
Making NSEC5 Practical for DNSSEC

Dimitrios Papadopoulos*

HKUST & University of Maryland
Duane Wessels
Verisign Labs

Shumon Huque*

Salesforce

Moni Naor
Weizmann Institute

Jan Včelák†

NS1
Leonid Rezyin
Boston University

Sharon Goldberg
Boston University

ABSTRACT

NSEC5 is a new proposal for providing authenticated denial
of existence for DNSSEC, i.e., for providing authenticated
responses to DNS queries for names that do not exist in a
zone. NSEC5 simultaneously guarantees two security prop-
erties: (1) privacy against offline zone enumeration, and (2)
integrity of zone contents, even if an adversary compromises
the authoritative nameserver responsible for responding to
DNS queries for the zone. By contrast, today’s DNSSEC
protocol can guarantee one of these properties, but not both.
This paper argues that NSEC5 can be made practical and
performant.

To that end, we present a new version of NSEC5. Our
NSEC5 redesign features a fast and efficient verifiable ran-
dom function (VRF) based on elliptic curve cryptography,
along with a new cryptographic proof of its security. We
also redesign the DNS protocol surrounding NSEC5, leverag-
ing precomputation to improve performance and DNS-level
optimizations to shorten responses. Next, we present the
first implementation of NSEC5—extending widely-used DNS
software to present a full-fledged nameserver and recursive
resolver that support NSEC5—and evaluate their perfor-
mance under aggressive query loads. We believe that our
performance results indicate that NSEC5 can be a practical
solution for DNSSEC deployments.

KEYWORDS

DNSSEC, verifiable random functions, elliptic curve cryptog-
raphy, implementation

1 INTRODUCTION

The Domain Name Security Extensions (DNSSEC) uses asym-
metric cryptography to protect the integrity and authenticity
of DNS responses. NSEC5 [48] is a new proposal for pro-
viding authenticated denial of existence for DNSSEC, i.e.,
for responding to DNS queries (“What is the IP address of
aWa2j3.com?”) for names that do not exist in a zone (“NX-
DOMAIN: aWa2j3.com does not exist in the .com zone.”)
NSEC5 has two key security properties.

First, NSEC5 provides strong integrity, protecting the
integrity of the zone contents even if an adversary compro-
mises the authoritative nameserver (who is responsible for

*Substantial parts of this work conducted at Verisign Labs.
†Substantial parts of this work conducted at CZ.NIC..

responding to DNS queries for the zone). Hardening the
DNS against external compromise seems to be an increas-
ingly important security goal [71], especially in light of recent
attacks [1, 2, 4, 39, 53].

Second, NSEC5 provides privacy against offline zone enu-
meration [16, 24, 28, 60, 67, 70, 84, 85, 87], where an adver-
sary makes a small number of online DNS queries and then
processes them offline in order to learn all the domain names
in a zone. Zone enumeration can be used to identify routers,
servers or other ‘things’ (thermostats, fridges, baby monitors,
etc.) that could then be targeted in more complex attacks.
An enumerated zone can also be “a source of probable e-mail
addresses for spam, or as a key for multiple WHOIS queries
to reveal registrant data that many registries may have legal
obligations to protect” [60] (e.g., per EU data protection
laws [75],[19, pg. 37]). Several publicly available network re-
connaissance tools can be used to launch zone-enumeration
attacks [10, 16, 28, 67, 70, 84].

While today’s DNSSEC protocol has several mechanisms
for authenticated denial of existence, they all either fail to
provide integrity against a compromised nameserver (i.e.,
online signing used in NSEC3 White Lies [44] and Minimally-
Covering NSEC [86]), or fail to prevent offline zone enumera-
tion (NSEC [20], NSEC3 [60]). In fact, offline zone enumera-
tion is an issue introduced by DNSSEC, and is not a possible
attack on legacy DNS.

The original NSEC5. NSEC5 was first proposed in [48].
This first proposal, which lacked a full specification and
implementation, was met with some skepticism [47, 82].

The first issue is that when DNSSEC uses schemes that do
not prevent offline zone enumeration, then DNSSEC responses
can be precomputed. By contrast, NSEC5 requires an online
asymmetric cryptographic computation at the nameserver, in
response to every negative DNSSEC query. (This is necessary.
As shown in [48], online cryptography is necessary for any
scheme that both (a) provides integrity, and (b) prevents
zone enumeration.) Thus, there was a concern that NSEC5
would not be sufficiently performant.

The second issue is the length of DNSSEC responses.
DNSSEC naturally amplifies DNS responses by including
cryptographic keys and digital signatures. Several unfortu-
nate things occur when long DNSSEC responses no longer
fit in a single IP packet [69, 70, 72]. Long responses sent
over UDP can be fragmented across multiple IP fragments,
and thus risk being dropped by a middlebox that blocks IP

1

Making NSEC5 Practical for DNSSEC

fragments [76, 80] or being subject to an IP fragmentation
attack [50]. Alternatively, the resolver can resend the query
over TCP [37, 65], harming performance (due to roundtrips
needed to establish a TCP connection) and availability (be-
cause some middleboxes block DNS over TCP) [76]. Worse
yet, long DNSSEC responses can be used to amplify DDoS
attacks [43]. In a DDoS amplification attack, a botnet sends
nameservers many small DNS queries that are spoofed to
look like they come from a victim machine, and the name-
servers respond by pelting the victim machine with many
long DNSSEC responses. Long DNSSEC responses increase
the volume of traffic that arrives at the victim.

The NSEC5 proposal in [48] was based on RSA, which
exacerbated both concerns, because of the length of an RSA
modulus and the cost of an RSA exponentiation. Under the
proposal, each NSEC5 response would contain up to three ad-
ditional (long) RSA values that had to be computed on-the-fly.
Moreover, there is currently serious discussion about replacing
RSA, which is widely used in DNSSEC deployments [18, 78],
with elliptic curve cryptography (ECC) [52, 77, 81]; the goal
is to have shorter responses at a better security level. Thus,
there was little enthusiasm for a new scheme based on RSA.

In this paper, we implement and evaluate the NSEC5
proposal from [48], and find that the concerns about its
performance and response lengths were justified.

A new version of NSEC5. In order to support the security
goals of NSEC5 without incurring the costs of the original
RSA-based NSEC5 proposal, we set out to design a new
version of NSEC5. Our approach proceeds along two lines.

First, we introduce DNS-level optimizations (Section 5)
that allow us to (1) precompute parts of the response, and
(2) reduce the number of DNSSEC records in the response.

Second, we redesign the cryptography behind NSEC5 (Sec-
tion 4), introducing a scheme based on elliptic curve cryptog-
raphy (ECC). To maintain the security properties of NSEC5,
we cannot just replace RSA with ECDSA. (Why? See Sec-
tion 4.2.) Instead, the starting point for our work is the ob-
servation of [66] that NSEC5 can be generically constructed
from a verifiable random function (VRF) [63]. A VRF is
the public-key version of a keyed cryptographic hash. We
construct a VRF based on ECC, and prove its security in
the random oracle model. While our ECC VRF is similar to
a construction implicit in [41], this earlier work both lacked
a proof of security, and failed to satisfy the VRF security
properties due to a critical design flaw (that has been cor-
rected as a result of our work [7, 8, 40]). Beyond this, we take
special care to minimize the length of our VRF’s outputs
while still maintaining security. Our VRF has been submitted
for standardization at the IETF [49].

Implementation. Our new version of NSEC5 has been
submitted for standardization at the IETF [83]. To evaluate
our new version of NSEC5, we present a full implementation
of an authoritative nameserver and recursive resolver that
support both RSA- and ECC-based NSEC5 (Section 7). (For
the nameserver implementation, we extend the Knot DNS
1.6 [12]. For the recursive resolver, we extend Unbound 1.5.9.)

Performance results. Even though NSEC5 necessarily
requires the nameserver to perform online cryptographic com-
putations, we find that our new ECC-based NSEC5 can be
viable even for high-throughput scenarios. Throughput at
our authoritative nameserver easily scales to a few tens of
thousands of queries per second (64K query/second) on a
moderately-sized multi-core server (i.e., 24 threads on 40
virtual cores). This is an order of magnitude larger than the
average negative response rate at single server in the DNS’s
root zone [6]. In fact, our ECC-based NSEC5 nameserver im-
plementation achieves a throughput that is about 2x higher
than the only nameserver implementation that prevents of-
fline zone enumeration, is widely deployed, and is compliant
with the DNSSEC standards (i.e., PowerDNS’s implementa-
tion of online signing via NSEC3 White Lies [17]). Also, the
performance of our NSEC5-ready recursive resolver is compa-
rable to DNSSEC’s existing denial-of-existence mechanisms.

Response lengths. We show (Section 8.1) that our ECC-
based NSEC5 responses fit into a single IP packet, and have
lengths that are comparable to ECC versions of the current
DNSSEC protocol (i.e., NSEC3 with ECDSA signatures). In
fact, ECC-based NSEC5 produces NXDOMAIN responses
that are shorter than those produced by today’s dominant
DNSSEC deployment configuration (i.e., NSEC3 with 1024-
bit RSA signatures [18, 78]), which has a lower security level!

Considering the transition to NSEC5. We conclude
(Section 11) by discussing mechanisms for transitioning
NSEC5 into the DNSSEC protocol. Given that the adop-
tion of new cryptographic algorithms into DNSSEC may be
on the horizon (e.g., digital signatures over Edwards elliptic
curves [77, 88]), now may also be a good time to consider
the transition to NSEC5.

Contributions. We make the following contributions:

∙ We present a VRF based on elliptic curves, prove its secu-
rity in the random oracle model, and use it to design a more
performant version of NSEC5 (Section 4, Appendix B).

∙ We design the DNS protocol surrounding NSEC5, using
precomputation and other optimizations to improve per-
formance and shorten response lengths (Section 5).

∙ We present the first full-fledged implementation of both
RSA- and ECC-based NSEC5 for both an authoritative
nameserver and a recursive resolver. Our evaluation high-
lights significant improvements in throughput and response
size achieved by our new ECC-based NSEC5 (Section 7,8).

∙ We discuss challenges and opportunities for adopting
NSEC5 in practice (Section 11).

2 TRADEOFFS IN TODAY’S DNSSEC

We start by reviewing the issues that lead to the develop-
ment of NSEC5 for DNSSEC. (See e.g., [87] for a historical
overview of the full DNSSEC protocol.) With DNSSEC, a
trustworthy zone owner is trusted to determine the set of
names (www.example.com) present in the zone and their map-
ping to corresponding values (172.18.216.34). Nameservers
receive information from the zone owner, and respond to DNS
queries for the zone made by resolvers. DNSSEC’s schemes

2

Making NSEC5 Practical for DNSSEC

for authenticated denial of existence reflect tradeoffs between
integrity and privacy against offline zone enumeration. We
describe each scheme and its tradeoffs below:

NSEC (RFC 4034 [20]). The NSEC record is defined
as follows. The trusted owner of the zone prepares a lexico-
graphic ordering of the names present in a zone, and uses the
private zone signing key (ZSK) to sign a record containing
each consecutive pair of names. The precomputed NSEC
records are then provided to the nameserver. Then, to prove
the non-existence of a name (x.example.com), the name-
server returns the NSEC record corresponding to the pair
of existent names that are lexicographically before and after
the non-existent name (w.example.com and z.example.com),
with its associated DNSSEC signatures.

NSEC provides strong integrity—it not only protects
against network attackers that intercept and attempt to
alter DNSSEC responses, but is also robust to a malicious
nameserver. This is because NSEC records are precomputed
and signed by the trusted owner of the zone, and so the
nameserver does not need to know the private ZSK in order
to produce a valid NSEC record. Without the private ZSK, a
malicious nameserver cannot sign bogus DNSSEC responses.

On the other hand, NSEC is vulnerable to trivial zone
enumeration attacks: 𝑁 online queries to the nameserver
suffice to enumerate all 𝑁 names in the zone. Several network
reconnaissance tools use NSEC records to enumerate DNS
zones [10, 14, 67, 70].

NSEC3 (RFC 5155 [60]). NSEC3 is meant to raise the
bar for zone enumeration attacks. The trusted owner of the
zone cryptographically hashes all the names present in the
zone using SHA1, lexicographically orders all the hash values,
and uses the private ZSK to sign a NSEC3 record containing
every consecutive pair of hashes. To prove the non-existence
of a name, the nameserver returns the precomputed NSEC3
record (and the associated DNSSEC signatures) for the pair
of hashes lexicographically before and after the hash of the
non-existent name.

When NSEC3 records are precomputed, it also pro-
vides strong integrity. However, [28, 85] demonstrated (and
RFC 5155 [60, Sec. 12.1.1] acknowledged) that hashing does
not eliminate zone enumeration. To enumerate a zone that
uses NSEC3, the adversary again makes a number of online
queries to the nameserver to collect all the NSEC3 records,
and then uses an offline dictionary attack to crack the hash
values in the NSEC3 records, thus learning the names present
in the zone. These offline attacks will only become faster as
new tools come online [14, 16, 84] and technologies for fast
hashing continue to improve (e.g., GPUs [85], ASICs).

Online signing with NSEC3 White Lies (RFC
7129 [44]). Neither NSEC nor NSEC3 prevent zone enu-
meration. As a result, the DNS community introduced a
radically different approach that prevented zone enumer-
ation at the cost of sacrificing strong integrity. DNSSEC
online signing requires the nameserver to hold the secret
zone-signing key (ZSK), and to use it to generate NSEC3
responses on the fly. Crucially, online signing does not provide

no online weak strong
crypto integrity integrity privacy

legacy DNS X 𝑋 𝑋 X
(plain) NSEC or (plain) NSEC3 X X X 𝑋
online signing, e.g. NSEC3 White Lies 𝑋 X 𝑋 X
NSEC5 𝑋 X X X

Table 1: Properties of NSEC*. Note that [48] proved
that it is impossible to provide both privacy and
weak integrity without online crypto.

strong integrity—it protects only against network attackers
that intercept DNSSEC responses, but integrity is totally lost
if the nameserver is compromised, because the nameserver
holds the secret ZSK that can be used to sign bogus DNSSEC
responses. We call this weak integrity.

RFC 7129 [44] describes an online signing approach called
“NSEC3 White Lies” which is supported by at least one major
nameserver implementation (PowerDNS). NSEC3 White Lies
requires the nameserver to use the secret ZSK to generate,
on the fly, an NSEC3 record that covers a query with the
minimal pair of hash values.1 That is, given a query 𝛼 and its
hash value ℎ(𝛼), the nameserver generates an NSEC3 record
containing the pair of hashes (ℎ(𝛼)− 1, ℎ(𝛼) + 1), and signs
the NSEC3 record with the private ZSK. Because the NSEC3
record only contains information about the queried name 𝛼,
but not any name present in the zone, it provides privacy
against zone enumeration. Offline zone enumeration at-
tacks no longer work. Instead, enumeration is only possible
by brute force—sending an online query to the nameserver
for each name that is suspected to be in the zone.

NSEC3 White Lies also has a helpful backwards-
compatiblity property for resolvers: resolvers just need to
validate the NSEC3 record, but do not need to know or
care whether the server is doing online signing (with NSEC3
White Lies) or not (with plain NSEC3).

3 SECURITY PROPERTIES OF NSEC5

NSEC5 was introduced in [48, 66], to provide both privacy
against zone enumeration and strong integrity. NSEC5 is
very similar to NSEC3, except that we replace the crypto-
graphic hashes used in NSEC3 with the hashes computed by
a verifiable random function (VRF) [63]. Table 1 summarizes
properties of NSEC5. We now review the security properties
of NSEC5, and revisit the exposition in [66] to show how
NSEC5 can be generically constructed from a VRF.

3.1 Verifiable Random Functions (VRF).

A VRF [63] is essentially the public-key version of a keyed
cryptographic hash. A VRF comes with a public-key pair
(PK ,SK). Only the holder of the private key 𝑆𝐾 can compute
the hash, but anyone with public key 𝑃𝐾 can verify the hash.

1RFC4470 [86] also proposes “Minimally Covering NSEC Records” an
analogous online signing approach that uses NSEC records instead of
NSEC3 records. We omit further discussion of this approach because
it is not supported by major nameserver implementations (i.e., BIND,
PowerDNS, Microsoft DNS, Knot DNS, etc.).

3

Making NSEC5 Practical for DNSSEC

A VRF hashes an input 𝛼 using the private key SK

𝛽 = 𝐹SK (𝛼) .

The collision-resistance guarantee of a VRF is similar to
that of a cryptographic hash function. The pseudorandom-
ness of a VRF guarantees that 𝛽 is indistinguishable from
random by anyone who does not know the private key SK .
The private key SK is also used to construct a proof 𝜋 that
𝛽 is the correct hash output

𝜋 = ΠSK (𝛼) .

The proof 𝜋 is constructed in such a way that anyone holding
the public key can validate that indeed 𝛽 = 𝐹SK (𝛼). Finally,
the VRF has a trusted uniqueness property that roughly
requires that, given the VRF public key PK , each VRF input
𝛼 corresponds to a unique VRF hash output 𝛽. More precisely,
trusted uniqueness guarantees that, given a validly-generated
PK , even an adversary that knows SK cannot produce a valid
proof for a fake VRF hash output 𝛽′ ̸= 𝛽. (The word “trusted”
here is used to indicate that we trust the key generation
process, and are not concerned with uniqueness for untrusted
keys.) See Appendix B for formal definitions.

All the VRFs we consider in this paper allow 𝛽 to be
computed directly from 𝜋 by a simple operation, i.e., hashing.
This reduces communication, since communicating 𝜋 alone
(without 𝛽) suffices.

3.2 NSEC5 from VRFs.

NSEC5 uses a VRF to provide authenticated denial of ex-
istence for DNSSEC [66, Sec. 7]. We review the NSEC5
construction and three new types of DNSSEC records it
requires: NSEC5, NSEC5KEY and NSEC5PROOF.

The NSEC5KEY. NSEC5 uses a VRF with its own keys.
These keys are distinct from the zone-signing key (ZSK)
that computes DNSSEC signatures. The private VRF key
is known to both the nameserver and the trusted owner of
the zone. Meanwhile, the private ZSK is only known to the
trusted owner of the zone. Finally, resolvers get the public
ZSK (in a DNSKEY record), and the public VRF key (in an
NSEC5KEY record) using the standard mechanisms used for
DNSSEC key distribution.

Why do we need two separate keys, namely the ZSK (for
signing DNS records) and the VRF key (for NSEC5)? This
allows us to separate our two security goals (i.e., strong
integrity and privacy against zone enumeration). To achieve
strong integrity, we follow the approach in NSEC and NSEC3,
and provide the private ZSK to the the trusted zone owner
but not to the untrusted nameserver. On the other hand, any
reasonable definition of privacy against zone enumeration
must trust the nameserver; after all, the nameserver holds
all the DNS records for the zone, and thus can trivially
enumerate the zone. For this reason, we will provide the
secret VRF key to the nameserver, and use the VRF only to
deal with zone enumeration attacks.

In [48], cryptographic lower bounds were used to prove the
nameserver must necessarily have some secret cryptographic
key. However, we shall soon see that NSEC5 still provides

integrity privacy
Online signing 𝑋 𝑋
NSEC5 X 𝑋

Table 2: Comparing online signing (e.g., NSEC3
White Lies) to NSEC5 when the nameserver is com-
promised.

strong integrity even if the nameserver’s private key is com-
promised or made public—all that is lost is privacy against
zone enumeration. This is contrast to any online signing ap-
proach, such as NSEC3 White Lies, where compromising the
nameserver’s secret key eliminates both integrity and privacy
against zone enumeration (Table 2).

Precomputing NSEC5 records. The trusted zone owner
uses the private VRF key 𝑆𝐾 to compute the VRF hashes
of all the names present in the zone, lexicographically orders
all the the hash values, and uses the private ZSK to sign
a record containing every consecutive pair of hashes; each
pair of hashes is an NSEC5 record. The precomputed NSEC5
records and their associated DNSSEC signatures are provided
to the nameserver along with the private VRF key 𝑆𝐾.

Responding with NSEC5 and NSEC5PROOFs. To
prove the non-existence of a queried name 𝛼, the nameserver
uses the private VRF key SK to obtain the VRF hash out-
put 𝛽 = 𝐹SK (𝛼) and the proof value 𝜋 = Π𝑆𝐾(𝛼). The
nameserver responds to the query with
(1) an NSEC5PROOF record containing 𝜋, and2

(2) the precomputed NSEC5 record (and the associated
DNSSEC signatures) for the pair of hashes lexicographi-
cally before and after 𝛽.

NSEC5 is almost identical to NSEC3, except that NSEC3
does not have a ‘PROOF’ record because resolvers can hash
𝛼 by themselves. (This is exactly why NSEC3 is vulnerable to
offline zone enumeration: because its hash function is publicly
computable!)

Validating. The resolver validates the response by
(1) using the public VRF key in the NSEC5KEY record

to validate that proof 𝜋 from the NSEC5PROOF corre-
sponds to the query 𝛼,

(2) using a simple operation (i.e., hashing) to get 𝛽 from
𝜋 and then checking that 𝛽 falls between the two hash
values in the NSEC5 record, and

(3) using the public ZSK to validate the DNSSEC signatures
on the NSEC5 record.

3.3 Properties of NSEC5.

Table 1 summarizes the properties of NSEC5.

Online crypto. NSEC5 requires online cryptographic
computations for negative responses. (But not for positive
responses.) For every query 𝛼 that elicits a negative response,
the nameserver uses the secret VRF key SK to compute the

2We use VRFs where 𝛽 can be publicly computable from the proof
𝜋, so do not include 𝛽 in the NSEC5PROOF record. VRFs that do
not have this property additionally require 𝛽 to be included in the
NSEC5PROOF.

4

Making NSEC5 Practical for DNSSEC

NSEC5PROOF record on the fly. Notice that online signing
(e.g., ‘NSEC3 White Lies’, see Section 2) also requires online
cryptographic computations. The fact that both of these
solutions prevent zone enumeration is not a coincidence:
[48] proved that any solution that both (a) prevents zone
enumeration and (b) provides weak integrity, must necessarily
use online cryptography. What is interesting about NSEC5 is
that it provides strong integrity (i.e., integrity even when the
nameserver is malicious or compromised). Meanwhile, online
signing provides only weak integrity (i.e., against network
attackers but not compromised nameservers). See Tables 1-2.

Privacy. An attacker can only enumerate the zone by brute
force—by sending an online query to the nameserver for each
name 𝛼 that it suspects is in the zone.

To see why, suppose an adversary has collected all the
NSEC5 records for the zone, and now wants to enumerate
the zone using an offline-dictionary attack that ‘cracks’ the
VRF hashes. The adversary must first hash each entry in
his dictionary, and then check if any of the hashed dictio-
nary entries match any VRF hashes in the collected NSEC5
records; if there is a match, the adversary has successfully
cracked the VRF hash. However, because the adversary does
not know the private VRF key, the VRF hash values are
indistinguishable from random values. It follows that the
adversary cannot hash any of the entries in its dictionary,
and thus cannot perform a offline dictionary attack. A formal
security proof of this property is in [66].

Strong integrity. Strong integrity is provided even even
if a malicious nameserver, or any other adversary, knows the
secret VRF key SK . This is because because the untrusted
nameserver does not know the secret zone-signing key (ZSK).
The idea behind the formal proof (see [66]) of this property
is simple. Suppose that the secret VRF key SK used with
NSEC5 is made public. Resolvers know the correct public
VRF key PK , so the VRF’s trusted uniqueness ensures that
an adversary (that knows SK) cannot trick resolvers into
accepting an incorrect VRF hash output.3 Then, NSEC5 is
essentially the same as (plain) NSEC3: the adversary can
correctly hash queries on its own, but cannot forge NSEC*
records. Thus, for any name 𝛼 that is present in the zone, the
adversary cannot forge an NSEC5 record that falsely claims
that 𝛼 is absent from the zone. In other words, even if the
private NSEC5KEY is leaked to an adversary, the security
of NSEC5 just downgrades to that of (plain) NSEC3. (See
Tables 1-2.)

4 REDESIGNING THE CRYPTO

As discussed in Section 1, a key problem with the original
NSEC5 construction from [48] was that it was based on RSA.
We first review [48]’s NSEC5 construction and explain why it
implicitly contains an RSA-based VRF; we prove the security
of this RSA-based VRF in Appendix C. We then explain
why we cannot improve its performance by just swapping
out the RSA signatures in [48] and replacing them with
ECDSA. Finally, we construct a ECC-based VRF, and prove
its security in Appendix B.

Keys. Let 𝑁 be a public RSA modulus, let 𝑑 be a secret
RSA exponent and 𝑒 be its corresponding public exponent.
The public VRF key is (𝑒,𝑁) and the secret VRF key is
(𝑑,𝑁).

Hashing. To hash input 𝛼 using the private RSA key (𝑑,𝑁),
start by computing the proof value

𝜋 = (𝑀𝐺𝐹 (𝛼))𝑑 mod 𝑁

and then compute the hash value 𝛽 as

𝛽 = 𝐻(𝜋)

𝐻 is a cryptographic hash function (e.g., SHA-256) while
𝑀𝐺𝐹 is an IETF-standard cryptographic hash that produces
outputs one bit shorter than the RSA modulus [22, Sec. 10.2]
(aka, a “full domain hash” [25]). Notice that anyone can
compute 𝛽 given 𝜋.

Verifying. To verify that 𝛽 is the VRF hash of 𝛼, first
verify that 𝐻(𝜋) = 𝛽 and then use the public RSA key (𝑒,𝑁)
to verify that 𝜋 is a valid RSA signature on 𝑀𝐺𝐹 (𝛼), i.e.,
that 𝜋𝑒 = 𝑀𝐺𝐹 (𝛼) mod 𝑁 .

Figure 1: VRF based on RSA. Appendix C proves
its security in the random oracle model.

4.1 VRF based on RSA

The original NSEC5 construction [48] was not described in
terms of VRFs. However, it actually uses the VRF in Figure 1,
which is based on RSA in the random oracle model. Notice
that the VRF proof is simply a deterministic RSA signature
(using [25]’s “full-domain hash” construction), and the VRF
output is simply the cryptographic hash of the VRF proof.
VRF verification amounts to an RSA verification of the VRF
proof. We prove that this is a secure VRF in Appendix C.

Use with NSEC5. Each precomputed NSEC5 record con-
tains two SHA-256 hash outputs, each corresponding to 𝛽 in
Figure 1, and one DNSSEC signature. Each NSEC5PROOF,
generated on the fly, has one RSA value (𝜋 in Figure 1).

4.2 Why can’t we just use ECDSA?

At this point, one would naturally wonder why we don’t
just replace the RSA signature in Figure 1 with an ECDSA
signature. After all, ECDSA signatures are much shorter
than RSA signatures at the same security level. (For instance,
ECDSA signatures over 256-bit elliptic curves are just 512
bits long and are understood to have an ℓ = 128-bit security
level, comparable to 3072-bit RSA.)

The problem is that while the “full-domain hash” RSA
signature used in Figure 1 is unique given the public key
PK , an ECDSA signature lacks this property. With random-
ized ECDSA signatures, the signature is computed using a
random nonce, and so signatures are not unique given only
the ECDSA public key 𝑃𝐾. Moreover, even “determinis-
tic” ECDSA [73] fails to provide uniqueness given only the
ECDSA public key 𝑃𝐾. With “deterministic” ECDSA, the
signer derives the signing nonce from a keyed hash of the

5

Making NSEC5 Practical for DNSSEC

Public parameters. Let 𝑞 be a prime number, and let 𝐺
a cyclic group of prime order 𝑞 with generator 𝑔. Because
checking membership in 𝐺 may be expensive, we assume
𝐺 is a subgroup of some group 𝐸 such that (1) checking
membership in 𝐸 is easy, and (2) the cofactor 𝑓 = |𝐸|/|𝐺|
is not divisible by 𝑞. (𝐺 may equal 𝐸, in which case 𝑓 = 1.)
We assume that 𝑞, 𝑔, 𝑓,𝐺 and 𝐸 are public parameters.
Let 𝐻1 be a hash function (modeled as a random oracle)
mapping arbitrary-length bitstrings onto 𝐺 − {1}. Let 𝐻2

be a function that takes the bitstring representation of an
element of 𝐸 and shortens it to the appropriate length; we
need a 2ℓ-bit output for ℓ-bit security. Let 𝐻3 be a hash
function (modeled as a random oracle) mapping arbitrary-
length inputs to an ℓ-bit integer.

Keys. The secret VRF key 𝑥 ∈ {1, . . . , 𝑞 − 1} is chosen
uniformly at random. The public VRF key is PK = 𝑔𝑥.

Hashing. Given the secret VRF key 𝑥 and input 𝛼, compute
the proof 𝜋 as follows:
(1) Obtain the group element ℎ = 𝐻1(𝛼) and raise it to the

power of the secret key to get 𝛾 = ℎ𝑥.
(2) Choose a random nonce 𝑘 ∈ {0, . . . , 𝑞 − 1}.
(3) Compute 𝑐 = 𝐻3(𝑔, ℎ, 𝑔

𝑥, ℎ𝑥, 𝑔𝑘, ℎ𝑘).
(4) Let 𝑠 = 𝑘 − 𝑐𝑥 mod 𝑞.
The proof 𝜋 is the group element 𝛾 and the two exponent
values 𝑐, 𝑠. (Note that 𝑐 may be shorter than a full-length
exponent, because its length is determined by the choice of
𝐻3). The VRF output 𝛽 = 𝐹SK (𝛼) is computed by shortening
𝛾𝑓 with 𝐻2. Thus

𝜋 = (𝛾, 𝑐, 𝑠) 𝛽 = 𝐻2(𝛾
𝑓)

Notice that anyone can compute 𝛽 given 𝜋.

Verifying. Given public key PK , verify that proof 𝜋 =
(𝛾, 𝑐, 𝑠) corresponds to the input 𝛼 and output 𝛽 as follows:
(1) Compute 𝑢 = (PK)𝑐 · 𝑔𝑠.

(Note: if everything is correct then 𝑢 = 𝑔𝑘.)
(2) Given input 𝛼, hash it to obtain ℎ = 𝐻1(𝛼).

Check that 𝛾 ∈ 𝐸.
Compute 𝑣 = (𝛾)𝑐 · ℎ𝑠.
(Note: if everything is correct then 𝑣 = ℎ𝑘.)

(3) Check that hashing all these values together gives us 𝑐
from the proof. That is, check that:

𝑐 = 𝐻3(𝑔, ℎ,PK , 𝛾, 𝑢, 𝑣)

Finally, compute 𝛽 = 𝐻2(𝛾
𝑓).

Figure 2: A VRF that operates in a cyclic group 𝐺 of
prime order with generator 𝑔. We use a multiplica-
tive group notation. This VRF adapts the Chaum-
Pederson protocol [35] for proving that two cyclic
group elements 𝑔𝑥 and ℎ𝑥 have the same discrete
logarithm 𝑥 base 𝑔 and ℎ, respectively. Appendix B
proves its security in the random oracle model, based
on the decisional Diffie-Hellman (DDH) assumption,
which roughly says that ℎ𝑥 looks random given the
tuple (𝑔, 𝑔𝑥, ℎ).

message it is signing, but the symmetric key 𝑘 to this hash
is independent of the ECDSA public key 𝑃𝐾. Thus, the
signer could produce a different ECDSA signature just by
choosing a different key 𝑘, and the verifier would never know
the difference.

Why does this matter? If ECDSA signatures were used
in the construction of Figure 1, then the VRF prover could
produce any arbitrary number of valid VRF proofs 𝜋 for
a given input 𝛼 and public key PK . This clearly violates
the trusted uniqueness property of the VRF (Section 3.1).
Per Section 3.3, trusted uniqueness is central to the strong
integrity property of NSEC5. This is why we can’t base
NSEC5 on ECDSA signatures.

4.3 VRF based on Elliptic Curves.

We now see how to produce shorter NSEC5 responses using
elliptic curves (ECC). Our starting point is construction
of [41, 46]. We cannot, however, we use [41]’s construction as
is. While [41] claimed their construction was also a VRF, they
did not formally prove that it achieves the VRF properties
from Section 3.1. In fact, we discovered that their construction
(which has since been adopted by Google’s Key Transparency
project [11, 62]) has a critical flaw that allows a malicious
prover to violate the VRF’s trusted uniqueness property. This
flaw has since been corrected as a result of our work [7, 8, 40].

Our VRF construction can be seen in Figure 2 and our
formal proof of its security properties in Appendix B. It fixes
the flaw of [41], without any downgrade in performance. On
the contrary, since we provide a concrete (as opposed to
asymptotic) security analysis as per the formulation of [26],
we can optimize the VRF’s parameters. Concretely, we can
shorten the length of VRF proof 𝜋, by truncating value 𝑐 in
Figure 2 so that it is only ℓ bits long (and not 2 · ℓ). This
results in NSEC5PROOF records that are ℓ bits shorter.

Our VRF can be instantiated over any group where the
decisional Diffie-Hellman (DDH) problem is hard, including
the elliptic curves currently standardized in DNSSEC (NIST
P-256 [55, Sec. 3]), and Curve25519 [59] which has recently
been proposed for use with DNSSEC [56, 77]. Each of these
curves operates in finite field 𝐹𝑝 where 𝑝 is a 256-bit prime,
and achieves a security level of ℓ = 128 bits [27, 55].

Use with NSEC5. What response lengths do we get when
we instantiate NSEC5 with the VRF in Figure 2 over 256-bit
elliptic curves?

Each NSEC5 record will once again contain two hash
outputs (each corresponding to 𝛽 in Figure 2) along with a
DNSSEC signature. We instantiate 𝐻2 in Figure 2 with the
function that outputs the 𝑥 coordinate (abscissa) of a point
(𝑥, 𝑦) on the elliptic curve (where 𝑥, 𝑦 ∈ 𝐹𝑝). Thus, each 𝛽
will be 256-bits long.

We instantiate 𝐻1 per Appendix A.
Next, observe that each NSEC5PROOF record will contain

the proof value 𝜋 = (𝛾, 𝑐, 𝑠) from Figure 2. How long is 𝜋? If
we instantiate the VRF using a 256-bit elliptic curve (e.g.,
NIST P-256 or Ed25519), then 𝑠 is 256 bits long. Meanwhile,
𝛾 is a point on the elliptic curve, which can be represented

6

Making NSEC5 Practical for DNSSEC

example.com A
bar.example.com A
www.example.com A
*.www.example.com A

Figure 3: Example zone.

with 256 + 1 bits using point compression.4 Finally, we show
(in Appendix B) 𝑐 must be ℓ-bits long for an ℓ-bit security
level. We therefore instantiate 𝐻3 as the first 128 bits output
by the SHA-256 hash function.

It follows that proof 𝜋 will be 𝑝 = 256+1+ℓ+256 = 513+ℓ
bits for a ℓ-bit security level; thus, 𝑝 = 641 for a 128-bit
security level. Achieving the same security level with RSA
requires 3072-bit RSA, which results in NSEC5PROOFS that
are about 5 times longer!

5 DESIGNING THE DNS PROTOCOL

To properly understand the performance of NSEC5, we must
move beyond the clean and idealized model we used thus far,
where each query (“What is the IP for example.com?”) elicits
either a positive response (“172.18.216.34.”) or a negative
response (“NXDOMAIN: The name does not exist.”) In
practice, the behavior of NSEC* is much messier. This is
primarily due to the complex nature of a seemingly-unrelated
issue: DNS wildcards [60, Section 7.2.1],[45, 61]. (Indeed, the
treatment of DNS wildcards is so complex that RFC4592 [61]
clarifying their use was issued nineteen years after the original
DNS RFC1035 [65].) Thus, we start by digging into how
NSEC3 handles wildcards. We then design the protocol that
NSEC5 uses to deal with wildcards, and describe how it (1)
uses a “wildcard bit” to shorten response lengths and (2)
exploits precomputation to improve performance.

5.1 Wildcard and closest encloser proofs.

A wildcard record maps a set of queries to a particular re-
sponse. For example, if the domain has a wildcard record
for *.example.com, then queries for c.example.com and
a.b.c.example.com would all be answered with the value in
the wildcard record (e.g., “172.18.216.35”).

To see why wildcards matter, we use a running exam-
ple. Suppose a DNS query for a.b.c.example.com is made
to the example zone in Figure 3. The correct response is
NXDOMAIN (i.e., the name does not exist). Why? First,
example.com is the longest ancestor of the queried name
that exists in the zone. In DNS terminology, example.com
is the closest encloser for a.b.c.example.com [61]. Next,

4The idea behind point compression is to represent a point with coordi-
nates (𝑥, 𝑦) using only its abscissa 𝑥 (which is 256 bits long) and a single
bit that indicates which square root (positive or negative) should be
used for the ordinate 𝑦. Without point compression, both coordinates
must be transmitted, for a total length of 256+256 bits. (Thus, without
point compression our proof 𝜋 would be 2 * 256 + 128 + 256 = 896
bits long.) There has been some controversy over whether or not point
compression is covered by a patent, and whether its use in DNSSEC
corresponds to patent infringement [81]. However, as Bernstein [29]
argues: “a patent cannot cover compression mechanisms [appearing in
the paper by Miller in 1986 [64] that was] published seven years before
the patent was filed.” Moreover, new IETF specifications for elliptic
curve digital signatures using Ed25519 also use point compression [56].

*.example.com—the wildcard child of the closest encloser—
is not in the zone. Thus, there is no wildcard expansion of
a.b.c.example.com. The correct response is NXDOMAIN.

But how can a nameserver use DNSSEC to securely prove
the absence of relevant wildcards? First, the nameserver must
prove that example.com is the closest encloser, by proving:
(1) The presence of the closest encloser example.com.
(2) The absence of the next closer c.example.com, the name

one label longer than the closest encloser.
(Notice that the next closer is sometimes identical to
the queried name, e.g., if we had instead queried for
c.example.com.) Once this is it done, the nameserver must
additionally prove:
(3) The absence of *.example.com, the wildcard child of the

closest encloser.

5.2 NSEC3 and wildcards.

How does NSEC3 prove the three items above? The middle
and last item are easily dealt with, by providing the NSEC3
record proving the absence of the name, i.e., that contains
a pair of hashes ℎ1, ℎ2 such that ℎ1 < ℎ(name) < ℎ2. But
what about proving the presence of a name (i.e., the first
item)? One way to do this is to provide an NSEC3 record
that matches the name, i.e., that contains a pair of hashes
ℎ1, ℎ2 such that ℎ1 = ℎ(name). Thus NSEC3 proves the three
items by returning three NSEC3 records [60]:
(1) A NSEC3 record matching the closest encloser, i.e., an

NSEC3 record with two hash values ℎ1, ℎ2 such that
ℎ1 = ℎ(example.com).

(2) An NSEC3 record covering the next closer, i.e., an
NSEC3 record containing two hash values ℎ1, ℎ2 such
that ℎ1 < ℎ(c.example.com) < ℎ2.

(3) An NSEC3 record covering the wildcard, i.e., an NSEC3
record containing two hash values ℎ1, ℎ2 such that ℎ1 <
ℎ(*.example.com) < ℎ2.

Thus, wildcards significantly impact performance: a sin-
gle query can solicit up to three NSEC3 responses! (Fig-
ure 4.)Sometimes, fewer than three NSEC3 records are needed.
For instance, only two records are needed if the same record
matches ℎ(example.com) and covers ℎ(c.example.com). In-
deed, this is always true for NSEC, so at most two NSEC
records are returned for each query. We summarize the impact
on performance below and in Table 3.

Response length. Every query can elicit a response con-
taining (up to) three NSEC3 records, each of which includes
as DNSSEC signature (of length 𝜎 bits) and two hash values
(each of length 2ℓ bits). Thus, the bitlength of the response
can be estimated as

|nsec3| = 3(4ℓ+ 𝜎) = 12ℓ+ 3𝜎 (1)

Resolver computations. The resolver must verify up to
three DNSSEC signatures (on each NSEC3 record).

Nameserver computations. When regular NSEC3 is
used, all responses are precomputed. When NSEC3 White
Lies is used, responses are generated on the fly, so up to three
NSEC3 records are signed in response to every query.

7

Making NSEC5 Practical for DNSSEC

online crypto verifications max response
at nameserver at resolver length

NSEC none 2 RRSIGs 2𝜎
NSEC3 none 3 RRSIGs 3𝜎 + 12ℓ
NSEC3 White Lies 1 RRSIG 3 RRSIGs 3𝜎 + 12ℓ
NSEC5 1 NSEC5PROOF 2 RRSIGs 2𝜎 + 8ℓ + 2𝑝

2 NSEC5PROOFs

Table 3: Performance characteristics of NXDO-
MAIN responses for NSEC*. RRSIG records are
DNSSEC signatures. 𝜎 is the bitlength of a DNSSEC
signature, 2ℓ is the bitlength of the hash output in
the NSEC3 or NSEC5 record, and 𝑝 is the bitlength
of an NSEC5PROOF.

5.3 Adding the wildcard bit to NSEC5.

In [45], however, Gieben and Mekking observed that wildcards
could be dealt with just two NSEC3 records. Their proposal
simply requires a wildcard bit to be added to each NSEC3
record. If an NSEC3 record contains the pair of hashes ℎ1, ℎ2

where ℎ1 = ℎ(example.com), then the wildcard bit is set if
*.example.com is present in the zone, and cleared otherwise.
This simple trick allows us to eliminate the third NSEC3
record! Instead, we need only check that the wildcard bit is
cleared on the first NSEC3 record. The wildcard bit was not
standardized as part of NSEC3, and has not been deployed
in practice [44]. However, we can use it with NSEC5, because
NSEC5 records have the same structure as NSEC3 records.

NSEC5 uses the wildcard bit, so that up to two NSEC5
records (and two NSEC5PROOFs) are needed to respond
to any query. (See Figure 5.)This has significant impact on
response lengths:

Response lengths. Every query can elicit a response
containing (up to) two NSEC5 records, each including a
DNSSEC signature (length 𝜎 bits) and two hash values (each
of length 2ℓ bits), and up to two NSEC5PROOF records
(each of length 𝑝 bits). We can therefore estimate the total
bitlength of the response as

|nsec5| = 2(4ℓ+ 𝜎 + 𝑝) = 8ℓ+ 2𝜎 + 2𝑝 (2)

Resolver computations. Resolvers need to verify two
NSEC5PROOF records and up to two DNSSEC signatures
(on each NSEC5 record).

5.4 Adding precomputation to NSEC5.

Perhaps the biggest performance challenge with NSEC5 is
the need for the nameserver to perform online crypto. We
now see how to lower this burden on the nameserver.

First recall that all DNSSEC signatures on NSEC5 records
must be precomputed. (This is because NSEC5 records are
signed by the zone-signing key (ZSK). To preserve strong
integrity, the nameserver must not know the secret ZSK.) It is
also possible to precompute one of the two NSEC5PROOFs.
Specifically, the first NSEC5PROOF and NSEC5 record
prove the presence of the closest encloser (i.e., example.com)
are as follows: (1) The NSEC5 record has two hash val-
ues ℎ1, ℎ2, where ℎ1 is the VRF hash of the closest en-
closer, and (2) the NSEC5PROOF has a proof 𝜋 that ℎ1

is a correct VRF hash value. The NSEC5PROOF for ℎ1

can therefore be precomputed and cached at the same time
as the NSEC5 record.Online crypto is only needed for the
second NSEC5PROOF. The second NSEC5PROOF and
NSEC5 record cover the next closer c.example.com. The
NSEC5PROOF proves that 𝛽 is a correct VRF hash of
c.example.com. Meanwhile, the NSEC5 record has a pair
of VRF hash outputs ℎ1, ℎ2 that must fall lexicographically
before and after 𝛽. Importantly, ℎ1 and ℎ2 must not equal
𝛽. Also, 𝛽 is unknown at the time that the NSEC5 record
is prepared. As such, the NSEC5PROOF for 𝛽 cannot be
precomputed.

Thus NSEC5 only needs one online cryptographic compu-
tation when the nameserver responds to a query.5

6 PRACTICAL CONSIDERATIONS

NODATA Responses. Thus far, our exposition has been
a clean and idealized model where all DNS queries are
of the same type: the query contains a domain name
(www.example.com), and the response contains an IPv4 ad-
dress (“172.18.216.34”). Actually, this is a query for an A
record. In practice, there are other query types. For instance,
the AAAA record is for IPv6 addresses. Suppose the example
zone in Figure 3 receives a AAAA query for www.example.com.
The zone has an A record for www.example.com, but not a
AAAA one. Thus, the correct response is NODATA, (i.e.,
“The name exists, but not for queried type”).

Because NSEC5, NSEC3, and NSEC records all have the
same structure, they all deal with NODATA responses as
follows. Every NSEC* record includes a type bitmap [20, 60],
containing a bit for each type of DNS record (e.g., A,
AAAA, NS, MX). Consider the NSEC* record matching
www.example.com, i.e., that contains a pair of hash values
ℎ1, ℎ2 such that ℎ1 is the hash of www.example.com. In our
example zone, this NSEC* record has its type A bit set, and
its other type bits cleared. This NSEC* record would be used
to respond to an AAAA query for www.example.com. The
resolver would conclude the response is NODATA by check-
ing that the the AAAA bit cleared. Notice that NODATA
responses always use just one NSEC* record!

Privacy. Wildcards and types have only minor implications
on NSEC5 privacy.

Consider a queried name (e.g., a.b.c.example.com) that
does not exist in the zone. Then, the NXDOMAIN response
reveals the closest encloser’s name (example.com) and types
that exist in the zone (e.g., A, AAAA, MX, NS), and also
reveals if its wildcard child (*.example.com) exists in the
zone. Meanwhile, if a queried name (e.g., www.example.com)
does exist in the zone, then the NODATA response reveals
its all types (e.g., A) present in the zone.

5As noted in Table 3, a similar precomputation approach is possi-
ble with NSEC3 White Lies. Specifically, the presence of the closest
encloser example.com and the presence/absence of its wildcard child
*.example.com are known at the time that the zone is signed. Therefore,
their corresponding NSEC3 records can be precomputed. This opti-
mization is (sort of) performed by the PowerDNS nameserver, which
caches and reuses NSEC3 records generated on-the-fly for the closest
encloser and wildcard.

8

Making NSEC5 Practical for DNSSEC

This means that NSEC5 ensures that an attacker can
learn which types of a non-wildcard name (example.com)
exist in the zone only if it (1) queries for the exact name
(example.com) OR (2) queries for any longer name that con-
tains it as a prefix (e.g., a.b.c.example.com). In other words,
the attacker must still enumerate the zone by brute force,
sending an online query for every name (or longer name that
contains it as a prefix) suspected to be in the zone.

Opt-out, key rollover. Because NSEC5 is so similar in
structure to NSEC3, it also supports other important op-
timizations and procedures developed for DNSSEC. For
instance, NSEC5 supports opt-out in the same way as
NSEC3 [60]. Moreover, the NSEC5KEY can be rolled over
using the same procedure to roll a ZSK [58]: the new
NSEC5KEY record is published, then old NSEC5 records
are replaced by NSEC5 records computed using the new
NSEC5KEY, and finally the old NSEC5KEY is removed
from the zone.

7 IMPLEMENTATION

We designed and implemented the two NSEC5 varients (RSA
and ECC), extending existing DNS software. For the author-
itative nameserver, we extended Knot DNS 1.6.4, a highly-
optimized authoritative implementation. For the recursive
resolver we extended Unbound 1.5.9, one of the most widely
used recursive resolver implementations. Our implementation
supports the full spectrum of negative responses, (i.e., NX-
DOMAIN, NODATA, Wildcard, Wildcard NODATA, and
unsigned delegation). The authoritative implements the op-
timization that precomputes the NSEC5PROOFs matching
each NSEC5 record (Section 5.4). We did not introduce addi-
tional library dependencies; all cryptographic primitives are
already present in OpenSSL v1.0.2j, which is used by both
implementations. We implemented our elliptic-curve VRF
for the NIST P-256 curve. The code is deliberately modular,
so that the Ed25519 curve [56] (which is not supported by
OpenSSL v1.0.2j) could be used a drop-in replacement. Over-
all, we added approximately 9,000 lines of C code. We plan to
make the source publicly available.A “live” example from

our implementation. Figures 4 and 5 present “live” NX-
DOMAIN responses from our implementation, for NSEC3 and
NSEC5 respectively. (Cryptographic values (hashes, proofs,
and signatures) have been shortened and some data fields
have been dropped.) To generate these responses, we signed
a small example.com zone with NSEC3 using ECDSA-P256
(DNSSEC algorithm 13) and ECC-based NSEC5. Per Sec-
tion 5.2, NSEC3 returns three records and their corresponding
signatures. On the other hand, the wildcard bit used with
NSEC5 allows us to return only two NSEC5 records and two
NSEC5PROOFS (Section 5.4).

8 PERFORMANCE EVALUATION

We now evaluate the performance of NSEC5 and compare
it against (plain) NSEC3 and online signing with NSEC3
White Lies (Section 2). We consider response length, query
processing time at the recursive resolver and authoritative

$ kdig +dnssec +multiline ddadasds.example.com
;; ->>HEADER<<- opcode: QUERY; status: NXDOMAIN; id: 22793
;; Flags: qr aa rd; QUERY: 1; ANSWER: 0; AUTHORITY: 8; ADDITIONAL: 1

;; QUESTION SECTION:
;; ddadasds.example.com. IN A

;; AUTHORITY SECTION:
example.com. 3600 IN SOA dns1.example.com.
example.com. 3600 IN RRSIG SOA 13 2 3600 20170128184611

(5134 example.com. nqiEgM+kVBDeBI==)

;; Matching record for hash of example.com –-closest encloser;
0sc7qshrek878fcmnag1.example.com. 3600 IN NSEC3 1 0 0 AABB

(CPDHD7GK40NGDKRU8CQ8 NS SOA MX RRSIG DNSKEY NSEC3PARAM)
0sc7qshrek878fcmnag1.example.com. 3600 IN RRSIG NSEC3 13 3 3600

(5134 example.com. 2JicIoTH3WkgAjbP/ehmTv==)

;; Covering record for hash of ddadasds.example.com –-next closer record;
jftj44t4kqppke20mukr.example.com. 3600 IN NSEC3 1 0 0 AABB

(MSC7QSHREK878FCM8GD7 A AAAA RRSIG)
jftj44t4kqppke20mukr.example.com. 3600 IN RRSIG NSEC3 13 3 3600

(5134 example.com. VfFQfho5sQ8QVWOqsrXyN6==)

;; Covering record for hash of *.ddadasds.example.com –-wildcard record;
cpdhd7gk40ngdkru8cq8n.example.com. 3600 IN NSEC3 1 0 0 AABB

(J1VSBFDBU38SMLNJPIMM A AAAA RRSIG)
cpdhd7gk40ngdkru8cq8n.example.com. 3600 IN RRSIG NSEC3 13 3 3600

(5134 example.com. lcDsoeVGuq3rvezN2oW74x==)

;; Received 773 B

Figure 4: NXDOMAIN response with NSEC3.

$ kdig +dnssec ddadasds.example.com
;; ->>HEADER<<- opcode: QUERY; status: NXDOMAIN; id: 18282
;; Flags: qr aa rd; QUERY: 1; ANSWER: 0; AUTHORITY: 8; ADDITIONAL: 1

;; QUESTION SECTION:
;; ddadasds.example.com. IN A

;; AUTHORITY SECTION:
example.com. 3600 IN SOA dns1.example.com.
example.com. 3600 IN RRSIG SOA 16 2 3600

(5137 example.com. kVfd4pgDmWMg==)

;; Matching record for hash of example.com –-closest encloser;
;; Wildcard flag is not set;
ec2i1k1adn16bb9sbh1k.example.com. 86400 IN NSEC5 48566 0

(H4ETTRT2RNLVQA2DU6HM NS SOA MX RRSIG DNSKEY NSEC5KEY)
ec2i1k1adn16bb9sbh1k.example.com. 86400 IN RRSIG NSEC5 16 3 86400

(5137 example.com. RbkKnf4MT/Fg==)

;; Covering record for hash of ddadasds.example.com –-next closer record;
4vulla22dr6bo63j203c.example.com. 86400 IN NSEC5 48566 0

(C341KKJADV09N1BH2DJ0 A AAAA RRSIG)
4vulla22dr6bo63j203c.example.com. 86400 IN RRSIG NSEC5 16 3 86400

(5137 example.com. KMrN9N+J9Rug==)

;; NSEC5PROOF records;
example.com. 3600 IN NSEC5PROOF 48566 (AiZnaTPduKWyig)
ddadasds.example.com. 3600 IN NSEC5PROOF 48566 (AzH6uKGjS+2FJf)

;; Received 834 B

Figure 5: NXDOMAIN response with NSEC5.

nameserver, and throughput, memory and CPU usage at the
authoritative.

Configurations. We tested our Knot DNS nameserver
implementation in four configurations:
(1) NSEC3 with 2048-bit RSA signatures (DNSSEC Algo-

rithm 8),
(2) NSEC3 with ECDSA signatures over the NIST P-256

curve (DNSSEC Algorithm 13),
(3) NSEC5 with 2048-bit RSA signatures (RRSIG) and

NSECPROOF records,
(4) NSEC5 with ECC using the NIST P-256 curve for both

signatures (RRSIG) and NSECPROOFs.

9

Making NSEC5 Practical for DNSSEC

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100

ti
m

e
(m

s)

% of queries

NSEC3-RSA2048
NSEC3-ECDSAp256

NSEC5-RSA2048
NSEC5-ECDSAp256

PowerDNS-WhiteLies-ECDSAp256

 1000

 2000

 4000

 8000

 16000

 32000

 64000

 128000

1000 20000 40000 60000 80000100000 120000

ac
h
ie

v
ed

 t
h
ro

u
g
h
p
u
t

queries/second

NSEC3-RSA2048
NSEC3-ECDSAp256

NSEC5-RSA2048
NSEC5-ECDSAp256

PowerDNS-WhiteLies-ECDSAp256
0

4

8

12

16

20

24

0 1 2 3 4 5

C
P

U
 t

im
e
 (

ta
sk

-c
lo

c
k
/s

e
c
)

time (min)

NSEC3-RSA2048
NSEC3-ECDSAp256

NSEC5-RSA2048
NSEC5-ECDSAp256

PowerDNS-WhiteLies-ECDSAp256

Figure 6: (Left) Query processing time at the authoritative nameserver per NXDOMAIN response. (Center)
Throughput at the authoritative nameserver under stable query rate when all queries result in NXDOMAIN
responses.(Right) CPU utilization (task-clock/second) for the different authoritative configurations at 32
Kqps query load and 24 threads.

The NSEC3 configurations used 10 hash iterations. (This is
a common choice in practice, e.g., at the .ru zone.) Finally,
we used PowerDNS6 4.0.1 in “narrow” mode with BIND
back-end to evaluate
(5) NSEC3 White Lies with ECDSA signatures over NIST

P-256 (DNSSEC Algorithm 13)
For the recursive resolver, we used our NSEC5-ready exten-
sion of Unbound in validating and caching mode.

Zone. We test against a real Alexa-100 second-level-domain
(SLD) zone that consists of about 1000 names.

System. All experiments were executed on a machine with
20X Intel Xeon E5-2660 v3 cores with dual thread support
for a total of 40 virtual CPUs, and 256GB RAM, running
CentOS Linux 7.1.1503 and OpenSSL 1.0.2j. We would ex-
pect a typical SLD to have multiple nameservers of roughly
this size, possibly at multiple locations. Because network
latency is a common denominator for all our schemes, all
experiments were performed with this machine hosting both
the nameserver (using 24 threads) and the recursive resolver
(using up to 16 threads), each listening at a different port.

Stress testing with “purely negative” query loads.
Unless otherwise specified, our measurements use synthetic
query loads. We elicit negative (NXDOMAIN) responses by
sending queries for names from the zone prepended with a
random six-alphanumeric-character sequence. We deliberately
chose to stress-test our implementation using this aggressive
“purely negative” query load. Importantly, a purely negative
query load would typically occur only when a server is subject
to a volumetric denial-of-service attack; natural DNS traffic
usually elicits both positive responses (e.g., A, AAAA, MX,
NS records) as well as negative ones (NXDOMAIN) [5].

8.1 Response lengths.

We want DNSSEC responses to be short enough to fit into a
single IP packet and to limit DDoS amplification (Section 1).

6We acknowledge that this is not an apples-to-apples comparison.
But, to the best of our knowledge, PowerDNS is the only widely-
deployed open-source nameserver that supports DNSSEC online signing
in an RFC-compliant way. Meanwhile, we chose to focus our NSEC5
implementation effort on the more performant Knot DNS nameserver.

Our measurements show that NSEC5-ECC response lengths
are comparable to NSEC3 with ECDSA, and shorter than
today’s dominant deployment configuration (NSEC3 with
1024-bit RSA).

Figure 7. Figure 7 shows the average response size for
100,000 NXDOMAIN responses for our four Knot DNS con-
figurations. When RSA is used, both NSEC5 (at 1731 bytes,
on average) and NSEC3 (1517 bytes) do not fit in a 1500-byte
IP packet (Ethernet MTU). Meanwhile, ECC-based NSEC5
is much shorter (827 bytes, on average), easily fitting into a
single IP packet, and is comparable to ECC-based NSEC3
(783 bytes).

Comparison to “legacy” NSEC3. Modern crypto-
graphic recommendations mandate a security level of at least
112 bits [23]. Despite these recommendations, NSEC3 only
supports (outdated) SHA1 as its hash function [60], for an
(outdated) security level of ℓ = 80 bits. (NSEC5 records use
a 2ℓ = 256-bit hash outputs, for a ℓ = 128-bit security level.)
Also, most domains deploying DNSSEC still use 1024-bit
RSA (𝜎 = 1024 bits) [18, 78], for an (outdated) 80-bit se-
curity level [23]. NSEC3 with 1024-bit RSA has an average
response length of 1069 bytes. This is about 29% longer than
ECC-based NSEC5, which also has a much stronger security
level (ℓ = 128 versus ℓ = 80 bits)!

8.2 Nameserver performance.

Both NSEC5, and online signing with NSEC3 White Lies,
prevent offline zone enumeration by requiring online public-
key crypto computations at the nameserver. (See Table 3.)
We now compare their performance at the nameserver, and
find that our ECC-based NSEC5 implementation (extending
Knot DNS) is faster than PowerDNS’s implementation of
NSEC3 White Lies.

Processing time per query. To measure the time it takes
to process a query at the authoritative, we ran 100,000 se-
quential queries, each eliciting an NXDOMAIN response. To
fairly compare across implementations, we report round-trip
time as observed by the query issuer. Figure 6-(left) presents

10

Making NSEC5 Practical for DNSSEC

the results. Ignoring the tail of the plot (which can be at-
tributed to delays in inter-process communication and other
tasks running in the background), we see that the major-
ity of queries are processed consistently close to an average
time for each configuration. Plain NSEC3 (with RSA-2048
and ECDSA-P256) uses precomputed responses; as such, the
nameserver can respond to queries in just 117𝜇s and 116𝜇s on
average. Meanwhile NSEC5 and NSEC3 White Lies use on-
line crypto, therefore process queries more slowly. RSA-based
NSEC5 takes 1.93ms on average, while ECC-based NSEC5
presents a 2.3x speedup, for an average query processing time
of 0.81ms. This is faster than the 1.12ms query processing
time for the PowerDNS implementation of NSEC3 White
Lies!7

Throughput with purely negative traffic. Next, we con-
sider aggregate query throughput. We used Dnsperf 2.1.1 [15],
a popular open-source DNS performance evaluation tool, to
issue negative queries at fixed rates from 1K to 128K queries
per second (qps). Figure 6-(center) presents throughput
results on a logarithmic scale.

Plain NSEC3 does not use online cryptographic computa-
tions, and so throughput scales easily to 128 Kqps and beyond.
The remaining schemes do use online crypto computations.
RSA-based NSEC5 plateaus earliest—the nameserver cannot
cope with a query rate greater than about 20 Kqps. Turning
to elliptic-curve configurations, PowerDNS’s NSEC3 White
Lies plateaus at about 32 Kqps, while our ECC-based NSEC5
improves on this to almost 64 Kqps. This 2x improvement
follows from differences in the Knot DNS and PowerDNS
implementations, which is also in line with benchmark re-
sults of [13]. ([13] finds a 2-3x gap in throughput between the
Knot DNS and PowerDNS when serving DNSSEC-enabled
zones.)Our NSEC3-ECC throughput results should be well

7Per footnote 5, PowerDNS caches and reuses NSEC3 records gen-
erated on-the-fly for the closest encloser and wildcard. By contrast,
our NSEC5 implementation precomputes the closest-encloser records,
rather than caching and reusing them. Thus, to fairly compare across
implementations, we crafted the query load so that all queries could
use the same records (served from cache) for all but the next-closer
records (Section 5.1). Therefore, both NSEC5-ECC and NSEC3 White
Lies perform a single online crypto computation at query time.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

NSEC3

 R
SA2048

 N
SEC3

ECDSAp256

NSEC5

 R
SA2048

 N
SEC5

ECDSAp256

"L
egacy

"

NSEC3

RSA1024

Ethernet MTU

Figure 7: Average length for a single NXDOMAIN
response (standard deviation < 1%).

u
n
si
g
n
ed

D
N
S

N
S
E
C
3

R
S
A
2
0
4
8

N
S
E
C
3

E
C
D
S
A
p
2
5
6

N
S
E
C
5

R
S
A
2
0
4
8

N
S
E
C
5

E
C
D
S
A
p
2
5
6

P
o
w
er
D
N
S
-W

L

E
C
D
S
A
p
2
5
6

tested SLD 18.1 49.3 43.9 64 53.3 18.6
.name TLD 108.3 417.2 254.7 634.1 492.2 144.4

Table 4: Memory footprint (MB) at the authorita-
tive after loading the zone.

above the needs of most zone operators. To put this in context,
the A operator [6] reports an average negative query load
per server that is roughly one order of magnitude smaller.

Throughput with mixed traffic. In practice, throughput
should be even higher, because normal traffic should elicit
positive responses (e.g., signed A records), which are precom-
puted, in addition to NXDOMAIN responses. To demonstrate
this, we tested ECC-based NSEC5 at a steady query rate
of 32 Kqps using 4 (rather than 24) threads. When fewer
than 50% of responses are NXDOMAIN, throughput remains
steady at 32 Kqps. Meanwhile, purely NXDOMAIN traffic
saturates throughput at 13 Kqps.

CPU utilization. CPU utilization is shown in Figure 6-
(right). We used the Linux perf events profiler to measure
the task-clock time per second (shown on the y-axis of
Figure 6-(right)), which reports the CPU time spent by a
process across all threads. Since we use 24 threads, full uti-
lization would correspond to a task-clock/second of 24. All
measurements were taken over a 5 minute period (time shown
on the x-axis) with 32 Kqps query load of purely NXDO-
MAIN traffic. From Figure 6-(center), we already know that
a 32 Kqps query load causes throughput to deteriorate for
RSA-based NSEC5 and PowerDNS’s NSEC3 White Lies, but
not for plain NSEC3 and ECC-based NSEC5. Considering
the corresponding CPU utilization in Figure 6-(right), we see
that plain NSEC3 has the lowest CPU utilization (roughly
50%, or task-clock time/second of about 12) while NSEC3-
ECC is not too much higher. Meanwhile, NSEC3 White Lies
(with PowerDNS) has the heaviest CPU utilization (roughly
95%, or task-clock time/second of about 23), mostly due
to implementation differences between Knot DNS and Pow-
erDNS. As a final note, we expect utilization to be lower in a
setting tuned for maximum performance, since these results
include the heavy logging necessary for our experiments.

Memory footprint. Table 4 considers the memory foot-
print at the authoritative nameserver, once the zone is loaded.
Because our test SLD zone had only 1000 records, we repeated
this experiment for the .name TLD, which has about 460, 000
records. We see that ECC generally has a much smaller mem-
ory footprint than RSA. NSEC5 also takes up more space
than plain NSEC3 because: (i) NSEC5PROOFs are precom-
puted and cached to optimize performance (Section 5.4), and
(ii) NSEC5 records use 256-bit hash values, while NSEC3 uses
(outdated, less secure) 160-bit SHA1 hash values. Finally, the
memory overhead for NSEC3 White Lies is tiny, because
NSEC3 records are computed on the fly at query time.

11

Making NSEC5 Practical for DNSSEC

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

ti
m

e
(m

s)

% of queries

NSEC3-RSA2048
NSEC3-ECDSAp256

NSEC5-RSA2048
NSEC5-ECDSAp256

PowerDNS-WhiteLies-ECDSAp256

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

Resolved
 from cache

Resolved with
 trip to authoritative

ti
m

e
(m

s)

% of queries

 0% NXDOMAIN
 10% NXDOMAIN
 20% NXDOMAIN
 30% NXDOMAIN
 40% NXDOMAIN

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

ti
m

e
(m

s)

% of queries

NSEC3-RSA2048
NSEC3-ECDSAp256

NSEC5-RSA2048
NSEC5-ECDSAp256

PowerDNS-WhiteLies-ECDSAp256

Figure 8: Overall query processing time at the recursive resolver and authoritative nameserver (left) per
NXDOMAIN response across all configurations, and (center) for ECC-based NSEC5 under mixed (positive
& NXDOMAIN) traffic. (right) Validation time per NXDOMAIN response at the recursive resolver for all
configurations.

8.3 Recursive resolver performance.

NSEC3 and NSEC5 both require recursive resolvers to per-
form public-key crypto verifications (Table 3). We therefore
find that query processing times at the recursive resolver
for our RSA- and ECC-based NSEC5 implementations are
comparable to those of NSEC3.

Overall per-query processing time. Figure 8-(left) re-
ports the overall query processing time per NXDOMAIN
response, as observed by a stub resolver. This measurement
includes the processing time both at the recursive resolver
(which verifies DNSSEC responses) and at the authorita-
tive nameserver (with serves or generates responses). We set
up the stub resolver, recursive resolver, and nameserver on
our single machine. Our query load was 100,000 sequential
unique queries, each eliciting an NXDOMAIN response from
the authoritative nameserver.

Figure 8-(left) shows that plain NSEC3, NSEC3 White
Lies, and NSEC5 all have processing times of the same order
of magnitude. This follows because they all require public-key
crypto verifications at the recursive resolver. (Compare this to
processing time at the authoritative nameserver alone, which
is orders of magnitude faster for plain NSEC3). Naturally,
overall processing time for plain NSEC3 is fastest (about
1ms); again, this follows because plain NSEC3 does not re-
quire online crypto at the authoritative nameserver. Of the
three configurations that use online crypto at the nameserver
to prevent zone enumeration, RSA-based NSEC5 takes the
longest (3.4ms on average), followed by NSEC5-ECC (3.1ms
on average) and NSEC3 White Lies using PowerDNS (2.4ms
on average).

Mixed traffic. The average query processing time is likely
to be faster in practice, since real DNSSEC traffic contains
positive responses (e.g., signed A records) as well as NXDO-
MAIN responses. To highlight this, Figure 8-(center) shows
the overall query processing time for ECC-based NSEC5,
when handling traffic containing both positive and NXDO-
MAIN responses. Positive queries were sampled from the zone
according to a Zipf distribution, which has been shown to be
a good fit for DNS query distributions [57]. Naturally, NSEC5

only affects performance for negative queries; everything else
is validated from cache in minimal time.

Validation time. Finally, we zoom in on performance at
the recursive resolver by considering only the time required
for validating responses. (This excludes processing at the
nameserver, latency to the nameserver, packet processing at
the recursive, etc.).

Figure 6-(right) shows that cryptographic validation
NSEC5-RSA is faster than NSEC5-ECC. (This is natural:
RSA verification is well known to be faster than ECDSA
verification.)

Next, consider the two plain NSEC3 configurations. Fig-
ure 6-(center) shows that most queries are validated in mi-
croseconds; meanwhile, the top 11% of queries (on the right
side of the figure) take seconds to validate. The reasoning
for this subtle. Because we issue 100,000 queries for a zone
that only has 1000 names, our recursive resolver eventually
collects all the NSEC3 records for the zone. (In other words,
it enumerates the zone.) Once this happens, the authoritative
nameserver begins sending NSEC3 records that the recursive
resolver has already cached. Instead of cryptographically vali-
dating these NSEC3 records from scratch, the resolver simply
takes a few microseconds to retrieve the cached NSEC3 record.
Thus, the excellent validation performance of plain NSEC3
follows because we make a large number of queries to the
same small zone. In a live system that queries multiple zones,
this behavior is likely to be less significant.

Now consider the validation performance for NSEC3 White
Lies. With White Lies, a fresh NSEC3 record is generated
for every query, so the recursive will never be able to collect
all the NSEC3 records for the zone. (That is, will never be
able to enumerate the zone unless it queries specifically for
all names in it!) Thus, this excellent validation performance
we observed for plain NSEC3 is not possible with NSEC3
White Lies. Analogous reasoning shows it is also not possible
with any other approach that prevents zone enumeration,
including NSEC5.

Thus, it is most sensible to compare NSEC5’s validation
performance to that of NSEC3 White Lies. Figure 8-(right)
shows that validation for NSEC3 White-Lies (0.5ms) is faster

12

Making NSEC5 Practical for DNSSEC

than for NSEC5-ECC implementation (1.2ms). Digging into
this result, we found that it is due to (1) parsing and log-
ging the different parts of the NSEC5 response (e.g., the
NSEC5PROOF), (2) fetching the NSEC5KEY, and (3) a per-
formance gap between our (unoptimized) ECC-based VRF
verification and the highly-optimized OpenSSL verification
of ECDSA.

Remark: Speedups with Ed25519? Finally, we note
that our NSEC5 implementation uses the NIST P-256 el-
liptic curve. However, the literature suggests that computa-
tional speedups are possible by moving from P-256 to the
Ed25519 [77] elliptic curve. We leave this to future work.

9 NSEC5 VS. RECENT INNOVATIONS

We consider the relationship between NSEC5 and some recent
DNS innovations.

Aggressive negative caching (draft-ietf-dnsop-nsec-
aggressiveuse) [42]: A new proposal, that is in the process
of being standardized, calls for aggressive caching of NSEC*
records at resolvers. The idea is to reuse cached NSEC*
records to answer queries that are different from the original
query that elicited the NSEC* record. (The original DNSSEC
specifications [21] do not allow this.) To see how this works,
suppose the zone in Figure 3 used (plain) NSEC and suppose
we sent a type A query for foo.example.com. The response
would contain an NSEC record that (1) attests that no names
exist between bar.example.com and www.example.com, and
(2) has a type bitmap with the type A bit set and type AAAA,
NS, MX, etc. bits cleared. Then, aggressive negative caching
allows resolvers to use the cached NSEC record to infer that:
(1) Other names covered by the NSEC record do not exist

in the zone (NXDOMAIN for e.g., qqq.example.com).
(2) Other types matching the NSEC record do not exist in

the zone (NODATA for bar.example.com for types e.g.,
AAAA, NS, MX).

This first item treats offline zone enumeration as feature,
rather than a bug. In other words, it exploits the fact that
resolvers can make offline inferences about the names covered
by an NSEC/NSEC3 record. It optimizes DNSSEC perfor-
mance by cutting down on the number of queries sent from
resolver to nameserver. (For instance, the fast response valida-
tion behavior we observed for plain NSEC3 in Figure 8-(right)
would also translate to a reduce number of queries.) However,
this performance optimization is obviated by any scheme
that prevents offline zone enumeration, including NSEC3
White Lies and NSEC5, because these schemes necessarily
prevent resolvers from making offline inferences about the
names present or absent in the zone. Meanwhile, the second
item optimizes performance (reducing queries from resolver
to nameserver) for all the schemes including NSEC5.

RFC8020 [32]. RFC8020 is a new standard that states
that NXDOMAIN for a query (c.example.com) implies that
names deeper in the DNS hierarchy (e.g., b.c.example.com)
also do not exist. This allows resolvers to cache the NXDO-
MAIN response for c.example.com and reuse it to answer a

later query for e.g., b.c.example.com. All the NSEC* vari-
ants we have considered thus far, including NSEC5, can
benefit from this performance optimization.

Black Lies (draft-valsorda-dnsop-black-lies [79]).
There is a (concurrent) NSEC* proposal that leverages the
fact that NODATA responses are short. Black Lies is an
online-signing solution that answers each negative query with
an NODATA response, even if the “correct” response is NX-
DOMAIN. (Hence, the Black Lie.) For example, suppose the
zone in Figure 3 receives an AAAA query for a.example.com.
The Black Lies response is a single NSEC record match-
ing a.example.com, with its AAAA type bit cleared, that is
generated and signed on the fly. To prevent zone enumera-
tion, the second name in the NSEC record is the immediate
lexicographic successor of query, i.e., ∖000.a.example.com.
Responses are short because only one NSEC record is re-
quired.

Black Lies comes with some caveats. Most importantly, it
is an online-signing solution (per Tables 1,2) that requires the
nameserver to know the secret zone-signing key (ZSK). Thus,
it fails to provide strong integrity. Moreover, because Black
Lies gives a NODATA response when the “correct” response
is NXDOMAIN, it obviates the performance optimization
of RFC8020 [32]. Also, Black Lies thwarts any diagnostic or
security tool (e.g., [38, 74]) that uses NXDOMAIN responses
to infer that a name definitely does not exist in the zone.

10 SUMMARY: WHY USE NSEC5?

The key advantage of NSEC5 is that it (1) stops offline zone
enumeration while (2) providing strong integrity even if the
zone’s authoritative nameserver is compromised. By contrast,
DNSSEC’s online signing solutions (NSEC3 White Lies [44],
Minimally-Covering NSEC [86], Black Lies [79]) stops offline
zone enumeration by trusting the nameserver with the secret
zone-signing key (ZSK); thus compromising the nameserver
compromises the integrity of the zone (Table 2).

[48] proved that providing integrity and preventing of-
fline zone enumeration necessarily require the nameserver to
perform one online public-key crypto computation for each
negative query. While this seems expensive, we demonstrate
that our ECC-based NSEC5 nameserver implementation can
be viable even for high-throughput scenarios. In Section 8.2
we found that it supports a throughput of 64, 000 negative
queries per second (qps) on a moderately-sized server with 24
threads on 40 virtual cores. This is about 2x the throughput
of the only implementation of RFC-compliant online signing
that is widely deployed and publicly available (PowerDNS’s
implementation of NSEC3 White Lies). A throughput of 64
Kqps should be well above the needs of most zone operators—
even public statistics from the A-root operator [6] indicate
an average negative query load about one order of magnitude
smaller per server. Without access to proprietary statistics
regarding corporate second-level-domains, it is not easy to
estimate their throughput requirements. Nevertheless, this
64 Kqps throughput is achieved even with purely negative

13

Making NSEC5 Practical for DNSSEC

traffic (rather that mixed traffic, with both positive and neg-
ative queries) and a single server (rather than a cluster of
nameservers, a more common deployment configuration).

With ECC-based NSEC5, the overall processing time for
an negative query (from stub resolver, to recursive resolver,
to authoritative nameserver) is only 30% longer that of online
signing with NSEC3 White Lies (using the PowerDNS imple-
mentation). It may be possible to reduce this performance
gap with an optimized implementation, since the nature
and number of cryptographic operations in the two configu-
rations is similar. Moreover, our implementation is for the
NIST P-256 elliptic curve; further speedups might be possible
by moving to the Ed25519 curve [77]. (Doing this requires
no modifications to ECC-based VRF of Figure 2. Response
length results for an Ed25519 instantiation would be identical
to those in Section 8.1, because both P-256 and Ed25519 are
256-bit curves.)

Thus, we believe that NSEC5 can be a practical solution
for zone operators that care about protecting sensitive infor-
mation (names of hosts, servers, routers, IoT devices, DANE
certificates [54], etc.) from offline zone enumeration attacks.
Meanwhile, operators that don’t care about zone enumera-
tion should just use plain NSEC3. Moreover, for zones that
currently use online signing with NSEC3 White Lies, moving
to NSEC5 seems like a win-win scenario: roughly the same (if
not better) performance, and no need to store the sensitive
secret ZSK at the authoritative nameserver.

11 THE TRANSITION TO NSEC5

We conclude with a discussion of the elephant in the room.
How can today’s DNSSEC transition to NSEC5?

The DNS community has faced this problem before. First,
the NSEC3 specification [60] came out after the earliest de-
ployments of DNSSEC [68], and so resolvers and nameservers
had to transition from NSEC to NSEC3 [60, Section 10.4].
Second, there is currently a proposal to transition from RSA
to ECDSA signatures over the NIST P-256 elliptic curve [81].
Third, a desire to avoid NIST-specified curves [30] and to
have short DNSSEC responses, is motivating the community
to consider transitioning to digital signatures over Edwards
elliptic curves [77, 88]. Fourth, there is also the DPRIVE ini-
tiative that seeks to add confidentiality to DNS transactions,
to mitigate concerns surrounding pervasive network monitor-
ing [3]. Given that other transitions may be on the horizon,
this might also be a good time to consider transitioning to
NSEC5.

11.1 The mechanics of the transition.

We believe that the transition to NSEC5 can be accomplished
similarly to the transition to NSEC3. DNSSEC records have
an algorithm number that specifies the cryptographic al-
gorithms they use (e.g., 5 specifies RSA signatures with
SHA1 hashing [9]). To transition to NSEC3, two new al-
gorithm numbers were introduced—6:DSA-NSEC3-SHA1
and 7:RSASHA1-NSEC3-SHA1. (Once the transition period
ended, subsequent DNSSEC algorithm numbers (8,10, 12,

etc.) implied support of NSEC3.) Per [21, Sec 5.2], resolvers
that did not support NSEC3 ignored DNSSEC records with
algorithms 6 or 7, and either ‘hard failed’ (i.e., rejected the re-
sponse) or ‘soft failed’ (i.e., accepted the response) depending
on their local policies.

New algorithm numbers could also be used to transition
to NSEC5. There are two ways [58, Sec 4.1.4] to transition
from an old algorithm number to a new one.

1. Conservative approach. The nameserver simultane-
ously supports both algorithms. Thus, the nameserver an-
swers each query with a DNSSEC response has records for
both the old and the new algorithm number. The resolver
can validate the response if recognizes at least one algorithm.
The downside is that DNSSEC responses contain twice as
many keys and signatures.

2. Liberal approach. The nameserver stops serving re-
sponses with the old algorithm, and uses the new algorithm
instead. The downside is that resolvers that do not support
the new algorithm number will treat the zone as unsigned [21,
Sec 5.2]. Thus, the liberal approach is unlikely to be used
until many resolvers support the new algorithm number.

There are several reasons why the liberal approach seems
right for NSEC5. First, it does not blow up the length of
DNSSEC responses. Secondly, and more importantly, a zone
that simultaneously supports both NSEC3 and NSEC5 will
not reap the security benefits of NSEC5. If (plain) NSEC3 is
supported in parallel with NSEC5, then offline zone enumer-
ation is possible by collecting the NSEC3 records.8 If online
signing (e.g., NSEC3 White Lies) is supported in parallel
with NSEC5, then the nameserver must hold the secret ZSK
key, and thus NSEC5 loses its strong integrity guarantees.
On the other hand, the liberal approach is unlikely to be used
in a transition until a majority of resolvers support NSEC5.
However, given that resolvers might soon be upgraded to add
support for Edwards curves, now might also be a good time
to consider adding support for NSEC5.

ACKNOWLEDGEMENTS

We thank innumerable DNS practitioners for pushing us
to develop a more performant version of NSEC5. We also
thank Asaf Ziv, Sachin Vasant, Ondrej Sury and Tomofumi
Okubo for earlier collaborations on NSEC5. This research
was supported, in part, by NSF grants 1012798, 1012910 and
5245250 and a gift from Verisign Labs.

REFERENCES
[1] 2011. Microsoft Security Bulletin MS11-058 - Critical: Vul-

nerabilities in DNS Server Could Allow Remote Code Execu-
tion (2562485). https://technet.microsoft.com/library/security/
ms11-058. (August 9 2011).

[2] 2014. The Heartbleed Bug. http://heartbleed.com/. (2014).
[3] 2015. DNS PRIVate Exchange Working Group Charter (DPRIVE).

(2015). https://datatracker.ietf.org/doc/charter-ietf-dprive/.

8This also suggests that algorithm negotiation [51] may be less helpful
in a transition to NSEC5—a zone-enumeration attacker can simply
negotiate to speak NSEC3.

14

https://technet.microsoft.com/library/security/ms11-058
https://technet.microsoft.com/library/security/ms11-058
http://heartbleed.com/
https://datatracker.ietf.org/doc/charter-ietf-dprive/

Making NSEC5 Practical for DNSSEC

[4] 2015. Microsoft Security Bulletin MS15-127 - Critical: Security
Update for Microsoft Windows DNS to Address Remote Code Ex-
ecution (3100465). https://technet.microsoft.com/en-us/library/
security/ms15-127.aspx. (December 8 2015).

[5] 2016. A-root Query Volume. http://a.root-servers.org/metrics/
index.html. (January 6 2016).

[6] 2017. A Root server raw data. http://a.root-servers.org/raw-data/
index.html. (2017).

[7] 2017. A CONIKS implementation in Golang: Issue 175:
Uniqueness of VRF is violated. https://github.com/coniks-sys/
coniks-go/issues/175. (April 2017).

[8] 2017. Google Key Transparency Project: Issue 567: Uniqueness
of VRF is violated. https://github.com/google/keytransparency/
issues/567. (April 2017).

[9] 2017. IANA Domain Name System Security (DNSSEC)
Algorithm Numbers http://www.iana.org/assignments/
dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml. (2017).

[10] 2017. Kali Tools: DNSRecon. http://tools.kali.org/
information-gathering/dnsrecon. (2017).

[11] 2017. Key Transparency. (2017). https://github.com/google/
keytransparency.

[12] 2017. Knot DNS. https://www.knot-dns.cz/. (2017).
[13] 2017. Knot DNS: Benchmark. https://www.knot-dns.cz/

benchmark/. (2017).
[14] 2017. nmap: dns-nsec-enum. https://nmap.org/nsedoc/scripts/

dns-nsec-enum.html. (2017).
[15] 2017. Nominum Measurement Tools. http://www.nominum.com/

measurement-tools/. (2017).
[16] 2017. nsec3map: John the Ripper plugin. https://github.com/

anonion0/nsec3map. (2017).
[17] 2017. PowerDNS. https://www.powerdns.com/. (2017).
[18] 2017. Verisign Labs SecSpider: Global DNSSEC deployment

tracking. (2017). http://secspider.verisignlabs.com/.
[19] Brian Aitken. 2011. Interconnect Communication MC /

080:DNSSEC Deployment Study. http://stakeholders.ofcom.org.
uk/binaries/internet/domain-name-security.pdf. (2011).

[20] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. 2005.
RFC 4034: Resource Records for the DNS Security Extensions.
Internet Engineering Task Force (IETF). https://tools.ietf.org/
html/rfc4034.

[21] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
2005. RFC 4035: Protocol Modifications for the DNS Se-
curity Extensions. Internet Engineering Task Force (IETF).
https://tools.ietf.org/html/rfc4035.

[22] J. Staddon B. Kaliski. 1998. RFC 2437: PKCS #1: RSA Cryp-
tography Specifications, Version 2.0. Internet Engineering Task
Force (IETF). https://tools.ietf.org/html/rfc2437.

[23] Elaine Barker and Quynh Dang. 2015. Recommendation for
Key Management - Part 3 Application-Specific (Revised). NIST
Special Publication 800-57. (January 2015).

[24] Jason Bau and John C. Mitchell. 2010. A Security Evaluation of
DNSSEC with NSEC3. In NDSS.

[25] Mihir Bellare and Phillip Rogaway. 1993. Random oracles are prac-
tical: A paradigm for designing efficient protocols. In Proceedings
of the 1st ACM conference on Computer and communications
security. ACM, 62–73.

[26] Mihir Bellare and Phillip Rogaway. 1996. The Exact Security
of Digital Signatures - HOw to Sign with RSA and Rabin. In
Advances in Cryptology - EUROCRYPT ’96, International
Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding.
399–416. https://doi.org/10.1007/3-540-68339-9 34

[27] Daniel J Bernstein. 2006. Curve25519: new Diffie-Hellman speed
records. In Public Key Cryptography-PKC 2006. Springer, 207–
228.

[28] Daniel J. Bernstein. 2011. NSEC3 Walker. http://dnscurve.org/
nsec3walker.html. (2011).

[29] D. J. Bernstein. 2017. Irrelevant patents on elliptic-curve cryptog-
raphy. http://cr.yp.to/ecdh/patents.html (Accessed 1/15/2016).
(2017).

[30] Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. 2016.
Dual EC: A standardized back door. In The New Codebreakers.
Springer, 256–281.

[31] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signa-
tures from the Weil Pairing. In Advances in Cryptology - ASI-
ACRYPT 2001, 7th International Conference on the Theory
and Application of Cryptology and Information Security, Gold

Coast, Australia, December 9-13, 2001, Proceedings. 514–532.
https://doi.org/10.1007/3-540-45682-1 30

[32] S. Bortzmeyer and S. Huque. 2005. RFC 8020: NXDOMAIN:
There Really Is Nothing Underneath. Internet Engineering Task
Force (IETF). https://tools.ietf.org/html/rfc8020.

[33] Colin Boyd, Paul Montague, and Khanh Nguyen. 2001. Elliptic
Curve Based Password Authenticated Key Exchange Protocols.
In Information Security and Privacy, Vijay Varadharajan and
Yi Mu (Eds.). Lecture Notes in Computer Science, Vol. 2119.
Springer Berlin Heidelberg, 487–501. https://doi.org/10.1007/
3-540-47719-5 38

[34] Melissa Chase and Anna Lysyanskaya. 2007. Simulatable VRFs
with Applications to Multi-theorem NIZK. In CRYPTO’07. 303–
322. https://doi.org/10.1007/978-3-540-74143-5 17

[35] David Chaum and Torben Pryds Pedersen. 1992. Wal-
let databases with observers. In Advances in Cryptology-
CRYPTO’92. Springer, 89–105.

[36] Jean-Sébastien Coron. 2000. On the Exact Security of Full Do-
main Hash. In Advances in Cryptology - CRYPTO 2000, 20th
Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2000, Proceedings (Lecture
Notes in Computer Science), Mihir Bellare (Ed.), Vol. 1880.
Springer, 229–235. https://doi.org/10.1007/3-540-44598-6 14

[37] J. Damas, M. Graff, and P. Vixie. 2013. RFC 6891: Extension
Mechanisms for DNS (EDNS(0)). Internet Engineering Task
Force (IETF). https://tools.ietf.org/html/rfc6891.

[38] Casey Deccio. 2010. DNSviz: a tool for visualizing the status of
a DNS zone. http://dnsviz.net/. (2010).

[39] Dennis Fisher. 2012. Final Report on DigiNotar Hack Shows Total
Compromise of CA Servers. Threatpost. https://threatpost.com/
final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/
77170/. (2012).

[40] Matthew Franklin and Haibin Zhang. 2012 (updated 2017).
Unique ring signatures: A practical construction. Technical
Report 2012/577. ePrint Cryptology Archive.

[41] Matthew Franklin and Haibin Zhang. 2013. Unique ring signa-
tures: A practical construction. In Financial Cryptography and
Data Security. Springer, 162–170.

[42] K. Fujiwara, A. Kato, and W. Kumari. 2016. draft-ietf-dnsop-
nsec-aggressiveuse: Aggressive use of NSEC/NSEC3. Internet
Engineering Task Force (IETF). https://datatracker.ietf.org/
doc/draft-ietf-dnsop-nsec-aggressiveuse.

[43] Steve Gibson. 2002. Distributed Reflection Denial of Service
(DrDoS) Attacks. Technical Report. Gibson Research Corpora-
tion.

[44] R. Gieben and W. Mekking. 2014. RFC 7129: Authenticated
Denial of Existence in the DNS. Internet Engineering Task Force
(IETF). https://tools.ietf.org/html/rfc7129.

[45] R. Gieben and W. Mekking. 2015. draft-gieben-nsec4-00:DNS
Security (DNSSEC) Authenticated Denial of Existence. (2015).
https://tools.ietf.org/html/draft-gieben-nsec4-00.

[46] Eu-Jin Goh and Stanislaw Jarecki. 2003. A Signature Scheme as
Secure as the Diffie-Hellman Problem. In Advances in Cryptol-
ogy - EUROCRYPT 2003. 401–415. http://dx.doi.org/10.1007/
3-540-39200-9 25

[47] Sharon Goldberg. 2014. NSEC5: Provably Preventing DNSSEC
Zone Enumeration. In DNS Operations Analysis and Research
(DNS OARC) Fall 14 Workshop. Los Angeles.

[48] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid
Reyzin, Sachin Vasant, and Asaf Ziv. 2015. NSEC5: provably
preventing DNSSEC zone enumeration. In NDSS’15. https:
//eprint.iacr.org/2014/582.pdf.

[49] S. Goldberg, D. Papadopoulos, and J. Vcelak. 2017. draft-goldbe-
vrf: Verifiable Random Functions. (2017). https://datatracker.
ietf.org/doc/draft-goldbe-vrf.

[50] Amir Herzberg and Haya Shulman. 2013. Fragmentation Consid-
ered Poisonous, or: One-domain-to-rule-them-all. org. In Commu-
nications and Network Security (CNS), 2013 IEEE Conference
on. IEEE, 224–232.

[51] Amir Herzberg and Haya Shulman. 2014. Negotiating DNSSEC
Algorithms over Legacy Proxies. In Proceedings of the 13th In-
ternational Conference on Cryptology and Network Security -
Volume 8813. Springer-Verlag New York, Inc., New York, NY,
USA, 111–126. https://doi.org/10.1007/978-3-319-12280-9 8

[52] Amir Herzberg and Haya Shulman. 2015. Cipher-Suite Negotia-
tion for DNSSEC: Hop-by-Hop or End-to-End? Internet Com-
puting, IEEE 19, 1 (2015), 80–84.

15

https://technet.microsoft.com/en-us/library/security/ms15-127.aspx
https://technet.microsoft.com/en-us/library/security/ms15-127.aspx
http://a.root-servers.org/metrics/index.html
http://a.root-servers.org/metrics/index.html
http://a.root-servers.org/raw-data/index.html
http://a.root-servers.org/raw-data/index.html
https://github.com/coniks-sys/coniks-go/issues/175
https://github.com/coniks-sys/coniks-go/issues/175
https://github.com/google/keytransparency/issues/567
https://github.com/google/keytransparency/issues/567
http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
http://tools.kali.org/information-gathering/dnsrecon
http://tools.kali.org/information-gathering/dnsrecon
https://github.com/google/keytransparency
https://github.com/google/keytransparency
https://www.knot-dns.cz/
https://www.knot-dns.cz/benchmark/
https://www.knot-dns.cz/benchmark/
https://nmap.org/nsedoc/scripts/dns-nsec-enum.html
https://nmap.org/nsedoc/scripts/dns-nsec-enum.html
http://www.nominum.com/measurement-tools/
http://www.nominum.com/measurement-tools/
https://github.com/anonion0/nsec3map
https://github.com/anonion0/nsec3map
https://www.powerdns.com/
http://secspider.verisignlabs.com/
http://stakeholders.ofcom.org.uk/binaries/internet/domain-name-security.pdf
http://stakeholders.ofcom.org.uk/binaries/internet/domain-name-security.pdf
https://tools.ietf.org/html/rfc4034
https://tools.ietf.org/html/rfc4034
https://tools.ietf.org/html/rfc4035
https://tools.ietf.org/html/rfc2437
https://doi.org/10.1007/3-540-68339-9_34
http://dnscurve.org/nsec3walker.html
http://dnscurve.org/nsec3walker.html
http://cr.yp.to/ecdh/patents.html
https://doi.org/10.1007/3-540-45682-1_30
https://tools.ietf.org/html/rfc8020
https://doi.org/10.1007/3-540-47719-5_38
https://doi.org/10.1007/3-540-47719-5_38
https://doi.org/10.1007/978-3-540-74143-5_17
https://doi.org/10.1007/3-540-44598-6_14
https://tools.ietf.org/html/rfc6891
http://dnsviz.net/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://datatracker.ietf.org/doc/draft-ietf-dnsop-nsec-aggressiveuse
https://datatracker.ietf.org/doc/draft-ietf-dnsop-nsec-aggressiveuse
https://tools.ietf.org/html/rfc7129
https://tools.ietf.org/html/draft-gieben-nsec4-00
http://dx.doi.org/10.1007/3-540-39200-9_25
http://dx.doi.org/10.1007/3-540-39200-9_25
https://eprint.iacr.org/2014/582.pdf
https://eprint.iacr.org/2014/582.pdf
https://datatracker.ietf.org/doc/draft-goldbe-vrf
https://datatracker.ietf.org/doc/draft-goldbe-vrf
https://doi.org/10.1007/978-3-319-12280-9_8

Making NSEC5 Practical for DNSSEC

[53] Stacey Higginbotham. 2013. Anatomy of a
hack: How the SEA took down the NYT
and Twitter. https://gigaom.com/2013/08/27/
anatomy-of-a-hack-how-the-sea-took-down-the-nyt-and-twitter/.
(August 27 2013).

[54] P. Hoffman and J. Schlyter. 2012. RFC 6698: The DNS-Based
Authentication of Named Entities (DANE) Transport Layer
Security (TLS) Protocol: TLSAC. Internet Engineering Task
Force (IETF). https://tools.ietf.org/html/rfc6698.

[55] P. Hoffman and W.C.A. Wijngaards. 2012. RFC 6605: Elliptic
Curve Digital Signature Algorithm (DSA) for DNSSEC. Internet
Engineering Task Force (IETF). https://tools.ietf.org/html/
rfc6605.

[56] S. Josefsson and N. Moeller. 2016. draft-irtf-cfrg-eddsa: Edwards-
curve Digital Signature Algorithm (EdDSA). (2016). https:
//datatracker.ietf.org/doc/draft-irtf-cfrg-eddsa.

[57] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris.
2001. DNS performance and the effectiveness of caching. In
Proceedings of the 1st ACM SIGCOMM Internet Measurement
Workshop, IMW 2001. 153–167. https://doi.org/10.1145/505202.
505223

[58] O. Kolkman, W. Mekking, and R. Gieben. 2012. RFC 6781:
DNSSEC Operational Practices, Version 2. Internet Engineering
Task Force (IETF). https://tools.ietf.org/html/rfc6781.

[59] A. Langley, M. Hamburg, and S. Turner. 2016. RFC 7748: Elliptic
Curves for Security. Internet Engineering Task Force (IETF).
https://tools.ietf.org/html/rfc7748.

[60] B. Laurie, G. Sisson, R. Arends, and D. Blacka. 2008. RFC
5155: DNS Security (DNSSEC) Hashed Authenticated Denial
of Existence. Internet Engineering Task Force (IETF). https:
//tools.ietf.org/html/rfc5155.

[61] E. Lewis. 2006. RFC 4592: The Role of Wildcards in the Domain
Name System. Internet Engineering Task Force (IETF). https:
//tools.ietf.org/html/rfc4592.

[62] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W.
Felten, and Michael J. Freedman. 2015. CONIKS: Bringing Key
Transparency to End Users. In 24th USENIX Security Sym-
posium, USENIX Security 15, Washington, D.C., USA, Au-
gust 12-14, 2015. 383–398. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/melara

[63] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Ver-
ifiable Random Functions. In FOCS. IEEE Computer Society,
120–130.

[64] Victor Miller. 1986. Use of elliptic curves in cryptography. In
Advances in Cryptology (CRYPTO’85 Proceedings). Springer,
417–426.

[65] P. Mockapetris. 1987. RFC 1035: DOMAIN NAMES - IMPLE-
MENTATION AND SPECIFICATION. Internet Engineering
Task Force (IETF). https://tools.ietf.org/html/rfc1035.

[66] Moni Naor and Asaf Ziv. 2015. Primary-secondary-resolver mem-
bership proof systems. In Theory of Cryptography. Springer,
199–228. https://eprint.iacr.org/2014/905.

[67] NLNetLabs. 2017. ldns. http://git.nlnetlabs.nl/ldns/tree/
examples/ldns-walk.c. (2017).

[68] Eric Osterweil, Daniel Massey, and Lixia Zhang. 2007. Observa-
tions from the DNSSEC Deployment. In The 3rd workshop on
Secure Network Protocols (NPSec).

[69] Eric Osterweil, Daniel Massey, and Lixia Zhang. 2009. Availability
Problems in the DNSSEC Deployment. (2009). http://irl.cs.ucla.
edu/talks/2009-05-RIPE-PMTU.pptx.

[70] Eric Osterweil, Daniel Massey, and Lixia Zhang. 2009. Deploy-
ing and Monitoring DNS Security (DNSSEC). In Twenty-Fifth
Annual Computer Security Applications Conference, ACSAC
2009, Honolulu, Hawaii, 7-11 December 2009. IEEE Computer
Society, 429–438. https://doi.org/10.1109/ACSAC.2009.47

[71] Eric Osterweil, Danny McPherson, and Lixia Zhang. 2014. The
Shape and Size of Threats: Defining a Networked System’s Attack
Surface. In 22nd IEEE International Conference on Network
Protocols, ICNP 2014, Raleigh, NC, USA, October 21-24, 2014.
IEEE Computer Society, 636–641. https://doi.org/10.1109/ICNP.
2014.101

[72] Eric Osterweil, Michael Ryan, Daniel Massey, and Lixia Zhang.
2008. Quantifying the operational status of the DNSSEC de-
ployment. In Proceedings of the 8th ACM SIGCOMM Internet
Measurement Conference, IMC 2008, Vouliagmeni, Greece, Oc-
tober 20-22, 2008, Konstantina Papagiannaki and Zhi-Li Zhang
(Eds.). ACM, 231–242. https://doi.org/10.1145/1452520.1452548

[73] T. Pornin. 2013. RFC 6979: Deterministic Usage of the Digital
Signature Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA). Internet Engineering Task Force (IETF).
https://tools.ietf.org/html/rfc6979.

[74] Root Server System Advisory Committee (RSSAC).
2014. RSSAC002: RSSAC Advisory on Measure-
ments of the Root Server System. Technical Report.
ICANN. https://www.icann.org/en/system/files/files/
rssac-002-measurements-root-20nov14-en.pdf.

[75] Marcos Sanz. 2004. DNSSEC and the Zone Enumeration. Eu-
ropean Internet Forum: http://www.denic.de/fileadmin/public/
events/DNSSEC testbed/zone-enumeration.pdf. (October 2004).

[76] M. Sivaraman, S. Kerr, and L. Song. 2015. draft-muks-dns-
message-fragments-00: DNS message fragments. Internet En-
gineering Task Force (IETF). https://tools.ietf.org/html/
draft-muks-dns-message-fragments-00.

[77] O. Sury and R. Edmonds. 2016. draft-ietf-curdle-dnskey-
ed25519: Ed25519 for DNSSEC. Internet Engineering
Task Force (IETF). https://datatracker.ietf.org/doc/
draft-ietf-curdle-dnskey-ed25519/.

[78] Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried, Satya
Bodduluri, and Nadia Heninger. 2015. Factoring as a Service.
Cryptology ePrint Archive, Report 2015/1000. (2015). http:
//eprint.iacr.org/2015/1000.

[79] F. Valsorda and O. Gudmundsson. 2016. draft-valsorda-dnsop-
black-lies: Compact DNSSEC Denial of Existence or Black
Lies (expired). Internet Engineering Task Force (IETF). https:
//datatracker.ietf.org/doc/draft-valsorda-dnsop-black-lies/.

[80] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. 2014.
DNSSEC and its Potential for DDoS Attacks: A Comprehensive
Measurement Study. In IMC’14. ACM, 449–460.

[81] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. 2015.
Making the Case for Elliptic Curves in DNSSEC. ACM SIG-
COMM Computer Communication Review 45, 5 (2015), 13–19.

[82] Jan Vcelak. 2015. NSEC5, DNSSEC Authenticated Denial of
Existence. In Security Area Advisory Group (SAAG) at IETF’92.
Dallas.

[83] J. Vcelak, D. Papadopoulos, and S. Goldberg. 2015. draft-
vcelak-nsec5:NSEC5, DNSSEC Authenticated Denial of Existence.
(2015). https://datatracker.ietf.org/doc/draft-vcelak-nsec5.

[84] Matthaus Wander. 2016. nsec3breaker. https://www.vs.uni-due.
de/trac/dnssec. (2016).

[85] Matthaus Wander, Lorenz Schwittmann, Christopher Boelmann,
and Torben Weis. 2014. GPU-Based NSEC3 Hash Breaking. In
IEEE Symp. Network Computing and Applications (NCA).

[86] S. Weiler and J. Ihren. 2006. RFC 4470: Minimally Covering
NSEC Records and DNSSEC On-line Signing. Internet Engi-
neering Task Force (IETF). https://tools.ietf.org/html/rfc4592.

[87] Hao Yang, Eric Osterweil, Daniel Massey, Songwu Lu, and Lixia
Zhang. 2011. Deploying Cryptography in Internet-Scale Systems:
A Case Study on DNSSEC. IEEE Trans. Dependable Sec. Com-
put. 8, 5 (2011), 656–669. https://doi.org/10.1109/TDSC.2010.10

[88] D. York, O. Sury, P. Wouters, and O. Gudmundsson. 2016. draft-
york-dnsop-deploying-dnssec-crypto-algs: Observations on De-
ploying New DNSSEC Cryptographic Algorithms. Internet En-
gineering Task Force (IETF). https://datatracker.ietf.org/doc/
draft-york-dnsop-deploying-dnssec-crypto-algs/.

A HASHING ONTO THE CURVE.

The ECC-based VRF (Figure 2) uses a hash function 𝐻1

that maps arbitrary-length strings to points on an elliptic
curve. How can we instantiate such a hash function? Ideally
we want an instantiation that can work for both curves we
have considered here: NIST P-256 and Curve25519.

One very lightweight technique was proposed in [31] and,
at a high level, it proceeds as follows. Assume an elliptic
curve with equation 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 and order 𝑞𝑓 . Given an
input 𝛼 (the queried name in our case), set counter 𝑖 = 0 and
compute ℎ = 𝐻(𝛼||𝑖), where H is a standard cryptographic
hash function, e.g., SHA-256, and || is concatenation. Then,

16

https://gigaom.com/2013/08/27/anatomy-of-a-hack-how-the-sea-took-down-the-nyt-and-twitter/
https://gigaom.com/2013/08/27/anatomy-of-a-hack-how-the-sea-took-down-the-nyt-and-twitter/
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc6605
https://tools.ietf.org/html/rfc6605
https://datatracker.ietf.org/doc/draft-irtf-cfrg-eddsa
https://datatracker.ietf.org/doc/draft-irtf-cfrg-eddsa
https://doi.org/10.1145/505202.505223
https://doi.org/10.1145/505202.505223
https://tools.ietf.org/html/rfc6781
https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc5155
https://tools.ietf.org/html/rfc5155
https://tools.ietf.org/html/rfc4592
https://tools.ietf.org/html/rfc4592
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://tools.ietf.org/html/rfc1035
https://eprint.iacr.org/2014/905
http://git.nlnetlabs.nl/ldns/tree/examples/ldns-walk.c
http://git.nlnetlabs.nl/ldns/tree/examples/ldns-walk.c
http://irl.cs.ucla.edu/talks/2009-05-RIPE-PMTU.pptx
http://irl.cs.ucla.edu/talks/2009-05-RIPE-PMTU.pptx
https://doi.org/10.1109/ACSAC.2009.47
https://doi.org/10.1109/ICNP.2014.101
https://doi.org/10.1109/ICNP.2014.101
https://doi.org/10.1145/1452520.1452548
https://tools.ietf.org/html/rfc6979
https://www.icann.org/en/system/files/files/rssac-002-measurements-root-20nov14-en.pdf
https://www.icann.org/en/system/files/files/rssac-002-measurements-root-20nov14-en.pdf
http://www.denic.de/fileadmin/public/events/DNSSEC_testbed/zone-enumeration.pdf
http://www.denic.de/fileadmin/public/events/DNSSEC_testbed/zone-enumeration.pdf
https://tools.ietf.org/html/draft-muks-dns-message-fragments-00
https://tools.ietf.org/html/draft-muks-dns-message-fragments-00
https://datatracker.ietf.org/doc/draft-ietf-curdle-dnskey-ed25519/
https://datatracker.ietf.org/doc/draft-ietf-curdle-dnskey-ed25519/
http://eprint.iacr.org/2015/1000
http://eprint.iacr.org/2015/1000
https://datatracker.ietf.org/doc/draft-valsorda-dnsop-black-lies/
https://datatracker.ietf.org/doc/draft-valsorda-dnsop-black-lies/
https://datatracker.ietf.org/doc/draft-vcelak-nsec5
https://www.vs.uni-due.de/trac/dnssec
https://www.vs.uni-due.de/trac/dnssec
https://tools.ietf.org/html/rfc4592
https://doi.org/10.1109/TDSC.2010.10
https://datatracker.ietf.org/doc/draft-york-dnsop-deploying-dnssec-crypto-algs/
https://datatracker.ietf.org/doc/draft-york-dnsop-deploying-dnssec-crypto-algs/

Making NSEC5 Practical for DNSSEC

if ℎ3 + 𝑎𝑥+ 𝑏 is a quadratic residue (that is, ℎ is the valid 𝑥-
coordinate of a point on the curve) output the point (ℎ, (ℎ3 +

𝑎𝑥 + 𝑏)1/2) raised to the power of cofactor 𝑓 . Otherwise,
increment the counter by 1 and try again. This simple process
is expected to terminate after two steps, and the involved
operations are very fast, with an expected running time of
(𝑂 log3(𝑛)), if the curve is defined over finite field 𝐺𝐹 (𝑛). The
range of this function is only half of the group 𝐺 (because only
one 𝑦 is chosen for a random 𝑥), but that does not materially
change the proofs of security (specifically, in Claims B.4 and
B.5, the running time for simulating queries to 𝐻1 doubles).

As first shown in [33], the above technique is not suitable
when 𝛼 must be kept secret; this is because the running
time of the hashing algorithm depends on 𝛼, and so it is
susceptible to timing attacks. However, we stress that this
attack is not relevant in the context of NSEC5. The only
value that is hashed in the query phase is the queried name
𝛼 itself, which is already known to the adversary.

B SECURITY OF ECC-BASED VRF.

We define the necessary security properties that a VRF needs
to satisfy in order to be used in our application, and provide
formal proofs that they are satisfied by ECC-based VRF
from Figure 2.

B.1 Proof sketches.

We start with a sketch of the proofs of three properties:
uniqueness, psuedorandomness, and collision resistance. We
define and prove them formally after this brief informal sketch.
For this purposes of this sketch, assume 𝐸 = 𝐺 and therefore
𝑓 = 1.

Uniqueness. The proof is by contradiction. Suppose an
adversary, given the secret key 𝑥, can come up with some 𝛼
and an incorrect VRF output value 𝛽1 ̸= 𝐻2([𝐻1(𝛼)]

𝑥) for
that 𝛼, and a valid proof 𝜋1 = (𝛾1, 𝑠1, 𝑐1) for value 𝛽1. The
verification function for the VRF computes ℎ = 𝐻1(𝛼) and

𝑢 = (𝑔𝑥)𝑐1𝑔𝑠1

𝑣 = (𝛾1)
𝑐1ℎ𝑠1

Now take the logarithm of the first equation base 𝑔 and the
logarithm of the second equation base ℎ, subtract the two
resulting equations, and express 𝑐1, to get

𝑐1 ≡
log𝑔 𝑢− logℎ 𝑣

𝑥− logℎ 𝛾1
(mod 𝑞) . (3)

Now since 𝛾1 ̸= ℎ𝑥 (since 𝛽1 is not the correct output value),
the denominator is not zero, and there is exactly one 𝑐1 mod-
ulo 𝑞 that satisfies equation (4) for a given (𝑔, ℎ, 𝑔𝑥, 𝛾, 𝑢, 𝑣),
regardless of 𝑠. However, recall that the verifier checks that
𝑐1 is equal to the output of the cryptographic hash function
𝐻3 on input (𝑔, ℎ, 𝑔𝑥, 𝛾, 𝑢, 𝑣). Since 𝐻3 is a random oracle,
its output is random, and the probability that it equals the
unique value determined by its inputs according to (3) is
negligible.9 Thus, we have arrived at our contradiction.

9The birthday paradox does not apply here, so that for a 128-bit
security level is suffices to have 𝑐 be 128 bits long.

Pseudorandomness. This follows from the DDH assump-
tion, in the random oracle model. Roughly speaking, the
pseudorandomness adversary does not know the secret VRF
key 𝑥, but must distinguish between between pairs (𝛼, 𝛽)
where 𝛽 is the VRF hash output on input 𝛼, and pairs (𝛼, 𝑟)
where 𝑟 is a random value. This adversary knows the public
values 𝑔 and 𝑔𝑥, and can easily compute ℎ = 𝐻1(𝛼) for any
𝛼. However, by the DDH assumption, ℎ𝑥 looks random even
given (𝑔, 𝑔𝑥, ℎ), and so 𝐻2(ℎ

𝑥) is pseudorandom in the range
of 𝐻2.

Collision resistance. For a collision to happen, 𝐻2(ℎ
𝑥
1)

should equal to 𝐻2(ℎ
𝑥
2) where ℎ1 = 𝐻1(𝛼1) and ℎ2 = 𝐻1(𝛼2)

for some 𝛼1 ̸= 𝛼2. Assume 𝐻2 is a 𝜏 -to-1 function. Since
raising to the power 𝑥 is a permutation, for every ℎ1, there
are at most 𝜏 possible ℎ2 values that can cause a collision.
Since ℎ1 and ℎ2 are obtained via random oracle queries, a
pair that causes a collision is unlikely to be found after 𝑄H

queries to 𝐻1, as long as 𝐺 is larger than 𝜏𝑄2
H /2.

B.2 Full Proofs

We now expand on the sketches above to prove that the
construction in Section 4.3 is a secure VRF. It suffices to prove
three properties: Trusted Uniqueness (see [66, Definition
10]), Selective Pseudorandomness (see [66, Definition 11]),
and Collision-Resistance (not formally discussed in [66], but
mentioned in the proof of Theorem 4). Sufficiency of these
three properties for constructing NSEC5 follows from [66,
Theorem 4]. We discuss each property in turn.

We model the hash functions 𝐻1 and 𝐻3 as random oracles.
We use notation VerPK (𝛼, 𝛽, 𝜋) to denote the verification
algorithm, which outputs 1 if and only if the proof 𝜋 and
hash output 𝛽 are valid for input 𝛼 and public key PK .

B.2.1 Uniqueness. Recall that uniqueness requires that
there should be only one provable VRF output 𝛽 for every
input 𝛼; trusted uniqueness limits this requirement to only
the case when the public key is valid.

Following tradition of the VRF literature, Naor and Ziv
[66, Definition 10]) define uniqueness unconditionally: that
is, for a validly generated public key, each input 𝛼 to the
VRF has at most one hash output 𝛽 that can be proven to be
correct. However, the construction in Section 4.3 satisfies it
only computationally: more than one hash output 𝑦 may exist,
but only one valid 𝛽—the one produced by 𝐹SK (𝛼)—can be
proven correct by any computationally bounded adversary,
even given the secret key. We are not aware of any prior work
defining this relaxation of the uniqueness property, although
Chase and Lysyanskaya [34] mention that such a relaxation
can be defined. We therefore define it here. Our definition is
in terms of concrete, rather than asymptotic security, because
concrete security enables us to set length parameters.

Definition B.1. (Computational Trusted Uniqueness.) A
VRF satisfies (𝑄H , 𝜖)-trusted uniqueness if for all adversaries
𝐴 that make at most 𝑄H queries to the random oracle, for a
validly chosen key pair (PK ,SK), the probability that the
adversary can come up with an incorrect output 𝛽1 ̸= FSK (𝛼)

17

Making NSEC5 Practical for DNSSEC

and a proof for this 𝛽1 is less than 𝜖: namely,

Pr[𝐴(PK ,SK)→ (𝛼, 𝛽1, 𝜋1) s.t.

𝛽1 ̸= FSK (𝛼) and VerPK (𝛼, 𝛽1, 𝜋1) = 1] ≤ 𝜖 .

We now prove that the VRF satisfies Definition B.1 based
on the randomness of the oracle 𝐻3. (Note: this proof does not
rest on any computational assumptions or on programming
a random oracle.)

Claim B.2. The VRF satisfies (𝑡, 𝜖)-computational trusted
uniqueness of Definition B.1 for 𝜖 = (𝑄H + 1)/min(𝑞/2, 𝜌),
where 𝜌 = |range(𝐻3)| and 𝑄H ≤ 𝑡 is the number of queries
the adversary makes to the random oracle 𝐻3.

Note that the quantitative bound on 𝜖 in the above claim
implies that the bit length log 𝜌 of the output 𝑐 of 𝐻3 can
be equal to the desired security parameter; in particular, it
can be shorter than the prime order 𝑞 of the group 𝐺 (whose
bit length needs to be at least twice the security parameter
in order to protect against attacks on the discrete log). This
claim is the only part of the security analysis affected by the
output length of 𝐻3 (and thus the bit length of the integer 𝑐
from the VRF proof 𝜋).

Proof. Suppose there is an adversary 𝐴 that violates
computational trusted uniqueness with probability 𝜖. That is,
on input 𝑔, 𝑥, the adversary 𝐴 makes 𝑄H queries to the 𝐻3

oracle and wins by outputting (𝛼, 𝛽1, 𝜋1) s.t. 𝛽1 ̸= FSK (𝛼)
and Ver(𝛼, 𝛽1, 𝜋1) = 1 with probability 𝜖. We will show that
𝜖 ≤ (𝑄H + 1)/min(𝑞/2, 𝜌), where 𝑞 is the order of the group
𝐺 and 𝜌 = |range(𝐻3)|.

The proof 𝜋1 contains 𝛾1 such that 𝛽1 = 𝐻2(𝛾
𝑓
1). Note

that the correct 𝛽 = FSK (𝛼) is computed as 𝐻2(𝛾
𝑓) for

𝛾 = [𝐻1(𝛼)]
𝑥. Since 𝛽1 ̸= 𝛽, we have 𝛾𝑓

1 ̸= 𝛾𝑓 , i.e., 𝛾𝑓
1 ≠ ℎ𝑥𝑓 ,

where ℎ = 𝐻1(𝛼).
Now, it must be that 𝜋1 = (𝛾1, 𝑐, 𝑠) for some 𝑐, 𝑠 that

ensure that Ver(𝛼, 𝛽1, 𝜋1) = 1. The verification function Ver
ensures that 𝛾1 ∈ 𝐸 and computes ℎ = 𝐻1(𝛼) and

𝑢 = 𝑔𝑠PK 𝑐

𝑣 = ℎ𝑠𝛾𝑐
1.

Because the VRF parameters and public keys are trusted, it
follows that that 𝑔 ∈ 𝐺 and 𝑃𝐾 = 𝑔𝑥 ∈ 𝐺. The range of 𝐻1

is 𝐺− {1} so ℎ ∈ 𝐺. Since 𝐺 ⊂ 𝐸, all variables in the above
two equations are guaranteed to be in 𝐸.

For any 𝑎 ∈ 𝐸, we define 𝑎̂ = 𝑎𝑓 . By the structure theorem
for finite abelian groups, 𝐸 has exactly one subgroup of order
𝑞, because 𝑞 does not divide 𝑓 . This subgroup is 𝐺 = {𝑏 ∈
𝐸 | 𝑏𝑞 = 1}. Therefore, 𝑎̂ ∈ 𝐺, because 𝑎̂𝑞 = 𝑎𝑓𝑞 = 𝑎|𝐸| = 1
(by Fermat’s little theorem).

We can now raise both equations to the power of the cofac-
tor 𝑓 to obtain similar equations, but with all the variables
in 𝐺:

𝑢̂ = 𝑔𝑠P̂K
𝑐

𝑣 = ℎ̂𝑠𝛾𝑐
1.

Note that ℎ ̸= 1 (since the range of 𝐻1 is 𝐺− {1}). Because
𝐺 is of prime order, ℎ is also a generator of 𝐺. Since 𝑞 does

not divide 𝑓 , ℎ̂ = ℎ𝑓 ̸= 1 and thus ℎ̂ is also a generator of 𝐺.
Same for 𝑔. Therefore we can take the logarithm of the first
equation base 𝑔 and the logarithm of the second equation

base ℎ̂, . Solving these for 𝑠 we get

log𝑔 𝑢̂− 𝑐𝑥 ≡ 𝑠 (mod 𝑞)

logℎ̂ 𝑣 − 𝑐 logℎ̂ 𝛾1 ≡ 𝑠 (mod 𝑞)

which implies that

𝑐 ≡
log𝑔 𝑢̂− logℎ̂ 𝑣

𝑥− logℎ̂ 𝛾1
(mod 𝑞) (4)

Since 𝛾1 ̸= ℎ̂𝑥, the denominator is not zero, and so there
is only one 𝑐 modulo 𝑞 that satisfies equation (4) given
𝑔, 𝑔𝑥, ℎ, 𝛾1, 𝑢, and 𝑣.

Recall that for verification to pass,

𝑐 = 𝐻3(𝑔, ℎ, 𝑔
𝑥, 𝛾1, 𝑢, 𝑣) .

Note that the contents of the query to 𝐻3 contains every
value in the right hand side of equation (4), and thus the
correct 𝑐 is uniquely defined at the time the query is made
(assuming 𝐺 is fixed).

What is the probability, for a given query to 𝐻3, that
the random value returned by the 𝐻3 oracle is congruent to
that correct 𝑐 modulo 𝑞? Let 𝜌 denote |range(𝐻3)|. If the
range of 𝐻3 is a subset of {0, . . . , 𝑞−1}, then this probability
is either 1/𝜌 or 0, depending on whether the correct 𝑐 is
in range(𝐻3). Else (i.e., if 𝑞 < 𝜌), think of reducing every
element in range(𝐻3) modulo 𝑞. Then some values 𝑐 modulo
𝑞 will be hit ⌊𝜌/𝑞⌋ times, while others will be hit ⌈𝜌/𝑞⌉
times. Thus, the probability that any given 𝑐 is hit is at most
⌈𝜌/𝑞⌉/𝜌 ≤ ((𝜌/𝑞) + 1)/𝜌 = 1/𝑞 + 1/𝜌 < 2/𝑞.

Assume the adversary outputs 𝛽1, 𝜋1 and then the verifica-
tion algorithm is run. This causes a total of 𝑄H + 1 queries
to 𝐻3 (𝑄H by 𝐴 and one by the verifier), so by the union
bound, the chances that any of them returns a correct 𝑐 for
that query are at most (𝑄H + 1)/min(𝑞/2, 𝜌). �

Remark. Our computational trusted uniqueness property
is slightly weaker than the unconditional trusted uniqueness
of Naor and Ziv’s [66, Definition 10]. Thus, the proof that
NSEC5, when constructed from the VRF of Figure 2, satisfies
the soundness property in [66, Theorem 4] needs a slight
change, as follows. The proof in [66] is a reduction from an
adversary 𝐴 who violates soundness to an adversary 𝐵 who
forges signatures. The reduction relies on the fact that 𝐴
must provide the correct 𝛽 value (called 𝑦 in [66]) and proof
𝜋 for the VRF as part of its soundness-violating output on an
input 𝛼 (called 𝑥 in [66]). Computational trusted soundness
ensures that this happens except with negligible (i.e., (𝑄H +
1)/min(𝑞/2, 𝜌)) probability. Thus, the success probability of
the reduction reduces from 𝜖 to 𝜖− (𝑄H + 1)/min(𝑞/2, 𝜌).

Uniqueness without trusting the key. Our VRF can
be modified to attain the stronger property of computational

18

Making NSEC5 Practical for DNSSEC

uniqueness (without needing to trust the key generation).
There are three cases:
∙ If the group 𝐸 is fixed and trusted to have been correctly

generated (i.e., 𝐸 is known to have a subgroup of prime
order 𝑞), and the generator 𝑔 is known to be in 𝐺− {1},
then the verifier just needs to check that PK ∈ 𝐸. (This
is the only requirement on PK is the proof above.)

∙ If the group 𝐸 is fixed and trusted, but 𝑔 and PK are not,
then the verifier needs to check that 𝑔 ∈ 𝐸, 𝑔𝑓 ̸= 1, as well
as that PK ∈ 𝐸.

∙ If the group 𝐸 is not fixed, then we need to include an
unambiguous identifier of 𝐸 as input to 𝐻3 (so that a
malicious prover cannot choose 𝐸 after seeing 𝑐), and
verifier needs to also check that 𝐺 is a subgroup of 𝐸 of
order 𝑞, 𝑞 is prime, |𝐸| = 𝑞𝑓 , 𝑞 does not divide 𝑓 , 𝑔 ∈ 𝐸,
𝑔𝑓 ≠ 1, and PK ∈ 𝐸. The identifier of 𝐸 must also be
unambiguous in the sense that the adversary should not
be allowed to choose the mapping from the group 𝐸 to its
identifier after seeing 𝑐.

B.2.2 Pseudorandomness. We will state and prove pseu-
dorandomness in terms of concrete, rather than asymptotic,
security. This allows us to set parameters and work with fixed
groups 𝐺,𝐸.

We require a slight modification to the notions of pseudo-
randomness and selective pseudorandomness from [66, Defi-
nition 11]: instead of being indistinguishable from a random
bit string, the output of our VRF is indistinguishable from
a truncation of a random element of 𝐺− {1}, i.e., from the
distribution 𝐻2(𝑈𝐺), where 𝑈𝐺 is the uniform distribution
on 𝐺− {1}. Our definitions are thus as follows.

Definition B.3. (Pseudorandomness) A VRF satisfies
(𝑡, 𝑄H , 𝑄P , 𝜖) pseudorandomness for output distribution 𝑆 if
no adversary 𝐷 (which can depend on the fixed VRF param-
eters, such as 𝐺,𝐸, etc.) whose running time and description
size are bounded by 𝑡, whose total number of random oracle
queries is bounded by 𝑄H and total number of Π and 𝐹
queries is bounded by 𝑄P , can distinguish the following two
games with advantage more than 𝜖. In the both games, VRF
keys (𝑃𝐾,𝑆𝐾) are honestly generated, and 𝐷(PK) gets to
query ΠSK , 𝐹SK , and the random oracles on arbitrary inputs.
In both games, 𝐷 chooses a challenge input 𝛼* that has been
queried to neither Π nor 𝐹 . In one game, 𝐷 receives 𝐹SK (𝛼*),
while in the other 𝐷 receives a random element drawn from
𝑆. Finally, after additional queries to ΠSK and 𝐹SK (except
on 𝛼*), 𝐷 outputs one bit indicating which game 𝐷 thinks
it is playing.

The slightly weaker notion of selective pseudorandomness
is defined the same way, except 𝐷 has to choose 𝛼* before
any queries and before seeing PK .

Pseudorandomness of our VRF depends on the following
assumption about the group 𝐺 and generator 𝑔, known as
the (𝑡, 𝜖)-DDH (Decisional Diffie-Hellman) Assumption: for
any adversary 𝐶 whose description size and running time
are bounded by 𝑡, the difference in probabilities (where the
probabilities are over a random choice of ℎ, ℎ′ ∈ 𝐺−{1} and

𝑥 ∈ {1, . . . , 𝑞}) that 𝐶(𝑔𝑥, ℎ, ℎ𝑥) = 1 and 𝐶(𝑔𝑥, ℎ, ℎ′) = 1
is at most 𝜖. (Because the assumption is specifically for the
group 𝐺, we think of the fixed VRF parameters 𝐺, 𝑞,𝐸, 𝑓 ,
and 𝑔 as hardwired into the adversary 𝐶.)

We now prove that our VRF satisfies both pseudorandom-
ness and selective pseudorandomness. We address selective
pseudorandomness first, because it is simpler. Our proof relies
on programming the random oracles 𝐻1 and 𝐻3.

Claim B.4. Under the (𝑡, 𝜖)-DDH assumption, for any
𝑄H , 𝑄P , the VRF satisfies (𝑡′, 𝑄H , 𝑄P , 𝜖

′) selective pseudo-
randomness for output distribution 𝐻2(𝑈𝐺), for 𝑡

′ ≈ 𝑡 (minus
the time for Θ(𝑄H +𝑄P) exponentiations in 𝐺 and one eval-
uation of 𝐻2) and 𝜖′ = 𝜖+𝑄P (𝑄P +𝑄H)/𝑞.

Proof. We need to show the following: if
∙ 𝐷 chooses 𝛼*,
∙ then receives an honestly generated PK = 𝑔𝑥 and

– either 𝐻2([𝐻1(𝛼
*)]𝑥𝑓)

– or 𝐻2 applied to a random element of 𝐺− {1},
∙ is allowed 𝑄H queries to random functions 𝐻1 and 𝐻3 and

𝑄P queries are to ΠSK or 𝐹SK (except on 𝛼*)
∙ can distinguish between the two cases with advantage 𝜖′

then we can build 𝐶 that breaks (𝑡, 𝜖)-DDH assumption for
𝑡 ≈ 𝑡′ (plus the time for Θ(𝑄H +𝑄P) exponentiations in 𝐺
and one evaluation of 𝐻2) and 𝜖 = 𝜖′ −𝑄P (𝑄P +𝑄H)/𝑞.

Because 𝐹SK is computable, in our case, from ΠSK , we
can assume without loss of generality that 𝐷 never queries
𝐹SK—every query to 𝐹SK can be replaced with a query to
ΠSK .

Given (𝑔𝑥, ℎ, ℎ′) (where ℎ′ is either ℎ𝑥 or a random element
of 𝐺−{1}), 𝐶 gets 𝛼* from 𝐷, sets the VRF public key PK
as 𝑔𝑥 and runs 𝐷 with public key PK and input 𝐻2(ℎ

′𝑓).
Note that if ℎ′ is a random element of 𝐺−{1}, then so is ℎ′𝑓 ,
because raising to the power 𝑓 is a permutation of 𝐺− {1},
since 𝑞 does not divide 𝑓 . Thus, 𝐷 is getting either the correct
VRF output or 𝐻2(𝑈𝐺), as required by Definition B.3.

𝐶 answers the queries of 𝐷 as follows:
∙ If 𝐷 queries 𝛼* to random oracle 𝐻1, 𝐶 returns ℎ.
∙ If 𝐷 queries any other 𝛼𝑖 to 𝐻1, 𝐶 chooses a random

𝜌𝑖 ∈ {1, . . . , 𝑞} and then programs random oracle 𝐻1 as

𝐻1(𝛼𝑖) := 𝑔𝜌𝑖 .

(Note: this response is distributed uniformly in 𝐺 − {1},
just like with the honest 𝐻1, because 𝑔 is a generator of
𝐺.)

∙ If 𝐷 queries 𝐻3, 𝐶 return a fresh random value in the ap-
propriate range. (Note that these responses are distributed
just like honest 𝐻3).

∙ If 𝐷 makes a query 𝑞𝑖 to Π|𝑆𝐾 (note that 𝑞𝑖 ̸= 𝛼),
– 𝐶 makes a query to 𝐻1(𝑞𝑖) as described above to get 𝜌𝑖,
– 𝐶 sets 𝛾 = (𝑔𝑥)𝜌𝑖 where 𝑔𝑥 was the public key given as

input to 𝐷,
– 𝐶 chooses random values 𝑠 ∈ [𝑞] and 𝑐 ∈ range(𝐻3) and

then computes

𝑢 = 𝑔𝑠(𝑔𝑥)𝑐

19

Making NSEC5 Practical for DNSSEC

and

𝑣 = [𝑔𝜌𝑖]𝑠[(𝑔𝑥)𝜌𝑖]𝑐 .

(Note that 𝑢, 𝑣, 𝑥, ℎ = 𝑔𝜌𝑖 , 𝑠, and 𝑐 are distributed iden-
tically to the distribution produced by Π. The difference
in how these distributions are obtained is simply that Π
chooses a uniform 𝑘 while 𝐶 chooses a uniform 𝑠, where
𝑘 and 𝑠 are tied by the equation 𝑠+𝑐𝑥 ≡ 𝑘 (mod 𝑞), and
𝑢 = 𝑔𝑘, 𝑣 = ℎ𝑘.) If 𝐻3(𝑔, 𝑔

𝜌𝑖 , 𝑔𝑥, (𝑔𝑥)𝜌𝑖 , 𝑢, 𝑣) is already
defined, then 𝐶 fails and aborts. Else, 𝐶 programs the
random oracle 𝐻3 to let

𝐻3(𝑔, 𝑔
𝜌𝑖 , 𝑔𝑥, (𝑔𝑥)𝜌𝑖 , 𝑢, 𝑣) := 𝑐

(Note: if 𝐶 does not abort, then 𝐻3 is uniformly random,
just like honest 𝐻2 and 𝐻3).

If 𝐶 does not abort, then its simulation for 𝐷 is faithful and
𝐶 can just output what 𝐷 outputs. The probability that 𝐶
aborts is simply the probability that𝐻3(𝑔, 𝑔

𝜌𝑖 , 𝑔𝑥, (𝑔𝑥)𝜌𝑖 , 𝑢, 𝑣)
is already defined during the computation of the response to
Π; since at most 𝑄H +𝑄P values of 𝐻3 are defined, and 𝑢 is a
uniformly random value in 𝐺 (because 𝑠 is uniformly random
in [𝑞] and 𝑔 is a generator), the chances that a single query
to Π causes an abort are (𝑄H +𝑄P)/𝑞, and the chances that
any of the queries to Π causes an abort are 𝑄P (𝑄H +𝑄P)/𝑞.
Thus, the advantage of 𝐶 is at least 𝜖′−𝑄P (𝑄P +𝑄H)/𝑞. �

We can also prove pseudorandomness, but with a looser
security reduction than selective pseudorandomness.

Claim B.5. Under the (𝑡, 𝜖)-DDH assumption, for any
𝑄H ≥ 1, 𝑄P , the VRF satisfies (𝑡′, 𝑄H , 𝑄P , 𝜖

′) pseudoran-
domness for output distribution 𝐻2(𝑈𝐺), for 𝑡′ ≈ 𝑡 (minus
the time for Θ(𝑄H + 𝑄P) exponentiations in 𝐺 and one
evaluation of 𝐻2) and 𝜖′ = 4𝜖𝑄P +𝑄P (𝑄P +𝑄H)/𝑞.

Proof. We explain the proof by showing the differences
from the previous proof. The problem is that 𝐶 does not
know what 𝛼* is—it could be in any of the 𝐻1 queries. We
follow the approach of [36] to deal with this problem.

Whenever 𝐷 makes a query 𝛼𝑖 to 𝐻1, 𝐶 flips a biased coin
to decide whether this query is going to be “type-sig” (with
probability 𝑄P/(𝑄P + 1)) or “type-attack” (with probability
1/(𝑄P + 1)). If the query is “type-sig,” then 𝐶 works the
same way as in the proof of Claim B.4. Else, 𝐶 returns ℎ𝜌𝑖

for a random 𝜌𝑖 ∈ {1, . . . , 𝑞}. 𝐶 remembers the type of the
query and the 𝜌𝑖 value.

If 𝐷 makes a query 𝑞𝑖 to Π, then 𝐶 aborts if 𝑞𝑖 = 𝛼𝑖 for
an 𝛼𝑖 of type-attack (else 𝐶 proceeds as before). At some
point 𝐷 produces 𝛼*; before proceeding, 𝐶 makes sure 𝛼* has
been queried to 𝐻1 (performing the query if it hasn’t been).
𝐶 aborts if 𝛼* = 𝛼𝑖 for some 𝛼𝑖 of type-sig, and otherwise
returns 𝐻2(ℎ

′𝜌𝑖𝑓) as the response to the challenge.
We note that all the responses to 𝐻1 queries are still uni-

formly distributed over 𝐺 − {1} and independent, because
both 𝑔 and ℎ are generators of 𝐺. If ℎ′ = ℎ𝑥, then 𝐷 re-
ceives the correct value for 𝐹SK (𝛼*), namely 𝐻2(ℎ

′𝜌𝑖𝑓) =
𝐻2(ℎ

𝑥𝜌𝑖𝑓) = 𝐻2([𝐻1(𝛼
*)]𝑥𝑓). On the other hand, if ℎ′ is

a uniform element of 𝐺 − {1}, then instead of instead of
𝐹SK (𝛼*), 𝐷 receives a uniform response chosen independently

of anything else from from 𝐻2(𝐺− {1}), because a uniform
value in 𝐺− {1} raised to 𝑓 (a fixed power not divisible by
𝑞) is uniform in 𝐺− {1}.

Now 𝐶 succeeds as long as (1) there is no abort due to a
collision of 𝐻3 inputs as in the proof of Claim B.4) and (2) the
guesses for the 𝐻1 query type (type-sig or type-attack) don’t
lead to an abort. Note that these guesses are independent
of the view of 𝐷 and therefore of the success of 𝐷. The
probability that the guesses are correct for each Π query and
for 𝛼* is (︂

𝑄P

𝑄P + 1

)︂𝑄P 1

𝑄P + 1
≥ 1

4𝑄P

whenever 𝑄P ≥ 1. (The bound is obtained by observing that
the left-hand multiplied by 𝑄P is increasing for 𝑞𝑠𝑖𝑔 ≥ 1,
and its value at 𝑄P = 1 is 1/4.) We thus obtain the claimed
result. �

B.2.3 Collision Resistance. We now define trusted collision
resistance, which states that an adversary cannot produce
a collision even given SK , as long as the keys are honestly
generated. This property, while not explicitly defined in [66],
is necessary to ensure the completeness of NSEC5, i.e., to en-
sure that a valid non-existence proof can always be generated
by the nameserver and accepted by the resolver whenever
the record does not exist (see [66, Proof of Theorem 4]).

Definition B.6. (Trusted Collision Resistance) A VRF
satisfies (𝑄H , 𝜖) trusted collision resistance if no adver-
sary making 𝑄H random oracle queries, can, given an hon-
estly generated SK , output two values 𝛼1 ≠ 𝛼2 such that
𝐹SK (𝛼1) = 𝐹SK (𝛼2) with probability greater than 𝜖.

Claim B.7. If every output of 𝐻2 has at most 𝜏 preimages
in 𝐺, then our VRF satisfies (𝑄H , 𝜏𝑄2

H/(2𝑞))-trusted collision
resistance. Note that in our suggested instantiation of 𝐻2, 𝜏 =
2, so we have (𝑄H , (𝑄H + 2)2/𝑞)-trusted collision resistance

Proof. Let 𝛼1, 𝛼2 be the output of the adversary. With-
out loss of generality, assume 𝛼1 and 𝛼2 have been queried
to 𝐻1; if not, add those queries to the code of the adversary,
for a total of 𝑄H + 2 queries.

Given two values 𝛼𝑖 ̸= 𝛼𝑗 , what is the probability (for a
random choice of the oracle 𝐻1) that 𝐹SK (𝛼𝑖) = 𝐹SK (𝛼𝑗)?
Such a collision happens if [𝐻1(𝛼

𝑖)]𝑥𝑓 takes on one of the 𝜏
values that collide with [𝐻1(𝛼

𝑗)]𝑥𝑓 after the application of
𝐻2. Since 𝐻1(𝛼

𝑖) is uniform in 𝐺 − {1}, and raising to 𝑥𝑓
is a permutation of 𝐺 − {1}, the chances of hitting one of
those 𝜏 values is 𝜏/(𝑞−1). Applying the union bound over at
most (𝑄H + 2)(𝑄H + 1)/2 pairs of distinct queries to 𝐻1, we
get that a successful output 𝛼1, 𝛼2 exists among queries to
𝐻1 with probability at most 𝜏(𝑄H + 2)(𝑄H + 1)/(2𝑞 − 2) <
𝜏(𝑄H + 2)2/(2𝑞) (assuming the latter fraction is less than 1
— but the theorem statement is trivially true otherwise). �

Collision resistance without trusting the key. Simi-
larly to the case with uniqueness, our VRF can be modified
the same way to attain collision resistance without needing
to trust the key generation. The modifications are the same
as in the case of uniqueness (to ensure that 𝐹SK is uniquely

20

Making NSEC5 Practical for DNSSEC

defined), with the additional check that PK 𝑓 ≠ 1 to ensure
that 𝑥 is not divisible by 𝑞.

C SECURITY OF RSA-BASED VRF

In [48] the authors provided an explicit proof only for the se-
lective pseudorandomness of the RSA-based VRF in Figure 1
(see [48, Lemma III.2]), but not for its trusted uniqueness or
for its collision resistance. These proofs are straightforward,
but we provide them for completeness.

Claim C.1. The RSA-based VRF of [48] satisfies trusted
uniqueness as per [66, Definition 10]).

Proof. The claim that for every 𝛼 there exist 𝛽, 𝜋 such
that VerPK (𝛼, 𝛽, 𝜋) = 1 follows by inspection since for every
𝛼 it is true that VerPK (𝛼,ProveSK (𝛼)) = 1.

Let 𝐴 be an adversary such that 𝐴(PK ,SK)→ (𝛼, 𝛽1, 𝜋1)
and ProveSK (𝛼)→ (𝛽2, 𝜋2) and 𝛽1 ̸= 𝛽2, where (PK ,SK)←
Setup(1𝜅). Since 𝛽1 ̸= 𝛽2 it follows that 𝜋1 ̸= 𝜋2 as
𝛽𝑖 = 𝐻(𝜋𝑖) for 𝑖 = 1, 2 and 𝐻(·) implements a deterministic

function. For the same reason, the value of 𝑀𝐺𝐹 (𝛼) is fully
determined by 𝛼. Since 𝑃𝐾,𝑆𝐾 are valid RSA keys, the
function 𝑓(𝑥) = 𝑥𝑒 is a bijection in Z𝑁 (where 𝑒 is the RSA
public exponent) and therefore 𝜋𝑒

1 ≠ 𝑀𝐺𝐹 (𝛼) = 𝜋𝑒
2. Due to

this, the probability that Ver𝑃𝐾 will accept for proof 𝜋1 and
value 𝛽1 for input 𝛼 is 0. �

Claim C.2. The RSA-based VRF of [48] for 𝐻 with out-
put size ℓ (assuming ℓ is less than the length of the RSA
modulus) satisfies (𝑄H , 𝑄2

H /2ℓ+1)-trusted collision resistance
per definition B.6.

Proof. Indeed, for a collision to occur, either 𝐻(𝜋1)
should equal 𝐻(𝜋2) for some 𝜋1 ̸= 𝜋2, or 𝑀𝐺𝐹 (𝛼1) should
equal 𝑀𝐺𝐹 (𝛼2) for 𝛼1 ̸= 𝛼2. (Because trusted key genera-
tion ensures that raising to the power 𝑑 is a permutation.) Let
𝑄′

H be the number of queries to 𝐻 and 𝑄′′
H be the number

of queries to 𝑀𝐺𝐹 . Let 𝑘 be the output size of the 𝑀𝐺𝐹 .
The probability of collision, by the union bound, is at most
𝑄′2

H /(2 · 2ℓ) +𝑄′′2
H /(2 · 2𝑘) ≤ 𝑄2

H/2ℓ+1 because 𝑘 ≤ ℓ. �

21

	Abstract
	1 Introduction
	2 Tradeoffs in today's DNSSEC
	3 Security Properties of NSEC5
	3.1 Verifiable Random Functions (VRF).
	3.2 NSEC5 from VRFs.
	3.3 Properties of NSEC5.

	4 Redesigning the Crypto
	4.1 VRF based on RSA
	4.2 Why can't we just use ECDSA?
	4.3 VRF based on Elliptic Curves.

	5 Designing the DNS Protocol
	5.1 Wildcard and closest encloser proofs.
	5.2 NSEC3 and wildcards.
	5.3 Adding the wildcard bit to NSEC5.
	5.4 Adding precomputation to NSEC5.

	6 Practical considerations
	7 Implementation
	8 Performance Evaluation
	8.1 Response lengths.
	8.2 Nameserver performance.
	8.3 Recursive resolver performance.

	9 NSEC5 vs. recent innovations
	10 Summary: Why use NSEC5?
	11 The Transition to NSEC5
	11.1 The mechanics of the transition.

	References
	A Hashing onto the curve.
	B Security of ECC-based VRF.
	B.1 Proof sketches.
	B.2 Full Proofs

	C Security of RSA-based VRF

