
Abstract Homomorphic Encryption is a recent promis-
ing tool in modern cryptography, that allows to carry
out operations on encrypted data. In this paper we fo-
cus on the design of a scheme based on pairings and
elliptic curves, that is able to handle applications where
the number of multiplication is not too high, with in-
teresting practical efficiency when compared to lattice
based solutions. The starting point is the Boneh-Goh--
Nissim (BGN for short) encryption scheme [1], which
enables the homomorphic evaluation of polynomials of
degree at most 2 on ciphertexts. In our scheme, we use
constructions coming from [2,3], to propose a variant of
BGN scheme that can handle the homomorphic evalua-
tion of polynomials of degree at most 4. We discuss both
the mathematical structure of the scheme, and its im-
plementation. We provide simulation results, showing
the relevance of this solution for applications requiring
a low multiplicative depth, and give relative comparison
with respect to lattice based homomorphic encryption
schemes.

Keywords Homomorphic encryption, pairing-based
cryptography, elliptic curves, low depth circuits.

2 Vincent Herbert et al.
manuscript No.

(will be inserted by the editor)

Design and Implementation of Low Depth Pairing-based
Homomorphic Encryption Scheme

Vincent Herbert · Bhaskar Biswas · Caroline Fontaine

1 Introduction

Motivations. Homomorphic Encryption is a recent
promising tool in modern cryptography, as it allows to
carry out operations on encrypted data. The key idea
is that performing some operations on encrypted data
provide the same result after decryption as if the com-
putation would have been performed on the original
plain data. Furthermore, with such a tool one could out-
source storage and/or computation without endanger-
ing data’s privacy. While some well established encryp-
tion schemes sometimes offer homomorphic properties,
for addition [4] or multiplication [5] operations, they do
not provide a way to perform both additions and multi-
plications at the same time. A few recent schemes have
been proposed that can handle more.
On one hand, there are a few number of schemes which
are based on well-established security assumptions like
Discrete Logarithm computation [6],these schemes be-
ing able to handle an arbitrary number of additions and
a few number of multiplications. Pairing-based cryp-
tography [7] offers the Boneh-Goh-Nissim scheme [1],
which is able to natively handle any number of addi-
tions and one single multiplication. Moreover, with the
Catalano-Fiore
construction [3], it is possible to improve some exist-
ing schemes to help them manage one more multiplica-
tion depth. Hence, for example, whereas the well known
Paillier scheme [4] can only handle additions, it is pos-

Vincent Herbert
CEA Paris-Saclay, France (This work was done while the author
was at CNRS, Lab-STICC).

Bhaskar Biswas
CNRS Lab-STICC and IMT-Atlantique, Brest, France.

Caroline Fontaine
CNRS Lab-STICC and IMT-Atlantique, Brest, France.

sible to modify it with the Catalano-Fiore result to get
a scheme that is able to handle not only additions but
also one multiplication.
On the other hand there exist several families of
schemes built upon lattices [8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26] or coding theory [27].
These schemes are able to handle in theory an arbitrary
number of additions and a larger (or even unlimited)
number of multiplications. Unfortunately, most of these
latter schemes lead to expensive running times and/or
ciphertext sizes, and even if progresses are impressive
they are probably oversized for applications that only
need a few number of multiplications. Moreover, these
schemes’ security is based on security assumptions —
such as SPRP [28,29,30], LWE [31], RLWE [32], etc. —
that are not sufficiently well mastered at the moment
to provide robust setting guidelines.
Hence, if we focus on use cases that do not need too
many multiplications to be chained, e.g. for Pearson
test computation like in [12], it is always of interest to
closely look at lighter and more secure solutions. This
motivated us to work in this paper on the design of
a new scheme based on long-studied security assump-
tions, which can handle more than one multiplication.

Contributions. Our scheme is based on an improve-
ment of [1], that we call BGN-F-CF, and which can ho-
momorphically evaluate polynomial of degree at most 4.
This solution provides smaller ciphertexts than lattice
based solutions, and its security is based on a hard prob-
lem that has been investigated in depth. More precisely,
it employs together two improvements of the original
BGN scheme [1], based on [2] and [3]. Only Freeman’s
work [2] has already been coupled with BGN in [33,34]
to greatly improve BGN’s speed, resulting in a scheme
that we call here BGN-F. To our knowledge, it is the
first time that Catalone and Fiore’s construction [3] is

Design and Implementation of Low Depth Pairing-based Homomorphic Encryption Scheme 3

applied to this particular setting in order to add one
more multiplicative depth. In this paper, we discuss
both the mathematical structure of the scheme, and
its implementation.

Organization of the paper. This paper is organized
as follows. We first recall in Section 2 some useful in-
formation about the original BGN scheme, and pro-
vide a high-level description of its variants BGN-F and
BGN-F-CF. Then, we describe our scheme BGN-F-CF
in depth in Sections 3 and 4. While Section 3 provides a
high-level description of the scheme, we give in Section 4
more details about the instanciation we used for our
implementation. The security is discussed in Section 5.
The performances and simulation results are presented
in Section 6. We also provide some comparison with lat-
tice based solutions, showing the interest of BGN-F-CF
for the homomorphic evaluation of small degree polyno-
mials. Section 7 finally concludes the paper. We present
some related additional materials in appendix. In par-
ticular, we describe some elements concerning cipher-
text constraints for different low multiplicative depth
circuits and provide more precise details of parameter
settings used in the experiments.

2 Preliminaries

2.1 Related works

Our scheme BGN-F-CF is a variant of the Boneh-Goh-
Nissim (BGN for short) scheme [1]. BGN is a homomor-
phic public-key pairing-based encryption scheme that
allows the evaluation of a multivariate quadratic poly-
nomial over small encrypted integers. This cryptosys-
tem brings into play one composite-order cyclic group
G and is semantically secure [3, page 7] under the sub-
group decision assumption over G [1, page 3]. Instanti-
ations use a symmetric pairing (i.e. the non-degenerate
bilinear map is symmetric) and the group of points on
a super-singular (i.e. #E(Fp) = p + 1) elliptic curve
E defined over a prime field Fp. The group order must
be impossible to factor. This leads to manage a big-
order group for standard security level and, thus, slow-
ing pairing computation. A solution was proposed by
Freeman in [2] to convert pairing-based cryptosystems
from composite-order groups to prime-order groups. It
can particularly be applied on BGN to obtain a variant,
that we call BGN-F, with two prime-order cyclic groups
G and H. Instantiations use an asymmetric pairing and
two direct groups G = G2 and H = H2 where G and
H are two subgroups of a pairing-friendly [35] ordinary

elliptic curve E defined over Fpk
1. BGN-F is semanti-

cally secure under the(generalized) subgroup decision
assumption in G and H [2, page 49] or equivalently un-
der the decisional Diffie-Hellman (DDH) assumption in
G and H [2, page 58]. This implies the security in the
target group GT of the pairing under the elliptic curve
Diffie Hellman (ECDH) assumption. Both schemes are
compared in [33,34]. In 2015, Catalano and Fiore pro-
posed in [3] a technique to allow one more homomor-
phic multiplication that the underlying homomorphic
encryption scheme can support. This technique needs
the plaintext space to be a public ring in which it is
possible to sample elements uniformly at random. It
can be applied on BGN-F [3, page 24] after chang-
ing the plaintext space from the set J0, n − 1K to the
ring Zn where n is a small integer2. This gives birth to
our scheme BGN-F-CF, an efficient and semantically-
secure homomorphic public-key pairing-based encryp-
tion scheme that allows the evaluation of a multivariate
degree-4 polynomial on ciphertexts over Zn.

2.2 Notation

Our scheme BGN-F-CF is described thoroughly in Sec-
tion 3. To help the reader understand its mathematical
construction, we provide in this section a brief and high-
level description of the underlying BGN [1] scheme and
the impact of the modifications due to the application
of Freeman [2] and Catalano-Fiore [3] improvements.
As notation used in these different papers is not the
same, we need to rewrite some parts with uniformed
notation.
Before going further, we need to define the notion of ci-
phertext level, which is very important in these schemes.
Figure 1 indicates which operations are permitted on
ciphertexts in BGN-F-CF. This correlates with the ci-
phertext level. A ciphertext, on which no homomorphic
operation has been made, has level 1. A homomorphic
multiplication produce a ciphertext of level > 1.

* G,H,GT are abelian groups.
* π1, π2, πT are endomorphisms of G,H,GT .
* G1 ⊂ Ker(π1), H2 ⊂ Ker(π2) are cyclic groups.
* q1, q2, r are prime numbers.

1k is the embedding degree with respect to a prime number
r such that r | #E(Fp) and r - p (i.e. the smallest integer such
that pk = 1 mod r). In BGN-F and BGN-F-CF, r is the group
order of G and H. In our implementation, r = #E(Fp) since
Barreto-Naerhig curves have prime order.

2In all these variants of BGN, decryption asks to compute
discrete logarithms in groups of large prime order r. Thus, plain-
text space size n should vary logarithmically with r to have a
polynomial-time in n decryption algorithm such as Pollard’s
kangaroo algorithm [1, page 4].

4 Vincent Herbert et al.

level L ciphertext

�

level L ciphertext level L ciphertext
level L1 + L2 ciphertext

�

level L1 ciphertext level L2 ciphertext

Fig. 1 Homomorphic operations in BGN-F-CF on ciphertexts
in the same space. L ≤ 4, L1 ≤ 2, L2 ≤ 2.

* e is a pairing.
* E is an elliptic curve.
* Ja, bK := [a, b] ∩N.
* P is the plaintext space.
* n is a strictly positive integer.
* Zn is the ring of integers modulo n.
* F2 is the two-element finite field.
* The operator $←− refers to a random draw according

to a uniform distribution.
* <a> the subgroup generated by the element a.
* (a, b) is the concatenation of elements a and b.
* L is the ciphertext level.
* A is the maximal number of level L additions be-

tween any input and any output of a circuit to ob-
tain a level L ciphertext. We call it for short, the
L-additive depth.

* Enc and Dec are encryption and decryption algo-
rithms3.

* Enc(2)(m) is a level 2 ciphertext of a message m

obtained with BGN-F scheme.
* End(G) is a endomorphism of a group G.
* Homomorphic addition and multiplication are re-

spectively denoted � and �.

In the following, we give generic description of keys and
ciphertext space in the three variants: BGN,

3In the family of BGN variants, multiplication and even
certain addition modify ciphertext space. For this reason, de-
cryption algorithm and homomorphic operations differ for each
level.

BGN-F, BGN-F-CF. This helps to distinguish them
quickly.

2.2.1 BGN

� Public-key pk: (q1q2, G,GT , e, u, v)
– G and GT are cyclic groups of order q1q2.
– u is a generator of G.
– v is a generator of subgroup of G of order q1.
– e is a symmetric pairing:

e : G×G 7→ GT .

� Secret-key sk: q1 is a prime number.
� Plaintext space P is the set J0, nK: n < q2.

Assumption Subgroup decision problem on G

Public-key pk (q1q2, G,GT , e, u, v)
G and GT are cyclic groups of order q1q2

Secret-key sk q1

Plaintext space P J0, nK: n < q2

Ciphertext spaces level 1 G

level 2 GT

Table 1 Concise description of BGN scheme.

2.2.2 BGN-F

� Public-key pk: (G,G1, H,H2, GT , e, u, v)
– G = G2, H = H2, GT = G4

T .
– G,H and GT are groups of prime order r .
– u $←− G.
– v $←− H.
– e is an asymmetric pairing:

e : G×H 7→ GT .

– e is projecting, it means:

πT (e
(
g, h)) = e

(
π1(g), π2(h)

)
, ∀(g, h) ∈ G×H.

� Secret-key sk: (π1, π2, πT).
� Plaintext space P is the set J0, nK: n < log r.

The abstract framework proposed by Freeman[2, page
46] is generic. It converts a cryptosystem over compos-
ite order groups, such as BGN scheme, into a scheme
over prime order groups. In our definition of BGN-F,
we choose to employ DDH assumption on prime order
groups as in [2, page 57]. In this particular setting, the
subgroups G1 and H2 are cyclic (rank l = 1) and the
pairing is necessarily asymmetric else security is not

Design and Implementation of Low Depth Pairing-based Homomorphic Encryption Scheme 5

Assumption DDH on G and H
Public-key pk (G,G1, H,H2, GT , e, u, v)

G = G2, H = H2, GT = G4
T

G,H and GT are groups of order r
Secret-key sk (π1, π2, πT)

Plaintext space P J0, nK: n < log r

Ciphertext spaces
level 1 G×H
level 2 GT

Table 2 Concise description of BGN-F scheme.

ensured. Such asymmetric pairing is known over or-
dinary curves whereas BGN uses a symmetric pairing
which only exists over supersingular curves. If we used
the l-linear assumption[2, page 49] with l > 1 on the
prime groups, we could employ a symmetric pairing.
But, in this case, at standard security levels, the groups
G and H would be too large since embedding degree k
would be too small. We would have k ≤ 6 [35, page 3].
This would imply that cryptographic operation require
much more computations, time and memory in our final
scheme, BGN-F-CF. Embedding degree is discussed in
Section 5 for more information.

2.2.3 BGN-F-CF

In BGN-F-CF scheme, the couple of keys (pk, sk) has
the same description than in BGN-F scheme (see Sec-
tion 2.2.2). On the other hand, the plaintext space has
a ring structure and the ciphertext space is more com-
plex. Notice, the latter depends on the former for level
1 and level 2 ciphertexts, as indicated in Table 3.

� Plaintext space P is the ring Zn: n < log r.

3 Generic description of BGN-F-CF

Catalano-Fiore generalized construction [3, page 26] per-
mits to increment the multiplicative depth of arithmetic
circuits that a homomorphic scheme can evaluate over
ciphertexts. Circuit multiplicative depth is the maxi-
mum number of multiplicative gates between an input
and an output in the circuit. In other words, the gen-
eralized construction permits to evaluate the product
of any ciphertexts obtained with the original scheme.
In BGN-F-CF scheme, it permits to evaluate a multi-
variate polynomial of degree ≤ 4 over ciphertexts. De-
gree is limited to 2 in the original scheme BGN-F. The
generalized construction applies on a public-space ho-
momorphic scheme. It is a homomorphic scheme which
satisfies the following conditions on plaintext space P:

Assumption DDH on G and H
Public-key pk (G,G1, H,H2, GT , e, u, v)

G = G2, H = H2, GT = G4
T

G,H and GT are groups of order r
Secret-key sk (π1, π2, πT)

Plaintext space P Zn: n < log r

Ciphertext spaces

level 1 P ×G×H
level 2 P ×GT

level 3

GT × (G×GT)1+A

GT × (H ×GT)1+A

GT × (GT ×G)1+A

GT × (GT ×H)1+A

level 4 GT × (GT ×GT)1+A

Table 3 Concise description of BGN-F-CF scheme.

� P is public.
� P is a finite commutative unitary ring.
� P is efficiently samplable uniformly at random.

It can require to adapt a homomorphic scheme. It is the
case for BGN and BGN-F since in these cryptosystems,
P is a set without algebraic structure.
We apply Catalano-Fiore generalized transformation on
a public-space version [3, page 2] of BGN-F scheme. The
scheme BGN-F-CF is defined relatively to the encryp-
tion algorithm Enc and the homomorphic addition in
BGN-F. Let us recall their definition.
To begin, in the generic case, we choose to consider
multiplicative groups. The encryption is probabilistic,
the client draws at random u1

$←− G1 and v1
$←− H2. An

encryption of a plaintext m is:

Enc(m) = (umu1, v
mv1) ∈ G×H.

For the addition, the server draws at random u1
$←− G1

and v1
$←− H2. c1 and c2 being two ciphertexts, the

homomorphic addition is defined as below,

c1 � c2 =

c1c2u1 if c1, c2 ∈ G.
c1c2v1 if c1, c2 ∈ H.
c1c2e

(
u, v1

)
e
(
u1, v

)
if c1, c2 ∈ GT .

We do not describe multiplication of a ciphertext by a
plaintext. The operation is described in [3, page 10] for
a linearly-homomorphic cryptosystem compatible with
Catalano-Fiore transformation. Indeed, our instantia-
tion manages binary messages and in this case, such
operation can be done otherwise, if necessary. We do
not describe either re-randomization operation [3, page
27] as we do not implement it. We place ourselves in

6 Vincent Herbert et al.

a client-server model, where we only require seman-
tic security on the message, to protect client data. Re-
randomization is one solution to obtain an additional
property: circuit privacy. It is useful in scenarios where
the server, which operates homomorphic computations,
requires to hide any information on the circuit, beyond
ciphertexts.
Now, we give the description of our scheme in the for-
mal steps of key generation, encryption, decryption,
and how homomorphic operations are performed.

3.1 Key generation

We generate abelian groups G,H,GT equipped with an
asymmetric and projecting pairing e : G × H 7→ GT .
We consider group endomomorphisms π1, π2, πT over
G,H,GT respectively. Then we generate subgroups G1
(resp. H2) in the kernel of π1 (resp. π2). The endomor-
phisms serve as secret-key, while every groups and the
pairing serve as public-key. Key generation is run as:

1. Generate a tuple (G,G1, H,H2, GT , π1, π2, πT , e) such
that e

(
π1(g), π2(h)

)
= πT (e

(
g, h)

)
, ∀g ∈ G, h ∈ H.

2. Choose u $←− G and v
$←− H.

3. sk is (π1, π2, πT).
4. pk is (G,G1, H,H2, GT , e, u, v).

3.2 Encryption

Consider a client with a message m ∈ P. Catalano-
Fiore transformation introduces a random element b ∈
P during encryption process. Encryption is probabilis-
tic and makes use of random subgroup elements. The
client computes a = m− b and uses BGN-F to encrypt
b. The ciphertext c is the concatenation of a and of the
encryption of m− b.

1. Choose a message m in P with n ≤ log(r).
2. Choose b $←− P.
3. Compute a = m− b.
4. Choose u1

$←− G1, v1
$←− H2.

5. The level 1 ciphertext is:

c = (a, ubu1, v
bv1) ∈ P ×G×H.

During encryption, in BGN-F, the computations are
duplicated in the two groups G and H. In addition,
depending on the circuit that the server evaluates over
ciphertexts, it can omit or not the computation in G

or H. Subsequently, for easy reading, we consider only
two components ciphertexts in P ×G or P ×H.

3.3 Homomorphic operation

Consider a server with two ciphertexts c1 and c2. Take
c1 = (a1, β1) and c2 = (a2, β2). The server computes a
ciphertext c = (α, β). Operations are level-dependant
as indicated in Figure 1.

3.3.1 Homomorphic Addition.

• Addition of level 1 or level 2 ciphertexts simply con-
sists in adding the two components. This leads to:

(a, β) = (a1 + a2, β1 � β2),

where the symbol � refers to the homomorphic addition
in BGN-F.
• Addition of level 3 or level 4 ciphertexts is done in
two simple steps:

1. Add the first components α = α1 � α2.
2. Concatenate the second components β = (β1, β2).

Concatenation saves computation cost but increases ci-
phertext size.

3.3.2 Homomorphic Multiplication

• Multiplication of two level 1 ciphertexts takes as in-
put ciphertexts in distinct spaces since it requires to
evaluate an asymmetric pairing. The server computes
the product ciphertext in P ×GT as follows:

1. Take one ciphertext:

c1 = (a1, β1) ∈ P ×G.

2. Take another ciphertext:

c2 = (a2, β2) ∈ P ×H.

3. Choose b1, b2, s
$←− P.

4. Choose again u1
$←− G1, v1

$←− H2.
5. The level 2 ciphertext is (a, β) ∈ P ×GT with:

a = a1a2 − s.

β = e
(
β1, β2

)
e
(
u, v1)e

(
u1, v

)
� βb1

2 � β
b2
1 � Enc(2)(s).

Above, the term Enc(2)(s) is a level 2 ciphertext. En-
cryption of s gives a level 1 ciphertext. To increment
the level of a ciphertext, the server multiplies it homo-
morphically by an encryption of 1.
• Multiplication of one level 1 ciphertext with one level
2 ciphertext outputs a level 3 ciphertext as shown in
Figure 1. Suppose c1 is level 1 and c2 is level 2. For
level 3 ciphertexts, four ciphertext spaces are indicated
in Table 1. Indeed, it depends on:

Design and Implementation of Low Depth Pairing-based Homomorphic Encryption Scheme 7

� c1 belongs to P ×G or P ×H.
� c1 is the left operand or the right one.
• Multiplication of two level 2 ciphertexts in P × GT
returns a level 4 ciphertext in G3

T .

For the two last cases, the first component α belongs
to the target group GT and the server computes the
product ciphertext (α, β) as follows:

α = Enc(a1a2)� βa1
2 � β

a2
1 ,

β = (β1, β2).

3.4 Decryption

Consider a client with a ciphertext c = (a, β). It searches
to recover the message m ∈ P.
• Decryption of a level 1 or a level 2 ciphertext.
In this case, it applies the private key which consists
in endomorphisms π1, π2 and πT on the element β.
This element β contains a blinding element which is
in subgroups G1, G2, GT . The blinding element van-
ishes when the client applies the endomorphism since
the subgroups are contained in the kernel of endomor-
phisms. The client computes a discrete logarithm. This
element β is a ciphertext in BGN-F. This procedure is
the decoding algorithm Dec in BGN-F. The extra part
in BGN-F-CF asks the client to add a, the first compo-
nent of the ciphertext to get the message m. In other
words m = a+ Dec(β). More precisely, this gives:

m =

a+ logπ1(u) π1(β) if c ∈ P ×G.
a+ logπ2(v) π2(β) if c ∈ P ×H.
a+ logπT (e(u,v)) πT (β) if c ∈ P ×GT .

• Decryption of a level 3 or a level 4 ciphertext
We treat the general case where the client receives a
ciphertext c = (α, β) obtained with A additions of dif-
ferent level L ciphertexts with 3 ≤ L ≤ 4. Actually, α
is a level 2 ciphertext in BGN-F and β is composed of
2× (1 +A) ciphertexts in BGN-F.

β := (β1,1, β2,1, β1,2, β2,2, . . . , β1,1+A, β2,1+A).

where ∀ i, j ∈ J1, 1 + AK, βi,j is either a level 1 cipher-
text, if L = 3, or a level 2 ciphertext, if L = 4.
The decryption of c calls out 2 × A + 3 times, the de-
cryption algorithm of BGN-F scheme, denoted Dec and
described in the previous item. To obtain the message
m ∈ P, the process works as follows:

m = Dec(α) +
1+A∑
i=1

Dec(β1,i) Dec(β2,i).

4 Instantiation of BGN-F-CF

In this section, we describe our BGN-F-CF implemen-
tation. Security and library choices are discussed in Sec-
tion 5.
First of all, in our implementation we decided to re-
strain to the evaluation of polynomials with binary co-
efficients, in order to have an efficient decryption algo-
rithm. Moreover, independently of BGN-F-CF compu-
tations, many treatments are applied on binary data.
For instance, to compare integers or to output differ-
ent results depending on an integer value, in the en-
crypted domain, encoding is performed before encryp-
tion and evaluation (operations on encrypted data). In
our implementation of BGN-F-CF, encoding simply im-
plies to decompose integers into bits, whereas it is a
“highly non-trivial task” in SEAL library [36, page 15]
and other ring-learning-with-errors based scheme im-
plementations, where it is necessary to encode informa-
tion into a polynomial before encrypting [16, page 13].
After that, encryption is performed bitwise.

4.1 Initial setting

The groups G and H are defined from an elliptic curve
E with equation y2 = x3+3 over a finite field. The curve
is in the Barreto-Naerhig family of pairing-friendly
curves. We remind that pairing-friendly curves [35, page
11] are defined by a triplet (p(x), r(x), t(x)) of uni-
variate polynomial and a parameter x0. Evaluations
of these polynomials at x0 enable us to define curve
parameters: p, r and t. Where, p is size of the field
on which E is defined, r is the number of Fp-rational
points on E and t is the trace of E over Fp. We chose to
use the DCLXVI library [37] in our implementation to
compute efficiently parings in BGN-F-CF. This library
defines a subfamily of Barreto-Naerhig curves where the
parameter x0 is a cube integer.
The library uses x0 = y3

0 and y0 = 1868033. These pa-
rameters permit to define the triplet (p, r, t), as follows:

p = p(x0), r = r(x0), t = t(x0).

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.
r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1.
t(x) = 6x2 + 1.

The parameters p and r are 256-bits prime integers,
the trace t of E over Fp is a 128-bits integer. 12 is
the embedding degree of r i.e. the one of the group
E(Fp)[r] = E(Fp) since r = #E(Fp) is prime. This

8 Vincent Herbert et al.

implies that the group of rth roots of unity µr is in-
cluded in F×p12 and that the r-torsion subgroup E[r] is
defined over Fp12 . The embedding degree is particularly
important when we use a pairing over elliptic curves, it
is discussed in Section 5.
Let us describe briefly the pairing. We need first to
define the Frobenius endomorphism π on E as:

π : E → E

(x, y) 7→ (xp, yp).

In our implementation, we compute the optimal Ate
pairing eOA. The algorithm we use to compute it is
given in [37, page 4]. It is such that:

eOA : E(Fp)× (E[r] ∩Ker(π − p))→ µr.

In BGN-F-CF, we instantiate the groups as:
G = E(Fp).
H = E[r] ∩Ker(π − p) ⊆ E(Fp12)[r].
GT = µr.

They are publicly known and offer both efficient group
operation and random sampling according to a uniform
distribution. We can also specify the pairing e over di-
rect groups G = E(Fp)2 and H =

(
E[r]∩Ker(π− p)

)2

which maps to GT = µ4
r, as follows:

e
(
(g1, g2)(h1, h2)

)
7→
(
eOA(g1, h1), eOA(g1, h2),
eOA(g2, h1), eOA(g2, h2)

)
.

We choose randomly generators g and h of E(Fp) and
E[r] ∩Ker(π − p).

g
$←− E(Fp) : ord(g) = r.

h
$←− E[r] ∩Ker(π − p) : ord(h) = r.

We also compute randomly generators u and v of the
direct groups E(Fp)2 and (E[r] ∩Ker(π − p))2.

u
$←− E(Fp)2.

v
$←− (E[r] ∩Ker(π − p))2.

4.2 Key generation

We generate the public-private key pair (pk, sk) as,

pk =
(
(i1g, j1g), (i2h, j2h), µr, e, u, v

)
.

sk = (π1, π2, πT).

At first, we perform random draws:

i1, j1, k1, l1, i2, j2, k2, l2
$←− Fp

until we have: i1l1 − j1k1 = i2l2 − j2k2 = 1.

The private key sk is described by endomorphisms π1,
π2 and πT . We define first, π1 and π2 such that:
π1 ∈ End(E(Fp)2), π2 ∈ End(E[r] ∩Ker(π − p)2).

π1(x, y) = (−j1k1x+ i1k1y,−j1l1x+ i1l1y).
π2(x, y) = (−j2k2x+ i2k2y,−j2l2x+ i2l2y).

To specify the endomorphism πT we choose to reuse a
notation given by Freeman[2, page 52], more compact
than the usual one. Let M = (mi,j) be an n-order
matrix over Fp. Its coefficients are taken columnwise to
define:

γM := (
n∏
i=1

γmi1
i , . . . ,

n∏
i=1

γmin
i)

with γ = (γ1, . . . , γn) in a direct group of n groups.
Let us consider the tensor product A⊗ B with:

A =
(
−j1k1 −j1l1

i1k1 i1l1

)
, B =

(
−j2k2 −j2l2

i2k2 i2l2

)
.

It is a matrix4 of order 4 over Fp. Finally, we get:

πT : µ4
r → µ4

r

x 7→ xA⊗B.

As a toy example, we can fold π1 under this compact
form.

π1 : E(Fp)2 → E(Fp)2

x 7→ xA.

The public key pk is described by generators u and v of
direct groups G and H, generators of their subgroups
G1 = <(i1g, j1g)> and H2 = <(i2h, j2h)>, the pairing
e and the multiplicative group µr ⊂ Fp12 .

4.3 Encryption of a single bit

The binary plaintext m is transformed into the cipher-
text c as follows:

b
$←− F2.

a = m− b.
4We can divide it into 4 matrices of order 2. The (i, j)th

block is equal to ai,jB with A = (ai,j)i,j∈{1,2}.

Design and Implementation of Low Depth Pairing-based Homomorphic Encryption Scheme 9

We compute random elements u1 and v1 in the sub-
groups <(i1g, j1g)> and <(i2h, j2h)>.

u1
$←− <(i1g, j1g)> ≤ E(Fp)2

v1
$←− <(i2h, j2h)> ≤ (E[r] ∩Ker(π − p))2

c = (a, bu+ u1, bv + v1)
∈ F2 × E(Fp)2 × (E[r] ∩Ker(π − p))2.

4.3.1 Curve mode and twist mode

To define homomorphic operations and decryption, we
reduce the ciphertext to two components instead of
three. We only need the first and one of the two last
components. We speak of curve mode and twist mode,
this helps readability.
Curve mode is when:

c = (a, bu+ u1) ∈ F2 × E(Fp)2.

Twist mode is when:

c = (a, bv + v1) ∈ F2 × (E[r] ∩Ker(π − p))2.

Let us give an example. To obtain the product of two
level 1 ciphertexts, we need one ciphertext in curve
mode and one other in twist mode. Indeed, we employ
an asymmetric pairing defined over a group product of
points on a curve and points on the twist. More precise
information on this topic is given in Subsection 4.4.2.

4.4 Homomorphic operations

4.4.1 Addition of ciphertexts

Homomorphic additions are defined with respect to ci-
phertext levels.
• Addition of level L ciphertexts with 1 ≤ L ≤ 2 Let,
c1 = (a1, β1) and c2 = (a2, β2) be two ciphertexts as
input, with the same level 1 ≤ L ≤ 2 and a1, a2 ∈ F2.
On output, there is one level L ciphertext c = (a, β).
The three ciphertexts are in the same space.
For the second component of the ciphertexts, three con-
figurations are possible,

� β1, β2 ∈ E(Fp)2.
� β1, β2 ∈ (E[r] ∩Ker(π − p))2.
� β1, β2 ∈ µ4

r.

The first component of the resultant ciphertext is com-
puted as,

a = a1 + a2 .

Then to compute the second component of the resultant
ciphertext, we redo a random uniform draw for u1 and
v1.

u1
$←− <(i1g, j1g)>, v1

$←− <(i2h, j2h)>.

Then depending on the configuration mentioned above,
we compute β respectively.

� β = β1 + β2 + u1 if β1, β2 ∈ E(Fp)2.
� β = β1 + β2 + v1 if β1, β2 ∈ (E[r] ∩Ker(π − p))2.
� β = β1β2e

(
u, v1

)
e
(
u1, v

)
if β1, β2 ∈ µ4

r.

• Addition of level L ciphertexts with 3 ≤ L ≤ 4 Let,
there are two level L ciphertexts c1 = (α1, β1) and c2 =
(α2, β2), with L ∈ J3, 4K. The two ciphertexts are in the
same ambient space. On output, there is one level L
ciphertext c = (α, β).
To simplify and benefit group commutativity, if one fac-
tor is a level 1 ciphertext, it is the left operator. In
addition, to save memory, the level 1 ciphertext is com-
puted in curve mode. Indeed, a level 1 ciphertext in
twist mode is two times bigger than in curve mode,
as indicated in Table 6. These restrictions do not limit
the family of polynomials that we can evaluate over ci-
phertexts. No multiplication is defined with a level 3
ciphertext. We can only operate addition between level
3 ciphertexts sharing the same structure. In our imple-
mentation, it is:

µ4
r × (E(Fp)2 × µ4

r)1+A.

We compute the first component of the resultant ci-
phertext as,

α = α1 � α2 = α1α2e
(
u, v1

)
e
(
u1, v

)
.

For every instance, α, α1, α2 ∈ µ4
r.

The second component of the resultant ciphertext is the
concatenation of the second components of the inputs.

β = (β1, β2).

Recall L = 3 or L = 4. Each addition and multiplica-
tion (see Section 4.4.2) to obtain a level L ciphertext,
expands the ciphertext size. For this reason, we operate
a limited number of such additions in practice.
For a ciphertext of level 3 ≤ L ≤ 4, obtained after A
additions of level 3 ≤ L ≤ 4, there are two cases:

� β ∈ (E(Fp)2 × µ4
r)1+A.

� β ∈ (µ4
r × µ4

r)1+A.

10 Vincent Herbert et al.

4.4.2 Multiplication of ciphertexts

As in addition, the homomorphic multiplication is level
dependent.
• Multiplication of level 1 ciphertexts
The pairing is used to multiply level 1 ciphertexts. It
is asymmetric and thus requires a ciphertext in curve
mode and another in twist mode. Let, c1 and c2 are two
input ciphertexts of level 1.

c1 = (a1, β1) ∈ F2 × E(Fp)2.

c2 = (a2, β2) ∈ F2 ×
(
E[r] ∩Ker(π − p)

)2
.

We draw b1, b2, s
$←− F2.

For i = 1 and i = 2, ci is an encryption of mi ∈ F2 and
ai = mi − bi.
The first component of the resultant ciphertext is com-
puted as,

a = a1a2 − s.

To compute the second component of the resultant ci-
phertext, at first, we redo a random uniform draw for
u1 and v1.

u1
$←− <(i1g, j1g)>, v1

$←− <(i2h, j2h)>.

We split up the computation of β in order to explain
how the formula is obtained. The reader can skip this
paragraph and only retain the final formula for a prac-
tical usage. We recall the operator � refers to a homo-
morphic addition with the scheme BGN-F.
Then, we proceed to compute β as,

β = e
(
β1, β2

)
e
(
u, v1)e

(
u1, v

)
�a1β2�a2β1�Enc(2)(s).

Let µr be the subgroup of rth-roots of unity in Fp12 . The
first term belongs to µ4

r. Note that, the level should be
the same for all terms5.
After drawing: u2, u3, u4

$←− <(i1g, j1g)>,
and v2, v3, v4

$←− <(i2h, j2h)>, we compute β as

β = e
(
β1, β2

)
e
(
u, v1

)
e
(
u1, v

)
� e
(
Enc(1), a1β2

)
e
(
u, v2

)
e
(
u2, v

)
� e
(
a2β1,Enc(1)

)
e
(
u, v3

)
e
(
u3, v

)
� e
(
Enc(1),Enc(s)

)
e
(
u, v4

)
e
(
u4, v

)
.

Using bilinearity, we can simplify this expression. In
practice, it is not useful to define u2, u3, u4, v2, v3, v4.

5If it is not the case, we multiply homomorphically the other
terms by Enc(1), an encryption of bit 1. More generally, this is
applied several times when we compute the sum of ciphertexts
with several levels of difference.

On the other hand, it is useful to understand how we
obtain the following formula:

β = e
(
β1, β2

)
e
(
Enc(1), a1β2 + Enc(s)

)
e
(
a2β1,Enc(1)

)
e
(
u, v1

)
e
(
u1, v

)
.

We compute 5×4 (optimal Ate) pairings to get a level 2
ciphertext.
• Multiplication of ciphertexts to obtain a level L ci-
phertext with 3 ≤ L ≤ 4
On input, there are two ciphertexts (a1, β1) and (a2, β2),
with levels L1, L2 ∈ J1, 2K verifying the condition6:

3 ≤ L1 + L2 ≤ 4

and a1, a2 ∈ F2. On output, there is one level L cipher-
text (α, β) with L = L1 + L2. The symbol � refers to
a homomorphic addition with the scheme BGN-F.
Let us recall that we can only add ciphertexts of same
level, as explained in Section 4.4.1. To compute α, we
should get level 2 terms.
A level 3 ciphertext is such that:

α = e

(
Enc(a1a2),Enc(1)

)
βa1

2

e
(
a2β1,Enc(1)

)
e
(
u, v1

)
e
(
u1, v

)
.

(β1, β2) ∈ E(Fp)2 × µ4
r.

A level 4 ciphertext is such that:

{
α = e

(
Enc(a1a2),Enc(1)

)
βa1

2 βa2
1 e
(
u, v1

)
e
(
u1, v

)
.

(β1, β2) ∈ µ4
r × µ4

r.

The first two cases permit to evaluate the same prod-
ucts since the multiplication is commutative over F2.
We choose to limit ourselves to the first case where the
first ciphertext has level 1, and the second ciphertext
has level 2. Once again, in the first case, we restrict,
for convenience, β in the direct group (E(Fp)2 × µ4

r).
In every instance, α ∈ µ4

r. The number of successive
multiplications is limited to one because the scheme
BGN-F-CF evaluates ciphertexts up to level 4. Notice,
the computation of a level 3 ciphertext needs the com-
putation of 4 × 4 pairings instead of 3 × 4 pairings for
the computation of a level 4 ciphertext. The additional
pairings are an extra part of the computation cost when
we multiply two ciphertexts of different levels.

6We can obtain level 4 ciphertexts with product of two
level 2 ciphertexts but no product between a level 1 ciphertext
and a level 3 ciphertext is defined.

Design and Implementation of Low Depth Pairing-based Homomorphic Encryption Scheme 11

4.5 Decryption

• Decryption of level 1 and 2 ciphertext
The binary case can be rewritten without using dis-
crete logarithm7contrarily to the generic case described
in Section 3.4. To decrypt a ciphertext c = (a, β), we
employ the private key which consists in endomorphism
π1, π2 and πT :

m = Dec(c) =

a+ π1(bu+ u1)
π1(u) if c ∈ F2 ×G.

a+ π2(bv + v1)
π2(v) if c ∈ F2 ×H.

a+ πT (β)
πT (e(u, v)

) if c ∈ F2 ×GT .

Note that the client can precompute the denominator
which is independent of the message. This precomputa-
tion permits to decrease decryption time in a significant
way, for any ciphertext, regardless of its level. As we will
see later, decryption of level 3 and level 4 ciphertext
uses respectively two and three times, the decryption
of level 2 ciphertexts.
• Decryption of level L ciphertext with 3 ≤ L ≤ 4
Let us consider a level 3 or level 4 ciphertext c = (α, β).
Where, α is a level 2 ciphertext.
As explained in Subsection 4.4.2, for level 3 ciphertext,
we can restrict to the case:

c = (α, β) ∈ µ4
r × (E(Fp)2 × µ4

r)1+A

obtained with A additions of different level 3 cipher-
texts.
We can now describe β as:

β := (β1,1, β2,1, β1,2, β2,2, . . . , β1,1+A, β2,1+A).

where (β1,i)i∈J1,1+AK is either a family of level 1 cipher-
text or level 2 ciphertexts and (β2,i)i∈J1,1+AK is a family
of level 2 ciphertext.
We obtain the plaintext m ∈ F2, by computing:

m = Dec(α) +
1+A∑
i=1

Dec(β1,i) Dec(β2,i).

7In the equality, the ratio is well-defined if the numerator is
a multiple of the denominator. Its value is equal to the scalar
factor between the two points, modulo 2. This is the case here
since u1 and v1 belongs respectively to the kernels of π1 and
π2 [2, page 58].

4.6 Ciphertext space

Figure 1 indicates which operations are permitted on
ciphertexts in BGN-F-CF. This correlates with the ci-
phertext level. A ciphertext on which no homomorphic
operation has been made, has level 1. A homomorphic
multiplication produces a ciphertext of level > 1. Ta-
ble 4 summarizes the different ciphertext spaces accord-
ing to this notion of ciphertext level as well as circuit
multiplicative depth.

Circuit Cipher
Ciphertext spaceMult. Text

Depth Level

0 C F2 × E(Fp)2

T F2 × (E[r] ∩Ker(π − p))2

1 2 F2 × µ4
r

2
3 µ4

r × (E(Fp)2 × µ4
r)1+A

4 µ4
r × (µ4

r × µ4
r)1+A

Table 4 The different ciphertext spaces according to circuit
multiplicative depth. A is the L-additive depth of a circuit
which produces a level L ciphertext. The notations C and T
refer to a level 1 ciphertext in curve mode and twist mode re-
spectively.

5 Security

BGN-F-CF belongs to the family of pairing-based cryp-
tosystems [7]. We consider pairings over groups, they
are bilinear maps that we can compute efficiently and
that should offer the targeted level of security. Such
pairings are known over elliptic curves and hyperellip-
tic curves. As performances are not better on the lat-
ter [38,39], we chose the first which also benefits from
key-size recommendations8. Security reduces to the Dis-
crete Logarithm Problem over elliptic curves and over
finite fields. The security level should be the same be-
tween input groups over elliptic curves and the target
groups over finite field. But, the group sizes differ sig-
nificantly between the two types of groups, since more
efficient algorithms are known to solve the Discrete Log-
arithm over finite fields than over elliptic curves. In
BGN-F-CF, we work with asymmetric pairing

e : G×H 7→ GT .

Groups G, H and GT are constructed from r-order
groups with r prime. G and H are defined using group

8see https://www.keylength.com/

https://www.keylength.com/

12 Vincent Herbert et al.

of points of an elliptic curve defined over Fp. The group
GT is taken as the multiplicative group of the finite
field Fpk . In our case, k is the embedding degree of
r, since we consider an elliptic curve defined over a
prime field[40]. For this reason, the embedding degree
k is a curve parameter, which is important for pairing-
based cryptography. It impacts the choice of the elliptic
curve we use. For a security level of 128 bits, the recom-
mended size for finite fields is 3072 bits and for elliptic
curves, the size recommended is 256 bits. In our case,
it means that pk has size 3072 and r has size 256. In
addition, p and r should have almost the same size9

for efficient arithmetic over elliptic curves according to
[35,41]. Thus, k should be 12 for security level of 128
bits since 3072 = 12× 256. The curves in the Barreto-
Naerhig family reach this optimal value and that is why
we chose them. To choose another security level, we can
sum up. There are three key parameters: p, r and k at
a given security level. Their choice is guided by the mo-
tivations given in Table 5. The task is then to find an
elliptic curve with such parameters, we do not discuss
this here for scope limitation.

Requirements Reasons

large r security under ECDH
very large pk security under DDH

r = pk same security under ECDH and DDH
p

r
≈ 1 efficient arithmetic on EC

minimize ciphertext size

Table 5 The choice of parameters size in BGN-F-CF, at a
fixed security level. Updated recommended values of r and pk to
resist discrete logarithm attacks are available at https://www.
keylength.com. Recall the Hasse-Weil bound, |r−p−1| ≤ 2√p.

Let us now discuss the security assumption on which
BGN-F-CF rests on. BGN-F-CF scheme is secure un-
der decisional Diffie-Hellman assumption (also called
1-linear assumption) in prime groups G = E(Fp), H =
E[r] ∩ Ker(π − p) and GT = µr. This can be refor-
mulated [2, page 46] as secure under generalized sub-
group decision in direct groups G = E(Fp)2, H =
(E[r] ∩ Ker(π − p))2 and GT = µ4

r. Let us recall the
definition of this problem.

� 5 distinct groups G1 ⊂ G,H1 ⊂ H,GT .
� non-degenerate bilinear map e : G×H → GT .
� Problem 1: distinguish x

$←− G1 from x
$←− G.

� Problem 2: distinguish y
$←− H1 from y

$←− H.
9In other words, the trace t = p + 1 − r should be small

(compared to p and r).

If both problems are computationally infeasible, then
generalized subgroup decision assumption holds for
(G,G1, H,H1, GT , e).

In BGN-F-CF, the first homomorphic multiplication
asks to compute pairings. We chose to compute pair-
ings over elliptic curves in our implementation. Elliptic
curve has to be ordinary (i.e. #E(Fp) 6= p + 1) to re-
sist attacks against decisional Diffie-Hellman [2, page
46], contrary to the original BGN scheme where super-
singular curves could be used. In this setting, pairing is
asymmetric10, i. e. it takes as inputs, elements of two
distinct subgroups of an elliptic curve. The pairing im-
age is in an extension field of a prime field of medium
characteristic [42, page 2] compared to the extension
degree. Moreover, each group involved in the pairing
has to be big enough to resist attacks against discrete
logarithms since they are the most efficient (known)
way to solve decisional Diffie Hellman. More precisely,
parameters p, r and t are parametrized by x0, a cube
integer instead of any integer. This has to be taken
into account to update parameters using DCLXVI li-
brary, after discrete logarithm attacks11. The approach
of [43] can be used to generate suitable parameters with
Barreto-Naerhig curves. The recommended group size
given by different academic and private organizations
at www.keylength.com according to standard security
levels, do not yet take into account most recent secu-
rity estimations. We would like to point out that our
implementation with 256-bits primes p and r ensures to-
day around 100-bits security and not 128-bits security,
as it was targeted a few months ago. Indeed, pairing-
based cryptography using target field Fp6 and Fp12 is af-
fected by Kim-Barbulescu variant of the Number Field
Sieve [42]. This forces to re-evaluate parameters if we
want to maintain a 128-bits security level. According
to [44, page 17], 383-bits primes are required to de-
fine a Barreto-Naerhig curve with 128-bits security level
whereas [45, page 18] advise for a 461-bit prime. More-
over, the latter indicate, pairing can be computed more
efficiently at 128-bit security level with KSS16 curves
[46] over a 340-bit base field.

Currently, the best known classical attack against Dis-
crete Logarithm Problem over finite fields is (S)exTNFS
algorithm [42], a variant of the number field sieve algo-
rithm [47]. This attack, published in 2016, asks to up-
date key size. From then on, a group of 256-bit prime

10We choose to employ asymmetric pairings to compute ho-
momorphic product of fresh ciphertexts. The use of symmetric
pairings would change the computational hardness assumption
[2].

11The website https://gitlab.inria.fr/dldb/
discretelogd covets to list discrete logarithms records in
finite fields.

https://www.keylength.com
https://www.keylength.com
https://www.keylength.com
https://gitlab.inria.fr/dldb/discretelogd
https://gitlab.inria.fr/dldb/discretelogd

Design and Implementation of Low Depth Pairing-based Homomorphic Encryption Scheme 13

order of an elliptic curve does not ensure anymore 128-
bit security level. It has consequences in pairing-based
cryptography. In this implementation, a curve is cho-
sen in the Barreto-Naerhig family [48]. It has equation
y2 = x3+3 and is defined over a 256-bit prime field with
embedding degree 12 (i.e. 3072-bit finite field). Accord-
ing to [44, page 20], such a curve achieves 110 bits of
security, while according to [45, page 11] this is around
100 bits.

6 Performance

We first discuss a few technicalities of our scheme. In
our implementation, we chose to restrict plaintext space
P to F2 rather than Zn with n > 2. Decryption time
depends polynomially on the size of P. Moreover, con-
ditional tests if-then-else on ciphertexts, which are ba-
sic treatments on data, facilitated if encrypted bitwise.
On F2, it is unnecessary to implement the multipli-
cation between a plaintext and a ciphertext (indeed
Enc(0)�Enc(a) = 1×Enc(a) and Enc(0) = 0×Enc(a)
where Enc(0) and Enc(a) are ciphertext of the same
level).

Evaluation
polynomial

Boolean circuit

Pairing

Groups

Assumption

Security level

Group size

Input
ciphertexts size

Plaintext
maximum size

Output
ciphertext size

L-additive depth Multiplicative depth

Fig. 2 Parameters influencing memory usage in BGN-F-CF.

We choose to employ optimal Ate pairing [39] over
Barreto-Naerhig curves which offers good time perfor-

mance and is available in library. Note that on a com-
puter algebra system with our parameters (256-bit prime
field), best choice, at this security level, in terms of
time is the optimal twisted Ate pairing, according to
[41]. Our implementation is in software and employs
the DCLXVI pairing library (version 20130329) [37].
Originally, the library is optimized for speed perfor-
mance, not memory usage, and it employs a parame-
ter set which targets 124 or 128-bits security level de-
pending on estimations [49,50]. Another choice could
have been Herumi library [51,52], which is the fastest
library to compute Optimal Ate pairing over Barreto-
Naerhig curve. The DCLXVI library is one-bit more
secure than the latter according to its authors. We de-
cided to reuse the library in our implementation of
BGN-F-CF scheme.
Figure 2 shows how data size in BGN-F-CF is depen-
dent on two kind of parameters. Those related to func-
tionality (treatments operated on ciphertexts) and those
linked with security (implementation choices on cryp-
tosystem settings). Time/space/communication costs de-
pend on:
� operations (encryption scheme, level of ciphertexts)
� operand size (security assumption, security level)
� operation number (Boolean circuit)

Homomorphic operations can differ according to the ci-
phertext level, as indicated in Section 3. A fresh ci-
phertext has level 1. Multiplying level L1 and level L2
ciphertexts gives a level L1 + L2 ciphertext.
Ciphertexts sizes are indicated in Table 6, and keys sizes
can be found in Table 9. Sizes depend on group order
and data representation. In our implementation, we em-
ploy 256-bits prime p and r (see Subsection 4) to define
groups.
In Table 6, we also give the lower bound minimum
size with such p and r. Our implementation uses the
DCLXVI library which favours speed rather than mem-
ory, this explains the difference between sizes. To esti-
mate minimum size, we use Table 3 and the following
reasoning. Ciphertext spaces are composed of elements
of F2, E(Fp), E[r] ∩ Ker(π − p) and µr. On our com-
puters, the elementary unit of storage is the byte. We
store an element of F2 on one byte. A point of the
group E(Fp) can be represented by its x-coordinate
over Fp and the sign of its y-coordinate. We can store
it with at least size(p) + 1 bytes. A point of the group
E[r] ∩ Ker(π − p) has coordinates in Fp12 . Barreto-
Naerhig curves have a twist of degree 6. We represent
a point of E[r] ∩ Ker(π − p) on the twist over Fp2 by
storing the x-coordinate in Fp2 and the y-sign. Thus,
we can store the point with at least 2×size(p)+2 bytes.
In the end, an element of the cyclic group µr requires
at least size(r) bytes.

14 Vincent Herbert et al.

Level Size Minimum Size

C 784 515
T 1552 1027
2 4624 1025
3 10032 +A× 5376 2562 +A× 1538
4 13872 +A× 9216 3072 +A× 2048

Table 6 Ciphertext size in our BGN-F-CF implementation
and minimum size. The unit is the byte. A is the L-additive
depth of the circuit which produces a level L ciphertext. The
notations C and T refer to a level 1 ciphertext in curve mode
and twist mode respectively.

In some configurations, few errors (such as false posi-
tives in a test) can be acceptable. In this case, we can
restrain constraints and design an ad-hoc circuit with
a lower depth than an error-free circuit. Cheap tasks
could be done with precomputation and postcompu-
tation. It can permit to decrease both the multiplica-
tive depth and the L-additive depth of the circuit. In
BGN-F-CF, the L-additive depth is critical only for
l = 3 and l = 4.
We provide, in Table 7, the running time of differ-
ent homomorphic operations. Addition of ciphertexts of
level > 2 and any multiplication of ciphertexts mod-
ify ciphertext spaces (see Table 4). It is thus necessary
to specify time for each ciphertext level. All our ex-
periments have been performed with 2 processors Intel
Xeon E5-2640 v4, each of them has 10 cores and can
manage 20 threads, at a frequency of 2.4 GHz (3.4 GHz
in Turbo mode)
To conclude this section, we provide comparison of
BGN-F-CF with lattice based solutions mentioned in
the introduction. First of all, such a comparison seems
natural since today different implementations of such
solutions are available. But, we point out that it is not
so trivial to perform such comparisons fairly, as these
implementations do not always benefit from the same
optimizations, and also because some enable to handle
plaintext batching while some others do not. We re-
fer the reader to [53] for a more complete list of issues
related with implementation and comparison of lattice
based solutions. Nevertheless, we did our best to pro-
vide the most fair comparison we could. First, we had
to select the schemes to compare among the available
implementations. Second, we decided to compare the
selected schemes for a given security level of about 100-
bits (to fit BGN-F-CF security level).
We decided not to include FNTRU [25] nor YASHE [21]
(used in SEAL1.0) as they present some security is-
sues [54,55]. We also did not compare with [20] nor
its variants [24,26], as they are not particularly in-

Operation Level Time in ms

Encryption C 0.57
T 0.40

Multiplication

(C, T) 5.27
(C, 2) 3.02
(T, 2) 2.45
(2, 2) 2.02

Addition

(C,C) 0.28
(T, T) 0.22
(2, 2) 1.47
(3, 3) 1.36
(4, 4) 1.12

Decryption

C 0.70
T 0.56
2 5.03
3 9.26
4 16.66

Table 7 Running time for operations in BGN-F-CF scheme.
As in BGN-F-CF ciphertexts may belong to different levels, we
provide detailed running times with respect to the levels. We
consider A = 0, see Table 4. The notations C and T refer to a
level 1 ciphertext in curve mode and twist mode respectively.

teresting in this kind of setting as the startup cost
is high [56]. Now, if we focus on available implemen-
tations, three remain: HElib12, SEAL2.113, and FV-
NFLlib14. It is known that HElib efficiency is much
better for circuits with higher (typically more than 10)
multiplicative depth than for circuits with small mul-
tiplicative depth, in which case it is outperformed by
FV-NFLlib [57]. Hence, we selected SEAL2.1 and FV-
NFLlib, both implement the Fan-Vercauteren scheme [19].
We tuned the parameters of these two libraries to fit the
same security level as BGN-F-CF, with the most up-to-
date information concerning the security evaluation of
both schemes. For BGN-F-CF, we took into account all
recent results already presented in Section 5. For lattice
based schemes, we used Albrecht’s estimator (available
on BitBucket15), which is the best available security
estimator today for such schemes. We provide in Ap-
pendix B more detailed information about the settings
we chose for the experiments.
We provide in Table 8 running times for elementary op-
erations with SEAL2.1 and FV-NFLlib, and in Tables 9
and 10 some comparison of BGN-F-CF with SEAL2.1

12https://github.com/shaih/HElib
13https://sealcrypto.codeplex.com/
14https://github.com/CryptoExperts/FV-NFLlib
15https://bitbucket.org/malb/lwe-estimator, commit

eb45a74

https://github.com/shaih/HElib
https://sealcrypto.codeplex.com/
https://github.com/CryptoExperts/FV-NFLlib
https://bitbucket.org/malb/lwe-estimator

Design and Implementation of Low Depth Pairing-based Homomorphic Encryption Scheme 15

Implementation Operation Time in ms

SEAL-2.1 Addition 0.22
Multiplication 71.84

FV-NFLlib Addition 0.03
Multiplication 4.93

Table 8 Single homomorphic operation running times for the
selected lattice-based schemes used in our benchmark. Used set-
tings are given in Appendix B.

and FV-NFLlib in terms of data size and running times
for a whole circuit processing. In Table 9, we indicate a
ciphertext size of 2336 bytes, for BGN-F-CF. This is the
worst case, the one where the evaluated circuit needs
both, the encryption in curve mode (784 bytes) and
in twist mode (1552 bytes). Ciphertext size is particu-
larly important for the client who encrypts data before
transmitting them to the server. The server performs
homomorphic computations over received ciphertexts
to obtain the evaltext. We call evaltext, the ciphertext
obtained after homomorphically evaluating a specified
circuit over input ciphertexts.

Implementation
Size in bytes

pk ek sk Ciphertext Evaltext

BGN2 4608 N/A 1024 2336 15408
SEAL-2.1 32784 65568 16392 30735 76837

FV-NFLlib 28672 24576 8192 12288 12288

Table 9 Implementations comparison overview in terms of
data size on a whole test circuit (which is given in Ap-
pendix A.3. The lattice-based schemes introduce a third key,
the evaluation-key (also called relinearisation-key), denoted ek.

Implementation Time in ms/byte
Key-gen Enc Eval Dec

BGN2 0.95 1.20 6.62 9.26
SEAL-2.1 167.53 9.86 304.66 13.23

FV-NFLlib 2.82 2.42 17.23 2.32

Table 10 Implementations comparison running time overview
on a whole test circuit (described in Section A.3). Note that,
encryption time takes into account encoding time.

The most demanding challenge in homomorphic cryp-
tography is to lower the cost of evaluation. From the
results presented above we see that BGN-F-CF is one

of the best performing schemes for low multiplicative
depth circuits, specially for evaluation. Moreover, it has
the added advantage not to need plaintext encoding,
nor evaluation key.
We have to mention that, very recently, a new ver-
sion of SEAL has been released, namely SEAL2.2. As
it is around five to six times faster than SEAL2.1, it
is evident from our experimental results that this im-
provement has little impact upon the conclusion of the
present work.
We note, BGN-F-CF has smaller keys and no evaluation
key to manage. It has also no noise parameter to deal
with for correct decryption. In addition, it offers bet-
ter homomorphic evaluation time and well understood
security.
The full implementation code of our scheme, BGN2 is
available as “proof of concept” at:

https : //github.com/BGN2/BGN2.

7 Conclusion

In this paper, we proposed a variant of BGN homomor-
phic encryption scheme that is called BGN-F-CF and
can address one more multiplicative depth. This scheme
may help to address practical situations where the mul-
tiplicative depth is of 2, with smaller keys and cipher-
texts than homomorphic encryption schemes based on
lattices. Moreover, its security is better understood than
for lattice based schemes, as it relies on Discrete Log-
arithm computation, which has been studied more ex-
tensively than, for example, LWE or RLWE. It is also
less complex, as no bootstrapping nor relinearization is
needed here.
Furthermore, it is worth noting that, while the lattice
based schemes seem to have more potential, the secu-
rity and parameter choices for them remain to be open
problems. On the other hand the security of our scheme
is well understood and alternative systems are always
of interest!

Acknowledgment

We deeply thank Aurore Guillevic for our discussions
concerning the security estimation of our scheme ac-
cording to the last attacks published. This work has
been funded by Region Bretagne under grant AAP PME
2014, 14006192.

16 Vincent Herbert et al.

References

1. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating
2-DNF Formulas on Ciphertexts. In Joe Kilian, editor,
Theory of Cryptography, Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings, volume 3378 of Lecture Notes in
Computer Science, pages 325–341. Springer, 2005.

2. David Mandell Freeman. Converting Pairing-Based Cryp-
tosystems from Composite-Order Groups to Prime-Order
Groups. In Henri Gilbert, editor, Advances in Cryptol-
ogy - EUROCRYPT 2010, 29th Annual International Con-
ference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30 - June 3, 2010. Pro-
ceedings, volume 6110 of Lecture Notes in Computer Sci-
ence, pages 44–61. Springer, 2010.

3. Dario Catalano and Dario Fiore. Using Linearly-
Homomorphic Encryption to Evaluate Degree-2 Functions
on Encrypted Data. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-6, 2015, pages
1518–1529. ACM, 2015.

4. Pascal Paillier. Public-Key Cryptosystems Based on Com-
posite Degree Residuosity Classes. In Proc. of Advances in
Cryptology — EUROCRYPT 1999, number 1592 in LNCS,
pages 223–238, 1999.

5. Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions
on Information Theory, 31(4):469–472, 1985.

6. Dan Boneh. The Decision Diffie-Hellman Problem. In Pro-
ceedings of the Third International Symposium on Algorith-
mic Number Theory, ANTS-III, pages 48–63, London, UK,
UK, 1998. Springer-Verlag.

7. Nadia El Mrabet and Marc Joye. Guide to Pairing-Based
Cryptography. CRC Press, 2017.

8. Craig Gentry. Fully homomorphic encryption using ideal
lattices. In STOC, volume 9, pages 169–178, 2009.

9. Craig Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009.

10. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. On
the implementation of the discrete Fourier transform in
the encrypted domain. IEEE Transactions on Information
Forensics and Security, 4(1):86–97, 2009.

11. Carlos Aguilar-Melchor, Philippe Gaborit, and Javier Her-
ranz. Additively homomorphic encryption with d-operand
multiplications. In Advances in Cryptology–CRYPTO
2010, pages 138–154. Springer, 2010.

12. Kristin Lauter, Adriana López-Alt, and Michael Naehrig.
Private computation on encrypted genomic data. In Inter-
national Conference on Cryptology and Information Secu-
rity in Latin America, pages 3–27. Springer, 2014.

13. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan. Fully homomorphic encryption over the
integers. In Advances in cryptology–EUROCRYPT 2010,
pages 24–43. Springer, 2010.

14. Nigel P Smart and Frederik Vercauteren. Fully homomor-
phic encryption with relatively small key and ciphertext
sizes. In International Workshop on Public Key Cryptogra-
phy, pages 420–443. Springer, 2010.

15. Michael Naehrig, Kristin E. Lauter, and Vinod Vaikun-
tanathan. Can homomorphic encryption be practical? In
ACM CCSW, pages 113–124. ACM, 2011.

16. Craig Gentry, Shai Halevi, and Nigel P Smart. Fully homo-
morphic encryption with polylog overhead. In Advances in
Cryptology–EUROCRYPT 2012, pages 465–482. Springer,
2012.

17. Craig Gentry and Shai Halevi. Fully homomorphic encryp-
tion without squashing using depth-3 arithmetic circuits.
In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 107–109. IEEE, 2011.

18. Jean-Sébastien Coron, David Naccache, and Mehdi Ti-
bouchi. Public key compression and modulus switching
for fully homomorphic encryption over the integers. In Ad-
vances in Cryptology–EUROCRYPT 2012, pages 446–464.
Springer, 2012.

19. Junfeng Fan and Frederik Vercauteren. Somewhat Prac-
tical Fully Homomorphic Encryption. IACR Cryptology
ePrint Archive, 2012:144, 2012.

20. Craig Gentry, Amit Sahai, and Brent Waters. Homomor-
phic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In Ad-
vances in Cryptology–CRYPTO 2013, pages 75–92.
Springer, 2013.

21. Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael
Naehrig. Improved Security for a Ring-Based Fully Homo-
morphic Encryption Scheme. In International Conference
On Cryptography and Coding. Springer Verlag, December
2013.

22. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(Leveled) Fully Homomorphic Encryption without Boot-
strapping. TOCT, 6(3):13, 2014.

23. Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based
FHE As Secure As PKE. In Proc. of the 5th Conference on
Innovations in Theoretical Computer Science – ITCS 2014,
pages 1–12. ACM, 2014.

24. Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan.
SHIELD: Scalable Homomorphic Implementation of En-
crypted Data-Classifiers. IEEE Transactions on Comput-
ers, PP(99):1–1, 2015.

25. Y. Doröz and B. Sunar. Flattening NTRU for Evaluation
Key Free Homomorphic Encryption. Cryptology ePrint
Archive, Report 2016/315, 2016.

26. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Ma-
lika Izabachène. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In Advances
in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part I, pages 3–33, 2016.

27. Frederik Armknecht and Ahmad-Reza Sadeghi. A New Ap-
proach for Algebraically Homomorphic Encryption. IACR
Cryptology ePrint Archive, 2008:422, 2008.

28. Venkatesan Guruswami and Madhu Sudan. Improved de-
coding of reed-solomon and algebraic-geometric codes. In
Foundations of Computer Science, 1998. Proceedings. 39th
Annual Symposium on, pages 28–37. IEEE, 1998.

29. Daniel Augot and Matthieu Finiasz. A public key encryp-
tion scheme based on the polynomial reconstruction prob-
lem. Advances in Cryptology—EUROCRYPT 2003, pages
645–645, 2003.

30. Aggelos Kiayias and Moti Yung. Directions in polynomial
reconstruction based cryptography. IEICE transactions on
fundamentals of electronics, communications and computer
sciences, 87(5):978–985, 2004.

31. Oded Regev. On lattices, learning with errors, random lin-
ear codes, and cryptography. Journal of the ACM (JACM),
56(6):34, 2009.

32. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. Ad-
vances in Cryptology – EUROCRYPT 2010: 29th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30 – June
3, 2010. Proceedings, chapter On Ideal Lattices and Learn-
ing with Errors over Rings, pages 1–23. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

Design and Implementation of Low Depth Pairing-based Homomorphic Encryption Scheme 17

33. Aurore Guillevic. Arithmetic of pairings on algebraic curves
for cryptography. Theses, Ecole Normale Supérieure de
Paris - ENS Paris, December 2013.

34. Aurore Guillevic. Comparing the Pairing Efficiency over
Composite-Order and Prime-Order Elliptic Curves. In Ap-
plied Cryptography and Network Security - 11th Interna-
tional Conference, ACNS 2013, Banff, AB, Canada, June
25-28, 2013. Proceedings, pages 357–372, 2013.

35. David Freeman, Michael Scott, and Edlyn Teske. A Taxon-
omy of Pairing-Friendly Elliptic Curves. Journal of Cryp-
tology, 23(2):224–280, 2009.

36. Kim Laine, Hao Chen, and Rachel Player. Simple En-
crypted Arithmetic Library - SEAL (v2.1). Technical re-
port, September 2016.

37. Michael Naehrig, Ruben Niederhagen, and Peter Schwabe.
New Software Speed Records for Cryptographic Pairings.
In Michel Abdalla and Paulo S. L. M. Barreto, editors,
Progress in Cryptology - LATINCRYPT 2010, First Inter-
national Conference on Cryptology and Information Secu-
rity in Latin America, Puebla, Mexico, August 8-11, 2010,
Proceedings, volume 6212 of Lecture Notes in Computer
Science, pages 109–123. Springer, 2010.

38. Steven Galbraith, Florian Hess, and Frederik Vercauteren.
Hyperelliptic pairings. Pairing-Based Cryptography–
Pairing 2007, pages 108–131, 2007.

39. Frederik Vercauteren. Optimal pairings. IEEE Transac-
tions on Information Theory, 56(1):455–461, 2010.

40. Laura Hitt. On the minimal embedding field. Pairing-
Based Cryptography–Pairing 2007, pages 294–301, 2007.

41. Andreas Enge and Jérôme Milan. Security, Privacy, and
Applied Cryptography Engineering: 4th International Con-
ference, SPACE 2014, Pune, India, October 18-22, 2014.
Proceedings, chapter Implementing Cryptographic Pairings
at Standard Security Levels, pages 28–46. Springer Inter-
national Publishing, Cham, 2014.

42. Taechan Kim and Razvan Barbulescu. Extended tower
number field sieve: A new complexity for the medium prime
case. In Annual Cryptology Conference, pages 543–571.
Springer, 2016.

43. Sylvain Duquesne, Nadia El Mrabet, Safia Haloui, and
Franck Rondepierre. Choosing and generating parameters
for low level pairing implementation on BN curves. 2015.

44. Alfred Menezes, Palash Sarkar, and Shashank Singh. Chal-
lenges with Assessing the Impact of NFS Advances on the
Security of Pairing-based Cryptography. In Proceedings of
Mycrypt, 2016.

45. Razvan Barbulescu and Sylvain Duquesne. Updating key
size estimations for pairings. Cryptology ePrint Archive,
Report 2017/334, 2017. http://eprint.iacr.org/2017/
334.

46. Ezekiel J Kachisa, Edward F Schaefer, and Michael Scott.
Constructing brezing-weng pairing-friendly elliptic curves
using elements in the cyclotomic field. Pairing, 8:126–135,
2008.

47. Arjen K Lenstra, Hendrik W Lenstra Jr, Mark S Manasse,
and John M Pollard. The number field sieve. In The de-
velopment of the number field sieve, pages 11–42. Springer,
1993.

48. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-
Friendly Elliptic Curves of Prime Order. In Bart Preneel
and Stafford E. Tavares, editors, Selected Areas in Cryptog-
raphy, 12th International Workshop, SAC 2005, Kingston,
ON, Canada, August 11-12, 2005, Revised Selected Papers,
volume 3897 of Lecture Notes in Computer Science, pages
319–331. Springer, 2005.

49. Barker Elaine, Barker William, Burr William, Polk
William, and Smid Miles. Recommendation for key

management–part 1: general. NIST Special Publication,
pages 800–57, 2006.

50. Nigel Smart et al. Ecrypt2 yearly report on algorithms and
keysizes (2008-2009). Technical report, Technical report,
ECRYPT II–European Network of Excellence in Cryptol-
ogy, EU FP7, ICT-2007-216676, 2009. published as deliver-
able D. SPA. 7 http://www. ecrypt. eu. org/documents/D.
SPA. 7. pdf, 2009.

51. Shigeo Mitsunari. A Fast Implementation of the Opti-
mal Ate Pairing over BN curve on Intel Haswell Processor.
IACR Cryptology ePrint Archive, 2013:362, 2013.

52. Jean-Luc Beuchat, Jorge E. González-Dı́az, Shigeo Mit-
sunari, Eiji Okamoto, Francisco Rodŕıguez-Henŕıquez, and
Tadanori Teruya. High-Speed Software Implementation
of the Optimal Ate Pairing over Barreto–Naehrig Curves,
pages 21–39. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010.

53. Guillaume Bonnoron, Caroline Fontaine, Guy Gogniat,
Vincent Herbert, Vianney Lapôtre, Vincent Migliore, and
Adeline Roux-Langlois. Somewhat/Fully Homomorphic
Encryption: Implementation Progresses and Challenges,
pages 68–82. Springer International Publishing, Cham,
2017.

54. Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice
attack on overstretched NTRU assumptions: Cryptanalysis
of some FHE and Graded Encoding Schemes. Cryptology
ePrint Archive, Report 2016/127, 2016.

55. Paul Kirchner and Pierre-Alain Fouque. Comparison be-
tween Subfield and Straightforward Attacks on NTRU.
Cryptology ePrint Archive, 2016/717, 2016.

56. Vincent Migliore, Guillaume Bonnoron, and Caroline
Fontaine. Determination and exploration of practical pa-
rameters for the latest Somewhat Homomorphic Encryp-
tion (SHE) Schemes. working paper or preprint, October
2016.

57. Carlos Aguilar-Melchor. Private communication.

A Low multiplicative depth Boolean circuits

We treat bit per bit encryption. Circuits are rewritten with two
operators: Y (exclusive disjunction) and ∧. They can be written
under different forms depending on operation order.

A.1 Binary data

Table 11 supplies constraints on ciphertext levels with typical
examples of low-depth multiplicative circuits.
Notation: ciphertexts a (resp. b, c, d) with level L1
(resp. level L2, L3, L4), ciphertexts x (resp. y) with level M1
(resp. level M2).
In BGN-F-CF, no multiplication is defined with a factor having
a level ≥ 3. Therefore, operands level is limited according to
multiplicative depth.

16A Boolean function is not associated to a unique Boolean
circuit. We restrict to circuits with Y and ∧ gates because
these gates correspond to elementary homomorphic operations
in BGN-F-CF. The parentheses indicates the order of opera-
tions. It permits to define a unique Boolean circuit and then to
indicate its multiplicative depth.

http://eprint.iacr.org/2017/334
http://eprint.iacr.org/2017/334

18 Vincent Herbert et al.

Functions Boolean function16 Mult.
Depth

Input
Level

Output Level

Test a == 1 a

0 J1, 4K

L1
REFRESH a a Y 0
Test a == 0,
NOT a

a Y 1

Test a 6= b, a
XOR b

(a Y b)

max(L1, L2)Test a == b,
a XNOR b

(a Y b) Y 1

a AND b a ∧ b

1 J1, 2K
L1 + L2a OR b ((a ∧ b) Y a) Y b

2-to-1 MUX
(x ? a : b)

((a Y b) ∧ x) Y b max(L1, L2)
+M1

4-to-1 MUX
inputs: x, y
output:
∈ {a, b, c, d}

(
(a ∧ x ∧ y)
Y (b ∧ x ∧ (y Y 1))

)
Y
(
(c ∧ (x Y 1) ∧ y)

Y (d∧ (xY 1)∧ (y Y 1)
) 1 1

max(L1, L2,
L3, L4)+M1
+M2

Table 11 Ciphertext levels with some low-depth multiplicative
circuits. Notations are given in Section A.1.

A.2 Integer data

Data are n-bits integers. Input ciphertexts have level L = 1.
� Adder an−1 . . . a0 + bn−1 . . . b0 mod 2n

In terms of multiplicative depth, the hardest part is the
evaluation of the carry which enables to compute the most
significant bit (MSB) of the sum modulo 2n. Let us com-
pute the MSB with n = 3, which is the maximal value for
BGN-F-CF. Then, it can be written:

a2 Y b2 Y ((a1 ∧ b1) ∧ (a0 ∧ b0)).

The Boolean circuit has multiplicative depth dlog2 2(n −
1)e = 2. The corresponding ciphertext is the sum of three
ciphertexts of level 2(n − 1)L = 4. Indeed, to add cipher-
texts, we need to have ciphertexts of the same level. In this
case a2 and b2 have level L but ((a1 ∧ b1) ∧ (a0 ∧ b0)) has
level 4. To increment the level of a ciphertext, we multiply
it homomorphically by an encryption of 1.

� Test an−1 . . . a0 == bn−1 . . . b0.
With BGN-F-CF, we can manage up to n = 4 bits with the
circuit of depth dlog2(n)e = 2:

((a3 Yb3)Y1)∧ ((a2 Yb2)Y1)∧ ((a1 Yb1)Y1)∧ ((a0 Yb0)Y1).

The output is a ciphertext of level nL = 4.

A.3 Evaluation circuit

We compare SEAL 2.1, FV-NFLlib and BGN-F-CF on a 2-
depth test circuit, the results are given in Table 9 and Table 10.
The homomorphic circuit is a toy example. It takes as input
an encrypted letter and homomorphically changes lower-case
letter into upper-case letter. Precomputation and postcompu-
tation are done. Generally, they can be solutions to decrease the
multiplicative depth of the homomorphic circuit. In this exam-
ple, the homomorphic circuit tests characterwise if the character
is a lower-case letter or not.
Let the input character, encoded in extended ASCII, be written
as λ. We denote the bits of λ+31 as n9n8n7n6n5n4n3n2n1 and
the bits of λ + 5, as o9o8o7o6o5o4o3o2o1. We precompute n8,

n9 and o8. On plaintexts, the lower-case test consists in the
Boolean expression:

n8 ∧ ¬n9 ∧ ¬o8

We evaluate a corresponding homomorphic circuit:

Enc(n8)� (Enc(1)� Enc(n9))� (Enc(1)� Enc(o8))
The results for this circuit gives the insight of how the schemes
compare with each other. The trend should remain similar for
other circuits. Note that precomputation and postcomputation
time are taken into account in Table 9 and Table 10.

B Parameter choices of SEAL 2.1 and
FV-NFLlib

We compare our construction of BGN-F-CF with SEAL 2.1 and
FV-NFLlib which are implementations of the Fan-Vercauteren
scheme[19]. It is worth noting that the parameter choices and
their effect on security and performance of both the lattice
based schemes, SEAL 2.1 and FV-NFLlib, are not yet definitive.
We compared the schemes for a given security level.
The tool we used for security estimation of the lattice based
schemes, by Martin Albrecht and is available at
https://bitbucket.org/malb/lwe-estimator, commit eb45a74.
Note, this is an upper level security estimator not considering
the dedicated attacks on definitive schemes. We compare the
three schemes for a given security level of about 100-bits.
Let n is the plaintext modulus, q be the coefficient modulus
and σ is the standard deviation of the Gaussian noise (terms
used from [36]). Regev gave a lemma [31] to define the noise
parameter α, which can be expressed as:

α =
√

2πσ
q

.

� n = 2048,
� q = 274 − 214 + 1,
� σ = 65.

	Introduction
	Preliminaries
	Related works
	Notation
	BGN
	BGN-F
	BGN-F-CF

	Generic description of BGN-F-CF
	Key generation
	Encryption
	Homomorphic operation
	Homomorphic Addition.
	Homomorphic Multiplication

	Decryption

	Instantiation of BGN-F-CF
	Initial setting
	Key generation
	Encryption of a single bit
	Curve mode and twist mode

	Homomorphic operations
	Addition of ciphertexts
	Multiplication of ciphertexts

	Decryption
	Ciphertext space

	Security
	Performance
	Conclusion
	Low multiplicative depth Boolean circuits
	Binary data
	Integer data
	Evaluation circuit

	Parameter choices of SEAL 2.1 and FV-NFLlib

