
Malware encryption schemes – rerandomizable ciphertexts

encrypted using environmental keys ∗

Herman Galteland† and Kristian Gjøsteen

Department of Mathematical Sciences,
NTNU – Norwegian University of Science and Technology, Trondheim

{herman.galteland, kristian.gjosteen}@ntnu.no

October 10, 2017

Abstract

Protecting malware using encryption prevents an analyst, defending some com-
puter(s) in the network, from analyzing the malicious code and identifying the inten-
tions of the malware author [4, 5]. We discuss malware encryption schemes that use
environmental encryption keys [11], generated from some computer(s) the malware
author intends to attack, and is able to rerandomize [2, 8] ciphertexts, to make each
malware sample in the network indistinguishable.

We are interested in hiding the intentions and identity of the malware author, not
in hiding the existence of malware.

Keywords. Malicious cryptography, environmental keys, rerandomization, provable
security.

1 Introduction

Malware is software maliciously installed on a computer designed to give functionality and
behavior desired by the malware author, but not by the legitimate computer owner.

Our goal is to study malware propagation and how to protect propagating malware
from analysis. We will not study the construction of computer viruses or any other types
of malware, but rather at how to construct schemes designed to encrypt malware such
that we can hide the intentions and the identity of the malware author.

1.1 Real world examples

BurnEye [13] is a tool designed to defend binary files and is an example on how to protect
malware. The tool adds three layers of protection to a file: obfuscation, encryption,
and a fingerprint layer. The fingerprint layer ensures that the files can only be executed
on a specific computer that has the specifications stated by the fingerprint layer. The
encryption layer uses a user-chosen password as the encryption key such that the file can
only be executed (or analyzed) by someone with the proper password.

Gauss [10] is an example of sophisticated malware that uses encryption to protect
certain payloads. Gauss uses environmental keys to decrypt these payloads, where an

∗This is the extended version of [7]
†This work is funded by Nasjonal sikkerhetsmyndighet (NSM), www.nsm.stat.no

1

www.nsm.stat.no

S

T

n

MN

Figure 1: Example of malware propagating into an analyst’s network. The source S infects
n initial nodes. The analyst protects a network if M nodes. There is at most N malware
samples in the universe.

environmental key is generated from locally available data. The malware gathers data on
the infected computer and hashes it to create decryption keys, where the string of data
that results in the correct key is selected by the malware author. The malicious code can
only be executed when the correct key is produced, that is, when the malware infects the
intended target. To our knowledge the contents of the encrypted payloads of Gauss are
still unknown.

1.2 Malware propagation

Consider a malware author whose objective is to attack a specific location (or locations).
The malware author’s goals is to hide his intentions and identity. The malware author’s
opponent is an analyst observing and defending a network of nodes, which contains one
(or more) of the malware author’s target(s). The goal of the analyst is to detect malware
targeting any part of the network he is protecting and to discover the intentions and the
identity of the malware author. Hiding the mere existence of malware from the analyst is
a distinct problem and not one we consider in the current work.

1.2.1 Setup

We use the following model to describe malware propagation, see Figure 1. The source
S, the malware author, infects n initial nodes with (different variations of) his malware.
Released malware infects subsequent nodes by making similar copies of themselves and
propagates throughout the network.

The analyst protects M nodes in the network from any possible malware threat. We
assume he has full knowledge of the environment he is protecting. By observing the wider
network the analyst can find at most N malware samples.

Every direct link to the malware author increases the analyst’s chance to discover the
author’s identity. So, to avoid identification, the malware author should perform as few
initial infections as possible and use indirect paths to the target.

1.2.2 Encrypting the malware payload

The malware author encrypts the malware payload to increase the analyst’s workload.
Encrypting the payload prevents an analyst reverse engineering the malicious code [5] and
hides the intentions of the malware author. We use encryption keys derived from environ-
mental parameters, network triggers, or a combination of these [11]. The environmental

2

Malware consist of a cleartext loader and an encrypted payload. When malware arrives on a new host the loader is
executed and preforms the following steps:

1. The loader scans the host environment and determines the environmental data.

2. The loader hashes the environmental data to produce one or more keys.

3. The loader tries to decrypt the encrypted payload with each key.

4. If the decryption succeeds, the decrypted payload is executed.

5. The malware may also attempt to infect some other host, in which case the encrypted payload is rerandomized
before it is transmitted to the new host.

Note that the malware author will certainly use some polymorphic engine and other standard malware techniques
in order to provide a basic level of protection for the cleartext loader and the encrypted payload.

Figure 2: The malware attack process.

information is gathered from the target node and could consist of, for example, IP address,
PATH variables, and/or any arbitrary time and date. This would either requires infor-
mation about the target node, be guessed, or be general information (to target several
nodes).

An encrypted malware consist of the encrypted payload, containing the malicious code,
and a cleartext loader that gathers environmental parameters to generate decryption keys.

To initialize an encrypted malware the author chooses environmental data identifying
the target node(s), hashes the data to create an encryption key, encrypts the payload
using the key, and releases the encrypted malware. When malware infects a new node the
cleartext loader determines the environmental data of the infected node, hashes the data
to derive K ≥ 1 keys, and attempts to decrypt the payload using the K derived keys.
If the decryption is a success can the malicious code be executed. Otherwise the loader
creates copies of the malware to infect subsequent nodes.

The malware author can initialize at most n distinct encrypted malware, one for each
initial infection, which encrypts the same malicious code. Hence, there is at most n distinct
encrypted payloads among the samples collected by the analyst. Each sample is encrypted
and has an unknown target. If the analyst wants to guarantee that none of these n samples
would attack a node in his network then he needs to do roughly K trial decryptions for
each of his M nodes. Hence, the analyst’s workload is at most nMK.

1.2.3 Rerandomize the encrypted payload

Instead of making exact copies of the malware we want the loader to rerandomize [2,8] the
encrypted payload using techniques from asymmetric cryptography. The rerandomization
process takes as input an encrypted payload and some uniformly random values to produce
a new ciphertext that encrypts the same malicious code. Hence, the loader can produce
several different-looking encrypted malware to infect subsequent nodes without knowledge
of the secret key. The process is described in Figure 2.

We want the rerandomize process to produce the encrypted payloads such that any
two malware samples are indistinguishable. If the analyst is unable to distinguish between
malware samples then, essentially, there are N unique variations of the malware in the
network. This means that the analyst need to do K trial decryptions for N samples for
M different nodes to ensure that none of the malware samples are targeting any of his
nodes. This will increase the analyst’s workload to NMK.

Since the malware creates different variations of itself the malware author can choose
n to be small and, possibly, significantly reducing the risk of unveiling his identity.

3

Path variation malware consist of a cleartext loader and an encrypted payload. When path variation malware arrives
on a new host the loader is executed and preforms the following steps:

1. The loader scans the host environment and determines the environmental data.

2. The loader hashes the environmental data to produce one or more keys and a default key.

3. The loader check each key if they can decrypt the encrypted payload.

– If a key is found use it to decrypt, if not use the default key to decrypt.

4. The loader checks if the decrypted payload could be executed.

5. The malware may also attempt to infect some other host, in which case the encrypted payload is rerandomized
before it is transmitted to the new host.

Note that the malware author will certainly use some polymorphic engine and other standard malware techniques
in order to provide a basic level of protection for the cleartext loader and the encrypted payload.

Figure 3: Path variation malware attack process.

1.2.4 Path variation

Instead of using a single encryption key we can choose to use several keys, derived from
different nodes in the network, describing a path towards the target, see Figure 4. The
last key is derived from environmental data identifying the target node, just as before,
and the remaining keys, called default keys, are derived from environmental data that is
available on all nodes in the path. This requires the malware author to investigate and
gather the environmental data of each node in the path towards the target before malware
can be encrypted. The difference between the path and the single key variations is that
the path scheme will always try to decrypt the payload using a key (a default key in most
cases).

The path variation can only be decrypted if malware infect the nodes in the correct
path toward the target. There is no difference between malware samples in the correct
path and malware samples in a wrong path, hence, all samples needs to be treated as if
they are both in the path and not in the path by the opponent. The only difference is
when the malicious code has been executed and the opponent notices.

If the opponent only wants to know if a node in his network is targeted he has to check
all possible paths between a node with a sample to all other nodes and see if the sample
decrypt correctly. If the opponent finds the target node, either by analysis or by noticing
that the malicious code was executed, then he can trace the correct path back towards the
source, by using the algorithms in the malware, and possibly find information that could
identify the malware author. However, this requires knowledge of the full network1, where
the opponent only has knowledge over his network. This is an unwanted trait, but it seems
to be unavoidable if we also wish to include the rerandomization. Without knowledge of
the target node the opponent cannot trace back to the source by looking at the algorithms
alone.

1.2.5 Limitations

The limitations of our schemes is that the analyst can always guess, or predict, the target of
the malware author. Also, if the malware reaches its target, the payload will be decrypted
and executed. If the analyst notices the attack he will be able to deduce the environmental
key and thus be able to decrypt the payload. This seems impossible to avoid.

Once an analyst discovers the key used for one sample, he can easily discover all other
samples corresponding to that key. However, the malware author will hope that different
analysts are unwilling to reveal that they are under attack, they somehow consider this

1Unless the source is inside the analyst’s network

4

S
kt kt−1

. . .
k2

T

k1

Figure 4: Location of keys on the path towards the target

fact sensitive, and that they therefore do not share discovered keys. This means that one
analyst’s success may not make all the other analyst’s work easier.

For the path variant, if the analyst discover the target node then it is possible to
find the source, as discussed previously. If the opponent finds the correct path back to
the source then he can discover all the encryption keys. However, this is not enough to
determine if another malware sample is encrypted under the same keys, especially if that
sample has infected a node not in the path. The analyst has to find the sample’s infection
path back to the source first, remove any decryption keys used (to restore the sample to
its initial condition), and then check if the keys decrypt the payload. This would require
knowledge of the full network.

1.2.6 Potential threat

Assuming there is more than one malware author, an analyst can not be certain of whether
every new encrypted malware sample corresponds to one he has previously determined is
no threat or a genuinely new piece of malware. That is, all malware samples created by
different malware authors looks like the same encrypted malware. However, this requires
all malware authors to agree on a malware encryption standard; use the same size, use
the same loader, and otherwise look the same. This seems unlikely. If malware authors do
not agree on a standard then the analysts can use these pieces of information to classify
samples.

1.3 Related work

Traditionally cryptography has been developed and used as a defense against attackers.
However, it is clear that cryptography can also be of use to the attackers.

Young and Yung where the first to raise the concern about malicious use of cryptog-
raphy (cryptovirology) [15] and have several works related to malware construction and
propagation. First, Young and Yung designed a virus capable of encrypting files on the
victim’s computer and hold them for ransom [14]. Second, they describe how to utilize a
mix network to mix programs and propagate malware [15]. Third, they designed a mobile
program that carries a rerandomizable ciphertext, which enables anonymous communi-
cation, where the program takes random walks through a network and rerandomize the
ciphertext at each node, using system called Feralcore [16].

The mix network and the mobile program, by Young and Yung, use the idea of universal
re-encryption, by Golle et al [8], to re-encrypt ciphertexts. The re-encryption process
transforms the ciphertexts into a new ciphertext that encrypts the same message and
do not require knowledge about the public key. Similar to universal re-encryption is the
notion of rerandomization by Canetti et al. [2].

Filiol showed that by encrypting malware payload [4, 5] one can prevent anyone from
analyzing the code and reverse engineer it, possibly using the environmental keys of Rior-
dan and Schneier [11] as encryption keys. Similar to Riordan and Schneier’s environmental
keys, secure triggers [6, 9] are also used to keep certain content private until a particular
event occurs.

5

1.4 Overview

The rest of this paper contains the technical details of our schemes. The general cryp-
tosystem designed to encrypt and rerandomize malware payload is described in Section
2.1.

The basic scheme, in Section 2.2, shows that malware encryption described in the
introduction is possible in theory, however, the scheme is not practical because it requires
short messages.

The extended scheme, in Section 2.4, is based on the basic scheme and can encrypt
longer messages, making it more practical. The basic and extended schemes use the
malware attack process described in Figure 2.

The path scheme, in Section 2.6, is the path variant of both the basic and the extended
scheme and uses several encryption keys instead of one. The malware attack process for
the path variation is described in Figure 3.

For each scheme we show that they are secure using games, where the opponent is
asked to distinguish between ciphertexts encrypting the same message and ciphertexts
encrypting two different messages. That is, we will simulate whether an analyst is able
to distinguish malware samples. The security proof of the basic scheme is in Section 2.3,
extended scheme in Section 2.5, and path scheme in Section 2.7. All three proofs are
similar.

2 Rerandomizable malware encryption schemes

In this section we present three encryption schemes designed to encrypt and rerandomize
malware payload. The first scheme is a basic proof of concept and the second is an
extension of the basic scheme capable of encrypting larger payloads. The third scheme is
the path variant of the first two. Further, we show that it is hard to distinguish between
encrypted payload samples by using games.

As a simplification we denote payload as messages, encrypted payload as ciphertexts,
replication of malware as rerandomization of ciphertexts, and environmentally derived
keys as keys.

2.1 Preliminary

In each scheme we have an algorithm E encrypting messages, an algorithm D decrypt-
ing ciphertexts, and an algorithm R rerandomizing ciphertexts. In the path variant of
the extended scheme (in Section 2.6) we add a padding functionality to the rerandomize
algorithm and rename it to a padding algorithm P.

Encryption For a message m and a key k the encryption algorithm E(k,m) outputs a
ciphertext c.

Decryption For a ciphertext c and a key k the decryption algorithm D(k, c) either out-
puts a message m or a special symbol ⊥ indicating decryption failure.

Rerandomization For a ciphertext c, encrypting a message m, the rerandomize algo-
rithm R(c) outputs a ciphertext c′ encrypting the same message m.

The output distribution of the rerandomize algorithm should be computationally indis-
tinguishable from the output distribution of the encryption algorithm. That is, it should
be hard to determine if two different ciphertexts encrypts the same message or not.

6

The systems should be correct, we should almost always be able to decrypt all cipher-
texts output by the encryption algorithm. Since the output distribution of the encryption
and rerandomize algorithms are computationally indistinguishable, ciphertexts output by
the rerandomize algorithm will also almost always be correct.

Correctness If c was output from E(k,m) then D(k, c) will always output m except with
negligible probability.

Rerandomization If c was output by E(k,m) then the output distribution ofR(c) should
be computationally indistinguishable from the output distribution of E(k,m).

We will not always be able to apply an arbitrary number of rerandomizations to a
ciphertext without getting decryption errors, which we will see is the case in Section 2.4
and in Section 2.6.

The security requirements of our cryptosystems reflects the intentions of the malware
author. It should be difficult to guess the malware author’s target, and it should be hard
to determine if two ciphertexts are the encryption of the same message or not.

Key indistinguishability It should be hard to say something about which key a cipher-
text has been encrypted under.

Indistinguishability It should be hard to decide if two ciphertexts, encrypted under the
same key, decrypts to the same message or not.

2.2 Basic scheme

The basic scheme is based on the ElGamal cryptosystem over a group G of prime order
p generated by g. This scheme is essentially the same as the encryption scheme proposed
by Golle et al [8].

Encryption For a message m ∈ G and a key k ∈ Z∗p, let r, s
r←− Z∗p and output

c = (x, y, z, w) = (gr, gkr, gs, gksm).

Decryption For a ciphertext c = (x, y, z, w) and a key k ∈ Z∗p check if xk = y. If it is
then output

m = z−kw.

Otherwise output ⊥.

Rerandomize For a ciphertext c = (x, y, z, w), let r′, s′
r←− Z∗p and output

c′ = (x′, y′, z′, w′) = (xr
′
, yr

′
, zxs

′
, wys

′
).

Correctness If c = (x, y, z, w) was output by the encryption algorithm then there exists
parameters r, s, k, and a message m such that

c = (x, y, z, w) = (gr, gkr, gs, gksm).

With input c the rerandomize algorithm will output c′ = (x′, y′, z′, w′) where

x′ = xr
′

= grr
′
,

y′ = yr
′

= gkrr
′
,

z′ = zxs
′

= gsgrs
′

= gs+rs
′
,

w′ = wys
′

= gksgkrs
′
m = gk(s+rs′)m.

7

That is, c′ = (grr
′
, gkrr

′
, gs+rs

′
, gk(s+rs′)m). Since r 6= 0, we get that s+ rs′ can take any

value modulo p except s and all values are equally probable. Hence, the output distribution
of the encryption and rerandomize algorithms are computationally indistinguishable and
has the same structure, that is,

c′ = (gr̂, gk̂r̂, gŝ, gk̂ŝm)

for some parameters r̂, ŝ, k̂, and a message m.
For a ciphertext c = (x, y, z, w) and the correct key k we have that xk = (gr)k =

gkr = y, which is true for ciphertexts output by both the encryption and rerandomize
algorithms. The message m is retrieved by computing

z−kw = (gs)−kgksm = g−ks+ksm = m.

In other words, the decryption algorithm is correct.

Longer messages The limitation of the basic scheme is that the message size is rela-
tively small. One option is to encrypt several messages under the same key. That is, a set
of messages {m1,m2, . . . ,mn} can be encrypted as

(gr, gkr, gs1 , gks1m1, g
s2 , gks2m2, . . . , g

sn , gksnmn)

for some parameters s1, s2, . . . , sn, r, and key k. However, this is not an efficient method.
In Section 2.4 we construct the extended scheme where we use techniques from symmetric
cryptography to encrypt longer messages more efficiently.

2.3 Security of the basic scheme

The decryption key is derived from environmental data sampled by the loader from the
infected computer. From the opponent’s perspective the collection of sampled data types
can be considered as a probability space of possible decryption keys. We will denote this
space by D. If the size of D is large then the opponent is less likely to guess the correct
decryption key, where the size of D is determined by the number of different data types
and combinations of the gathered data.

We show that the opponent O is unable to distinguish between ciphertexts and that his
advantage is determined by D, that is, the probability of the opponent guessing the correct
key. To prove this we use games [12]. In our games we start by simulating Experiment
1 where we ask the opponent to differentiate between the two cases; two ciphertexts
encrypting different messages, and two ciphertexts encrypting the same message.

Experiment 1 Given two ciphertext c1 and c2, decide if

c1 = E(k1,m1)
c2 = E(k2,m2)

or
c1 = E(k1,m1)
c2 = R(c1)

for some messages m1,m2 and keys k1, k2.

We show that the security of the scheme is based on the hardness of the Decisional
Diffie-Hellman (DDH) problem [1] in the random oracle model. The DDH problem is to
distinguish tuples of the form (g, ga, gb, gab) and tuples of the form (g, ga, gb, gc), for some
a, b, c ∈ Z∗p. Where the DDH assumption states that the DDH problem is hard to solve.

To create the encryption keys we use an oracle to hash elements drawn from the
probability space D. We denote the oracle by H, where it should be impossible to get any
information about the input of the oracle by looking at its output.

8

Algorithm 1 Game 0 simulating Experiment 1

1: u1, u2
r←− D, k1 ← H(u1), k2 ← H(u2), b

r←− {0, 1}
2: Get m1,m2 from O
3: if b = 0 then
4: c1 ← E(k1,m1)
5: c2 ← E(k2,m2)
6: Send c1, c2 to O
7: if b = 1 then
8: c1 ← E(k1,m1)
9: c2 ←R(c1)

10: Send c1, c2 to O
11: Get b′ from O

Game 0 Simulate Experiment 1. See Algorithm 1 for the detailed procedure. Let E0

be the event that b = b′ in Game 0.

Game 1 Stop the game if the opponent queries either u1 or u2 (guessed the correct key).
H outputs b′

r←− {0, 1}. We denote this event by F1.
Let E1 be the event that b = b′ in Game 1. Unless event F1 occurs Game 1 behaves

just like Game 0. Thus E0 ∧ ¬F1 ⇐⇒ E1 ∧ ¬F1 and by the difference lemma we have

|Pr[E0]− Pr[E1]| ≤ Pr[F1].

Game 2 Draw k1, k2
r←− Z∗p and stop querying the oracle. (The opponent can still query

the oracle, hence we need to draw samples from D to check if the opponent is guessing
the correct key(s).)

Let E2 be the event that b = b′ in Game 2. The output of H is indistinguishable from
uniform samples of Z∗p, hence, Pr[E1] = Pr[E2].

Game 3 For uniform s, s′
r←− Z∗p and keys k1, k2 precompute

(x, y, z, w) = (g, gk1 , gs, gk1s), and (x′, y′, z′, w′) = (g, gk2 , gs
′
, gk2s

′
)

before receiving message m1 and m2.
Let E3 be the event that b = b′ in Game 3. After encrypting both messages, or encrypt-

ing one and rerandomizing it, we get that the output of the encryption, and rerandomize,
algorithms are exactly the same in Game 2 and Game 3. Thus, Pr[E2] = Pr[E3].

Game 4 Let (x, y, z, w) = (g, gk1 , gs, gk1s) be the first tuple and

(x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab) = (g, ga+ck1 , gb+s, g(a+ck1)(b+s))

be the second, for some a, b, c
r←− Z∗p.

Let E4 be the event that b = b′ in Game 4. Since the tuples of Game 4 results in the
same output space as the tuples of Game 3 we get that Pr[E3] = Pr[E4].

Game 5 The output of the rerandomize algorithm is on the form

(grr
′
, gk1rr

′
, gs+rs

′
, gk1(s+rs′)m)

for some r, r′, s and s′, where s+ rs′ 6= s since none of the variables used in the algorithm
can be zero. This gives us a statistical difference of 1/p between the output distributions.

9

Algorithm 2 Input: (x, y, z, w)

1: u1, u2
r←− D, b

r←− {0, 1}
2: a, b, c

r←− Z∗p
3: (x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
4: Get m1,m2 from O
5: if b = 0 then
6: r, r′

r←− Z∗p
7: c1 ← (xr, yr, z, wm1)

8: c2 ← (x′ r
′
, y′ r

′
, z′, w′m2)

9: Send c1, c2 to O
10: if b = 1 then
11: r, r′, s′, s̃

r←− Z∗p
12: c1 ← (xr, yr, z, wm1)

13: c2 ← (xrr
′
, yrr

′
, zxrs

′+s̃, wyrs
′+s̃m1)

14: Send c1, c2 to O
15: Get b′ from O

Change the rerandomization algorithm such that the second ciphertext (in case b = 1) is
computed as

(grr
′
, gk1rr

′
, gs+rs

′+s̃, gk1(s+rs′+s̃)m1),

where s̃
r←− Z∗p. The new sum s+ rs′ + s̃ can be any value in Z∗p and all values are equally

probable.
Let F5 be the event that s+ rs′+ s̃ = s and let E5 be the event that b = b′ in Game 5.

Unless F5 occurs, Game 4 and Game 5 behaves the same, that is, E4∧¬F5 ⇐⇒ E5∧¬F5

and by the difference lemma we get that

|Pr[E4]− Pr[E5]| ≤ Pr[F5] =
1

p
.

Game 6 Change the first tuple into the form (g, ga
′
, gb
′
, gc
′
), for uniform elements

a′, b′, c′ ∈ Z∗p. The second tuple will then look like

(g, ga+a′c, gb+b
′
, gab+ab

′+a′bc+cc′).

Let E6 be the event that b = b′ in Game 6. Since we are using uniform elements in
the tuples the encryption and rerandomization algorithms are, essentially, one-time pads.
Hence, Pr[E6] = 1/2.

We claim that |Pr[E5] − Pr[E6]| = Advind-cpa
ddh , where we will use Algorithm 2. The

input of the algorithm is a tuple (g, ga, gb, gc), for some a, b, and c, where c can be equal
to ab. The algorithm simulates Game 5 if the input is on the form (g, ga, gb, gab) and

Pr[A2(g, ga, gb, gab) = 1 | a, b r←− Z∗p] = Pr[E5].

If the input is on the form (g, ga, gb, gc) the algorithm proceed as in Game 6 and

Pr[A2(g, ga, gb, gc) = 1 | a, b, c r←− Z∗p] = Pr[E6],

where the DDH-advantage of Algorithm 2 is equal to |Pr[E5]− Pr[E6]|.

10

Summary From the games we bound the advantage of the opponent O.

Adv(O) = |Pr[E0]− 1/2|
= |Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + Pr[E2]− Pr[E3] + Pr[E3]

− Pr[E4] + Pr[E4]− Pr[E5] + Pr[E5]− Pr[E6] + Pr[E6]− 1/2|
≤ |Pr[E0]− Pr[E1]|+ |Pr[E4]− Pr[E5]|+ |Pr[E5]− Pr[E6]|

≤ Pr[F1] +
1

p
+ Advind-cpa

ddh (O).

By the DDH assumption the DDH advantage is negligible and, for large enough p, we get
that the advantage of our opponent is determined by the probability that O guesses or
predicts the correct key, that is, determined by the probability space D.

2.4 Extended scheme

In the extended scheme we represent messages as bit strings to allow longer messages to
be encrypted. This change reduces the number of rerandomizations we can perform on a
ciphertext and we need to relax the requirements of the cryptosystem.

Correctness If c was produced by iteratively applying R to the output of E(k,m) at
most n times, then D(k, c) will never output ⊥ and output m except with negligible
probability.

We use a pseudorandom function f : G → {0, 1}N mapping group elements to bit
strings of length N , for some large N ∈ N. We let fL denote the truncation of the output
to L bits, for L < N . We assume that group elements can be encoded as bit strings of
length at most l/2. The construction in this section is very similar to the hybrid scheme
by Golle et al [8].

Encryption For a message m ∈ {0, 1}L and a key k ∈ Z∗p, let r, s
r←− Z∗p, γ

r←− G and
output

c = gr||gkr||gs||gksγ||
(
fL+l(n+1)+1(γ)⊕ (m||1||0l(n+1))

)
.

Decryption For a ciphertext c = x||y||b′0 and a key k ∈ Z∗p check if xk = y. If not output
⊥. If it is let b′0 = z0||w0||b0 and compute

b′1 = f|b0|(z
−k
0 w0)⊕ b0.

If the result b′1 ends in l′ ≥ l zeros then the message is the result minus the tail of zeros
and exactly one 1. Otherwise interpret b′1 as z1||w1||b1 and repeat the procedure. If
this procedure is repeated n+ 1 times output ⊥.

Rerandomization For a ciphertext c = x||y||bm||bl, where bl is the last l bits. Let
r′, s′

r←− Z∗p, γ′
r←− G, and output

c′ = xr
′ ||yr′ ||xs′ ||ys′γ′||

(
f|bm|(γ

′)⊕ bm
)
.

11

Correctness Before applying the rerandomize algorithm, bm looks like

gs||gksγ||
(
fL+ln+1(γ)⊕ (m||1||0ln)

)
for s ∈ Z∗p, key k, and γ ∈ G. The l last bits we discard, bl, is an “encryption” of l
zeros. We can therefore only perform n rerandomizations on a ciphertext before we get
decryption failure, that is, there are no tail of zeros left for the decryption algorithm to
detect.

If c = x||y||b′0 was output from the encryption algorithm, we have that xk = gkr = y.
Hence, we can write b′0 as z||w||b0, and compute

f|b0|(z
−kw)⊕ b0 = fL+l(n+1)+1(g−ksgksγ)⊕ fL+l(n+1)+1(γ)⊕ (m||1||0l(n+1))

= (m||1||0l(n+1)).

The result ends with a tail of l′ ≥ l zeros and the output message is m.
Let c be a ciphertext that was produced by iteratively applying the rerandomize al-

gorithm to the output of E(k,m) t times, where 1 ≤ t ≤ n. Write c as x||y||b′t, where
x = gr1···rt+1 , y = gk(r1···rt+1), and b′t looks like

(gr1···rt)s
′ ||(gk(r1···rt))s

′
γt||
(
fL+l(n+1−t)+1(γt)⊕ b′t−1

)
for s′, r1, . . . , rt+1 ∈ Z∗p, key k, and group element γt ∈ G. Observe that for all 1 ≤ t ≤ n

we have that xk = y. Thus we can write b′t = zt||wt||bt and compute

f|bt|(z
−k
t wt)⊕ bt = fL+l(n+1−t)+1(g−ks

′(r1···rt)gks
′(r1···rt)γt)⊕ fL+l(n+1−t)+1(γt)⊕ b′t−1

= b′t−1

where b′t−1 does not end with a tail of l′ ≥ l zeros (except with negligible probability), since
the ciphertext is also encrypted once using with the encryption algorithm (in addition to
the t rerandomizations). Let b′t−1 = zt−1||wt−1||bt−1 and repeat the process t more times.
In the last iteration we perform the decryption on the bit string z0||w0||b0, where b0 looks
like

fL+l(n+1−t)+1(γ0)⊕ (m||1||0l(n+1−t)).

We know this decrypts to the message m and the decryption algorithm is correct.

2.5 Security of the extended scheme

Similar to the security proof of the basic scheme, we show that the opponent is unable to
distinguish between encrypted ciphertexts and that his advantage is determined by D the
probability of guessing the correct key. As in the proof of the basic scheme, we use games
to simulate Experiment 1.

Game 0 Simulate Experiment 1. The full procedure can be seen in Algorithm 1. Let
E0 be the event that b = b′ in Game 0.

Game 1 Similar to the basic Game 1, where we get |Pr[E0]− Pr[E1]| ≤ Pr[F1].

Game 2 Similar to the basic Game 2, where we get Pr[E1] = Pr[E2].

Game 3 Similar to the basic Game 3, where we get Pr[E2] = Pr[E3].

12

Algorithm 3 Input: (x, y, z, w)

1: u1, u2
r←− D, b

r←− {0, 1}
2: a, b, c

r←− Z∗p
3: (x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
4: Get m1,m2 from O
5: if b = 0 then
6: r, r′γ, γ′

r←− Z∗p
7: c1 ← xr||yr||z||wγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
8: c2 ← x′ r

′ ||y′ r′ ||z′||w′γ′||
(
fL+l(n+1)+1(γ′)⊕ (m2||1||0l(n+1))

)
9: Send c1, c2 to O

10: if b = 1 then
11: r, r′s′, γ, γ′

r←− Z∗p
12: c1 ← xr||yr||z||wγ||

(
fL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
13: Let c1 = xr||yr||bm||bl, where bl is the last l bits

14: c2 ← xrr
′ ||yrr′ ||xrs′ ||yrs′γ′||

(
f|bm|(γ

′)⊕ bm
)

15: Send c1, c2 to O
16: Get b′ from O

Game 4 Similar to the basic Game 4, where we get Pr[E3] = Pr[E4].

Game 5 Similar to the basic Game 6, except we use Algorithm 3 instead. We get that
|Pr[E4]− Pr[E5]| = Advind-cpa

ddh .

Game 6 Sample a function h from a family Γ of all functions from G to {0, 1}N instead
of using the function f . We denote hL as the truncation of the output of h to L bits. The
pseudorandom function (PRF) advantage is defined to the opponent’s ability to distin-
guishing f from any function h sampled from Γ. The PRF-advantage is negligible if f is
pseudorandom.

Let E6 be the event b = b′ in Game 6. We use an arbitrary function h, with a random
group element γ, to encrypt the messagem, hence, the output ciphertexts of the encryption
and rerandomization algorithms can be any random bit string. Thus Pr[E6] = 1/2.

We claim that |Pr[E5]−Pr[E6]| is equal to the PRF-advantage, where we use Algorithm
4. The algorithm draws a function h from the family Γ, which may be equal to f . The
PRF-advantage is∣∣Pr[A4(x, y, z, w) = 1 | f ← Γ]− Pr[A4(x, y, z, w) = 1 | h← Γ]

∣∣
which is equal to |Pr[E5]− Pr[E6]|.

Summary From the games we bound the advantage of the opponent O.

Adv(O) = |Pr[E0]− 1/2|
= |Pr[E0]− Pr[E1] + Pr[E1]− Pr[E2] + Pr[E2]− Pr[E3] + Pr[E3]

− Pr[E4] + Pr[E4]− Pr[E5] + Pr[E5]− Pr[E6] + Pr[E6]− 1/2|
≤ |Pr[E0]− Pr[E1]|+ |Pr[E4]− Pr[E5]|+ |Pr[E5]− Pr[E6]|

≤ Pr[F1] + Advind-cpa
ddh (O) + Advprf(O).

Assuming f is pseudorandom the PRF advantage is negligible and by the DDH assumption
the DDH-advantage is negligible. Therefore, the advantage of the opponent is determined
by the probability that the opponent guesses or predicts the correct key, that is, determined
by the probability space D.

13

Algorithm 4 Input: (x, y, z, w)

1: u1, u2
r←− D, b

r←− {0, 1}, h← Γ

2: a, b, c
r←− Z∗p

3: (x′, y′, z′, w′) = (x, xayc, zxb, wczaycbxab)
4: Get m1,m2 from O
5: if b = 0 then
6: r, r′, γ, γ′

r←− Z∗p
7: c1 ← xr||yr||z||wγ||

(
hL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
8: c2 ← x′ r

′ ||y′ r′ ||z′||w′γ′||
(
hL+l(n+1)+1(γ′)⊕ (m2||1||0l(n+1))

)
9: Send c1, c2 to O

10: if b = 1 then
11: r, r′, s′, γ, γ′

r←− Z∗p
12: c1 ← xr||yr||z||wγ||

(
hL+l(n+1)+1(γ)⊕ (m1||1||0l(n+1))

)
13: Let c1 = xr||yr||bm||bl, where bl is the last l bits

14: c2 ← xrr
′ ||yrr′ ||xrs′ ||yrs′γ′||

(
h|bm|(γ

′)⊕ bm
)

15: Send c1, c2 to O
16: Get b′ from O

2.6 Path scheme

The path variation scheme encrypts malware under several keys and encrypted malware
will be correctly decrypted if it travels on the correct path in the network toward the
target. If a malware sample infects a node not in the path then it can no longer be
correctly decrypt, except with negligible probability.

The scheme uses several encryption keys, where each key is generated from environ-
mental data gathered from a node in the path. The malware author selects the path and,
hence, needs some environmental information about each nodes in the path to generate
the encryption keys.

When encrypted malware infects a node the loader samples local environmental data
to generate a set of keys and a default key, checks if one of the non-default keys can be
used for decryption, if not then it will use the default key in the decryption algorithm. If
the node is in the correct path a key will be removed from the encrypted malware. If it is
not in the correct path then the attempted decryption introduces a new random value to
the ciphertext, which will not be removed on any subsequent node except for a negligible
probability.

Malware payload will be encrypted using a set of keys kt, . . . , k2, k1, where kt, . . . , k2

are default keys associated to a node in the path and k1 is a specific key associated to the
target node, see Figure 4.

2.6.1 Based on the basic scheme

Creating a path variant of the basic scheme is straight forward. We use the same algorithms
except for the following. The encryption algorithm encrypts the malware under the sum
of the keys, instead of a single key, and the decryption algorithm will always try to decrypt
using a key. The algorithms are as follows.

Encryption For a message m ∈ G and keys k1, k2, . . . , kt ∈ Z∗p, let r, s
r←− Z∗p and output

c = (x, y, z, w) = (gr, gr(k1+k2+···+kt), gs, gs(k1+k2+···+kt)m).

Decryption For a ciphertext c = (x, y, z, w) check if any of the non-default keys k̂ satisfies

xk̂ = y, if so let k = k̂ if not let k be the default key. Output

c′ = (x, y′, z, w′) = (x, x−ky, z, z−kw).

14

Algorithm 5 Extended path variation attack process.
1: compute ct ← E((k1, . . . , kt),m)
2: for i = 1, . . . , n do
3: compute c′t ← P(ct) and use it to infect a nodes in the network . must infect a path node

4: while a node is infected with malware payload c′i do . performed on all infected node
5: compute ci ← D(k, c′i)
6: if result is executable then
7: run malware
8: else
9: compute c′i−1 ← P(ci) and use it to infect a new node

Rerandomize For a ciphertext c = (x, y, z, w), let r′, s′
r←− Z∗p and output

c′ = (x′, y′, z′, w′) = (xr
′
, yr

′
, zxs

′
, wys

′
).

2.6.2 Based on the extended scheme

The path variant of the extended scheme utilize an onion type encryption [3], where each
onion layer is encrypted under one of the keys. This is because we need to completely
remove a key from the ciphertext when we use it in a decryption. However, the rerandomize
algorithm hides keys inside the ciphertext using a PRF and locks it using a group element,
hence, if we encrypt each layer using one key we can remove a layer by only using a key.

Since we encrypt in layers we need a padding algorithm, P, to pad the ciphertexts
such they have the same default length, denoted LD. The scheme pads the ciphertext
after an encryption or a decryption. Note that the encryption algorithm no longer add
any zeros when encrypting. The padding algorithm also rerandomize the ciphertexts,
hence, it replaces the rerandomize algorithm.

Padding For a ciphertext c, encrypting a message m, the padding algorithm P(c) outputs
a ciphertext c′, encrypting the same message m, with a defined length.

See Algorithm 5 for the malware algorithm, which is specific for the extended path
variation. Note that the decryption algorithm will be correct only if the malware attack
process is preformed as showed in the algorithm. Thus we need a specific correctness
requirement for the path version of the extended scheme. We also need a requirement for
the padding algorithm, since it replaces the rerandomization algorithm.

Correctness If c′i was output from P(E(ki, ci−1)) or P(D(ki+1, ci+1)) then D(ki, c
′
i) will

always output ci−1 except with negligible probability.

Padding If c was output by E(k,m) then the output distribution of P(c) should be
computationally indistinguishable from the output distribution of E(k,m).

The algorithms of the extended path scheme are as follows.

Encryption For a message m ∈ {0, 1}L, keys k1, k2, . . . , kt ∈ Z∗p, {ri, si}ti=1
r←− Z∗p, and

{γi}ti=1
r←− G. Encrypt the message in layers where

c1 = gr1 ||gr1k1 ||gs1 ||gs1k1γ1|| (fL(γ1)⊕m)

and
ci = gri ||griki ||gsi ||gsikiγi||

(
fL+2(i−1)l(γi)⊕ ci−1

)
for i ∈ {2, . . . , t}. Pad ct such that it has default length LD.

15

Padding For a ciphertext c. If | c | = LD let c = x||y||bm||bl, where bl is the last l bits,
otherwise let c = x||y||bm.

P(c) = xr
′ ||yr′ ||xs′ ||ys′γ′||

(
f|bm|+N+1(γ′)⊕ (bm||1||0N

)
.

where N = LD − |bm| − 2l − 1.2

Decryption For a ciphertext c = x0||y0||b′0 check if any of the non-default keys k̂ satisfies

xk̂0 = y0, if so let k = k̂ if not let k be the default key. Let b′0 = z0||w0||b0 and
compute

b′1 = f|b0|(z
−k
0 w0)⊕ b0,

interpret b′1 as z1||w1||b1||1||0N
′
, where N ′ ∈ N.3 Compute

b′2 = f|b1|(z
−k
1 w1)⊕ b1

and check if b′2 is an executable malware. If it is then the attack was successful, if
not pad b′2.

2.7 Security of the path scheme

2.7.1 Based on the basic scheme

The proof is as the basic proof, given in Section 2.3, except that:

– the probability space D is replaced with D1 × · · · ×Dt,

– use vectors of samples u1 and u2 instead of u1 and u2, and

– use vectors of keys k1 and k2 instead of k1 and k2.

The opponent’s advantage is bounded by

Adv(O) ≤ Pr[F1] +
1

p
+ Advind-cpa

ddh (O).

That is, the advantage is bounded by the opponent’s ability to guess or predict the correct
keys and is determined by the probability space D1 × · · · ×Dt.

2.7.2 Based on the extended scheme

The proof is as the extended proof, given in Section 2.5, except that:

– replace the rerandomize algorithm with the padding algorithm in Experiment 1,

– the probability space D is replaced with D1 × · · · ×Dt,

– use vectors of samples u1 and u2 instead of u1 and u2,

– use vectors of keys k1 and k2 instead of k1 and k2,

– precompute 2t tuples of the form

{(xj , yj , zj , wj)}tj=1 =
{(
g, gk1,j , gsj , gsjk1,j

)}t
j=1

and {(
x′j , y

′
j , z
′
j , w

′
j

)}t
j=1

=
{(
g, gk2,j , gs

′
j , gs

′
jk2,j

)}t
j=1

instead of precomputing two tuples, and

2N is a multiple of l.
3N ′ will be a multiple of l zeros if the correct key is used in the decryption algorithm.

16

– from the first tuple, (x, y, z, w), create an additional 2t− 1 tuples, instead of one, by
uniformly sample {aj , bj , cj}2t−1

j=1 and compute{(
x, xajycj , zxbj , wcjzajycjbjxajbj

)}2t−1

j=1
.

The opponent’s advantage is bounded by

Adv(O) ≤ Pr[F1] + Advind-cpa
ddh (O) + Advprf(O).

That is, the advantage is bounded by the opponent’s ability to guess or predict the correct
keys and is determined by the probability space D1 × · · · ×Dt.

Acknowledgments

We would like to thank Adam Young for helpful discussions and comments. We would
also like to thank the anonymous reviewers for helpful comments.

References

[1] Dan Boneh. Algorithmic Number Theory: Third International Symposiun, ANTS-III
Portland, Oregon, USA, June 21–25, 1998 Proceedings, chapter The Decision Diffie-
Hellman problem, pages 48–63. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[2] Ran Canetti, Hugo Krawczyk, and Jesper Nielsen. Relaxing chosen-ciphertext secu-
rity. Cryptology ePrint Archive, Report 2003/174, 2003. http://eprint.iacr.org/.

[3] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th Conference on USENIX Security Symposium
- Volume 13, SSYM’04, pages 21–21, Berkeley, CA, USA, 2004. USENIX Association.

[4] Eric Filiol. Strong Cryptography Armoured Computer Viruses Forbidding Code Anal-
ysis: the bradley virus. Research Report RR-5250, INRIA, 2004.

[5] Eric Filiol. Malicious cryptography techniques for unreversable (malicious or not)
binaries. CoRR, abs/1009.4000, 2010.

[6] Ariel Futoransky, Emiliano Kargieman, Carlos Sarraute, and Ariel Waissbein. Foun-
dations and applications for secure triggers. Cryptology ePrint Archive, Report
2005/284, 2005. http://eprint.iacr.org/.

[7] Herman Galteland and Kristian Gjøsteen. Malware, Encryption, and Rerandomiza-
tion – Everything Is Under Attack, pages 233–251. Springer International Publishing,
Cham, 2017.

[8] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal Re-
encryption for Mixnets, pages 163–178. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004.

[9] Fritz Hohl. Time limited blackbox security: Protecting mobile agents from malicious
hosts, 1998.

17

[10] Kaspersky Lab Global Research and Analysis Team. Gauss: Abnormal distribu-
tion. In-depth research analysis report, KasperSky Lab, August 9th 2012. se-
curelist.com/en/analysis/204792238/gauss abnormal distribution.

[11] James Riordan and Bruce Schneier. Environmental key generation towards clueless
agents. In Giovanni Vigna, editor, Mobile Agents and Security, volume 1419 of Lecture
Notes in Computer Science, pages 15–24. Springer Berlin Heidelberg, 1998.

[12] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004.

[13] Ed Skoudis and Lenny Zeltser. Malware: Fighting Malicious Code. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2003.

[14] Adam Young and Moti Yung. Cryptovirology: extortion-based security threats and
countermeasures. In Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium
on, pages 129–140, May 1996.

[15] Adam Young and Moti Yung. Malicious Cryptography: Exposing Cryptovirology. John
Wiley & Sons, 2004.

[16] Adam Young and Moti Yung. The drunk motorcyclist protocol for anonymous com-
munication. In Communications and Network Security (CNS), 2014 IEEE Conference
on, pages 157–165, Oct 2014.

18

	Introduction
	Real world examples
	Malware propagation
	Setup
	Encrypting the malware payload
	Rerandomize the encrypted payload
	Path variation
	Limitations
	Potential threat

	Related work
	Overview

	Rerandomizable malware encryption schemes
	Preliminary
	Basic scheme
	Security of the basic scheme
	Extended scheme
	Security of the extended scheme
	Path scheme
	Based on the basic scheme
	Based on the extended scheme

	Security of the path scheme
	Based on the basic scheme
	Based on the extended scheme

