
On the Closest Vector Problem for Lattices Constructed
from Polynomials and Their Cryptographic Applications

Zhe Li1, San Ling1, Chaoping Xing1, Sze Ling Yeo2

1 School of Physical and Mathematical Sciences, Nanyang Technological University
2 Institute for Infocomm Research (I2R), Singapore

Abstract. In this paper, we propose new classes of trapdoor functions to solve the closest
vector problem in lattices. Specifically, we construct lattices based on properties of polyno-
mials for which the closest vector problem is hard to solve unless some trapdoor information
is revealed. We thoroughly analyze the security of our proposed functions using state-of-the-
art attacks and results on lattice reductions. Finally, we describe how our functions can be
used to design quantum-safe encryption schemes with reasonable public key sizes. In par-
ticular, our scheme can offer around 106 bits of security with a public key size of around
6.4 KB. Our encryption schemes are efficient with respect to key generation, encryption and
decryption.

1 Introduction

In today’s digital world, protecting the confidentiality and integrity of digital information is of
vital importance. At the core of providing data privacy, integrity and authenticity are a class of
algorithms called public-key cryptosystems, first introduced by Diffie and Hellman in 1976 [11].
Essentially, these public-key cryptosystems are constructed from trapdoor functions. Recall that
a trapdoor function f is a function satisfying:

– f(x) is easy to evaluate for all inputs x;
– Given an output y of the function f , it is computationally infeasible to determine x such that
y = f(x) unless some trapdoor information is known.

To date, most commonly deployed trapdoor functions rely on some computational number theory
problems where no efficient classical algorithm is known, including the integer factorization prob-
lem and discrete logarithm problem in various finite groups. However, Shor showed in 1994 that
there exists a quantum algorithm that can solve these problems in polynomial time [36].

As such, there is an urgent need to design new trapdoor functions based on different math-
ematical problems that are resistant to quantum algorithms. At present, a number of potential
classes of mathematical problems are being considered and studied, namely, from coding theory,
lattices, multi-variate polynomials, hash functions and isogenies of supersingular elliptic curves [6].
Among them, lattices seem to be among the most promising, spawning many new constructions
with different properties and capabilities, most notably fully homomorphic encryption [14].

1.1 Previous work

Early lattice-based encryption schemes include the Ajtai-Dwork Encryption [1], Goldreich-Goldwasser-
Halevi (GGH) encryption [16] and NTRU encryption [20]. A breakthrough of modern lattice-based
cryptography is the invention of the learning with error (LWE) and Ring-LWE problems [34,30].
Consequently several LWE-based encryption schemes have been proposed [8,9,15,18].

The GGH encryption scheme is an analog of the famous coding-based encryption scheme–
McEliece encryption. In the original paper [16], 5 different challenges for lattice dimensions ranging
from n = 200 to n = 400 were proposed. Unfortunately, all the challenges, except for the instance
with n = 400, were broken. Indeed, it was shown in [33] that the structure of the error provided
an inherent weakness and together with the embedding technique, this weakness can be exploited
to attack the GGH instances. Even though suggestions were put forth in [33] to mend the scheme,
the corresponding parameters will make the scheme impractical for use.

2

1.2 Our work

In this paper, we seek to design new trapdoor functions in which the function inversion involves
solving the closest vector problem (CVP), one of the well-known hard lattice problems. Our con-
struction is primarily inspired by the GGH construction [16] and the McEliece code-based cryp-
tosystem [31]. Like these schemes, our function involves constructing a point that is sufficiently
close to a certain point in a lattice determined by the input. Hence, inverting this function will
require one to solve the closest vector problem (CVP).

More precisely, we choose n distinct elements α1, α2, . . . , αn of Fq and t distinct monic irre-

ducible polynomials c1(x), c2(x), . . . , ct(x) of degree d0 such that gcd(
∏n
i=1(x−αi),

∏t
i=1 ci(x)) =

1 . An integer point (a1, a2, . . . , an) ∈ Zn is a lattice point if and only if
∏n
i=1(x − αi)

ai ≡ 1

(mod c(x)), where c(x) =
∏t
i=1 ci(x). Then a basis of this lattice can be computed efficiently. We

show in this paper that, given q, n and certain range of d = td0, and the basis of this lattice, the
embedding technique does not work well to tackle the CVP of this lattice. On the other hand, with
information on {α1, α2, . . . , αn} and the polynomial set {c1(x), c2(x), . . . , ct(x)}, we are able to
efficiently solve the CVP of this lattice. With this trapdoor, we can design an encryption algorithm
that is similar to the one in the GGH encryption scheme.

Furthermore, we conduct a thorough security analysis on our trapdoor function. We show
that we can design an encryption scheme based on our trapdoor function that is resistant against
existing attacks with public key sizes smaller than those proposed in [16]. A practical encryption
based on this trapdoor is also provided.

For a given security parameter λ, choose n and d satisfying n ≥ 200, d < n/2,
√

n
2πe(d−1) (n +

2d)d/n ≤ 0.3∗1.007n, λ ≤ 36.4 log2 n, q = next prime(n, d) and
(
n−d
l

)
≥ 2λ, where l = (n−d)(d−1)

n .
For a concrete parameter selection, refer to Section 6.2.

1.3 Comparison

Although the encryption algorithm in our scheme is similar to the one in the GGH encryption
scheme, the trapdoor function in our scheme is totally different from that in the GGH encryption
scheme. For the GGH scheme, one first chooses a “nice” basis of a lattice so that solving CVP
is easy, and then multiplies with a unimodular matrix and permutation matrix for confusion so
that solving CVP is no longer easy. However, unlike the GGH cryptosystem, we do not rely on
constructing a good basis as a trapdoor. Instead, by using lattices constructed from polynomial
functions, one can invert the function efficiently as long as one has access to the polynomials and
points involved. As such, the vector norms of our basis can be better controlled, one of the main
limitations of the GGH scheme.

In [33], attacks were proposed which essentially rendered the GGH cryptosystem insecure for
practical parameters (it is still not broken asymptotically). However, our experiments show that
the trapdoor in this paper is resistant to the existing attacks including the attack given in [33].
Apart from security advantage, the public key size of our encryption scheme is smaller compared
with the GGH encryption scheme. The encryption and decryption complexity is almost the same
as for the GGH encryption scheme. The comparison between the GGH scheme and our polynomial
lattice scheme is given in Table 1.

Note that n in Table 1 represents the rank of lattices. For time complexity computation, we
assume that multiplication of two integers less than n requires O(log n log log n) bit operations and
multiplication of two degree-d polynomials over Fq with d ≤ q requires O(d log d) field element
multiplications.

3

Table 1. Comparison with GGH

GGH Polynomial lattice scheme

Public key size n2 n2/5 ∼ n2/4

Encryption time O(n2 logn log log n) O(n2 logn log logn)

Decryption time O(n2 logn log log n) O(n2(logn)2 log logn)

Resistant to embedding attack No Yes

Public key entry bit 0.3n3 log2 (2n)

1.4 Organization of the paper

This paper is organized as follows. In the next section, we briefly summarize some important
background on lattices as well as the two encryption schemes (namely, GGH and McEliece schemes)
that inspire our work. In Section 3, we describe a family of lattices constructed from polynomials.
We then present our new trapdoor functions based on these lattices in Section 4. This is followed
by a security analysis on these trapdoor functions in Section 5. In Section 6, we give details of a
semantically secure encryption scheme based on our trapdoor functions. In addition, we propose
some possible parameters for our scheme.

2 Preliminaries

2.1 Background on Lattices

In this section, we briefly review some of the important definitions and notions on lattices. We
refer the reader to [32,6] for more background materials.

Let n be a positive integer. By usual convention, we will represent vectors in Rn in the row
form. For x = (x1, . . . , xn) ∈ Rn, denote by |x| the Euclidean norm of x, that is, |x| =

√∑n
i=1 x

2
i .

Lattice: A lattice L is a discrete additive subgroup of Rn. Concretely, form ≤ n, let {b1, . . . , bm}
be m linearly independent vectors in Rn. Then a lattice L is a set {a1b1 +a2b2 + . . .+ambm : ai ∈
Z, i = 1, 2, . . . ,m}. m is called the dimension or rank of the lattice. If m = n, then L is said to have
full rank. In this work, we will only focus on full-rank lattices. Further, B = {b1, . . . , bm} is called
a basis of L. Let M be the m by n matrix with rows bi, i = 1, 2, . . . ,m . Then, the determinant
of L (or the volume of L) is given by det(L) = vol(L) =

√
|MMT |.

n-Ball: For r ∈ R, let Bn(r) = {x ∈ Rn : |x| ≤ r} denote the n-dimensional ball centered

around the origin with radius r. The volume of Bn(r) is given by Vn(r) = πn/2rn

Γ (n/2+1) , where Γ (·) is

the Gamma function.
Short vectors of a lattice: As a lattice is a discrete subgroup of Rn, the set of all their

Euclidean norms forms a discrete subgroup of R. Hence, each lattice L has a nonzero point such
that its norm is the minimum. We denote this minimum norm by λ1(L). More generally, for
i = 1, 2, . . . , n, λi(L) denotes the smallest radius r such that the ball Bn(r) contains i linearly
independent points in L.

Gaussian heuristic: The Gaussian Heuristic estimates the number of lattice points in cer-
tain sets. Let L and S be a full-rank lattice and a connected n-dimensional object, respec-
tively. Then the number of lattice points in S is approximated by vol(S)/det(L). This leads
to the following Gaussian heuristic estimate on the shortest vector λ1(L) for a random lattice L:
λ1(L) ≈ Vn(1)−1/ndet(L)1/n ≈

√
n/2πedet(L)1/n.

Lattice reduction: Any lattice has an infinite number of bases. In particular, given a basis of a
lattice L, one can construct a new basis by multiplying the matrix formed by the basis vectors with

3 For each n ∈ {100, . . . , 400}, we computed the mean value of the entry of GGH public key by repeating
experiments 100 times. Then applying linear congression tool, we get public key entry bit of GGH
approximately equal to 0.3n.

4

unimodular integer matrices, that is, integer matrices with determinant ±1. In general, one often
looks for a basis with short vectors or nearly orthogonal vectors. There are various algorithms to
reduce a basis of a lattice into a basis of better quality. Well-known reduction algorithms include the
LLL algorithm [26] and the BKZ algorithm [35]. In the BKZ algorithm, one essentially tries to find
short vectors in the sub-lattice formed by sub-blocks of basis vectors. In fact, the LLL algorithm
can be viewed as a special case of the BKZ algorithm where we work with pairs of vectors each
time. Evidently, a BKZ algorithm with a bigger block size produces a basis with shorter vectors
but this is achieved at the expense of a longer running time. Recent efficient implementations
of the BKZ algorithm include the BKZ2.0 algorithm [10] (where pruning was used to find the
shortest vector for each sub-lattice) and the progressive BKZ algorithm [4] (where block sizes are
progressively increased). When attempting to solve some lattice problems, one typically reduces
the given basis using an appropriate lattice reduction algorithm before applying other algorithms.

Hermite factor: Let b1 denote the shortest vector in a given basis of a lattice L. To measure
the quality of the basis, one often looks at the Hermite factor. The Hermite factor, denoted by

δn, is defined as δn = |b1|
det(L)1/n

. Typically, a smaller Hermite factor implies a better basis with

a shorter vector. One may also simply consider the root Hermite factor δ. For a random input
basis, it was experimentally shown that the value of δ is determined by the particular reduction
algorithm used [12] and independent of the dimension of the lattice. In other words, one may
use the root Hermite factor as a measure of the effectiveness of a reduction algorithm on random
lattices.

Shortest Vector Problem (SVP): Given a lattice L, the shortest vector problem (SVP) seeks
a nonzero point v in L such that |v| = λ1(L). For low dimensions, some proposed approaches to
solve SVP include computing the Voronoi cell of the lattice and sieving (see [19] for details) as well
as enumeration methods [22,13]. However, these methods have complexity at best exponential in
the lattice dimension n. As such, it becomes computationally infeasible to solve SVP when n is
large, say greater than 100. Variants of the SVP have been proposed and extensively employed in
lattice-based cryptography. Some of the main ones include:

– Hermite SVP: Find v ∈ L such that |v| ≤ αdet(L)1/n for some α;
– Unique SVP: Given that λ2(L)/λ1(L) ≥ γ, solve SVP in L.

In fact, the LLL algorithm [26] solves the Hermite SVP in polynomial-time for α exponential in
n. It has been experimentally shown in [12] that α ≈ δn where the root Hermite factor δ ≈ 1.0219.
Similarly, the expected root Hermite factor and the corresponding time complexities for the BKZ
algorithm with different block sizes were reported in [12,10].

In [12], Unique SVP was also studied. The authors demonstrated that if γ = εδn for some small
constant ε, then Unique SVP can be solved. It follows that when the ratio of the norms of the two
shortest vectors in L is at least εδn, using the reduction algorithm with root Hermite factor δ will
likely recover the shortest vector of L.

Closest Vector Problem/Bounded Distance Decoding (CVP/BDD): A closely related
problem to SVP is the closest vector problem (CVP) or the bounded distance decoding problem
(BDD). Given a target vector t ∈ Rn, CVP seeks a vector v ∈ L that minimizes |t − v|. In [17],
the embedding technique was proposed to convert the CVP into SVP. Essentially, suppose that
we have a target vector t that is close to a lattice generated by a basis B = {b1, . . . , bn}. We
construct another lattice L′ ⊂ Zn+1 generated by the following matrix:

B′ =


b1 0
b2 0
...

...
bn 0
t 1

 .

It is easy to check that L′ has shortest norm given by λ1(L′)2 = |t−v|2 + 1, where v is a point
in L closest to t. Hence, if t is close enough to L, this gives a corresponding short vector in L′.

5

A more direct approach to solve CVP is via Babai’s nearest plane algorithm [5]. Let B =
{b1, . . . , bn} be a reduced basis of L. Write v = v1b1 + . . . + vmbm. Essentially, Babai’s nearest
plane algorithm progressively finds vm, vm−1, . . . that minimizes the projected vector πk(v− t) as
k goes from n to k = 1. It can be shown that Babai’s algorithm can output the correct result
when the error e = t−v satisfies e ∈ P1/2(B), where P1/2(B) = {a1b1 + . . .+anbn : −1/2 ≤ ai ≤
1/2 for all i = 1, . . . , n}. Alternatively, one must have |〈e, b∗i 〉| ≤ |b∗i |2/2, where |〈e, b∗i 〉| is the
absolute value of inner product of e and b∗i and {b∗1, . . . , b∗n} is the Gram-Schmidt orthogonalized
basis of B. In particular, the error norm must be relatively small with respect to the norms of the
orthogonalized basis vectors.

Other improved methods to solve CVP/BDD include Lindner and Peikert’s generalization of
the Babai’s nearest plane algorithm [28] as well as enumeration approaches [22,35,13]. Lattice
enumeration was proposed in [22] to solve SVP but can be easily adapted to solve BDD. Suppose
that we know that |v − t| ≤ R for some enumeration radius R. The enumeration algorithm is a
generalization of Babai’s nearest plane algorithm in the following sense. As the level number k
goes from m down to 1, one finds all the integers vk such that |πk(v − t)| ≤ R. In this way, we
construct an enumeration tree where the leaves are the error vectors v − t and the parent of each
node at level k is its projection onto πk+1(L).

In [35], Schnorr and Euchner proposed pruned enumeration to speed up lattice enumeration
but at the expense of reducing the probability of success. Briefly, instead of enumerating at each
level using the fixed enumeration radius R, one constructs m pruning coefficients (P1, P2, . . . , Pm)
so that at each level k, the levelled enumeration radius is reduced to R2

k = PkR
2. Here, the Pk’s

must satisfy 0 < Pm ≤ Pm−1 ≤ . . . ≤ P1 = 1. Hence, at each level k, the nodes are constructed as
the coefficients vk resulting in |πk(v − t)| ≤ Rk.

Since the leveled enumeration radius is reduced, the probability of success is correspondingly
decreased. This can be overcome by performing the algorithm multiple times with different input
bases of the given lattice. Hence, there is a need to find a good balance between the time to
perform the basis reduction and the time to perform the enumeration algorithm. Extreme pruning
was suggested in [13], where the pruning coefficients are chosen to result in a small probability of
success. The authors argued that while the probability of success is much reduced, the reduction in
the time to perform the enumeration algorithm is even greater, thereby decreasing the overall time.
Finally, in [3], the authors proposed an explicit algorithm to compute optimized coefficients given
a fixed reduction algorithm (and hence, a certain root Hermite constant) and a desired probability
of success. The same assumptions as used in [13] were used in [3]. Based on their algorithms, tables
of optimized pruning coefficients were provided for some parameters.

We remark that solving BDD is one of the approaches to solve the learning with errors (LWE)
problem. As such, various experiments had been performed on LWE instances via the BDD ap-
proach [29,23]. A good discussion of the various approaches to solve CVP/BDD can be found in
[2].

Remark 1. We remark that when the basis B of a lattice L is orthogonal, then solving the SVP
and CVP become easy. This motivates us to define the orthogonality defect of a basis. Let B =
{b1, . . . , bn} be a basis of a lattice L. Then the orthogonality defect of B is defined by

h(B) =

∏n
i=1 |bi|

det(L)
.

Observe that h(B) ≥ 1, and h(B) = 1 whenever B is orthogonal. It is suggested in [16] that
Babai’s nearest plane algorithm solves the CVP with respect to B when h(B) is close to 1.

2.2 The McEliece Cryptosystem

The McEliece encryption scheme was proposed in [31] as a public-key cryptosystem that is based
on hard problems in algebraic coding theory instead of the usual integer factoring problem or
discrete logarithm problems in groups. More specifically, its construction hinges on the difficulty to

6

decode general linear codes over finite fields. Unlike the widely-used integer factoring problem and
discrete logarithm problem which had been proven to be vulnerable to polynomial-time quantum
algorithms [36], the decoding problem is touted as one of the potential candidates to be used as a
basis for post-quantum cryptography.

Essentially, the McEliece encryption scheme generates two linear codes, one with an easy decod-
ing strategy while the other is presumably difficult to decode. Concretely, let G be an [n, k, 2t+ 1]
binary Goppa code which admits an efficient decoding algorithm. Let U be a k × k invertible
binary matrix and P an n× n permutation matrix. Let G′ = UGP . Then G′ represents a general
linear code with no obvious way to decode. The basic structure of the McEliece encryption scheme
can be described as follows:

Public key: The matrix G′ and the parameters n, k, t.
Private key: The matrices G,U and P .
Encryption: Let m be a k-bit message. Randomly pick an n-bit error vector e with Hamming

weight t. The encryption of m is given by

c = E(m) = mG′ + e.

Decryption: Let c′ = cP−1. With the secret key G, decode c′ to obtain the message m′.
Compute m = m′U−1.

At present, the most effective attacks on the McEliece cryptosystem are variants of the information-
set decoding attack [25,37]. In [7], the authors successfully attacked the parameters proposed in
the original paper. Nonetheless, these attacks remain exponential in the parameters and the secu-
rity can be improved by increasing the parameter sizes. The main disadvantage of the McEliece
cryptosystem is therefore, the relatively large public key sizes. For example, it was suggested that
public key sizes of 256 KB and 512 KB are needed to ensure around 146-bit and 187-bit security,
respectively.

2.3 The GGH Cryptosystem

The GGH cryptosystem was presented in [16] as a lattice analog of the McEliece cryptosystem.
While the McEliece scheme exploits the difficulty to decode the received word obtained from a
random code whenever errors of small weights are introduced, the GGH scheme relies on a similar
phenomenon on general lattices. Indeed, the GGH scheme constructs two different bases of the
same lattice, one of which allows CVP to be solved efficiently via Babai’s nearest plane algorithm
while the other basis is constructed as a random basis of the lattice and hence, has very poor
performance with respect to CVP. More precisely, one first constructs a basis B with short highly
orthogonal rows (that is a basis with small orthogonality defect) and then multiply B by random
unimodular matrices to obtain a basis B′ of the same lattice with much higher orthogonality
defect. B is then used as the private key while B′ will serve as the public key. The basic structure
of the GGH encryption scheme is presented next.

Private key: The basis B and a unimodular matrix U ;
Public key: The basis B′ = UB, and the parameter n and a small positive integer σ;
Encryption: Let the message m ∈ Zn. Choose an error e ∈ Zn whose entries are randomly

picked to be ±σ. The encryption of m is given by

c = E(m) = mB′ + e.

Decryption: Using Babai’s nearest plane algorithm and the basis B, determine the vector v
closest to c. We have m = vU−1.

Observe that, in order for the GGH scheme to work, one must be able to solve CVP with B
but not with B′. It follows that one needs to multiply B by suitably dense unimodular matrices.
As a result, the entries in B′ tend to be much larger.

Although the GGH encryption scheme is not resistant to the embedding algorithms for n <
400, the scheme is still asymptotically secure. Furthermore, the underlying ideas of the GGH
construction remain interesting, particularly serving as trapdoor functions where inverting the
function amounts to solving the BDD problem.

7

3 Polynomial Lattices

In this section, we give a new construction of lattices via polynomials over a finite field. Let q be a
prime power. We denote by Fq the finite field with q elements. Let R denote the polynomial ring
Fq[x]. Fix a monic polynomial c(x) ∈ R of degree d and let Qc(x) denote the quotient ring R/c(x).

Let Q∗c(x) denote the unit group of Qc(x), i.e., let Q∗c(x) = {f(x) ∈ Qc(x) : gcd(f(x), c(x)) = 1}.
It is easy to verify that Q∗c(x) forms a multiplicative group. Furthermore, the cardinality of Q∗c(x),

denoted by Φ(c(x)), is given by the following formula.

Lemma 1. [27, Lemma 3.69] Let c(x) have the canonical factorization
∏t
i=1 ci(x)ei , where ci(x)’s

are pairwise distinct monic irreducible polynomials over Fq, di are the degrees of ci(x) and ei ≥ 1.
We have

Φ(c(x)) =

t∏
i=1

(qeini − q(ei−1)ni).

Let α1, . . . , αn be n distinct elements in Fq such that c(αi) 6= 0 for i = 1, . . . , n. Denote by a
the vector (α1, . . . , αn) ∈ Fnq .

Define the map

φa : Zn −→ R −→ Q∗c(x)

(u1, . . . , un)7−→f =

n∏
i=1

(x− αi)ui 7−→f(x) mod c(x).

Observe that φa is a group homomorphism from Zn to Q∗c(x). Let La,c(x) denote the kernel
of φa. As La,c(x) is a subgroup of Zn, La,c(x) is a lattice. The following lemma provides some
important properties of La,c(x).

Lemma 2. The lattice La,c(x) defined above satisfies the following properties:

(i) La,c(x) has rank n.
(ii) The determinant det(La,c(x)) is upper bounded by Φ(c(x)). Furthermore, det(La,c(x)) = Φ(c(x))

if φa is surjective.
(iii) λ1(La,c(x)) ≥

√
d. Moreover, λ1(La,c(x)) =

√
d if and only if there exists a lattice point with d

nonzero entries which are either all 1 or −1.

Proof. (i) Observe that for each i = 1, 2, . . . , n, we have (0, 0, Φ(c(x)), . . . , 0) 7→ (x−αi)Φ(c(x)) 7→ 1
under φa. Hence, each of these points is in La,c(x). As these n points are clearly linearly
independent, they form a sub-lattice of La,c(x) of rank n. Consequently, La,c(x) has rank n.

(ii) As Zn/La,c(x) ' Im(φa) ≤ Q∗c(x) and det(La,c(x)) = [Zn : La,c(x)] det(Zn) = [Zn : La,c(x)] =

|Im(φa)|, we obtain the desired inequality. In addition, if φa is surjective, then Zn/La,c(x) '
Q∗c(x). Hence the equality follows.

(iii) Let v = (v1, v2, . . . , vn) be a nonzero point in La,c(x). Denote by I and J the sets {1 ≤
i ≤ n : vi > 0} and {1 ≤ j ≤ n : vj < 0}, respectively. By definition of La,c(x), we have∏
i∈I(x−αi)vi

∏
j∈J(x−αj)vj−1 ≡ 0 mod c(x), i.e., the nonzero polynomial

∏
i∈I(x−αi)vi−∏

j∈J(x−αj)−vj is divisible by c(x). Hence, deg(
∏
i∈I(x−αi)vi −

∏
j∈J(x−αj)−vj) ≥ d, i.e.,∑

i∈I vi ≥ d or
∑
j∈J −vj ≥ d. This gives

∑n
i=1 |vi| ≥ d. Therefore, ||v|| =

√∑n
i=1 v

2
i ≥√∑n

i=1 |vi| ≥
√
d (note that each vi is an integer).

If there exists a lattice point with d nonzero entries which are either all 1 or −1, then it
is clear that λ1(La,c(x)) =

√
d. Conversely, assume λ1(La,c(x)) =

√
d. Then there exists a

nonzero lattice point v = (v1, v2, . . . , vn) in La,c(x) such that ||v|| =
√∑n

i=1 v
2
i =
√
d. Since

deg(
∏
i∈I(x−αi)vi −

∏
j∈J(x−αj)−vj) ≥ d, we must have that either I = ∅ &

∑
j∈J −vj = d

or J = ∅ &
∑
i∈I vi = d. This forces that either vi = 1 for all i ∈ I or vj = −1 for all j ∈ J .

8

According to Lemma 2 (iii), we see that La,c(x) has minimum norm λ1(La,c(x)) =
√
d when

there exist i1, . . . , id ∈ [n] such that
∏d
j=1(x − αij) = 1 + c(x). It follows that there are at

most
(
n
d

)
different c(x) ∈ R of degree d out of a total of qd such polynomials such that La,c(x)

satisfies λ1(La,c(x)) =
√
d. In other words, given a polynomial c(x) of degree d and an ordered set

(α1, . . . , αn), the probability that the lattice La,c(x) has minimum norm
√
d is less than 1/d! and

we can expect the minimum norm of the lattice La,c(x) to be bigger (if d is small). In particular,
we will use the Gaussian heuristic to estimate the minimum norm of the lattices. Assume that the
map φa is surjective. By Lemma 2 (ii) and Lemma 1, the determinant of La,c(x) is approximately

qd. The Gaussian heuristic suggests that a random lattice of dimension n and determinant qd has
minimum norm approximately

√
n/2πeqd/n.

Next, we describe how to construct the ordered set a = (α1, . . . , αn) for which La,c(x) admits
a nice basis for a class of c(x). In the following, we assume that c(x) is of the form c(x) =
c1(x) . . . ct(x), where ci(x)’s are pairwise coprime irreducible polynomials over Fq, each having
degree d0. Hence, Qc(x)

∼= ⊕ti=1Fqd0 . Let β denote a generator of Fqd0 .
Let αn−t+1, . . . , αn be t distinct elements in Fq. For i = 1, . . . , t and j = 1, . . . , t, let γij =

x− αn−t+i mod cj(x). Let mij = logβ γij and M = (mij)i=1,...,t,j=1,...,t.
Suppose that M is invertible over the ring Zqd0−1. For each α ∈ Fq with α 6= αn−t+1, . . . , αn, let

y = (y1, . . . , yt), where yj = logβ((x−α) mod cj(x)), j = 1, . . . , t. Let gα = yM−1 mod qd0 − 1.
Write gα = (gα,n−t+1, . . . , gα,n). Note that for each j = 1, . . . , t,

yj =

t∑
i=1

gα,n−t+imij mod qd0 − 1.

For j = 1, . . . , t, we have

t∏
i=1

(x− αn−t+i)gα,n−t+i mod cj(x) ≡
t∏
i=1

(βmij)gα,n−t+i mod cj(x)

≡ β
∑t
i=1 gα,n−t+imij mod cj(x) ≡ βyj mod cj(x) ≡ x− α mod cj(x).

Since it holds for any cj(x), it follows that x − α ≡
∏t
i=1(x − αn−t+i)

gα,n−t+i mod c(x).
Consequently, the point (0, . . . , 1, 0, . . . ,−gα,n−t+1, . . . ,−gα,n), where 1 is in the entry indexed by
α is a point in La,c(x) for any α ∈ (α1, . . . , αn−t).

Proposition 1. Let αn−t+1, . . . , αn be t distinct elements in Fq with the matrix M as above.
Suppose that M is invertible over Zqd0−1. Pick α1, . . . , αn−t randomly from Fq such that a =
(α1, . . . , αn) contains n distinct elements. Define G as the (n − t) × t matrix with rows given by
gαi , for i = 1, . . . , n− t. A basis of the lattice La,c(x) is given by:

Ba,c(x) =

(
In−t −G

0t×(n−t) (qd0 − 1)It

)
,

where Ir denotes the identity matrix of rank r.

Proof. According to the preceding arguments, the first n− t rows of Ba,c(x) are points in La,c(x).

Since (x − αi)
qd0−1 ≡ 1 mod c(x) for i = n − t + 1, . . . , n, the last t rows of Ba,c(x) are also

in La,c(x). Clearly, the rows of the matrix are linearly independent. It remains to show that
the rows span La,c(x). Let u = (u1, . . . , un) be a point in La,c(x) so that

∏n
i=1(x − αi)

ui ≡ 1

mod c(x). Consider the point v = u −
∑n−t
i=1 uiBi, where Bi denotes the i-th row of Ba,c(x).

Hence, v ∈ La,c(x) and we can write v = (0, . . . , 0, vn−t+1, . . . , vn). It is sufficient to show that

vn−t+i ≡ 0 mod qd0 − 1 for i = 1, . . . , t. In other words,
∏t
i=1(x − αn−t+i)vn−t+i ≡ 1 mod c(x),

equivalently,
∏t
i=1(x− αn−t+i)vn−t+i ≡ 1 mod cj(x) for j = 1, . . . , t. Now,

t∏
i=1

(x− αn−t+i)vn−t+i ≡
t∏
i=1

(βmij)vn−t+i ≡ β
∑t
i=1 vn−t+imij ≡ 1 mod cj(x)

9

which gives (vn−t+1, . . . , vn)M = 0 mod qd0−1. SinceM is invertible, we conclude that vn−t+i ≡ 0
mod qd0 − 1 for i = 1, . . . , t.

Remark 2. Note that the lattices La,c(x) for different pairs of a and c(x) are not all distinct. For
instance, let a = (α1, . . . , αn) and let γ 6= 0 ∈ Fq. Let a′ = (α1+γ, . . . , αn+γ) and c′(x) = c(x−γ).
Then, it is easy to check that La,c(x) = La′,c′(x).

Next, we analyze the complexity of constructing Ba,c(x). First, one needs to compute about
tn discrete logs in the field Fqd0 . The discrete logarithm problem over finite fields is one of the
fundamental hard problems widely used in cryptography. Extensive studies have been done in this
area and various methods have been proposed to solve the discrete logarithm problem over finite
fields. In particular, it is adequate for us to employ Pollard’s rho method to compute discrete
logarithm with time complexity O(

√
qd0). Please refer to the survey paper [21] for the state-of-

the-art results on the discrete logarithm problem. For our construction, we have r = qd0 . For
q = O(n) and d0 = O(1), it follows that solving the discrete log is efficient.

Second, one needs to pick αn−t+1, . . . , αn so that the matrix M is invertible. Now, each entry
mij is the discrete log of x−αn−t+i mod cj(x). Since αn−t+i is random, we may assume that the
matrix M is a random matrix in the ring Zqd0−1.

Lemma 3. [33, Theorem 2] Let s = qd0 − 1 be a positive integer. Let p1, . . . , pm be the distinct
prime divisors of s. The probability that a random t× t matrix in Zs is invertible is

Ps =

m∏
i=1

t∏
j=1

(1− p−ji).

It can be seen from the formula that the probability of a random t× t matrix being invertible
converges to a constant for large dimension t. In Figure 1, we give the probability to obtain a
random nonsingular matrix with modulus s ∈ {2, . . . , 300} and a fixed dimension t = 200. From
the results, it can be seen that Ps is non-negligible for this range of modulus.

Fig. 1. The probability of invertible matrix over Zs

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

1

4 Construction of Our Trapdoor Functions

In this section, we describe new trapdoor functions where inverting the function amounts to
solving the CVP for the associated lattices. Unlike the GGH construction, we do not generate

10

two different bases of a lattice. Instead, we require only one basis of our polynomial lattice as the
trapdoor involves information to construct the polynomial lattice. Recall that a trapdoor function
encompasses four different sub-algorithms, namely, generate, sample, evaluate and invert. We will
now present each of these in detail.

Generate: Set the public parameters q, n, d according to the desired security level (see the
next section for details). Let d = d0t. Choose t irreducible polynomials ci(x) of degree d0 and let
c(x) = c1(x) . . . ct(x). Choose an ordered set a = (α1, . . . , αn) such that c(αi) 6= 0 for i = 1, 2, . . . , n
and the elements αn−t+1, . . . , αn satisfy the conditions in Proposition 1. Construct the basis Ba,c(x)

of the lattice La,c(x) as described in Proposition 1. Write Ba,c(x) =

(
In−t −G

0t×(n−t) (qd0 − 1)It

)
.

Let H = B′a,c(x) =
(
In−t, −G

)
. The trapdoor for our function includes the polynomial c(x)

and the ordered set a = (α1, . . . , αn).
Sample: Randomly sample m ∈ Zn−t

qd0−1 and the error e = (e1, . . . , en) ∈ {0, 1}n satisfying:∑n
i=1 ei = d− 1.
Evaluate: For each input m ∈ Zn−t

qd0−1, the function f is evaluated on m as

c = f(m, e) = mH + e mod qd0 − 1.

Invert: Suppose that we are given a valid output c = (c1, . . . , cn) of the function f . The
inversion process is as follows.

Step 1: Compute

r(x) =

n∏
i=1

(x− αi)ci mod c(x).

Step 2: Factorize r(x) as r(x) =
∏n
i=1(x− αi)ui . Let u = (u1, u2, . . . , un).

Step 3: Compute v′ = c− u. Write v′ = (v′1, . . . , v
′
n).

Step 4: Let m′ = (v′1, . . . , v
′
n−t).

Without knowledge of the trapdoor, observe that inverting the function will require us to find
the error e or equivalently, a point in La,c(x) that is close to c. Concretely, one will use the basis

formed by the rows of the matrix

(
H

0 (qd0 − 1)It

)
. Thus, one needs to be able to solve CVP with

respect to this basis. We will discuss more about this in the next section.
The following theorem shows that the inversion process indeed recovers m.

Theorem 1. Let m be a random element in Zn
qd0−1 and let c be the output produced by the

Evaluate algorithm. Let m′ be the output of the Invert algorithm. Then m′ = m.

Proof. First, we have c = mB′a,c(x) + e. We claim that v = v′, where v = mB′a,c(x). To see this,
note that

n∏
i=1

(x− αi)ci =

n∏
i=1

(x− αi)vi+ei =

n∏
i=1

(x− αi)vi
n∏
i=1

(x− αi)ei

≡1 ·
n∏
i=1

(x− αi)ei mod c(x) ≡
n∏
i=1

(x− αi)ei mod c(x)

Since
∑n
i=1 ei = d − 1 < d, we must have r(x) =

∏n
i=1(x − αi)

ei , so ui = ei. Therefore,
v′ = c− u = mB′a,c(x) + e− u = v and the claim is proved.

Note that we have v = mB′a,c(x) = (m,−mG). Therefore, we have (v1, . . . , vn−t) = m

mod qd0 − 1.

Remark 3. – In general, we like to have as many nonzero entries of the error as possible. Hence,
we choose ei to take small values. In particular, we typically let ei = 1.

11

– Instead of letting all the error entries be positive, we can equivalently let them be all negative.
In this case, in the inversion process, one needs to check if r(x) or 1/r(x) mod c(x) can be
factorized. In the former case, we have the usual case where ei ≥ 0. In the latter case, it is
easy to verify that we have ei ≤ 0, that is all the nonzero entries of the error are −1.

– For the inversion process, one can simply check if r(αi) = 0 to check if ui = 0 or 1.

Remark 4. – Here, only the right part −G of the matrix H =
(
In−t, −G

)
, which is used to

evaluate the function, is undetermined. It is an (n − t) × t matrix over Zqd0−1 and thus, has
size (n− t)td0 log2 q bits.

– Unlike the GGH scheme, inversion does not require solving the CVP. Instead, inversion is
carried out using properties of polynomials and remainders.

– In the above scheme, the first n − t positions of c may contain some information about m.
This is because we have only introduced error to d−1 positions, and thus, at least n− t−d+1
positions will be in the clear. In Section 6.1, we present a practical encoding scheme to mask
the original message m.

– Apart from the above scheme, other modifications are possible. Randomly pick an (n − t) ×
(n− t) unimodular matrix T with small entries and an n×n permutation matrix P . Construct
H = TB′a,c(x)P mod qd0 − 1. The left part of the new matrix H will hide all the information
of message m. In situations where the inputs are completely random, the roles of T and P will
not be so critical.

5 Security Analysis of Our Trapdoor Functions

In deciding the parameters for our scheme, we will like to achieve the following:

– The public key size should be reasonably small;
– Key generation, encryption and decryption should be efficient;
– The scheme is resistant against all existing attacks.

We now discuss some possible attacks on our scheme to help us decide the appropriate param-
eters. First, suppose that d ≥ n/2 + 1. Let c be a valid output with error e. Then, e has d − 1
entries = 1. Consider c′ = c− (1, . . . , 1). It is c′ = mH + e− (1, . . . , 1) = mH + e′, where e′ has
< n/2 entries = −1. Hence, one may decrypt using c′ instead. It follows that we may assume that
d ≤ n/2. Therefore, we have t ≤ d ≤ n/2 and n ≤ q.

Error search

At first glance, it appears that one needs to search through all
(
n
d−1
)

entries to find the error.
However, one can in fact reduce the search in the following way. It is obvious that the first n− t
columns of H are linearly independent. Let I = {1, . . . , n− t}. Search through all possible error
positions in I. Recall that there are at most d− 1 such positions. Assuming that the error bits are

uniformly distributed, the number of nonzero error bits in these positions is roughly l = (n−t)(d−1)
t .

Consequently, the number of tries is around
(
n−t
l

)
.

Let cI denote the vector formed by the entries in c indexed by I. For each guess eI , define
x = cI − eI mod qd0 − 1. To verify if our guess is correct, check if c− xH is of the correct error
form, that is, contains exactly d− 1 1’s and all other entries are 0.

Consequently, the complexity of this attack is O(
(
n−t
l

)
(n− t)t).

Search for the trapdoor

One obvious way to attack the function is to find the trapdoor information. We will need to search
for c(x) and a = (α1, . . . , αn). One way to do this is as follows:

– Exhaustively search for the polynomial c(x). There are O(qd) different c(x) of degree d of the
form c(x) = c1(x) . . . ct(x).

12

– For each c(x), guess the ordered set (αn−t+1, . . . , αn). For each such set, determine if there exist
α1, . . . , αn−t that satisfy the matrix B′a,c(x) =

(
In−t, −G

)
. Let −G = (bi,n−t+j)i=1,...,t,j=1,...,t.

Specifically, from the definition of La,c(x) and B′a,c(x), we can construct αi by checking for αi

such that (x − αi) ×
∏t
j=1 (x− αn−t+j)bi,n−t+j ≡ 1 (mod c(x)) for each i ∈ {1, . . . , n − t}.

Our guesses of c(x) and αi’s are correct if we can reconstruct (α1, . . . , αn−t) by the preceding
procedure. There are Pn−t

n ≈ nn−t possible ordered sets (αn−t+1, . . . , αn).

The overall complexity of this attack is O(qdnn−t(n − t)d3(log q)3) if we assume that the
complexity of polynomial multiplication in the ring Fq[x]/c(x) is O(d2(log q)2).

Inverting the function via solving CVP

Next, we discuss the effectiveness of inverting the trapdoor function by solving CVP. As mentioned
in Section 2.1, solving the CVP for a random lattice and a random target vector is hard. In our
situation, the error vector is of a special form, namely, it contains exactly d − 1 1’s or −1’s. We
first investigate how well Babai’s nearest plane algorithm works to recover the error. In Table
2, we give some experimental results when Babai’s nearest plane algorithm is used to invert a
random instance of our trapdoor function. In our experiments, we let d = t, which means that
c(x) is a product of linear polynomials. In addition, we let q be the next prime number larger than
n+d. Before running Babai’s nearest plane algorithm, we converted the basis to a BKZ-β reduced
basis, where β is the block size involved 4. For each (n, d) pair, we repeated the experiments 30
times. The status T in Table 2 means that there is at least one successful inversion among the
repeated experiments with the same set of parameters (n, q, d and block size), while F means that
no successful inversion was achieved. In Table 2, for each pair of n and block size, we provide the
largest value of d that results in the status F and the smallest d (which is necessarily the next
value) that results in the status T.

From the experimental results, we see that, for any fixed n and BKZ block size, the attack by
Babai’s nearest plane algorithm is more effective for larger d. On the other hand, for any fixed
d and BKZ block size, this attack becomes ineffective as n increases. Finally, for fixed n and d,
one may increase the BKZ block size to attempt to invert the function. However, it appears that
the impact is minimal when the BKZ block size is increased beyond a certain bound for each
fixed (n, d) pair. In particular, for n ≥ 200, our results suggest that Babai’s algorithm will not be
effective for practical block sizes when 25 ≤ d ≤ 40.

Table 2. Experimental results on Babai’s algorithm to invert the trapdoor function

status F T F T F T F T F T F T F T F T F T

n 80 80 80 80 100 100 100 100 100 100 100 100 100 100 100 100 100 100

d 26 27 24 25 39 40 33 34 30 31 30 31 28 29 28 29 28 29

block size 20 20 30 30 20 20 30 30 40 40 45 45 50 50 55 55 60 60

Embedding attack to find error

In [33], by exploiting the structure of the errors of the GGH scheme, the embedding attack was
employed to break the scheme with n up to 350. It was suggested that the embedding attack
is effective whenever the gap between the minimum norm of L and the error norm is too big.
Extensive experiments were carried out in [12] to analyze the effectiveness of the embedding
attack with respect to this gap. It was proposed that in order for the attack to be effective via BKZ
algorithms, one should choose a block size with corresponding δ satisfying λ1(L)/errornorm > εδn,

4 Every BKZ algorithm related experiment conducted in this paper is run under the SageMath software
with parameter proof=False, which calls the fplll library.

13

where δ is the root Hermite factor and ε is some small constant. The value of ε is not known
for a random lattice. In [12], experiments were carried out on semi-orthogonal lattices as well as
knapsack lattices with both the LLL and BKZ-20 algorithms. We performed extensive experiments
to estimate an appropriate value of ε for our lattices. In Appendix A, we provide our experimental
results that guide us to choose a suitable ε.

Once ε is fixed, one can resist the embedding attack by choosing the parameters so that the δ
required to launch a successful attack will be infeasible to achieve. In our situation, with λ1(La,c(x))
estimated by the Gaussian heuristic, we have

√
n/(2πe(d− 1))(qd0 − 1)t/n ≤ εδn.

As in the attack via Babai’s algorithm, we carried out some experiments to investigate how
well our lattices and errors can withstand the embedding attack. First, we performed experiments
to compute the root Hermite factor of our bases for different BKZ block sizes. Once again, we let
t = d and q be the next prime larger than n+ d. We set n ∈ {149, 150, 151} and d ∈ {70, . . . , 80}.
For each (n, d) pair, we also repeated the experiments 30 times. Then we picked the smallest value
of δ as the root Hermite factor indicated in Table 3.

Table 3. Experiments on block size and root Hermite factor δ

block size 20 30 40 50 55 60 65 70

δ 1.01168 1.01135 1.01119 1.01098 1.01007 1.00987 1.00934 1.00902

Next, we present our experimental results on the embedding attack. In these experiments, we
fix n = 150 and let the BKZ block size β vary. Our choices of d and q are identical to those
in the previous experiments. For each instance, we also repeated the experiments 30 times. One
successful embedding attack represents the status T in the first column. Otherwise, we label the
status as F. In these experiments, we find the largest value of d that can resist the embedding
attack as indicated in Table 4. Our results show that as the block size increases, the maximum
value of d that can resist the embedding attack decreases. However, increasing the block size will
involve a much longer basis reduction time. Using the experimental value of δ obtained in Table
3, we compute the corresponding ε from the embedding attack formula in the last column.

Table 4. Embedding attack experimental results

status n d q block size δ experimental ε

F 150 66 223 20 1.01168 0.69386
T 150 67 223 20 1.01168 0.71383

F 150 58 211 30 1.01135 0.57091
T 150 59 211 30 1.01135 0.58651

F 150 55 211 40 1.01119 0.53973
T 150 56 211 40 1.01119 0.55421

F 150 50 211 50 1.01098 0.48910
T 150 51 211 50 1.01098 0.50176

F 150 44 197 55 1.01007 0.47288
T 150 45 197 55 1.01007 0.48421

F 150 43 197 60 1.00987 0.47586
T 150 44 197 60 1.00987 0.48713

F 150 42 197 65 1.00934 0.50307
T 150 43 197 65 1.00934 0.51484

F 150 39 191 70 1.00902 0.48913
T 150 40 193 70 1.00902 0.50141

14

In the asymptotic case, in the survey paper of [2], a general relationship between δ and block
size β is given as δ ≈ β1/2β . In addition, the time complexity to run the BKZ algorithm is estimated
by the following result.

Proposition 2. The log of the time complexity for running BKZ to achieve a root Hermite factor
δ is:

– Ω(log2(log δ)
log2 δ

) if calling the SVP oracle costs 2O(β2),

– Ω(
− log(− log log δ

log δ) log log δ

log δ) if calling the SVP oracle costs βO(β),

– Ω(− log log δ
log δ) if calling the SVP oracle costs 2O(β).

When n is large, we will like to have d ≈ n/2. Let q to be slightly bigger than n+d, say q ≈ 2n.
In order for δ to satisfy

√
n/2πe(d− 1)qd/n > εδn, we have

δ < (2n/πeε2)1/2n.

This gives δ close to 1 when n is large and consequently, we need a block size close to n.

For smaller values of n, [10, Table 2] gives some estimates for δ corresponding to β ≤ 250
achieved using their BKZ2.0 algorithm. In addition, they provided time estimates to run the
algorithm by measuring the enumeration cost [10, Table 3, 4] to run the SVP sub-routine and the
number of BKZ rounds required. Note that the total cost of BKZ is estimated to be (n − 1) ∗
numberofrounds ∗ enumerationcost. In the following section, we will use this method to give the
estimated cost for some parameters.

Enhanced embedding attack

The embedding attack can be enhanced by combining with partial search of the error bits. Specif-
ically, if k nonzero error bits are guessed correctly, the remaining error norm will be reduced to√
d− k, thereby making the gap from λ1(La,c(x)) bigger. Concretely, we have the new gap as√
n/2πe(d− 1− k))(qd0 − 1)t. This in turn may reduce the BKZ block size needed to launch the

embedding attack. Hence, we need to ensure that
(
n
k

)
times of each single BKZ execution will be

infeasible to carry out.

We will illustrate the enhanced embedding attack by a concrete example by referring to our
parameter choices in the next section. Suppose that the adversary has correctly guessed k = d/2
errors for the first row of the practical parameters we present in Table 5. Then n = 230, t = d =
29, k = 15, d0 = 1, q = 263. Now, the adversary needs to recover the remaining error bits via the
embedding attack. This requires the adversary to run a BKZ algorithm with δ = 1.0084 for the
block size β ≈ 133, which corresponds to the cost 2170.24 by the method in Section 5. In fact,
the cost of the adversary to correctly guessed the k errors is

(
n−d
k

)
≈ 273.7. Hence, the enhanced

embedding attack is infeasible to carry out for our practical parameters. Using a similar argument,
One can check that this approach does not work for the remaining proposed parameters as well.

Other attacks to find the trapdoor information

Note that with knowledge of the public information G, one can easily construct the matrix Ba,c(x).
The question is whether this matrix will leak information about the polynomial c(x) as well as a.
Here, we discuss a possible attack when c(x) is irreducible over Fq, that is, t = 1.

In this case, the matrix Ba,c(x) takes a very simple form, namely,

Ba,c(x) =

(
In−1 −G

01×(n−1) q
d − 1

)
,

15

where G is a (n − 1) × 1 column. Write G as G =


g1
g2
...

gn−1

 , where each gi ∈ Zqd−1. Note that

gi satisfies x − αi ≡ (x − αn)gi mod c(x). Without any loss of generality, we may assume that
αn = 0 (by substituting x by x−αn in the whole system). It follows that c(x) is a common factor
of the polynomials x−αi − xgi , i = 1, 2, . . . , n− 1. Since c(x) is irreducible over Fq of degree d, it

is a factor of xq
d − x.

We can now perform the following steps to recover c(x) and the αi’s.

– Randomly guess α1. For each α1, compute the gcd h(x) = gcd(x−α1− xg1 , xq
d − x). Find all

pairs α1, d(x) such that d(x) is irreducible of degree d and divides the polynomial h(x).
– For each pair α1, d(x) found above, test for α2 such that d(x) is also a factor of x− α2 − xg2 .
– Continue the process until one d(x) is left. Let c(x) to be this d(x).
– Find the remaining αi’s by direct computation of αi = x− xgi mod d(x).

We remark that with high probability, the set of possible d(x) after the first step will be very
small. It follows that the main complexity of the above attack comes from performing the gcd

computations to find gcd of polynomials of the form x − α − xg and xq
d − x. In general, such a

gcd computation has complexity polynomial in g. Furthermore, with high probability, g is of the
order of qd. Consequently, in general, the above attack has complexity polynomial in qd. However,
the above attack works if g is small or is of a special form that makes the gcd computation easy.

The above attack easily generalizes to the case when t > 1 but the complexity increases as
well. Specifically, we will need to guess t different values of α in the first step. This has complexity
n!/(n− t)! ≈ nt. In view of these considerations, we will choose t to be as big as possible, say c(x)
is a product of linear or quadratic polynomials.

Remark 5. Apart from Babai’s algorithm, one may use enumeration methods with pruning to solve
CVP. Our preliminary experiments showed that pruning techniques do not have a great advantage
over Babai’s algorithm for our lattices, particularly when n ≥ 200.

6 A Practical Encryption Scheme

6.1 Description

Similar to the GGH encryption scheme and the McEliece encryption scheme, in order to transit
from the one-way trapdoor function to an encryption scheme, one needs a method to encode the
message before parsing to the trapdoor function. In particular, the chosen encoding scheme should
ensure that the encryption scheme is semantically secure. Different proposals were presented in
[16,24] to achieve semantic security for the GGH scheme and the McEliece scheme. We first show
why the scheme employed in [16] will not work for our construction.

Recall that for the GGH scheme, it was suggested to encode the plaintext bits as the least
significant bits of the input message to the trapdoor function and the other bits are allowed to be
picked randomly. We now show how this will make our scheme vulnerable to the related message
attack.

To this end, let p be an (n − t)-bit plaintext to be encrypted. Suppose that p is encrypted
twice, that is, encoded into m1 and m2 with p occupying the least significant bits of m1 and m2.
This gives c1 = m1H + e1 mod qd0 − 1 and c2 = m2H + e2 mod qd0 − 1. Summing up, this
yields (m1 + m2)H + e1 + e2 mod qd0 − 1 = c1 + c2. If q is odd, we can consider the equation
modulo 2 to get 0 · H + e1 + e2 = c1 + c2 mod 2 or e1 + e2 mod 2 = c1 + c2. If d is small
relative to n, the number of entries which are 1 in both e1 and e2 will be very small. Hence, we
can guess the positions in which e1 or e2 is 1 from the non-zero entries in c1 + c2 mod 2 and use
the attacks in Section 5 to recover m.

16

In view of the above, we modify the encoding scheme to work for our trapdoor function.
Suppose that the parameters q, n, d, t are fixed. Our input to our trapdoor function is a vector
in Zn−t

qd0−1. Thus, each entry is an s-bit string, where s = 1 + blog2(qd0 − 1)c. We will encode an

(n− t)-bit plaintext message P into the input m for the trapdoor function f . The ciphertext will
be the output of f in Zn

qd0−1. The entire encryption and decryption processes are described as

follows.
Let m = (m1, . . . ,mn−t) be in Zn−t

qd0−1 and let m
(j)
i denote the j-th least significant bit of

mi, j = 0, 1, . . . , s − 1. Further, let m(j) = (m
(j)
1 , . . . ,m

(j)
n−t). Suppose the plaintext message is

P = (P1, . . . ,Pn−t). In the following, let Hash denote a cryptographic hash function from {0, 1}∗
to {0, 1}n−t. Let f be the trapdoor function with all the notations in Section 4.

Private key: The degree d polynomial c(x), the n elements α1, . . . , αn, the unimodular matrix
T and the permutation matrix P .

Public key: The parameters n, q, d, t and the matrix −G.
Encryption:

– Randomly select n− t bits z = (z1, . . . , zn−t).
– Randomly select the error string e = (e1, . . . , en) satisfying the desired properties.
– Set m(0) = P ⊕ z.
– Set m(1) = z.
– Set m(2) = Hash(P||z||e).
– For j = 3, . . . , s− 1, set m(j) randomly.
– Let H =

(
In−t, −G

)
. Then, the ciphertext c is c = f(m, e) = mH + e.

Decryption: Given a ciphertext c, the decryption proceeds as follows:

– Compute m = f−1(c) using the private key. Let e be the corresponding error. If e contains
only 0 or 1 entries with exactly d− 1 1’s, then continue. Otherwise, decryption fails.

– Write m = (m
(j)
i)i=1,...,n−t,j=0,1,...,s−1.

– Set P ′ = m(0) ⊕m(1).
– If Hash(P ′||m(1)||e) = m(2), then P = P ′ and the decryption is successful. Otherwise, de-

cryption fails.

Remark 6. – Like the GGH scheme [16], we encode our plaintext bits in the least significant bits
of the input to our trapdoor function.

– In our scheme, the input includes not only the plaintext bits but the error bits and random
bits as well. By including the error bits to the input, changing bits of the ciphertext will likely
make the decryption process fail. This helps to prevent reactive attacks where attackers try
to guess the error bits by sending modified ciphertexts.

– Similar to the conversion schemes suggested in [24] for the McEliece encryption scheme, random
bits and the hash of the plaintext bits are added to the input to ensure semantic security and
to prevent other attacks such as related message attacks.

6.2 Choosing the Parameters

In view of the attacks presented in Section 5, we will choose the parameters q, n, d, t to resist all
the possible attacks. Concretely, the following choices will be made.

– We let t = d, that is, c(x) is a product of linear polynomials.
– We set q to be the smallest prime bigger than n+ d.
– We set d to satisfy 20 ≤ d ≤ n/2.

– For a security level λ, we set n and d so that
(
n−d
l

)
≥ 2λ, where l = (n−d)(d−1)

n .

With d = t, we have d0 = 1 so all our operations are done modulo q− 1. Our public key size is
(n− t)t(1 + blog2(q− 2)c) bits. Since encryption only involves matrix multiplication modulo q− 1,
encryption is efficient with complexity O(n2).

17

We now provide possible sets of values of n and d for our encryption scheme. For each pair of

n and d, we compute the biggest δ such that
√

n
2πe(d−1)q

d/n ≤ ε ∗ δn, where ε = 0.3 (as explained

in the appendix). We then give the corresponding approximate BKZ block size β to achieve this
δ as well as a lower bound on the estimated cost. In particular, our lower bound on the cost of
the embedding attack is computed as nE, where E is the estimated enumeration cost for one
sub-routine given in [10, Table 3, 4] corresponding to the block size β0, with β0 being the largest
block size smaller than β available in the tables.

Table 5. Possible n and d for Practical Encryption Scheme

n d q log2

(
n−d
l

)
δ approximate block size log2(estimated cost) public key size

230 29 263 106 1.0067 168 225.95 52461bits=6.40KB
230 30 263 108 1.0067 168 225.95 54000bits=6.59KB
240 29 271 108 1.0064 168 227.72 55071bits=6.72KB
240 30 271 110 1.0064 168 227.72 56700bits=6.92KB
240 31 277 113 1.0065 168 227.72 58311bits=7.12KB
240 32 277 113 1.0065 168 227.72 59904bits=7.31KB
240 33 277 115 1.0065 168 227.72 61479bits=7.50KB

260 29 293 111 1.0059 216 356.19 60291bits=7.36KB
260 30 293 114 1.0059 216 356.19 62100bits=7.58KB
260 31 293 117 1.0059 216 356.19 63891bits=7.80KB
260 32 293 119 1.0060 216 356.19 65664bits=8.02KB

A More Experimental Results on the Embedding Attack

As in Table 4, we provide more experimental data on employing the embedding attack to our
trapdoor function in Table 6. In these experiments, we vary n as well as the BKZ block sizes and
record the ε that results in a successful attack after 14 tries. From our results, there does not seem
to be a discernible trend for the constant ε. Nonetheless, we see that the minimal ε withstanding
the embedding attack is 0.47992. In our selection of parameters for the encryption scheme given in
Table 5, we therefore use ε = 0.3 < 0.47992 to guide us in choosing the appropriate d to withstand
the embedding attack.

References

1. Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equiva-
lence. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El
Paso, Texas, USA, May 4-6, 1997, pages 284–293, 1997.

2. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
J. Mathematical Cryptology, 9(3):169–203, 2015.

3. Yoshinori Aono. A faster method for computing gama-nguyen-regev’s extreme pruning coefficients.
CoRR, abs/1406.0342, 2014.

4. Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Improved progressive BKZ
algorithms and their precise cost estimation by sharp simulator. In Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, pages 789–819, 2016.

5. László Babai. On lovász’ lattice reduction and the nearest lattice point problem (shortened version).
In STACS 85, 2nd Symposium of Theoretical Aspects of Computer Science, Saarbrücken, Germany,
January 3-5, 1985, Proceedings, pages 13–20, 1985.

6. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post Quantum Cryptography. Springer
Publishing Company, Incorporated, 1st edition, 2008.

18

Table 6. More embedding attack experimental result

status n d q block size δ experiment ε

F 100 27 223 30 1.01135 0.57134
T 100 28 223 30 1.01135 0.58862

F 110 33 149 30 1.01135 0.58050
T 110 34 149 30 1.01135 0.59820

F 120 37 163 30 1.01135 0.54738
T 120 38 163 30 1.01135 0.56332

F 130 44 179 30 1.01135 0.56039
T 130 45 179 30 1.01135 0.57651

F 140 52 197 30 1.01135 0.58647
T 140 53 197 30 1.01135 0.60312

F 150 57 211 30 1.01135 0.55582
T 150 58 211 30 1.01135 0.57092

F 160 66 229 30 1.01135 0.58584
T 160 67 229 30 1.01135 0.60145

F 200 106 311 20 1.01168 0.68466
T 200 107 311 20 1.01168 0.70125

F 200 95 307 30 1.01135 0.55993
T 200 96 307 30 1.01135 0.57315

F 200 94 307 40 1.01119 0.56464
T 200 95 307 40 1.01119 0.57793

F 200 86 293 50 1.01098 0.47992
T 200 87 293 50 1.01098 0.47992

F 200 80 283 55 1.01007 0.49576
T 200 81 283 55 1.01007 0.50674

F 200 79 281 60 1.00987 0.50323
T 200 80 283 60 1.00987 0.51579

F 200 77 281 65 1.00934 0.53522
T 200 78 281 65 1.00934 0.54692

F 220 123 347 20 1.01168 0.66355
T 220 124 347 20 1.01168 0.67864

F 220 115 337 30 1.01135 0.58720
T 220 116 347 30 1.01135 0.60966

F 220 113 337 40 1.01119 0.58180
T 220 114 337 40 1.01119 0.59474

F 220 111 337 50 1.01098 0.58286
T 220 112 337 50 1.01098 0.59578

F 220 109 331 55 1.01007 0.67414
T 220 110 337 55 1.01007 0.69519

F 220 107 331 60 1.00987 0.67427
T 220 108 331 60 1.00987 0.68903

7. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the mceliece cryp-
tosystem. In Post-Quantum Cryptography, Second International Workshop, PQCrypto 2008, Cincin-
nati, OH, USA, October 17-19, 2008, Proceedings, pages 31–46, 2008.

8. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security
for key dependent messages. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 505–524, 2011.

9. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. SIAM J. Comput., 43(2):831–871, 2014.

10. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, pages
1–20, 2011.

19

11. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Information
Theory, 22(6):644–654, 1976.

12. Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Advances in Cryptology - EURO-
CRYPT 2008, 27th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pages 31–51, 2008.

13. Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme pruning. In
Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings,
pages 257–278, 2010.

14. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
pages 169–178, 2009.

15. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple bgn-type cryptosystem from LWE.
In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings,
pages 506–522, 2010.

16. Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduc-
tion problems. In Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings, pages 112–131, 1997.

17. Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert. Approximating shortest
lattice vectors is not harder than approximating closest lattice vectors. Inf. Process. Lett., 71(2):55–61,
1999.

18. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from
LWE. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages 503–523, 2015.

19. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the shortest and closest lattice
vector problems. In Coding and Cryptology - Third International Workshop, IWCC 2011, Qingdao,
China, May 30-June 3, 2011. Proceedings, pages 159–190, 2011.

20. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem.
In Algorithmic Number Theory, Third International Symposium, ANTS-III, Portland, Oregon, USA,
June 21-25, 1998, Proceedings, pages 267–288, 1998.

21. Antoine Joux and Cécile Pierrot. Technical history of discrete logarithms in small characteristic
finite fields - the road from subexponential to quasi-polynomial complexity. Des. Codes Cryptography,
78(1):73–85, 2016.

22. Ravi Kannan. Improved algorithms for integer programming and related lattice problems. In Pro-
ceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 193–206, 1983.

23. Elena Kirshanova, Alexander May, and Friedrich Wiemer. Parallel implementation of BDD enumera-
tion for LWE. In Applied Cryptography and Network Security - 14th International Conference, ACNS
2016, Guildford, UK, June 19-22, 2016. Proceedings, pages 580–591, 2016.

24. Kazukuni Kobara and Hideki Imai. Semantically secure mceliece public-key cryptosystems-conversions
for mceliece PKC. In Public Key Cryptography, 4th International Workshop on Practice and Theory in
Public Key Cryptography, PKC 2001, Cheju Island, Korea, February 13-15, 2001, Proceedings, pages
19–35, 2001.

25. Pil Joong Lee and Ernest F. Brickell. An observation on the security of mceliece’s public-key cryp-
tosystem. In Advances in Cryptology - EUROCRYPT ’88, Workshop on the Theory and Application
of of Cryptographic Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings, pages 275–280,
1988.

26. Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

27. Rudolf Lidl and Harald Niederreiter. Finite fields. Encyclopedia of mathematics and its applications:
v. 20. Cambridge ; New York : Cambridge University Press, 1997., 1997.

28. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based encryption. In
Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference 2011, San
Francisco, CA, USA, February 14-18, 2011. Proceedings, pages 319–339, 2011.

29. Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update. In Topics in Cryptology
- CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, San Francisco,CA, USA,
February 25-March 1, 2013. Proceedings, pages 293–309, 2013.

20

30. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. J. ACM, 60(6):43:1–43:35, 2013.

31. Robert J McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space
Network Progress Report, 44:114–116, January 1978.

32. Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a cryptographic perspec-
tive, volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, Massachusetts, March 2002.

33. Phong Q. Nguyen. Cryptanalysis of the goldreich-goldwasser-halevi cryptosystem from crypto ’97.
In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings, pages 288–304, 1999.

34. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):34:1–34:40, 2009.

35. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving
subset sum problems. Math. Program., 66(2):181–199, September 1994.

36. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th An-
nual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November
1994, pages 124–134, 1994.

37. Jacques Stern. A method for finding codewords of small weight. In Coding Theory and Applications,
3rd International Colloquium, Toulon, France, November 2-4, 1988, Proceedings, pages 106–113, 1988.

	On the Closest Vector Problem for Lattices Constructed from Polynomials and Their Cryptographic Applications

