrypts the ciphertext part of F tuple
with a new layer of symmetric encryption, and not changes the encrypted file content. Therefore, this operation
does not invalidate the signature of the F tuple, and we do not need to use sanitizable signature scheme to sign F
tuples.

Lazy de-onion encryption: With the symmetric onion encryption, a problem is that as re-keying and re-encrypting
F tuples continuously happen, the size of the corresponding symmetric key lists incrementally increase, incurring
additional overhead in file reading. For a F tuple with re-keying and re-encryption happening t+1 times, the
symmetric key list becomes {k0, k1,..., kt+1}, and a user accessing the F tuple has to download an FK tuple with
the encrypted symmetric key list, and symmetrically decrypt the F tuple t+2 times to recover the file.

Crypt-DAC adopts a lazy de-onion encryption strategy to remove this overhead without incurring obvious
overhead. In specific, the next user writing to a F tuple creates a new F tuple to encrypt the writing content

11

Cloud

Cloud

For each of the m roles r:

F
fn

signature

F

signature
c EncSym (f)

fn

For the F tuple of fn:

FK, (r, vr)
(fn, op, vf)

signature

FK, (r, vr)

signature
c EncPub (k 0)

n n

= EncPub (k0)||...||EncPub (kt+1)

= (EncSym(...EncSym(EncSym(f))…)c

c

EncPub (k 0)

1

2

F

signature
EncSym (f)

fn

(fn, op, vf)n

For each of the m roles r:

ekr,vr ekr,vr

ekr,vr

ekr,vr

k 0

K 0

k0k1kt+1

Fig. 5: Lazy de-onion encryption overview.

by a new symmetric key list containing only one key, and requests the cloud to replace the existing symmetric key
lists in all the FK tuples with permissions to the F tuple with the new symmetric key list.

Suppose a user u wants to write to a file fn. To do so, u generates a new symmetric key k′0 ← GenSym(1n).
Assume that there are m roles having permissions to fn. For each of the m roles r, u encrypts k′0 by the encryption
key ekr,vr of r, and uploads the encryption for the cloud provider to update the FK tuple of r as:

〈FK, (r, vr), (fn, vfn , op), EncPub
ekr,vr

(k′0), signSU 〉

The procedure is shown in Figure 5.(1). u then creates a F tuple encrypting the writing content f ’ by a new
symmetric key list {k′0}:

〈F, fn, EncSym
k′0 (f ’), signr,vr

〉

and requests the cloud provider to replace the existing F tuple with this F tuple. The procedure is shown in Figure
5.(2). After the writing operation, users accessing the F tuple do not suffer the additional overhead incurred by the
symmetric onion encryption.

Lazy de-onion encryption strategy requires the next user writing to a F tuple to additionally update a number
of FK tuples on the access path to the F tuple. Generally, this number is small as in realistic data organizations,
a large number of users often access files through a small number of roles. This observation is validated in the
simulation of realistic workloads over real data sets [14], in which users access files through less than 8 FK tuples
(roles) in average.

V. DESIGN DETAILS

In this section, we describe the various operations in Crypt-DAC. Our system partly integrates the design of
RK, FK and F tuples used in [14]. There are three main classes of operations we consider: permission revocation,
permission assignment, and file operation. The first class includes revoking the permission of a role and revoking the
permission of a user. Both of the operations are conducted by the administrator and integrates our delegation-aware
encryption and symmetric onion encryption strategies. The second class includes adding a new role/assigning a
role to a file with Read/RW permission; and adding a new user/assigning a user to a role. All the operations are
conducted by the administrator. The third class includes file creation, file reading and file writing. A user uploads
his file through the file creation operation and accesses a file through file reading/writing operation. The design of
file writing operation integrates our lazy de-onion encryption strategy to remove the file access overhead incurred
by the symmetric onion encryption strategy.

12

Our design uses the following notation: u is a user, r is a role, p is a permission, fn is a file name of a file f,
c is a ciphertext (either symmetric or public encryption), and v is a version number. SU is the superuser identity
owned by the administrator. We use – to represent a wildcard. The subscript after an operation name identifies who
performs the operation if it is not performed by an administrator.

File management: We use three special files to store metadata for file management. We introduce them as
follows.
• USERS: We use a file named USERS to store records for all the users. A record (u, eku, vku) contains a user

identity u, the encryption key eku of u, and the verification key vku of u.
• ROLES: We use a file named ROLES to store records for all the roles, which is publicly viewable and can only

be changed by the administrator. A record (r, vr, ekvr , vkvr) contains a role identity r, the current version of
the encryption and signing key pairs of r, the encryption key ekvr of r, and the verification key vkvr of r.

• FILES: Also, we use a file named FILES to store records for all the files, which is publicly viewable and can
only be changed by the cloud provider. A record (fn, vfn) contains the file name fn of a file and the current
version vfn of the symmetric key list of fn.

Key management: In our system, the administrator, cloud provider, roles and users have their own keys to
process RK, FK, and F tuples. We introduce them as follows.
• Administrator: The administrator plays a role of super user and has an encryption key pair enkSU of a general

public key encryption scheme and a signing key pair sikSU of a general signature scheme. enkSU and sikSU

are used by the administrator to create a special RK tuple when adding a new role into the system. This RK
tuple means that the administrator is a super user who can access the keys of the role. With this RK tuple, the
administrator can assign a user to the role by distributing the role keys using another RK tuple. Also, ekSU is
used by a user to create a special FK tuple when adding a new file into the system. The FK tuple means that
the administrator is a super user who can access the symmetric key list of the file. With this FK tuple, the
administrator can assign a permission to a role by distributing the symmetric key list using another FK tuple.
Besides, the administrator plays the role of signer in the sanitizable signature scheme and has a signing key
pair (sksignSU , vksignSU) with vksignSU publicly viewable. This key pair is used by the administrator to sign general
RK and FK tuples.

• Cloud provider: The cloud provider plays the role of proxy in the sanitizable signature scheme and has
a sanitization key pair (sksanC.P., vk

san
C.P.) with vksanC.P. publicly viewable. This key pair is used by the cloud

provider to update general RK and FK tuples without invalidating their signatures.
• Role: The administrator generates an encryption key pair enkr,vr

of proxy re-encryption scheme and a signing
key pair sikr,vr

of a general signature scheme for r. enkr,vr
is used by the administrator to encrypt FK tuples,

and sikr,vr
is used by users writing to F tuples to sign their new F tuples.

• User: A user u has an encryption key pair enku of a general public key encryption scheme and a signing key
pair siku of a general signature scheme. enku is used by the administrator to encrypt RK tuples for u, and
siku is used by u to sign its F tuples when adding files into the system.

A. Permission revocation
The class of permission revocation includes revoking the permission of a role and revoking the permission of a

user, as we described below.
revokeUser(u)(Algorithm 1): To revoke the permission of a user u, the administrator revokes the membership of

u from all of its assigned roles. To do so, the administrator invokes REVOKEU(u, r) for each of the assigned roles
r. In REVOKEU(u, r), the administrator first invokes DAE-RK(r) and DAE-FK(r), which jointly implements our
delegation-aware encryption strategy. After the execution of DAE-RK(r) and DAE-FK(r), all the involved RK and
FK tuples are updated. Next, for each of the assigned roles r and for each of the files fn to which r has permission,
the administrator invokes ONION-ENCRYPTION(fn), which implements our symmetric onion encryption strategy.
After the execution of ONION-ENCRYPTION(fn), all the involved F tuples are re-encrypted.

revokeUser(u) revokes the membership of u from all of its assigned roles. After the revocation, u cannot access
any file in the system. Sometimes, however, the administrator may only need to revoke the membership of u from
a certain role r. To do so, the administrator directly invokes REVOKEU(u, r).

revokeRole(r)(Algorithm 2): To revoke the permission of a role r, the administrator revokes the permission of r
from all of its assigned files. To do so, the administrator deletes the record (r, vr, ekr, vkr) from ROLES. For each
permission p = 〈fn, op〉 that r has access to, the administrator invokes REVOKEP(r, 〈fn, Read〉) to revoke p.

In REVOKEP(r, 〈fn, Read〉), the administrator first requests the cloud provider to delete all the RK tuples about
r. After that, users assigned to r cannot access the secret key skr,vr from the cloud anymore. The administrator

13

Algorithm 1 revokeUser(u)
1: For each role r that u is assigned to:
2: REVOKEU(u, r);
3:
4: procedure REVOKEU(u, r)
5: DAE-RK(r);
6: DAE-FK(r);
7: Increment vr in ROLES;
8: For each fn with 〈FK, (r, vr), (fn, vfn , op), c, signSU 〉:
9: ONION-ENCRYPTION(fn);

10:
11: procedure DAE-RK(r)
12: Generate new encryption pair enkr,vr+1 and signing key pair sikr,vr+1 for r;
13: For each 〈RK, u’, (r, vr), c, signSU 〉 with u’ 6= u:
14: Admin:
15: Send EncPub

ek
u′ (dkr,vr+1, skr,vr+1) to C.P.;

16: C.P.:
17: Sanitize(〈RK, u’, (r, vr), c〉, sksign

SU , vksan
C.P., signSU

18: 〈RK, u’, (r, vr + 1), EncPub
ek

u′ (dkr,vr+1, skr,vr+1)〉);
19:
20: procedure DAE-FK(r)
21: For each fn with 〈FK, (r, vr), (fn, vfn , op), c, signSU 〉:
22: Admin:
23: Generate re-key rekr ← dkr,vr+1 – dkr,vr ;
24: Send rekr to C.P.;
25: C.P.:
26: Parse c = EncPub

r,vr
(k1)||...||EncPub

r,vr
(kt);

27: Compute c’ = EncPub
r,vr

(k1)⊕rekr||...⊕rekr||
28: EncPub

r,vr
(kt)⊕rekr ;

29: Sanitize(〈FK, (r, vr), (fn, vfn , op), c〉, sksign
SU ,

30: vksan
C.P., signSU , 〈FK, (r, vr+1), (fn, vfn , op), c’〉);

31:
32: procedure ONION-ENCRYPTION(fn)
33: Admin:
34: Generate new symmetric key kt+1 ← GenSym();
35: Send kt+1 to C.P.;
36: C.P.: 〈F, fn, c, signr,vr 〉:
37: Compute c ← Encsym

kt+1 (c);
38: For each 〈FK, (r’, vr′), (fn, vfn , op), c, signSU 〉:
39: C.P.:
40: Sanitize(〈FK, (r’, vr′), (fn, vfn , op), c〉, sksign

SU ,
41: vksan

C.P., signSU , 〈FK, (r’, vr′), (fn, vfn+1, op),
42: c||EncPub

r′,v
r′

(kt+1)〉);

then requests the cloud provider to delete the FK tuple of r for fn. After that, users assigned to r cannot access the
symmetric key list encrypting the F tuple of fn from the cloud anymore. However, users assigned to r who have
accessed fn may locally cache the symmetric key list to continuously access the F tuple of fn. To forbidden such
illegal accesses, the administrator invokes ONION-ENCRYPTION(fn), which implements our onion-encryption
strategy, as we explained earlier.

revokeRole(r) totally revokes the permission of r from all of its assigned files. After the revocation, members of
r cannot access any file in the system through r. Sometimes, however, the administrator may only need to revoke
the permission of r from a certain file. We notice that revokeRole(r) can be slightly modified to revoke a single
permission of r. There are two cases. To revoke a permission of r from 〈fn, RW〉 to 〈fn, Read〉, the administrator
directly invokes REVOKEP(r, 〈fn, RW〉) to update the FK tuple. After that, the cloud provider does not allow
users assigned to r to write to fn anymore. To totally revoke a permission 〈fn, op〉 of r, the administrator directly
invokes REVOKEP(r, 〈fn, Read〉).

B. Permission assignment
The class of permission assignment includes adding a new user, assigning a user to a role, adding a new role,

and assigning a role to a file with Read/RW permission, as we described below.
addUser(u)(Algorithm 3): When a user u joins the system, it generates a encryption pair enku and a signing

key pair siku for itself and sends a message (u, eku, vku) to the administrator for registration. Upon receiving the
message, the administrator inserts a record (u, eku, vku) for u into USERS.

addRole(r)(Algorithm 4): When the administrator needs to add a new role r, the administrator generates an
encryption key pair enkr,1 and a signing key pair sikr,1 for r, and inserts (r, 1, ekr,1, vkr,1) into ROLES, where 1
means that r is in its first version. The administrator then encrypts the decryption key dkr,1 and signing key skr,1

14

Algorithm 2 revokeRole(r)
1: Remove (r, vr , ekr , vkr) from ROLES;
2: For each permission p = 〈fn, op〉 that r has access to:
3: REVOKEP(r, 〈fn, Read〉);
4:
5: procedure REVOKEP(r, 〈fn, RW〉)
6: Send 〈FK, (r, vr), (fn, vfn , Read), c, signSU 〉 to C.P.;
7: Req C.P. to delete 〈FK, (r, vr), (fn, vfn , RW), c, signSU 〉;
8:
9: procedure REVOKEP(r, 〈fn, Read〉)

10: Req C.P. to delete all 〈RK, –, (r, vr), –, – 〉;
11: Req C.P. to delete 〈FK, (r, vr), (fn, –, –), –, –〉;
12: ONION-ENCRYPTION(fn);
13: Increment vfn in FILES;
14:
15: procedure ONION-ENCRYPTION(fn)
16: Admin:
17: Generate new symmetric key kt+1 ← GenSym();
18: Send kt+1 to C.P.;
19: C.P.: 〈F, fn, c, signr,vr 〉:
20: Compute c ← EncSym

kt+1 (c);
21: For each 〈FK, (r’, vr′), (fn, vfn , op), c, signSU 〉:
22: C.P.:
23: Sanitize(〈FK, (r’, vr′), (fn, vfn , op), c〉, sksign

SU ,
24: vksan

C.P., signSU , 〈FK, (r’, vr′), (fn, vfn+1, op),
25: c||EncPub

r′,v
r′

(kt+1)〉);

Algorithm 3 addUser(u)
1: user u:
2: Compute (eku, dku) ← GenPub();
3: Compute (sku, vku) ← GenSign();
4: Send (u, eku, sku) to admin;
5: Admin:
6: Add (u, eku, sku) to USERS;
7: Return success to u;

by its encryption key ekSU , and uploads an RK tuple containing the encryption to the cloud provider. The RK tuple
means that the administrator is a super user who can access (dkr,1, skr,1). With this RK tuple, the administrator
can assign a user u to r by distributing (dkr,1, skr,1) using another RK tuple(as described in assignU (u, r)).

assignU(u, r)(Algorithm 5): To assign a user u with a membership of role r, the administrator first downloads the
RK tuple 〈RK, SU, (r, vr), c, signSU 〉, which was created by the administrator when adding r into the system. From
the RK tuple, the administrator decrypts the decryption key dkr,vr

and signing key skr,vr
of r, encrypts (dkr,vr

,
skr,vr

) with the public key pku of u, and uploads a new RK tuple containing the encryption to the cloud provider.
This RK tuple enables u to access dkr,vr

and skr,vr
, from which u can further access all the F tuples assigned to r.

assignP(r, 〈f n, op〉)(Algorithm 6): There are two cases to assign a role r with a permission 〈fn, op〉. In the first
case, r has Read access to fn (there exists an FK tuple 〈FK, (r, vr), (fn, vfn , Read), c, signSU 〉) while op is
RW. The administrator downloads the FK tuple, changes Read to RW, and uploads the new FK tuple to the cloud
provider to replace the existing FK tuple. In the second case, r has no permission to fn (there does not exist
〈FK, (r, vr), (fn, vfn , op), c, signSU 〉). The administrator first downloads the FK tuple 〈FK, SU, (fn, RW), c,
signSU 〉, which was created by the administrator when creating fn. From the FK tuple, the administrator decrypts
the symmetric key list {k1,..., kt} of fn, encrypts {k1,..., kt} with the encryption key ekr,vr

of r, and uploads a
new FK tuple containing the encryption to the cloud provider. This FK tuple enables r to access fn with operation
op.

C. File operation
The class of file operation includes file creation, file read and file write, as we described below.
addFile(f n, f, u)(Algorithm 7): When a user u wants to upload a file f, it generates a symmetric key list with

a single key {k}. u then encrypts f with k to create an F tuple and encrypts k with the encryption key eku of
u to create an FK tuple. Both the tuples are signed by the signing key sku of u. The FK tuple means that the
administrator is a super user who can access {k}. With this FK tuple, the administrator can assign a permission
〈fn, op〉 to a role r by distributing {k} using another FK tuple(as described in assignP(r, 〈fn, op〉). Finally, u
uploads both the F tuple and FK tuple to the cloud provider and requests the cloud provider to insert (fn, 1) into
FILES.

15

Algorithm 4 addRole(r)
1: Compute (ekr,1, dkr,1) ← GenPub();
2: Compute (skr,1, vkr,1) ← GenSign();
3: Add (r, 1, ekr,1, vkr,1) to ROLES;
4: Compute c ← EncPub

ekSU
(dkr,1, skr,1);

5: Compute signSU ← SignskSU
(RK, SU, (r, 1), c);

6: Send 〈RK, SU, (r, 1), c, signSU 〉 to C.P.;

Algorithm 5 assignU(u, r)
1: Download 〈RK, SU, (r, vr), c, signSU 〉 from C.P.;
2: Compute (dkr,vr , skr,vr) ← DecPub

dkSU
(c);

3: Compute c’ ← EncPub
eku

(dkr,vr , skr,vr);
4: Compute signSU ← SignskSU

(RK, u, (r, vr), c’);
5: Send 〈RK, u, (r, vr), c’, signSU 〉 to C.P.;

read(f n, u)(Algorithm 8): When a user u wants to read a file fn, u sends a message (u, r, fn) to the cloud provider.
Upon receiving the message, the cloud provider searches: (1) an RK tuple that contains u and r; (2) a FK tuple
that contains r and 〈fn, Read〉; and (3) a F tuple that contains fn. If all of the three tuples can be searched, the
administrator directly returns the three tuples to u. Upon receiving them, u first verifies if the three tuples contain
valid signatures. If yes, u then decrypts the decryption key dkr,vr

of r from the RK tuple by its decryption key
dku. Next, u decrypts the symmetric key list from the FK tuple by dkr,vr

. Finally, u decrypts the file f from the
F tuple by the symmetric key list.

write(f n, u)(Algorithm 9): When a user u wants to write to a file fn, u sends a message (fn, write request) to the
cloud provider. Upon receiving the message, the cloud provider searches: (1) an RK tuple that assigns u with a role
r; (2) a FK tuple that assigns r with a permission (fn, RW). If both the tuples can be searched, the cloud provider
searches all the roles with permission to fn (through their FK tuples), and includes their records in ROLES into
a set role-set. After that, the cloud provider returns role-set as well as the RK tuple 〈RK, u, (r, vr), c, signSU 〉 to
u for whom to execute lazy de-onion encryption strategy on them. Upon receiving role-set and 〈RK, u, (r, vr), c,
signSU 〉, u invokes LAZY DE-ONION(role-set, 〈RK, u, (r, vr), c, signSU 〉), which implements our lazy de-onion
encryption strategy as discussed earlier.

We noticed that in some cases, u does not need to execute lazy de-onion encryption strategy as no revocation
happens subject to fn (i.e., no role with permission to fn is revoked and no user assigned to a role with permission
to fn is revoked). In this case, the cloud provider returns the searched RK tuple and FK tuple. Upon receiving
them, u first decrypts the decryption key dkr,vr

and signing key skr,vr
of r from the RK tuple by its decryption

key dku. u next decrypts the symmetric key list {k} from the FK tuple by dkr,vr
. After that, u encrypts its writing

content by {k} to create a new F tuple, and signs the F tuple by skr,vr
. Finally, u uploads the F tuple and requests

the cloud provider to use it to replace the existing F tuple.

VI. PERFORMANCE ANALYSIS

We compare the performance of Crypt-DAC with IMre and DEre through theoretical analysis. We only concern
four operations: revocation of a user from a role, revocation of a role from a file, file reading, and file writing, as
Crypt-DAC performs well as IMre and DEre in the remainder operations. We summarize the analysis results in
Tables 1, 2, and 3 in Appendix A. We use the following notations:
• (GenSym, GenPub, GenSign): computation overhead of generating encryption key pair, signing key pair and

symmetric key
• (EncPub, DecPub): computation overhead of encrypt/decrypt a message by a public encryption scheme
• |EncPub|: communication overhead of a public encryption
• (Sign, Verify): computation overhead of signing/verification by a signature scheme
• |Sign|: communication overhead of a signature
• (EncSym, DecSym): computation overhead of encrypt/decrypt a message by a symmetric encryption scheme
• |k|: communication overhead of a symmetric key
• |f |: communication overhead of a file
• mems(r): number of users who are members of role r
• files(r): number of files to which r has permissions
• |files(r)|: communication overhead of files to which r has permissions

16

Algorithm 6 assignP(r, 〈fn, op〉)
1: If there exists 〈FK, (r, vr), (fn, vfn , Read), c, signSU 〉 ∧ op = RW:
2: Download 〈FK, (r, vr), (fn, vfn , Read), c,
3: signSU 〉 from C.P.;
4: Compute signSU ← Sign

sk
sign
SU

,vksan
C.P.

(FK, (r, vr),

5: (fn, vfn , RW), c);
6: Send 〈FK, (r, vr), (fn, vfn , RW), c, signSU 〉
7: to C.P.;
8: Req C.P. to delete 〈FK, (r, vr), (fn, vfn , Read),
9: c, signSU 〉;

10: If there does not exist 〈FK, (r, vr), (fn, vfn , op), c, signSU 〉:
11: Download 〈FK, SU, (fn, RW), c, signSU 〉 from C.P.;
12: Parse c =c1||...||ct;
13: Compute {k1 ← DecPub

dkSU
(c1), ..., kt ← DecPub

dkSU
(ct)};

14: Compute c’ ← EncPub
ekr,vr

(k1)||...||EncPub
ekr,vr

(kt);
15: Compute signSU ← Sign

sk
sign
SU

,vksan
C.P.

(FK, (r, vr),

16: (fn, vfn , op), c’);
17: Send 〈FK, (r, vr), (fn, vfn , op), c’, signSU 〉 to C.P.;

Algorithm 7 addFile(fn, f, u)
1: Compute k ← GenSym();
2: Compute c ← EncSym

k (f);
3: Compute c’ ← EncPub

eku
(k);

4: Compute signu ← Signsku (F, fn, c);
5: Compute signu ← Signsku (FK, SU, (fn, Read), c’);
6: Send 〈F, fn, c, signu〉 and 〈FK, SU, (fn, Read), c’, signu〉 to C.P.;
7: Req C.P. to insert (fn, 1) into FILES.

• roles(fn): number of roles which are assigned permissions to file fn
• versions(fn): number of revocations involving fn

A. Revocation of a user from a role
Removing a user u from a role r entails two tasks: (1) creating new RK tuples and FK tuples; and (2) re-keying

and re-encrypting F tuples. We evaluate the performance of the two tasks separately.
Creating new RK tuples and FK tuples: The computation and communication overhead of creating new RK

tuples and FK tuples is shown in Table 1.
Comparing with IMre, Crypt-DAC saves overhead as:

Computation:

mems(r)×Sign+files(r)×(EncPub+Sign)
+(
∑files(r)

i=1 roles(fni))×(EncPub+Sign)

Communication:

mems(r)×|Sign|+files(r)×(|EncPub|+|Sign|)
+(
∑files(r)

i=1 roles(fni))×(|EncPub|+|Sign|)

Comparing with DEre, Crypt-DAC saves overhead as:
Computation:

mems(r)×Sign+files(r)×(DecPub+EncPub+Sign)
+(
∑files(r)

i=1 roles(fni
))×(EncPub+Sign)

Communication:

mems(r)×|Sign|+2files(r)×(|EncPub|+|Sign|)
+(
∑files(r)

i=1 roles(fni
))×(|EncPub|+|Sign|)

Comparing with the previous work, Crypt-DAC saves computation and communication overhead to process public
encryptions and signatures. This efficiency improvement stems from delegation-aware encryption strategy.

17

Algorithm 8 read(fn, u)
1: User u:
2: Send (u, r, fn) to C.P.;
3:
4: C.P.:
5: If there exists an RK tuple 〈RK, u, (r, vr), c, signSU 〉 ∧
6: a FK tuple 〈FK, (r, vr), (fn, vfn , op), c’, signSU 〉 ∧
7: a F tuple 〈F, fn, c”, sign〉:
8: Then
9: Return the RK tuple, FK tuple, and F tuple to u;

10: Else
11: Return ⊥ to u;
12:
13: User u:
14: Compute Verify

vk
sign
SU

,vksan
C.P

((RK, u, (r, vr), c), signSU);

15: Compute Verify
vk

sign
SU

,vksan
C.P

((FK, (r, vr), (fn, vfn , op), c’), signsignSU);

16: Compute Verifyvk((F, fn, c”), sign);
17: If all the signatures are valid:
18: Compute (dkr,vr , skr,vr) ← DecPub

dku
(c);

19: Parse c’ as c1||c2||...cn;
20: For i = n & i > 0 & i++:
21: Compute ki ← DecPub

dkr,vr
(ci);

22: Compute c” ← DecSym
ki

(c”);

Algorithm 9 write(fn, u)
1: User u:
2: Send (fn, write request) to C.P.;
3:
4: C.P.:
5: If there exists an RK tuple 〈RK, u, (r, vr), c, signSU 〉 ∧
6: a FK tuple 〈FK, (r, vr), (fn, vfn , RW), c’, signSU 〉:
7: Then
8: Include all the FK tuples 〈FK, (r’, vr′), (fn, vfn , RW)
9: , c”, signSU 〉 into FK-set;

10: Include all the records (r’, vr′ , ekr′,v
r′

, vkr,v
r′

)
11: in ROLES into role-set;
12: Return role-set and 〈RK, u, (r, vr), c, signSU 〉 to u;
13: Else
14: Return ⊥ to u;
15:
16: User u:
17: LAZY DE-ONION(role-set, 〈RK, u, (r, vr), c, signSU 〉);
18:
19: procedure LAZY DE-ONION(role-set, 〈RK, u, (r, vr), c, signSU 〉)
20: Compute skr,vr ← DecPub

dku
(c);

21: Compute k′1 ← GenSym();
22: Compute c’ ← EncSym

k′1 (f ’);
23: Compute signr,vr ← Signskr,vr

(F, fn, c’);
24: For each record (r’, vr′ , ekr′,v

r′
, vkr′,v

r′
) ∈ role-set:

25: Compute c” ← EncPub
pkr,vr

(k′1);
26: Inserts c” into C-set;
27: Send C-set and 〈F, fn, c’, signr,vr 〉 to C.P.;
28: C.P.:
29: If Accept ← Verifyvkr,vr

(F, fn, c’, signr,vr):
30: For each 〈FK, (r’, vr′), (fn, vfn , RW), c”’, signSU 〉
31: ∈ FK-set and a c” ∈ C-set:
32: Sanitize((FK, (r’, vr′), (fn, vfn , RW), c”’), signSU ,
33: vksign

SU , sksan
C.P., c”);

34: Use the updated FK-set to replace the existing
35: FK tuples;
36: Use 〈F, fn, c’, signr,vr 〉 to replace the existing
37: F tuple;

Re-keying and re-encrypting F tuples: The computation and communication overhead of re-keying and re-
encrypting F tuples is shown in Table 1.

Comparing with DEre, Crypt-DAC saves files(r)×(DecSym+EncSym+Sign) computation overhead and 2×(|files(r)|+files(r)×|Sign|)–
files(r)×|k| communication overhead.

Comparing with IMre, Crypt-DAC costs additional files(r)×GenSym computation overhead and files(r)×|k|
communication overhead.

Comparing with the previous work, Crypt-DAC supports immediate revocation the same as IMre with lightweight

18

computation and communication overhead to process symmetric keys. This overhead is incurred by symmetric onion
encryption strategy.

B. Revocation of a role from a file
Revoking a permission of a role entails two tasks: (1) creating new FK tuples; and (2) re-keying and re-encrypting

F tuples. We evaluate the performance of these two tasks separately.
Creating new FK tuples: The computation and communication overhead of creating FK tuples is summarized

in Table 2.
Comparing with IMre and DEre, Crypt-DAC saves files(r)×(EncPub+Sign) computation overhead and files(r)×(|EncPub|+|Sign|)

communication overhead.
Comparing with the previous work, Crypt-DAC saves computation and communication overhead to process public

encryptions and signatures. This efficiency improvement stems from delegation-aware encryption strategy.
Re-keying and re-encrypting F tuples: The computation and communication overhead of re-keying and re-

encrypting F tuples is summarized in Table 2.
Comparing with IMre, Crypt-DAC saves GenSym+DecSym+EncSym+Sign computation overhead and 2×(|file|+|Sign|)

communication overhead.
Comparing with DEre, Crypt-DAC costs additional files(r)×GenSym computation overhead and files(r)×|k|

communication overhead.
Comparing with the previous work, Crypt-DAC supports immediate revocation the same as IMre with lightweight

computation and communication overhead to process symmetric keys. This overhead is incurred by symmetric onion
encryption strategy.

C. File reading/writing
File reading: The computation and communication overhead of reading a file fn is summarized in Table 3. In

comparison, Crypt-DAC performs well as the previous work when no revocation involving fn happens. On the
other hand, Crypt-DAC costs additional version(fn)×DecPub+version(fn)×DecSym computation overhead when
revocations involving fn happen. Also, Crypt-DAC performs well as the previous work when no revocation involving
fn happens. On the other hand, Crypt-DAC costs additional version(fn)×|EncPub| communication overhead when
revocations involving fn happen.

Comparing with the previous work, Crypt-DAC performs well as the previous work in the non-revocation case,
and costs additional computation and communication overhead to process public encryptions and signatures in
the revocation case. This overhead is incurred by symmetric onion encryption strategy. We also notice that the
performance of Crypt-DAC in the revocation case can be reduced to that in the non-revocation case once the file
is written by a user through lazy de-onion encryption strategy.

File writing: The computation and communication overhead of writing to a file fn is summarized in Table 3. In
comparison, Crypt-DAC performs well as the previous work when no revocation involving fn happens. On the other
hand, Crypt-DAC costs additional roles(fn)×(EncPub+Verify) computation overhead when revocations involving
fn happen. Also, Crypt-DAC performs well as the previous work when no revocation involving fn happens. On the
other hand, Crypt-DAC costs additional roles(fn)×(|EncPub|+|Sign|) communication overhead when revocations
involving fn happen.

Comparing with the previous work, Crypt-DAC performs well as the previous work in the non-revocation case,
and costs additional computation and communication overhead to process public encryptions and signatures in the
revocation case. This overhead is incurred by lazy de-onion encryption strategy.

VII. SECURITY ANALYSIS

We analyze the security of Crypt-DAC using the access control expressiveness framework known as parameterized
expressiveness [43]. In particular, we consider three fundamental security properties: correctness, AC-preservation,
and safety. We show that IMre and Crypt-DAC achieve all of the three security properties and DEre cannot achieve
safety.

At a high level, correctness ensures that an execution environment cannot determine whether it is interacting
with the original RBAC0 system or with a candidate access control system through basic inputs and outputs. AC-
preservation ensures that the authorization requests of the RBAC0 system is asked directly in the candidate access
control system, rather than being translated to any other queries. Finally, safety ensures that the candidate access
control system does not grant or revoke unnecessary permissions during the implementation of a single RBAC0

19

40 60 80 100 120 140 160

IMre 109.0965 111.5311 110.8017 110.959 115.7276 117.2642 115.6627
DEre 126.4728 129.0733 128.4495 129.3505 133.5695 135.159 130.9068
Crypt-DAC 5.6 6.2 7.2 8.3 9.1 10 11.4

120

140

160

20

40

60

80

100

0

20

40 60 80 100 120 140 160 180 200
IMre DEre Crypt‐DAC

q

(a) n=200 and k=9, change m from 40 to 200

40 60 80 100 120 140 160

IMre 35.57712 50.64206 61.5204 63.51295 73.74494 84.54515 95.49776
DEre 38.10545 51.33968 61.81607 73.00236 86.01371 94.66209 110.9345
Crypt-DAC 14.1 14.3 14.6 14.2 14.6 13.6 14.58

100

120

140

20

40

60

80

0

20

40 60 80 100 120 140 160 180 200
IMre DEre Crypt‐DAC

q

(b) m=200 and k=9, change n from 40 to 200

1 2 3 4 5 6 7

IMre 44.67332 62.5676 71.46026 75.44215 93.97276 101.8357 111.8501
DEre 49.62391 58.19067 76.24953 79.95369 87.26144 99.27358 112.0279
Crypt-DAC 15 13.5 14.3 13.9 14.27 15.4 15.45

120

140

160

20

40

60

80

100

0

20

1 2 3 4 5 6 7 8 9
IMre DEre Crypt‐DAC

q

(c) m=200 and n=200, change k from 1 to 9

Fig. 6: Time (seconds) of creating new RK and FK tuples.

command. The formal definitions of the three security properties can be found in [43]. As the security analysis of
IMre is similar with that of Crypt-DAC, we only focus on Crypt-DAC and DEre here. We get our result in theorem
1.

Theorem 1: Crypt-DAC system implements RBAC0 with correctness, AC-preservation, and safety achieved.
The full proof of Theorem 1 can be found in Appendix A. We first formalize Crypt-DAC under the parameterized

expressiveness framework. We then provide a formal mapping from Crypt-DAC to RBAC0. We show that this
mapping achieves correctness, AC-preservation, and safety.

As Crypt-DAC inherits the design of [14], our proof is also similar with the proof of [14]. The difference
is our formalization of the query auth(u, p), which asks whether a user u has a permission p=(fn, op). We
formalize auth(u, (fn, Read)) in a candidate access control system as whether u can decrypt the F tuple 〈F,
fn, c, signr,vr

〉. This formalization includes the fact that in a revocation, if the involved F tuples are not timely re-
keyed and re-encrypted, the revoked users can still access the files encrypted in the F tuples. With this formalization,
DEre has to use revokeUser and write to implement a revocation operation in RBAC0 to achieve correctness. This
implementation, however, breaks safety. In specific, to execute a revocation operation in RBAC0, DEre sequentially
executes revokeUser and write. The execution of revokeUser generates an intermediate state, in which a query auth(u,
(fn, Read)) is TRUE for a revoked user u and a file fn involved in the revocation. This query, however, is FALSE
in the end state of RBAC0 generated by the execution of revocation.

VIII. SYSTEM EVALUATION

We implement IMre, DEre, and Crypt-DAC on AliCloud. Our goal is to compare the performance of the three
systems at the administrator side and the user side. We build the cryptographic schemes used in the three systems
based on two libraries: Crypto++ [44] and Charm [45]. We select the AES scheme with 128 bit keys and instantiate
the El Gamal encryption scheme, the DSA signature scheme, and the chameleon hash function with a security
parameter of 1024 bits.

Garrison et al. [14] use a simulation framework [46] to simulate a realistic workload over 6 real datasets, and
use the workload to evaluate the performance of DEre. To reflect the performance of IMre, DEre, and Crypt-DAC
in realistic file access scenarios, we extract three invariants from the simulation results in [14] to guide parameter
selection in our experiments:
• To revoke a user from a role, the total number of involved RK and FK tuples that need to be updated falls in

[0, 2000]
• To revoke a user from a role, the total number of involved F tuples that need to be re-keyed and re-encrypted

falls in [0, 200]
• The number of FK tuples assigned to a F tuple falls in [0, 8]
Micro benchmarks: We evaluate five basic operations read(fn, u), write(fn, u), revokeUser(u, r), addFile(fn, f,

u), revokeUser(r, fn) in Crypt-DAC to give an intuitive understanding of its performance. In specific, we evaluate
(1) reading 100 KB file data with no revocation; (2) writing 100 KB file data with no revocation; (3) uploading
100 KB file data; (4) revoking a user u from a role r with users(r)=5, files(r)=2, and roles(fn) = 5 for each of the
two files; and (5) revoking a role r from a file fn with roles(fn) = 5.

We summarize the results in Table 1. From the table, we can see that the most expensive operation is to revoke
a user from a role, which costs 2.2 seconds. All the other operations can be completed within 30 mili seconds. The

20

40 80 120 160 200
50 M 10.12 20.25 30.36 40.5 50.650 M 10.12 20.25 30.36 40.5 50.6
100 M 24.84 49.68 74.52 99.36 124.2

99.36

124.2
120

140 minutes

30 36
40.5

50.649.68

74.52

99.36

40

60

80

100

10.12
20.25

30.3624.84

0

20

40

40 80 120 160 200

50 M 100 M

(a) Performance of IMre

40 80 120 160 200
2.024 4.09 6.59 9.08 10.64

9.08

10.64

8

10

12 seconds

2.024

4.09

6.59

4

6

0

2

40 80 120 160 200

(b) Performance of Crypt-DAC

Fig. 7: Performance in file data updating

reason is that revoke a user from a role requires generation of new encryption and signing key pairs for the role,
which is expensive. We further find that the time to generate encryption and signing key pairs is not fixed, and can
be varied from 0.25 seconds to 8.9 seconds in our experiments. We generate encryption and signing key pairs 1000
times and compute the average time as 2.5 seconds. We will use this time in our subsequent experiments.

Revocation: We evaluate the performance of IMre, DEre, and Crypt-DAC in revoking a user u from a role r.
We first evaluate the time of the three systems in creating new RK and FK tuples at the administrator side. This
experiment is affected by three parameters: (1) m users remaining in r; (2) n F tuples to which r has permissions;
and (3) each F tuple has k roles (FK tuples) having permissions. To measure the effect of the three parameters, we
conduct three sub groups of experiments. In the first group, we fix n=200 and k=9, and changes m from 40 to 200.
In the second group, we fix m=200 and k=9, and changes n from 40 to 200. In the third group, we fix m=200 and
n=200 and changes k from 1 to 9. In all the three groups of experiments, we preserve the invariant that the total
number of involved RK and FK tuples that need to be updated falls in [0, 2000]. We show the experiment results
in Figure 6.

From Figure 6, we observe that as the number of RK and FK tuples increases, the time cost of IMre and DEre is
6 times higher than Crypt-DAC. This validates the advantage of our delegation-aware encryption strategy to reduce
the overhead of policy data updating at the administrator side. We further observe that the time cost of IMre and
DEre increases fast as n and k increases. The reason is that both IMre and DEre need to update n×k FK tuples for
the n×k roles with permissions to the n files. When the parameter n (k) increases by a constant α, the administrator
needs to update α×k (n×α) additional FK tuples. On the other hand, the time cost of Crypt-DAC is not affected
by n and k as the administrator does not need to update the n×k FK tuples due to the design of delegation-aware
encryption.

We next evaluate the time of IMre and Crypt-DAC in re-keying and re-encryption of F tuples at the administrator
side. We do not consider DEre as it incurs no overhead at the administrator side. This experiment is affected by
two parameters: file size and number of F tuples that need to be re-encrypted. We consider two sizes of a file: 50
M and 100 M. To preserve the invariant that the number of F tuples that need to be re-encrypted falls in [0, 200],
we change this number from 40 to 200. We show the experiment results in Figure 7.

From Figure 7, we observe that the time cost of IMre is prohibitive and increases fast as the file size and the

TABLE I: Performance of basic operations in Crypt-DAC

Operation Time

Read 100KB file data 20.6 mSec

Write 100KB file data 14 mSec

Upload 100KB file data 12.4 mSec

Revoke a user from a role 2.2 Sec

Revoke a role from a file 2.9 mSec

Generate encryption and signing key pairs 2.5 Sec

21

(10 M, 5)(50 M, 5) (100 M, 5)(10 M, 10)(50 M, 10)(100 M, 10)
IMre/DEre 2.28 8.31 22.52 2.28 8.31 22.52IMre/DEre 2.28 8.31 22.52 2.28 8.31 22.52
Crypt-DAC 0.57 2.78 5.56 1.26 6.02 12.18

12.18
30

35

40 seconds

22.52 22.52
2.78

5.56

6.02

12.18

10

15

20

25

30

2.28
8.31

2.28
8.31

0.57

2.78

1.26
0

5

10

(10 M, 5) (50 M, 5) (100 M, 5) (10 M, 10) (50 M, 10) (100

M, 10)

IMre/DEre Crypt-DAC

Fig. 8: Performance in file reading

number of F tuples increases. When processing 200 F tuples with 100 M file size, IMre costs more than 2 hours.
On the other hand, Crypt-DAC costs about 10 seconds under the same parameters. This validates the advantage of
our symmetric onion encryption strategy to reduce the overhead of file data updating at the administrator side. Also,
we observe that the time cost of Crypt-DAC is not affected by the file size. The reason is that the administrator
only needs to generate and send symmetric keys for F tuples regardless of their file size.

File reading/writing: We evaluate the performance of IMre, DEre, and Crypt-DAC in file reading/writing. We
first consider reading case. This experiment is affected by two parameters: file size and number of revocations
involving a file. We vary the file size from 10 M, 50 M to 100 M and the number of revocations from 5 to 10. We
show the experiment results in Figure 8. From the Figure, we can see that Crypt-DAC costs more time comparing
with IMre and DEre. This validates that symmetric onion encryption incurs additional file reading overhead. When
the number of revocations is small, the additional time cost of Crypt-DAC is acceptable, i.e., just several seconds.
Considering the performance advantage of symmetric onion encryption in revocation, we believe that this additional
cost is valuable. We also observe that the additional cost increases as the number of revocations increases. To prevent
the cost accumulates over time, we rely on lazy de-onion encryption to periodically remove the overhead. Besides,
we can also rely on the administrator to use part of its resource saved in revocation to help to remove the overhead.

We next consider writing case. This experiment is affected by one parameter: number of FK tuples assigned to
a F tuple. To preserve the invariant that the number of FK tuples assigned to a F tuple falls in [0, 8], we set this
parameter to 4. We show the experiment results in Table 2. From the table, we can see that Crypt-DAC incurs
lightweight additional time cost comparing with IMre and DEre. This validates the advantage of our lazy de-onion
encryption strategy to remove the reading overhead incurred by symmetric onion encryption without incurring
obvious overhead. Also, we observe that the time cost of Crypt-DAC converges to IMre and DEre as the file size
increases. In 100 M case, Crypt-DAC only incurs 1.7% additional time cost. The reason is that when the file size
becomes large, file communication dominates the whole time cost, outweighing the additional time cost incurred
by Crypt-DAC.

IX. CONCLUSION

We presented Crypt-DAC, a system that provides practical cryptographic enforcement of dynamic access control
in the potentially untrusted cloud provider. Crypt-DAC meets its goals using three techniques: delegating the cloud
to update the policy data in a privacy and verifiability-preserving manner using a delegation-aware encryption
strategy, avoiding expensive re-encryptions of file data at the administrator side using a symmetric onion encryption

TABLE II: Performance in file writing

File size IMre/DEre Crypt-DAC Additional cost

10 M 2.96 Sec 3.21 Sec 7.8%

50 M 8.67 Sec 8.91 Sec 2.7%

100 M 17.58 Sec 17.87 Sec 1.7%

22

strategy, and a lazy de-onion encryption strategy to remove the file reading overhead incurred by the symmetric
onion encryption strategy. Our theoretical and system evaluations show that Crypt-DAC achieves a balance between
efficiency and security in access revocation.

REFERENCES

[1] J. Bethencourt, A. Sahai, and B. Waters, Ciphertext-policy attribute based encryption, in IEEE S&P, 2007.
[2] V. Goyal, A. Jain, O. Pandey, and A. Sahai, Bounded ciphertext policy attribute based encryption, in ICALP, 2008.
[3] V. Goyal, O. Pandey, A. Sahai, and B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, in ACM CCS,

2006.
[4] J. Katz, A. Sahai, and B. Waters, Predicate encryption supporting disjunctions, polynomial equations, and inner products, in EUROCRYPT,

2008.
[5] S. Muller and S. Katzenbeisser, Hiding the policy in cryptographic access control, in STM, 2011.
[6] R. Ostrovsky, A. Sahai, and B. Waters, Attribute-based encryption with non-monotonic access structures, in ACM CCS, 2007.
[7] A. Sahai, and B. Waters, Fuzzy identity-based encryption, in EUROCRYPT, 2005.
[8] T. Ring, Cloud computing hit by celebgate, http://www.scmagazineuk. com/cloud-computing-hit-by-celebgate/article/370815/, 2015.
[9] V. Goyal, O. Pandey, A. Sahai, and, B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, in ACM CCS,

2006.
[10] A. Boldyreva, V. Goyal, and V. Kumar, Identity-based encryption with efficient revocation, in ACM CCS, 2008.
[11] M. Green, and G. Ateniese, Identity-based proxy re-encryption, in ACNS, 2007.
[12] A. Sahai, H. Seyalioglu, and B. Waters, Dynamic credentials and ciphertext delegation for attribute-based encryption, in CRYPTO, 2012.
[13] X. Jin, R. Krishnan, and R. S. Sandhu, A unified attribute-based access control model covering DAC, MAC and RBAC, in DDBSec, 2012.
[14] W. C. Garrison III, A. Shull, S. Myers, and, A. J. Lee, On the Practicality of Cryptographically Enforcing Dynamic Access Control Policies

in the Cloud, in IEEE S&P, 2016.
[15] R. S. Sandhu, Rationale for the RBAC96 family of access control models, in proceedings of ACM Workshop on RBAC, 1995.
[16] A. Ivan, and Y. Dodis, Proxy Cryptography Revisited, in proceedings of NDSS, 2003.
[17] M. Blaze, G. Bleumer, and M. Strauss, Divertible protocols and atomic proxy cryptography, in proceedings of Eurocrypt, 1998.
[18] G. Ateniese, K. Fuy, M. Green, and S. Hohenbergery, Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed

Storage, in proceedings of NDSS, 2003.
[19] T. E. Gamal, A Public Key Cryptosystem and a Signature Scheme Based on the Discrete Logarithm, in IEEE Transactions of Information

Theory, pages 31(4): 469C472, 1985.
[20] G. Ateniese, D. H. Chou, B. Medeiros, and G. Tsudik, Sanitizable Signatures, in proceedings of ESORICS, 2005.
[21] AMAZON. Amazon s3 service level agreement, 2009. http: //aws.amazon.com/s3-sla/.
[22] MICROSOFT CORPORATION. Windows Azure Pricing and Service Agreement, 2009. http://www.microsoft.com/ windowsazure/pricing/.
[23] D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, SIAM Journal on Computing, vol. 32, no. 3, 2003.
[24] M. Green, S. Hohenberger, and B. Waters, Outsourcing the decryption of abe ciphertexts, in USENIX Security, 2011.
[25] B. Libert and D. Vergnaud, Adaptive-id secure revocable identity-based encryption, in CT-RSA, 2009.
[26] J. Katz, A. Sahai, and B. Waters, Predicate encryption supporting disjunctions, polynomial equations, and inner products, in EUROCRYPT,

2008.
[27] E. Shen, E. Shi, and B. Waters, Predicate privacy in encryption systems, in TCC, 2009.
[28] F. Wang, J. Mickens, N. Zeldovich, and V. Vaikuntanathan, Sieve: Cryptographically Enforced Access Control for User Data in Untrusted

Clouds, in NSDI, 2016.
[29] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang, Enabling security in cloud storage SLAs with CloudProof, in USENIX

ATC, 2011.
[30] B. H. Kim, and D. Liey, Caelus: Verifying the Consistency of Cloud Services with Battery-Powered Devices, in IEEE S&P, 2015.
[31] D. Boneh, K. Lewi, H. Montgomery, and A. Raghu Raghunathan, Key homomorphic PRFs and their applications, in CRYPTO, 2013.
[32] M. Maffei, G. Malavolta, M. Reinert, and D. Schr?der, Privacy and access control for outsourced personal records, in IEEE S&P, 2015.
[33] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman, Shroud: ensuring private access to large-scale data in the data

center, in FAST, 2013.
[34] E. Gudes, The Design of a Cryptography Based Secure File System, IEEE Transactions on Software Engineering, vol. 6, no. 5, 1980.
[35] S. G. Akl and P. D. Taylor, Cryptographic solution to a problem of access control in a hierarchy, TOCS, vol. 1, no. 3, 1983.
[36] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, Dynamic and efficient key management for access hierarchies, TISSEC, vol. 12,

no. 3, 2009.
[37] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and P. Samarati, Enforcing dynamic write privileges in data

outsourcing, Computers & Security, vol. 39, 2013.
[38] A. L. Ferrara, G. Fuchsbauer, B. Liu, and B. Warinschi, Policy privacy in cryptographic access control, in CSF, 2015.
[39] L. Ibraimi, Cryptographically enforced distributed data access control, Ph.D. dissertation, University of Twente, 2011.
[40] D. Nali, C. M. Adams, and A. Miri, Using mediated identity-based cryptography to support role-based access control, in ISC 2004, 2004.
[41] A. L. Ferrara, G. Fuchsbauer, and B. Warinschi, Cryptographically enforced RBAC, in CSF, 2013.
[42] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, Secure attributebased systems, in ACM CCS, 2006.
[43] T. L. Hinrichs, D. Martinoia, W. C. Garrison III, A. J. Lee, A. Panebianco, and L. Zuck, Application-sensitive access control evaluation

using parameterized expressiveness, in CSF, 2013.
[44] https://www.cryptopp.com/
[45] J. A. Akinyele, M. D. Green, and A. D. Rubin, Charm: A Framework for Rapidly Prototyping Cryptosystems, in Journal of Cryptographic

Engineering, 2013.
[46] W. C. Garrison III, A. J. Lee, and T. L. Hinrichs, An actor-based, application-aware access control evaluation framework, in SACMAT,

2014.

APPENDIX A
SUMMARY OF COMPLEXITY ANALYSIS

We summarize the complexity analysis of IMre, DEre and Crypt-DAC in Tables 1, 2, and 3.

23

TABLE III: Performance of revoking a user from a role

Crypt-DAC Previous

RK and FK Computation (GenPub+GenSign)+mems(r)×(EncPub) IMre: (GenPub+GenSign)+mems(r)×(EncPub+Sign)
+files(r)×(EncPub+Sign)

+(
∑files(r)

i=1 roles(fni))×(EncPub+Sign)
DEre: (GenPub+GenSign)+mems(r)×(EncPub+Sign)

+files(r)×(DecPub+EncPub+Sign)
+(
∑files(r)

i=1 roles(fni))×(EncPub+Sign)

Communication mems(r)×|EncPub| IMre: mems(r)×(|EncPub|+|Sign|)
+files(r)×(|EncPub|+|Sign|)

+(
∑files(r)

i=1 roles(fni))×(|EncPub|+|Sign|)
DEre: mems(r)×(|EncPub|+|Sign|)

+2files(r)×(|EncPub|+|Sign|)
+(
∑files(r)

i=1 roles(fni))×(|EncPub|+|Sign|)

F Computation files(r)×GenSym IMre: files(r)×(GenSym+DecSym+EncSym+Sign)
DEre: —

Communication files(r)×|k| IMre: 2×(|files(r)|+files(r)×|Sign|)
DEre: —

TABLE IV: Performance of revoking a role from a file

Crypt-DAC Previous

RK and FK tuples Computation — files(r)×(EncPub+Sign)

Communication — files(r)×(|EncPub|+|Sign|)

F tuples Computation files(r)×GenSym; IMre: GenSym+DecSym+EncSym+Sign
DEre: —

Communication files(r)×|k| IMre: 2×(|file|+|Sign|)
DEre: —

TABLE V: Performance of file reading/writing

Crypt-DAC: (1) non-revocation; (2) revocation Previous

File reading Computation (1): 2(DecPub+Verify)+DecSym+Verify 2(DecPub+Verify)+DecSym+Verify
(2): 2(DecPub+Verify)+version(fn)×DecPub+

version(fn)×DecSym+Verify

Communication (1): 2(|EncPub|+|Sign|)+|f |+|Sign| 2(|EncPub|+|Sign|)+|f |+|Sign|
(2): 2(|EncPub|+|Sign|)+version(fn)×|EncPub|+

|f |+|Sign|

File writing Computation (1): 2(DecPub+Verify)+EncSym+Sign 2(DecPub+Verify)+EncSym+Sign
(2): roles(fn)×(EncPub+Verify)+EncSym+Sign

Communication (1): 2(|EncPub|+|Sign|)+|f |+|Sign| 2(|EncPub|+|Sign|)+|f |+|Sign|
(2): roles(fn)×(|EncPub|+|Sign|)+|f |+|Sign|

24

APPENDIX B
FORMALIZATION OF CRYPT-DAC

To prove theorem 1, we need to represent Crypt-DAC as a formal access control system. We use m as the
symmetric-key size. For signatures, we assume that hash-and-sign is used, where the message is hashed with a
collision-resistant hash function and then digitally signed.

Definition 1 access control system: As defined in [43], a formal access control system includes following
components:

1) S: a set of states
2) R: a set of access control requests
3) Q: a set of queries including auth(r) for every r ∈ R
4) �: a subset of S × Q (the entailment relation)
5) L: a set of labels
6) Next: States(M) × L → States(M) (the transition function)
We represent Crypt-DAC as a formal access control system as follows.
1) S: (USERS, ROLES, FILES, FS)

• USERS: a list of (u, enku, siku) records containing user names and their encryption and signing key
pairs

• ROLES: a list of (r, vr, enkr, vr , sikr, vr) records containing role names, version numbers, and their
encryption and signing key pairs

• FILES: a list of (fn, vfn) records containing file names and version numbers
• FS: the set of RK, FK, and F tuples stored on the cloud provider

2) R: (u, p)
• (u, p) for whether user u has permission p

3) Q: (RK, FK, Role, auth)
• RK(u, r) returns whether a user is a member of a role:

∃(c, sign) (〈RK, u, (r, vr), c, sign〉 ∈ FS ∧ Accept = VerifyvkSU
((〈RK, u, (r, vr), c〉), sign)

• FK(r, (fn, op)) returns whether a role has a permission for the latest version of a file.
∃(c, sign) (〈FK, (r, vr) (fn, vfn , op), c, SU, sign〉 ∈ F ∧ sign = SignskSU

(〈FK, (r, vr), (fn, vfn , op), c,
SU〉)

• Role(r) returns whether a role exists in the system:
∃(v, k1, k2) (r, v, k1, k2) ∈ ROLES

• auth(u, p) returns whether a user has a permission: If op = Write:
∃r (RK(u, r) ∧ FK(r, p))

If op = Read:
∃F Dec(F, u)

4) �: the entailment relation is implicitly defined in the design of Crypt-DAC
5) L: all of the operations (revokeUser, revokeRole, addUser, addRole, assignU, assignP, addFile, read, write) in

Crypt-DAC
6) Next: the transition function is implicitly defined in the design of Crypt-DAC

APPENDIX C
IMPLEMENTATION OF RBAC0 BY CRYPT-DAC

We show that Crypt-DAC implements RBAC0 with correctness, AC-preserving, and safety achieved.
Definition 2 implementation: For RBAC0 and a candidate access control system Y, an implementation has fields

(α, σ, π):
• State-mapping σ: States(RBAC0) → States(Y)
• Label mapping α: States(Y) × Labels(RBAC0) → Labels(RBAC0)∗

• Query mapping π: for each q ∈ Queries(RBAC0), a function πq that maps each theory for Y to either true or
false

We first show a implementation of RBAC0 by Crypt-DAC:
1) State mapping α:

For each u ∈ U ∪ {SU}

25

• Generate enku ← GenPub and siku ← GenSign.
• Add (u, eku, vku) to USERS

Let FS = {}
Let ROLES and FILES be blank. For each R(r) ∈ M:
• Generate enkr,1 ← GenPub and sikr,1 ← GenSign.
• Add (r, 1, ekr,1, vkr,1) to ROLES.
• Update FS = FS ∪ {〈RK, SU, (r, 1), EncPub

ekSU
(dkr,1, skr,1), signSU 〉}.

For each P(fn, u) ∈ M:
• Add (fn, 1) to FILES
• Generate k ← GenSym

• Update FS = FS ∪ {〈F, fn, EncSym
k (f), signu〉}

• Update FS = FS ∪ {〈FK, (SU, 1), (fn, 1, RW), EncPub
ekSU

(k), signu 〉}
For each UR(u, r) ∈ M:
• Find 〈FK, (SU, 1), (r, 1, RW), c, sign〉 ∈ FS
• Update FS = FS ∪ {〈RK, u, (r, 1), EncPub

eku
(dkr,1, skr,1), signSU 〉}.

For each PA(r, (fn, op)) ∈ M:
• Find 〈FK, (SU, 1), (fn, 1, RW), EncPub

ekSU
(k), signSU 〉 ∈ FS

• Update FS = FS ∪ {〈FK, (r, 1), (fn, 1, RW), EncPub
ekr,1

(k), signSU 〉}
Output (FS, ROLES, FILES)

2) Label mapping σ: The label mapping α simply maps any RBAC0 label, regardless of the state, to the
Crypt-DAC label.

3) Query mapping π:

πUR(u,r)(T) = RK(u, r) ∈ T
πPA(r,p)(T) = FK(r, p) ∈ T
πR(r)(T) = Role(r) ∈ T

πauth(u,p)(T) = auth(u, p) ∈ T
for each theory T of Crypt-DAC.

We next show that this implementation achieves correctness, AC-preserving, and safety. For the definition of
congruence, please refer to [14].

Definition 3 correctness: Consider a workload W, a candidate access control system Y, and an implementation
(α, σ, π). Correctness states that the implementation is correct if (1) σ preserves π: for every workload state x we
have Th(x) = π(Th(σ(x)) and (2) α congruence-preserves σ, which means the following: For all n ∈ N, states x0,
and labels l1, ..., ln, let y0 = σ(x0), xi = Next(xi-1, li) for i = 1, ..., n, and yi = terminal(yi-1, α(yi-1, li)) for i = 1,
..., n. Then α congruence-preserves σ means that yi

∼= σ(xi) for all i = 1, ..., n.
We prove that Crypt-DAC implements RBAC0 with correctness achieved:
1) σ preserves π: To prove this, we show that for each RBAC0 state x and query q, x � q if and only if

πq(Th(σ(x))) = TRUE. As the proof is similar with that of [14], we just omit the details here.

2) α congruence-preserves σ: To prove this, we show that for each RBAC0 state x and label l, and state
mappings σ’ congruent to σ, we have:

σ′(next(x,l)) ∼= terminal(σ′(x), α(σ′(x), l))

We consider each RBAC0 label l separately. As the proof is similar with that of [14] except revokeUser and
revokeRole, we just show the two labels here.
• revokeU: If l is an instance of revokeU(u,r), then x’ = x \ UR(u, r). Let (ekr, vr+1, dkr, vr+1) ← GenPub

and (skr, vr+1, vkr, vr+1) ← GenSig. Let T0 = {(u’, cu′ , sig) | 〈RK, u’, (r, vr), cu’, sig〉 ∈ FS} and T1 =
{fn | ∃(op, cfn , sig).(〈FK, (r, vr), (fn, vfn , op), vfn , cfn , sig〉 ∈ FS}. For each fn ∈ T1, let kfn ←
GenSym, Tfn = {(op’, cu, sig) | 〈FK, (r, vr), (fn, vfn , op’), cu, sig〉 ∈ FS} and T ′fn = {id, op’, cid, sig)
| 〈FK, id, (fn, vfn , op’), cid, sig〉 ∈ FS}. Then:

σ′(x’) = σ′(x \ UR(u, r))
=σ′(next(x, revokeU(u, r)))

26

∼= σ′(x)\{FS(〈RK, u’, (r, vr), cu′ ,
sig〉) | (u’, cu′ , sig)∈T0}∪{FS(〈RK, u’,
(r, vr + 1), EncPub

eku’
(dkr,vr+1, skr,vr+1), sig〉) | (u’, cu′ , sig) ∈ T0 ∧ u’ 6=u}

\{FS(〈FK, (r, vr), (fn, vfn , op’), cv ,
sig〉) | fn ∈ T1 ∧ (op’, cv , sig)∈Tfn}
∪{FS(〈FK, (r, vr + 1),(fn, vfn , op’),
cv ⊕ rekr||EncPub

ekr,vr+1
(kfn), sig〉)

| fn ∈ F ∧ (op’, cv , sig) ∈ Tfn}
\{FS(〈FK,id, fn, vfn , op’), cid
, sig〉) | fn ∈ T1 ∧ (id, cid, sig) ∈ T’fn}
∪{FS(〈FK, id, (fn, vfn+1, op’), cid
||EncPub

ekid
(kfn), sig〉) | fn ∈ T1

∧ (id, cid, sig) ∈ T’fn}
\ {FS(〈F, fn, cfn , sig〉) | (fn) ∈ T1}
∪{FS(〈F, fn, EncSym

kfn
(cfn), sig〉)

| (fn) ∈ T1}
∪{FILES(fn, vfn+1) | fn ∈ F}
\ {FILES(fn, vfn) | fn ∈ F}
∪ ROLES(r, vr+1, ek(r,vr+1),
vk(r,vr+1))
\ ROLES(r, vr, ek(r,vr), vk(r,vr))
=terminal(σ′(x), α′(σ′(x),l))

• revokeP: If l is an instance of revokeP(r, p) with p = 〈fn, op〉, then x’ = x\PA(r, p). We consider two cases:

– If op = RW, then let T = {(r, c, sig) | 〈FK, (r, vr), (fn, vfn , RW), c, sig〉}. Then
σ′(x’) = σ′(x \ PA(r, p))
=σ′(next(x’, revokeP(r, p)))
=σ′(x) \ {FS(〈 FK, (r, vr), (fn, vfn , RW),
c, sig〉) | (r, c, sig) ∈ T }
∪{FS(〈FK, (r, vr),(fn, vfn , Read),
c, sig〉) | (r, c, sig) ∈ T}
=terminal(σ′(x), α(σ′(x), l)).

– If op = Read, then let k’ ← GenSym, T = {(op’, c, sig) | 〈FK,(r, vr), (fn, vfn , op’), c, sig〉 ∈ FS},
T1 = {(id, op’) | id 6= r ∧ ∃(cid, sig).(〈FK, id, (fn, vfn , op’), cid, sig〉 ∈ FS)}, and T2 = {(fn) | 〈F, fn,
, cfn , SU, sig〉 ∈ FS)}. Then
σ′(x’) = σ′(x \ PA(r, p))
=σ′(next(x),assignP(r, p)))
∼=σ′(x) \ {FS(〈FK, (r, vr), (fn, vfn , op’),
c, sig〉) | (op’, c, sig) ∈ T}
\ {FS(〈FK, id, (fn, vfn , op’),
cid, sig〉) | (id, op’) ∈ T1}
∪{FS(〈FK, id, (fn, vfn , op’), vfn+1,
cid||EncPub

ekid
(k’), sig〉) | (id, op’) ∈ T1}

\ {FS(〈F, fn, cfn , sig〉) | (fn) ∈ T2}
∪{FS(〈F, fn, EncSym

k′ (cfn), sig〉)
| (fn) ∈ T2}
∪ FILES(fn, vfn+1) \ FILES(fn, vfn)
=terminal(σ′(x), α(σ′(x), l)).

Definition 4 AC-preserving: An implementation with query-mapping π is called AC-preserving if for all workload
states s and authorization requests r we have that s � auth(r) if and only if πauth(r)(Th(σ(s))) = true.

We prove that Crypt-DAC implements RBAC0 with AC-preserving achieved. The query mapping π is AC-
preserving because it maps auth(u, p) to TRUE for theory T if and only if T contains auth(u, p).

Definition 5 safety: An implementation is safe if the following holds for all i whenever the execution of a
workload label yields the access control state sequence (s0, ..., sn).

27

Auth(si) – Auth(s0) ⊆ Auth(sn) – Auth(s0) (Grant)
Auth(s0) – Auth(si) ⊆ Auth(s0) – Auth(sn) (Revoke)
We prove that Crypt-DAC implements RBAC0 with safety achieved. The label mapping α is safe by inspection–

for any RBAC0 state x and label l, the Crypt-DAC label α(σ(x), l) never revokes or grants authorizations except
the images of those that are revoked or granted by l.

