
On new multivariate cryptosystems based on hidden Eulerian

equations over finite fields

Vasyl Ustimenko

Abstract

We propose new multivariate cryptosystems over n-dimensional vector space over a finite
field Fq based on idea of hidden discrete logarithm problem for F ∗

q. These cryptosystems are
based on hidden eulerian equations xα = a, (α, q − 1) = 1. The method is based on the idea
of Eulerian transformations, which allow us to use asymmetric algorithms based on families of
nonlinear multiplicatively injective maps of prescribed polynomial density and flexible degree.
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1 On Post Quantum and Multivariate Cryptography

Post Quantum Cryptography serves for the research on asymmetrical cryptographical algorithms
which can be potentially resistant against attacks based on the use of a quantum computer.

The security of currently popular algorithms are based on the complexity of the following 3
known hard problems: integer factorisation, discrete logarithm problem, discrete logarithm for
elliptic curves.

Each of these problems can be solved in polynomial time by Peter Shor’s algorithm for theoretical
quantum computer.

Despite that the known nowadays small experimental examples of quantum computer are not
able to attack currently used cryptographical algorithm, cryptographers have already started re-
search on postquantum security. They have also count on the new results of general complexity
theory.

The history of international conferences on Post Quantum Cryptography (PQC) started in 2006.
We have to notice that Post Quantum Cryptography differs from Quantum Cryptography, which

is based on the idea of usage of quantum phenomena to reach better security.
Modern PQC is divided into several directions such as Multivariate Cryptography, Lattice base

Cryptography, Hash based Cryptography, Code based Cryptography, studies of isogenies for su-
perelliptic curves.
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The oldest direction is Multivariate Cryptography (see [1]) which uses polynomial maps of
affine space Kn defined over a finite commutative ring into itself as encryption tools. It ex-
ploits the complexity of finding a solution of a system of nonlinear equations from many variables.
Multivariate cryptography uses as security tools a nonlinear polynomial transformations of kind
x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn) acting on the affine
space Kn, where fi ∈ K[x1, x2, . . . , xn], i = 1, 2, . . . , n are multivariate polynomials given in stan-
dard form, i. e. via a list of monomials in a chosen order. Important ideas in this direction are
observed in [2]. The density of map F is the maximal number den(F ) of monomial terma of fi,
i = 1, 2, . . . , n. We say that den(F ) is polynomial if this parameter has size O(nd) for some positive
constant d. The degree deg(F ) of map F is the maximal value of degrees fi, i = 1, 2, . . . , n.

Let F be the map of Kn to itself which has polynomial density of size C1n
d1 and polynomial

degree of size C2n
d2 . Then the value of F on tuple (b1, b2, . . . , bn) can be computed by O(nd1+d2+1)

basic operation of the ring.
Current task is a search for algorithm with resistance to cryptoanalytic attacks based on ordinary

Turing machine. Multivariate cryptography has to demonstrate practical security algorithm which
can compete with RSA, Diffie -Hellman protocols popular methods of elliptic curve cryptography
(see [1], [2]).

This is still a young promising research area with the current lack of known cryptosystems with
the proven resistance against attacks with the use of ordinary Turing machines. Studies of attacks
based on Turing mashine and Quantum computer have to be investigated separately because of
different nature of two machines, deterministic and probabilistic respectively.

Let K be a commutative ring. S(Kn) stands for the affine Cremona semigroup of all polynomial
transformations of affine space Kn.

Multivariate cryptography started from studies of potential for the special quadratic encryption
multivariate bijective map of Kn, where K is an extention of finite field Fq of characteristic 2. One
of the first such cryptosystems were proposed by Imai and Matsumoto, cryptanalysis for this system
was invented by J. Patarin. The survey on various modifications of this algorithm and corresponding
cryptanalysis the reader can find in [1]. Various attempts to build secure multivariate public key
were unsuccessful, but the research of the development of new candidates for secure multivariate
public keys is going on (see for instance [3] and further references).

Applications of Algebraic Graph Theory to Multivariate Cryptography were recently observed
in [4]. This survey is devoted to algorithms based on bijective maps of affine spaces into itself. Ap-
plications of algebraic graphs to cryptography started from symmetric algorithms based on explicit
constructions of extremal graph theory and their directed analogue. The main idea is to convert an
algebraic graph in finite automaton and to use the preudorandom walks on the graph as encryption
tools. This approach can be also used for the key exchange protocols. Nowadays the idea of ”sym-
bolic walks” on algebraic graphs when the walk on the graph depends on parameters given as special
multivariate polynomials in variables depending from plainspace vector brings several public key
cryptosystems. Other source of graphs suitable for cryptography is connected with finite geometries
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and their flag system. Bijective multivariate sparse encryption maps of rather high degree based on
walks in algebraic graphs were proposed in [5].

One of the first usage of non bijective map of multivariate cryptography was in oil and vinegar
cryptosystem proposed in [6] and analysed in [7]. Nowadays this general idea is strongly supported
by publication [8] devoted to security analysis of direct attacks on modified unbalanced oil and
vinegar systems. This algorithm was patented. It looks like such systems and rainbow signatures
schemes may lead to promising Public Key Schemes of Multivariate Encryption defined over finite
fields. Non bijective multivariate sparse encryption maps of degree 3 and ≥ 3 based on walks on
algebraic graphs D(n,K) defined over general commutative ring and their homomorphic images
were proposed in [9].

The new cryptosystems with non bijective multivariate encryption maps on the affine space
Zm

n into itself was presented at the international conference DIMA 2015 (Discrete Mathematics
and its applications, Minsk, 2015). It uses the plainspace Z∗m

n, where n = k(k − 1)/2, k ≥ 2 can
be arbitrary natural number. The private key space is formed by sequence of general multivariate
polynomials from Zm[x1, x2, . . . , xk−1] and sequence of parameters li, i = 1, 2, . . . , k − 1 which are
mutually prime with φ(m). The properties of the encryption map depends heavily on the prime
factorisation of m. This non bijective encryption map is the deformation of special computation
generated by Schubert automaton of ”k−1 dimensional projective geometry” over Zm. This method
does not use the partition of variables into groups, non bijective nature of the map caused by zero
devisors of composite integer m. In fact the idea of multiple ”hidden RSA” is used in [10].

Other algorithm exploits ”hidden RSA” idea is described in [11].
In section 2 we introduce a concept of multiplicatively injective maps, Eulerian diagonal maps

and an idea of their use for the construction of cryptosystems.

2 On Eulerian public key schemes

We refer to the equation xα = b in the field Fq as Eulerian equation if (α, q − 1) = 1. It is well
known that this equation has a unique solution.

We say that multivariate map F : Fq
n → Fq

n is Eulerian map over field if F is injective on
Ω = Fq

∗)n and equation F ((x) = b, x ∈ Ω has exactly one solution.
Similar idea of Eulerian map over Zm is presented in [10] and [11].
In this paper we suggest encryption scheme based on the following idea of diagonal Eulerian

transformation of the affine space over Fq. We say that the polynomial map G of Fq
n to Fq

n is
multiplicatively injective if its restriction on Fq

∗n is injective. So bijective polynomial maps and
Eulerian maps are multiplicatively injective.

Let us consider a transformation τA,i1,i2,...,in of F ∗q
n to itself of kind xi → yi, where

yi1 = xi1
a11 ,

yi2 = xi1
a21xi2

a22 ,
. . .
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yin = xi1
an1xi2

an2 . . . xin
ann ,

where (aii, q−1) = 1 for i = 1, 2, . . . , n, 0 ≤ ai,j < q−1 and sequence L of elements i1, i2, . . . , in
is a permutation on {1, 2, . . . , n}. Let A be a triangular matrix with entries ai,j as above. We
refer to a map of kind τA,LS, where S is a monomial linear transformation xi → λixπ(i) for which
λi ∈ Fq∗, i = 1, 2, . . . , n and π is a permutation on {1, 2, . . . , n} as monomial Eulerian map EτA,L,S .
We say that τ is Eulerian element if it is a composition of several monomial Eulerian maps. It is
clear that τ sends variable xi to a certain monomial term. The decomposition of τ into product of
Eulerian monomial transformations τ1 = τA1,L1 , S1, τ2 = τA2,L2 , S2, . . . , τk = τAk,Lk

, Sk allows us to
find the solution of equations τ(x) = b for x ∈ F ∗qn. Really we have to find bk from the condition
τk(bk) = b, compute bk−1 from the condition τk−1(bk−1) = bk, . . . , x = b1 from the condition
τ1(b1) = b2. Assume that a polynomial transformation F of Fq

n written in standard form has a
polynomial degree d (maximal degree of monomial terms) and polynomial density. We can take a
bijective affine map T of Fq

n to itself and form the map G = τFT of finite degree bounded by some
linear function in variable n. We refer to G as Eulerian deformation of F . If F has density of size
O(nt) then the density of G is O(nt+1).

It is clear that the Eulerian deformation of multiplicatively injective map over the finite field is
also multiplicatively injective transformation.

Let us consider the asymmetrical encryption scheme based on the pair F , D, where F is mul-
tiplicatively injective transformation of Fq

n and D is the data (private key) which allows to solve
the equation F (x) = b for x ∈ Ω in polynomial time.

As usually key holder Alice has (F,D) and public user Bob has only the map F in standard
form. So Bob forms plaintext p ∈ Ω and sends the ciphertext c = F (p) to Alice. Alice uses D and
solves F (x) = c for unknown tuple x for the decryption.

Let us consider the modification of the above scheme via Eulerian deformation G = τFT , Alice
will use new data D′ obtained by adding maps τ , S, T to D. Alice sends the encryption rule G
to public user Bob. Bob sends c = G(p). Alice computes d = T−1c. She forms tuple of unknowns
y = (y1, y2, . . . , yn). She uses data D to get the solution b of F (y) = d. Finally, she computes the
b′ as S−1(b) and gets the plaintext as a solution of Eulerian system τx = b′. This scheme can be
applied to various known pairs (F,D), where F is bijective map. For instance we can take stable
cubical transformation of Kn into itself defined into [12] or [13] in case when K = Fq for chosen
parameter q or nonstable maps of [6].

In this paper we concentrate on Eulerian maps, when D contains information on triangular
system of Eulerian equations over Fq of kind

h1(xi1) = a1xi1
α11 + b1 = c1

h2(xi1 , xi2) = a2xi1
α21xi2

α22 + b2(xi1) = c2
. . .
hs(xi1 , xi2 , . . . , xis) = asxi1

αs1xi2
αs2 . . . xis

αss + bs(xi1 , xi2 , . . . , xis−1) = cs,
where b1 ∈ Fq, b2 ∈ Fq[x1], . . . , bs ∈ Fq[x1, x2, . . . , xs−1], aj , j = 1, 2, . . . , s are nonzero elements

of Fq, i1, i2, . . . , is is a permutation on {1, 2, . . . , s}, (αii, q − 1) = 1, i = 1, 2, . . . , s.
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We refer to the map F : xj → hj(xi1 , xi2 , . . . , xis), j = 1, 2, . . . , s as triangular Eulerian map.
Assume that αii, i = 1, 2, . . . , s are unknown. Other coefficients are available together with

the solution d1, d2, . . . , ds. Then finding αii, i = 1, 2, . . . , s can be done via consequtive solution of
discrete logarithm problem:

d1
x = (c1 − b1)/a1 and x = α11 , d2

x = (c2 − b2(d1))/(a2d1
α11) and x = α22, . . . , ds

x =
(cs − bs(d1, d2, . . . , ds−1))/(asd1α11d2

α22 . . . d
αs−1,s−1

s−1 ).
In the case when parameter q is large the determination of discrete logarithm is a known hard

problem.
Notice that parameters αi,j (as well as ai,j of the diagonal affine transformation) will be unknown

for the public user Bob in the described above cryptosystem. So we can talk about hidden discrete
logarithm.

EXAMPLE 1.
Let us consider a cryptosystem based on the deformation of written above Eulerian triangular

map F of Fq
n. The map F is defined by parameters a1, a2, . . . , an from Fq

∗, triangular matrices
A and a list of elements b1 ∈ Fq,b2(z1) ∈ Fq[z1], b3(z1, z2) ∈ Fq[z1, z2], . . . , bn(z1, z2, . . . , zn−1) ∈
Fq[z1, z2, . . . , zn−1]. Polynomials bi of constant degrees ti can be specially chosen to make the density
of F of prescribed size O(nd) for certain constant d. We can choose matrix A to make the degree of
F bounded by some constant t.

Alice takes sequence of triangular matrices A1, A2, . . . , Ak and linear orders L1, L2, . . . , Lk on
{1, 2, . . . , n} to form Eulerian diagonal transformations τAi,Li of constant degree ti.

She takes strings λ1
i, λ2

i, . . . , λn
i and permutations πi to form monomial linear transformations

Si, i = 1, 2, . . . , k. Alice chooses matrix B and vector c to form bijective affine transformation T
sending x = (x1, x2, . . . , xn) into xB + c.

Alice computes the polynomial map G = τA1,L1S1τA2,L2S2 . . . τAk,Lk
SkFT and writes G in stan-

dard form. The degree of G is bounded by t1t2 . . . tkt and its density is of size O(nt+1). Alice sends
the standard form of G to public user Bob.

Bob writes a plaintext p = (p1, p2, . . . , pn) ∈ Fq∗n. He computes the ciphertext G(p) and sends
it to Alice.

Alice uses her knowledge on the decomposition G = τA1,L1S1τA2,L2S2 . . . τAk,Lk
SkFT . So she

computes c0 = T−1(c). She solves the equation F(z)= c0 for z. Notice that the solution ck is an
element of F ∗q. Alice gets the solution ck−1 of the equation τAk,Lk

(z) = Sk
−1(ck). She creates

inductively ck−j as a solution of τAk−j+1,Lk−j+1
(z) = Sk−j+1

−1(ck−j+1) for j = 2, 3, . . . , k − 1. We
can see that c1 is the plaintext.

EXAMPLE 2. Let K be a commutative ring. We define A(n,K) as bipartite graph with the
point set P = Kn and line set L = Kn (two copies of a Cartesian power of K are used).

We will use brackets and parenthesis to distinguish tuples from P and L. So (p) = (p1, p2, . . . , pn) ∈
Pn and [l] = l1, l2, . . . , ln) ∈ Ln. The incidence relation I = A(n,K) (or corresponding bipartite
graph I) is given by condition pIl if and only if the equations of the following kind hold.

p2 − l2 = l1p1
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p3 − l3 = p1l2
p4 − l4 = l1p3
p5 − l5 = p1l4
. . .
pn − ln = p1ln−1 for odd n
pn − ln = l1pn−1 for even n
Let us consider the case of finite commutative ring K, |K| = m.
As it instantly follows from definition the order of our bipartite graph A(n,K) is 2mn. The

graph is m-regular. Really, the neighbour of given point p is given by above equations, where
parameters p1, p2, . . . , pn are fixed elements of the ring and symbols l1, l2, . . . , ln are variables. It is
easy to see that the value for l1 could be freely chosen. This choice uniformly establishes values for
l2, l3 . . . , ln. So each point has precisely m neighbours. In similar way we observe the neighbourhood
of the line, which also contains m neighbours. We introduce the colour ρ(p) of the point p and the
colour ρ(l) of line l as parameter p1 and l1 respectively. Graphs A(n,K) with colouring belong to
class of linguistic graphs defined in [14]. In the case of linguistic graph Γ the path consisting of its
vertices v0, v1, v2, . . . , vk is uniquely defined by initial vertex v0 and colours ρ(vi), i = 1, 2, . . . , k
of other vertices from the path.

So the following symbolic computation can be defined. Take the symbolic point x = (x1, x2, . . . , xn)
where xi are variables and symbolic key which is a string of polynomials f1(x), f2(x), . . . , fs(x) from
K[x]. Form the path of vertices v0 = x, v1 such that v0Iv1 and ρ(v1) = f1(x1), v2 such that v1Iv2 and
ρ(v2) = f2(x1), . . . , vs such that vs−1Ivs and ρ(vs) = fs(x1). We use term symbolic point to point
computation in the case of even k and talk on symbolic point to line computation in the case of odd k.
We notice that the computation of each coordinate of vi via variables x1, x2, . . . , xn and polynomi-
als f1(x), f2(x), . . . , fi(x) needs only arithmetical operations of addition and multiplication. Final
vertex vs (point or line) has coordinates (h1(x1), h2(x1, x2), h3(x1, x2, x3), . . . , hn(x1, x2, . . . , xn)),
where h1(x1) = fs(x1).

Assume that K = Fq (m=q) and the equation of kind fs(x) = b has at most one solution under
condition that x ∈ F ∗q. Then the map H : xi → h(x1, x2, . . . , xi), i = 1, 2, . . . , n is a multiplicatively
injective map. If the equation of kind fs(x) = b, x ∈ F ∗q has the unique solution then H is bijection.

In the case of finite parameter s and finite densities of fi(x), i = 1, 2, . . . , s the map H also
have finite density. If all parameters deg(fi(x)) are finite then the map H has a linear degree. For
simplicity we set fs(x) = axr + b, where (r, q− 1)) = 1. It means that we can substitute kernel map
F in the case of example 1 by map H. The map G = τA1,L1S1τA2,L2S2 . . . τAs,LsSkHT written in
standard form has linear density and constant degree.

Let Ng(x) be the operator on P ∪ L be the operator sending vertex (x1, x2, . . . , xn) (point or
line) to its neighbour of colour g(x1). In the case of symbolic key defined via choice of f1(x) and
recurrent relations of kind fi+1(x) = gi(fi(x)), i = 1, 2, . . . , s − 1 the map H is a composition of
N1 = Nf1(x), N2 = Ng1 , N3 = Ng2 , . . . , Ns = Ngs−1 . So in the case of bijective map N1N2s is an
example of invertible decomposition of H in sense of [4].
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The following cases of maps with prescribed density can be also used for the implementations.
1) Let in the case of even s we have fi(x) = h(x) + bi for odd i = 1, 3, . . . , s − 1 where h(x)

has a chosen degree α. For even i = 2, 4, . . . , s we set fi(x) = x + ci. From results of [15] we can
deduce that degree of H is 2α + 1. It is easy to see that H is bijective. Let T1 be bijective affine
transformation of the free module Fq

n. One can take the composition H1 = T1H. Independently
from the size of s = l(n) the degree of H1 is t = 2α+ 1. So its density is O(nt).

It means that we can substitute kernel map F in the case of example 1 by map T1H. The map
G = τA1,L1S1τA2,L2S2 . . . τAs,LsSsH1T written in standard form density O(nt+1).

2) Let us choose odd parameter s. As in the case above fi(x) = h(x)+bi for odd i = 1, 3, . . . , s and
for even i = 2, 4, . . . , s−1 equalities fi(x) = x+ci hold. We set h(x) = axr+b, , a ∈ Fq∗. So the map
H is multiplicatively injective. We can check that the degree of H is t = α+2. Let T2 be a bijective
affine transformation of Fq

n of kind x1 → λx1, x2 = l2(x1, x2, . . . , xn), x3 = l3(x1, x2, . . . , xn), . . . ,
xn = ln(x1, x2, . . . , xn), where λ ∈ Fq∗ and li ∈ Fq[x1, x2, . . . , xm] are of degree 1. We set H2 = T2H.
The encryption map G = τA1,L1S1τA2,L2S2 . . . τAs,LsSsH2T has density O(nα+3).

MODIFIED EXAMPLES 1 and 2.
One can change the field Fq in examples 1 and 2 for ring Zm, where m is some composite number.

It leads to change of F ∗q for Z∗m, integer q − 1 for φ(m), where φ is Euler function, graph A(n, Fq)
for A(n,Zm). Detailed description is in [16].

[1] Ding J. , Gower J.E., Schmidt D. S., Multivariate Public Key Cryptosystems, - Springer, Advances in
Information Security, V. 25, 2006, - 259 p.

[2] Goubin L., Patarin J., Bo-Yin Yang, Multivariate Cryptography. Encyclopedia of Cryptography and
Security, (2nd Ed.) 2011, pp. 824-828.

[3] Porras J., Baena J., Ding J., New Candidates for Multivariate Trapdoor Functions // Revista Colom-
biana de Matematicas, 2015 (November), vol. 49, No 1, pp 57-76 .

[4] Ustimenko V. A., Explicit constructions of extremal graphs and new multivariate cryptosystems //
Studia Scientiarum Mathematicarum Hungarica, Special issue ”Proceedings of The Central European
Conference, 2014, Budapest”, 2015 (June), Vol. 52, issue 2, pp. 185-204.

[5] Ustimenko V., On Multivariate Cryptosystems Based on Computable Maps with Invertible Decompo-
sitions // Annales of UMCS. Informatica, 2014, Vol. 14, Special issue ”Proceedings of International
Conference Cryptography and Security Systems, pp.7-18.

[6] Patarin J., The Oil and Vinegar digital signatures, Dagstuhl Workshop on Cryptography, 1997.

[7] Kipnis A., Shamir A., Cryptanalisis of the Oil and Vinegar Signature Scheme // Advances in Cryptology
- Crypto 96, Lecture Notes in Computer Science, Vol. 1462, 1996, pp 257–266.

[8] Bulygin S., Petzoldt A. and Buchmann J., Towards provable security of the unbalanced oil and vinegar
signature scheme under direct attacks, In Guang Gong and Kishan Chand Gupta, editors, ”Progress in
Cryptology - INDOCRYPT”, Lecture notes in Computer Science, Vol. 6498, 2010. pp. 1732.

[9] Romaczuk-Polubiec U., Ustimenko V., On two windows multivariate cryptosystem depending on random
parameters // Algebra and Discrete Mathematics, 2015, Vol. 19, No. 1., pp. 101–129.

7



[10] Ustimenko V., On Shubert cells in grassmanians and new algorithm of multivariate cryptography //
Proceedings of Institute of Mathematics, Minsk, 2015, Vol. 23, no 2, pp 137-148.

[11] Ustimenko V., On algebraic graph theory and nonbijective maps in cryptography // Algebra and Dis-
crete Mathematics, 2015, Vol. 20, no 1, pp. 152170.

[12] Ustimenko V., Wroblewska A., On the key exchange with nonlinear polynomial maps of stable degree
// Annalles UMCS Informatica, 2011, AI XI, no 2, pp. 81-93.

[13] Ustimenko V., Romanczuk U., On Dynamical Systems of Large Girth or Cycle Indicator and their ap-
plications to Multivariate Cryptography, //Artificial Intelligence, Evolutionary Computing and Meta-
heuristics, In the footsteps of Alan Turing Series: Studies in Computational Intelligence, Vol. 427,
Springer, January , 2013, pp. 257-285.

[14] Wroblewska A., On some properties of graph based public keys // Albanian Journal of Mathematics,
2008 Vol. 2, no 3, pp. 229-234 ( proceedings of NATO Advanced Studies Institute: ”New challenges in
digital communications”).

[15] Ustimenko V. A., Maximality of affine group and hidden graph cryptosystems // J. Algebra and Discrete
Math., 2005, no 1, pp. 133-150.

[16] Ustimenko V. A., On new multivariate cryptosystems based on hidden Eulerian equations // Dopovidi
National Academy of Sci of Ukraine, N2 (in English, to appear in N5, 2017)

8


