
A New Digital Rights Management Solution
Based on White-Box Cryptography

Jun Liu1 and Yupu Hu2 ?,??

Xidian University, Xi’an, China
Email:junl1212@163.com

Abstract. Digital rights management is an important technique to pro-
tect digital contents from abuse. Usually it is confronted with severe
challenges because of the untrusted environment its application execut-
ed in. This condition is formally described as white-box attack model.
White-box cryptography aims at protecting software implementation of
cryptographic algorithms from white-box attack, hence can be employed
to provide security guarantee for digital rights management. Key ex-
traction, code lifting, and illegal distribution are three major threats in
digital rights management application, they extremely compromise the
benefit of content producer. In this paper, we propose the first solution
based on white-box cryptography against the three threats above simul-
taneously, by implementing traceability of a white-box scheme which
has unbreakability and incompressibility. Specifically, We constructively
confirm there exists secure white-box compiler which can generate trace-
able white-box programs, by hiding slight perturbations in the lookup-
table based white-box implementation. Security and performance analy-
ses show our solution can be effectively achieved in practice.

1 Introduction

Since the arrival of the digital age, the carrier of audio-visual contents has grad-
ually changed from physical to digital. Although it is more flexible to produce,
distribute, and store digital contents, the task of protecting them becomes more
tedious. In order to make the rules how digital contents are being managed, a
collective set of methods and techniques should be employed, which are referred
as digital rights management (DRM) [1]. During decades of development, many
standardized DRM solutions and commercial products have came forth. Pub-
lished specifications include OMA DRM2.1 (Open Mobile Alliance) [2], Marlin
(Marlin developer Community) [3], and GY/T 277-2014 (ChinaDRM) [4]. Clas-
sic DRM systems include Apple FairPlay system and Microsoft Windows Media
DRM system.

? Jun Liu and Yupu Hu are with State Key Laboratory of Integrated Service Networks
Lab of Xidian University.

?? This work is supported by the National Natural Science Foundations of Chi-
na (61472309, 61672412), National Key R&D Program of China under Grants
No.2017YFB0802002.

It is essential to use cryptography in DRM systems to protect contents and
restraint participants′ actions, especially restrict consumption of valuable con-
tents. In a typical DRM scenario, content owner provides encrypted contents and
hands it out over public network. While only paying subscribers, or legitimate
users, can decrypt and access the original contents. The decryption routine to-
gether with content decryption key is embedded in the client DRM application
(hardware or software based platform).

At the side of the consumer, the main problem is that client DRM appli-
cation is executed in an untrusted (probably malicious) open platform, so it is
vulnerable to malware, trojan, and spyware. The most usual threat is content
decryption key extraction, because that makes it possible to decrypt the pro-
tected content without restriction. A second threat is extraction of the whole
decryption function from the DRM application, which is denoted as code lift-
ing [6,12]. A successful code lifting attack gives an adversary the same advantage
as key extraction does, since the decryption routine and the corresponding de-
cryption key are together included in DRM application. Once an attacker isolate
and extract the intact decryption code, he can use it in a stand-alone manner,
circumventing authentication and rights verification. Another problem is illegal
distribution of the client decryption software from legitimate consumers to u-
nauthorized users [6], this makes it possible for an illegal (unregistered) user to
decrypt the contents. Such malicious legitimate consumers are called traitors.

1.1 Related Work

To solve above problems, white-box cryptography is a good choice [7]. In fact,
DRM is the most common application of white-box cryptography. In 2002, Chow
/et al/. first introduced the conception of white-box cryptography and proposed
a white-box implementation of AES [19]. Soon they proposed a white-box imple-
mentation of DES [8]. These two seminal work started the research on white-box
cryptography.

There are many solutions addressing above threats separately by using white-
box cryptography, but to our knowledge, there are no solutions addressing them
simultaneously. Key extraction and code lifting are often discussed together, s-
ince individual key extraction security is meaningless [18]. The initial design in
[chowAES] adopted lookup-table based implementation to protect the key. The
main idea is to combine key-dependent parts into a series of tables, then encode
these tables with random bijections. By this way the key is hided in large-scale
lookup-tables, and the mapping which represents the key was obfuscated due to
random bijections. Finally, /external encoding/ was introduced to prevent code
lifting. Concretely, secret input and output encoding (decoding) were added to
the original cipher, then the lookup-table based implementation of the encoded
variant made code lifting attack useless. Because the decryption routine indeed
implemented the functionality of the encoded cipher rather than the original
cipher. The secret encoding can only be canceled out when executing authenti-
cation code. Although external encoding is useful to avoid code lifting attack,
such solution affects interoperability of DRM platform, hence is undesirable. This

pioneer scheme was broken by Billet /et al/. [BGE attack], and many succedent
variants based on it were proposed and broken one after another.

In a recent line of research which aims to study dedicated white-box secure
block cipher, some promising schemes began to appear. In 2014, Biryukov /et
al./ proposed an ASASA based block cipher [9]. Key extraction security was
reduced to the decomposition problem of ASASA. Besides, a new conception
of /weak white-box security/ was introduced to quantitatively estimate the se-
curity against code lifting by code size. The more the amount of data that an
adversary need to extract from the white-box implementation, the more difficult
code lifting attack is. One year later this scheme was broken by Minaud /et
al./ [10] and Gilbert /et al./ [11]. In 2015, Bogdanov and Isobe [12] proposed a
family of white-box secure block cipher SPACE based on Feistel network. Key
extraction security relied on key recovery of AES in black-box setting. The d-
ifficulty of code lifting was evaluated by /space hardness/, including weak and
strong (M,Z)-space hardness. This new conception was indeed a more formal-
ized description of the weak white-box security. In 2016, Bogdanov /et al./ [13]
optimized efficiency of space hard block cipher, proposed a new family of block
cipher SPNbox based on SPN(substitution-permutation network). This scheme
adopted the same principle against key extraction and code lifting as [12]. In
the same year, Fouque /et al./ [14] proposed a Feistel-type construction named
WhiteBlock, which offers provable security guarantee against code lifting. The
main concern was about incompressibility model, which is similar with space
hardness security model. Aforementioned schemes in [12–14] remain unbroken,
but they displayed different efficiency.

With regard to illegal distribution, the topic of /traitor tracing/ [?] can
provide useful solution. Many traitor tracing schemes were designed, while few
of them can be used in white-box cryptography. The first white-box instance
with traceability capability based on Isomorphisms of Polynomials problem (IP
problem) was briefly mentioned by Billet and Gilbert [?]. Later IP problem was
broken by Faugère and Perret [?]. Delerablée /et al./ [18] provided a new idea
to implement traceability of white-box programs, while no formal analysis was
presented and its feasibility was based on some assumptions.

1.2 Our Contributions

In this paper, we first consider a more complicated scenario of DRM where the
three threats of key extraction, code lifting, and illegal distribution are involved
simultaneously. We present a solution based on white-box cryptography, which
is quite useful to provide security in practice. First of all, we investigate several
advanced white-box constructions and choose an efficient white-box block cipher
instance as the underlying symmetric key encryption scheme. Then we make its
white-box implementation traceable by adding some perturbations. Most impor-
tantly of all, we demonstrate that there does exist white-box compiler which can
generate traceable white-box programs. Specifically, we first construct a white-
box compiler which can add perturbations to a white-box program, next we show
such perturbations dose not influence the functionality of the original white-box

Input Output Input Output

(a) (b)

Fig. 1. Attack model. (a) black-box attack model. (b) white-box attack model.

programs. Then we prove the perturbative white-box programs can be made
traceable by proving the security of our construction of white-box compiler.
Based on the above works, the security and performance of our DRM solution
is guaranteed, which means our proposal can be veritable efficiently achieved in
practice.

1.3 Structure of This Paper

This paper is organized as follow. In Section 2, we abstractly represent the cryp-
tographic model in DRM application, including the environment under which
cryptographic algorithms are executing, adversary model, and security require-
ments. In Section 3, we describe the proposed DRM solution. In Section 4,
we elaborate on the implementation details of our solution, including choos-
ing appropriate symmetric primitive, generating traceable white-box decryption
programs, designing tracing scheme. In Section 5, we analyze the security of
our solution and give a simple discussion about performance. In section 6, we
conclude the paper and put forward some future works.

2 Problem Formation

2.1 DRM Threat Model: White-Box Attack Model

In a DRM scenario, cryptographic algorithms are executed in an untrusted en-
vironment. This situation is quite different from the standard cryptographic
model, denoted as black-box attack model (see Fig.1(a)), which assumes that
the adversary can just observe input-output. DRM threat model is more aligned
with white-box attack model (see Fig.1(b)), which is defined in Definition 1.

Definition 1. (white-box attack model, [19]) A white-box attack model as-
sumes cryptographic algorithms are executed in untrusted context where:

– fully privileged attack software shares a host with cryptographic software,
having complete access to the implementation of algorithms;

– dynamic execution (with instantiated cryptographic keys) can be observed;
– internal algorithm details are completely visible and alterable at will.

We replace white-box attack model by WBAM for short hereafter. White-box
cryptography and white-box implementation are two fundamental conceptions
for WBAM. The former refers to secure cryptographic schemes under WBAM,
the latter represents the implementation of cryptographic primitives under W-
BAM.

2.2 DRM Attacker: White-Box Attacker

An attacker in WBAM is called white-box attacker. On the one hand, he can
launch static analysis with the help of disassemblers, for instance, IDAPro. On
the other hand, he can dynamically analyze the code with the help of debuggers,
for instance, OllyDbg. Besides, he can search keys in memory, or derive keys by
inserting break-points and whitening subkeys. All in all, compared with black-
box attacker who can only get some input-output values, white-box attacker is
more matching with the practical situation, hence is more challenging to prevent.
Here in DRM, we say a user, whether legal or illegal, is a such white-box attacker.

2.3 DRM Security Requirements: White-Box Security

In light of the above, the security requirements in DRM are as follows:

– Key extraction security: It should be hard to derive the key from the
decryption white-box implementation in client DRM software. This security
notion was also formalized as unbreakability [dlpr13].

– Code Lifting Security: To mitigate code lifting, the decryption white-
box implementation should provide space-hard property. In other word, it
should be infeasible for the attacker to get an equivalent but more compact
implementation. Generally, code lifting security is closely related to incom-
pressibility of the decryption implementation [2016yami provable].

– Traceability: The decryption implementation should be different for each
legitimate user so that it can identify and track the traitor when a legitimate
user leak his own decryption software.

3 DRM Solution Based on White-Box Cryptography

3.1 Notations and Preliminaries

The main notations used in this paper are listed in Table 1. Symmetric encryp-
tion schemes and their implementations are mainly involved.

Definition 2. (Symmetric Key Encryption) A Symmetric Key Encryption
scheme εsym is defined as a triple εsym = (G,E,D) where G : K → K is the
key generation algorithm, E : M × K → C is the encryption algorithm, and
D : C × K → M is the decryption algorithm. For a given key k ∈ K and
amessagem ∈ M, E(m, k) = c implies D(c, k) = m. K,M, C are key space,
plaintext space, ciphertext space respectively. Symmetric means the same k is
used in both E and D.

Table 1. Notations

notation description

CP Content Producer

CI Content Issuer

LI License Issuer

RO Rights Object

εsym Symmetric Key Encryption

K Content Key

AES Advanced Encryption Standard

DES Data Encryption Standard

KDF Key Derivation Function

PRP Pseudo Random Permutation

Cε White-Box Compiler

White-box implementation is an obfuscated program of a key-customized
instance of the cipher. We use E∗k to denote the white-box implementation of
a encryption algorithm E(·, k), such that for a given message m ∈ M, the
encryption of m by E∗k equals to the encryption of m by E(·, k), i.e. E∗k(m) =
E(m, k). Similarly, D∗k denotes white-box implementation of D(·, k) such that
for a given c ∈ C, D∗k(c) = D(c, k). Generally, E∗k includes a large table T derived
from k. We say T is an effective large key of k, in other words, k is hiding in
T . When executing E∗k , k is not an input argument, but k should be input to a
white-box compiler to get E∗k .

Definition 3. (White-Box Compiler) A white-box compiler CE for an en-
cryption scheme1 E is defined as a publicly known compiling function that takes a
key k ∈ K as input and outputs E∗k , namely, E∗k = CE(k). Generally, a white-box
compiler works as first generating a big lookup table T that hides k, then obfus-
cating the input-output of T while maintaining its function. Finally, a white-box
implementation including T is produced.

3.2 Solution Model

We adopt a simple DRM architecture [20] based on distributed techniques and
mobile code to interpret our solution, the DRM model is illustrated in Fig.2. For
ease of explanation, we omit cockamamie procedures and mainly describe some
cryptographic procedures here. Let ε = (G,E,D) is a symmetric encryption
scheme.
1. At the side of the producer, CP first chooses a unique content key KCEK for
a content, then generates round keys set K by the key generation algorithm G
, then encrypts the content message m by black-box encryption E(·,K):

c = E(m,K) (1)

1 Without loss of generality, we can also define a white-box compiler CD for a decryp-
tion algorithm D. In this paper, we will continuously use CD due to the scenario.

Content Issuer

Content Producer

Consumer

License Issuer

Devices Domain

(untrusted)

Protected Contents

Usage Rules

Decryption Program

Right Objects

Black-box Encryption

White-box Decryption

Fig. 2. A simple DRM architecture based on white-box cryptography.

2. CP generates the corresponding decryption program D∗K by the white-box
compiler CD:

D∗K = CD(K) (2)

3. CP submits c to CI, simultaneously submits mobile code of D∗K and usage
rules of m to LI.
4. When there is a request for m from a consumer, CI will distribute c to him.
5. LI will generate RO including mobile code of D∗K and corresponding usage
rules of m, and then distribute it to the consumer.
6. At the side of the consumer, D∗K will be loaded into the consumer′s device by
DRM agent, then c will be decrypted by white-box decryption:

m = D∗K(c) (3)

Finally, the original content (video, music, or others) will be presented in clear
in the consumer′s device.

4 Our Techniques: Implementation Details

The solution model in Section 3.2 is quite simple and general, while the imple-
mentation details of the encryption algorithm, decryption algorithm as well as
the white-box compiler are different, which are key points in the security of the
whole model. In this Section we show how to implement the algorithms such
that the above model resist the threats we aim to address.

4.1 Symmetric Primitive

First we need to choose an appropriate symmetric key encryption scheme. S-
ince there are no secure white-box implementations of standard cryptographic

algorithms such as AES and DES, some dedicated white-box block ciphers were
proposed in recent three years. We investigate three state-of-the-art structures
which are unbroken, they are SPACE and its variants [15CCS], SPNbox and
its variants [16yami], and WhiteBlock and its variants [16yami2]. Table 2 shows
some properties of them. All of them have the same block length λ = 128 bits
and the same key length l = 128 bits except SPNbox-24, which has the block
length λ = 120 bits.

Table 2. Comparison of SPACE, SPNbox, and WhiteBlock

Instances Structure #Rounds #Tables T T size Security Performance

SPACE-8 [?] Feistel 300 1 8→120 3.84KB (T/4, 128) 300

SPACE-16 [?] Feistel 128 1 16→112 918KB (T/4, 128) 128

SPACE-24 [?] Feistel 128 1 24→104 218MB (T/4, 128) 128

SPACE-32 [?] Feistel 128 1 32→96 51.5GB (T/35, 128) 128

SPNbox-8 [?] SPN 10 1 8→8 256B (T/20.80, 128) 160

SPNbox-16 [?] SPN 10 1 16→16 132KB (T/21.61, 128) 80

SPNbox-24 [?] SPN 10 1 24→24 50.3MB (T/22.57, 128) 50

SPNbox-32 [?] SPN 10 1 32→32 17.2GB (T/23.20, 128) 40

WhiteBlock 16 [?] Feistel 18 4 16→64 2MB (T/4, 112) 19

WhiteBlock 20 [?] Feistel 23 3 20→64 24MB (T/4, 108) 24

WhiteBlock 24 [?] Feistel 34 2 24→64 256MB (T/4, 104) 35

WhiteBlock 28 [?] Feistel 34 2 28→64 4GB (T/4, 100) 35

WhiteBlock 32 [?] Feistel 34 2 32→64 64GB (T/4, 96) 35
#rounds: the number of round

#tables: the number of lookup tables in the whole implementation
T (a→ b): T is a map representing {0, 1}a → {0, 1}b

T size: the size of the overall lookup tables
security: (M,Z)-space hardness

performance: number of internal block cipher calls

we choose SPNbox-24 as εsym for performance and security consideration.
On the one hand, SPN-type design is highly parallel compared with Festiel-
type block cipher, hence has a better performance. Besides, the memory cost
of SPNbox-24 is acceptable in most of the devices, such as desktop, pc, mobile
phone, pad, and so on. On the other hand, SPNbox-24 performs similar code
lifting security with variants which have the same magnitude in memory. In a
nutshell, SPNbox-24 is the most appropriate scheme. Its algorithm representa-
tion is given in Algorithm1. There are three layers in a single round, including
the nonlinear layer γ, the linear layer θ, the affine layer σr. S24 is used in the
nonlinear layer, and is realized by an internal small SPN-type block cipher of
block length 24bits. Please refer to [13] for more details about S24.

In this model, We assume the execution environment of CP is safe, so d-
ifferential/linear cryptanalysis and cache timing attack towards black-box im-
plementation are not the main concern of this paper. We mainly deal with the
white-box decryption implementation, namely, the white-box implementation of

Algorithm 1 symmetric key encryption scheme εspn=SPNbox-
24=(Gspn, Espn, Dspn)

Gspn-Input: a 128-bit master key KCEK , fixed parameter 504
Gspn-Output: round keys set K=(k0, ..., k20)

(k0, ..., k20)=KDF(KCEK ,504)
Espn-Input: a plaintext X0, round keys set K
Espn-Output: a ciphertext X10

1: Xr = (Xr
0 , X

r
1 , X

r
2 , X

r
3 , X

r
4). Each Xr

j is a 24-bit binary string, i.e., Xr
j ∈ {0, 1}24

2: γ : (Xr
0 , X

r
1 , X

r
2 , X

r
3 , X

r
4) 7→ (S24(Xr

0), S24(Xr
1), S24(Xr

2), S24(Xr
3), S24(Xr

4)) where
S24 is a bijective K-dependent 24-bit S-box

3: θ : Xr 7→ Xr ·M24. Here M24 = cir(1, 2, 5, 3, 4), it is a 5*5 circulant matrix with
each element belongs to the finite field GF(224)

4: σr : Xr 7→ Xr ⊕ (crr0, cr
r
1, cr

r
2, cr

r
3, cr

r
4). (crr0, cr

r
1, cr

r
2, cr

r
3, cr

r
4) are round constants

with crri = 5 · (r − 1) + i+ 1, i ∈ [0, 4]
5: for R = 0 to 9 do
6: XR+1 = (σR+1 ◦ θ ◦ γ)(XR)
7: end for
Dspn-Input: a ciphertext Y 0 = X10, round keys set K
Dspn-Output: a plaintext Y 10 = X0

8: for R = 0 to 9 do
9: Y R+1 = (γ−1 ◦ θ−1 ◦ (σ10−R)−1)(Y R). γ−1, θ−1, (σ10−R)−1 are the inverse of

γ, θ, σ10−R

10: end for

the decryption algorithm Dspn of SPNbox-24. The structure of Dspn is illustrat-
ed in Figure 3.

4.2 White-Box Decryption Implementation

D∗K is implemented by repeatedly lookup a big table T that represents S−124 ,
which is a bijective S-box from 24bits to 24bits. T consists of 224 entries of a 24-
bit value each. Let e ∈ {0, 1}24 denotes an entry, 〈e〉 denotes the value of e, e.g.,
e=000001 and 〈e〉=0A1B2C means the first entry in T has value 0A1B2C. Since
SPNbox-24 inherently provides unbreakability and incompressibility, the main
technical difficulty comes in making the decryption white-box implementation
of SPNbox-24 traceable. Inspired by [18], this can be done by slightly modify-
ing functionality of the white-box implementation, concretely, by adding some
perturbations. However, there is no evidence in [18] that the given perturbations-
enabled white-box compiler (see Definition ?) exists. So we first demonstrate this
existence.

Definition 4. (perturbations-enabled white-box compiler, [dlpr13]) For
a symmetric encryption scheme εsym = (G,E,D) with key space K, plaintext
space M, and ciphertext space C. Let CD is a white-box compiler with respect to
D. CD takes as input a key k ∈ K and an ordered list of dysfunctional ciphertexts

c = (c1, c2, ..., cu) with each cj
$← C (cj is called a perturbation ciphertext,

$←

Y 0
0 Y 0

1 Y 0
2 Y 0

3 Y 0
4

M−1
24M−1
24

⊕ ⊕⊕⊕⊕

cr100cr100 cr101cr101 cr102cr102 cr104cr104cr103cr103

S�1
24{

Y 1
0 Y 1

1 Y 1
2 Y 1

3 Y 1
4

Round 1

…

Round 10 {

… …

… … … … …

Y 10
0

…

Y 10
1 Y 10

2 Y 10
3 Y 10

4

Ciphertext:

Plaintext: Y 10 = (Y 10
0 , Y 10

1 , Y 10
2 , Y 10

3 , Y 10
4)

Y 0 = (Y 0
0 , Y

0
1 , Y

0
2 , Y

0
3 , Y

0
4)

S�1
24S�1

24 S�1
24S�1

24

S�1
24 S�1

24 S�1
24S�1

24S�1
24

Fig. 3. Decryption algorithm of SPNbox-24.

denotes that the perturbation ciphertext is sampled randomly from ciphertext
space, u occupies a negligible fraction of the ciphertext space), and output a
program [D∗k] = CD(k, c). CD is said to be perturbations-enabled if both of the
following two properties are satisfied:
(1)∀ ciphertext c ∈ c (∀ denotes /for any/ hereafter), [D∗k](c) 6= D(k, c).
(2)∀ ciphertext c ∈ C/c, [D∗k](c) = D(k, c).

Theorem 5. For the symmetric encryption scheme εspn = (Gspn, Espn, Dspn)
as defined in Algorithm 1, there exists a perturbations-enabled white-box compiler
CDspn (write as CD for short hereafter) with respect to Dspn.

Proof. The proof is constructive. For εspn = (Gspn, Espn, Dspn), we construct a
white-box compiler CD. CD takes as input the key K (K is the output of Gspn)
and a ciphertext list c = (c1, c2, ..., cu), and output a perturbated program [D∗K].
CD works as Algorithm 2.

Then we prove CD satisfies the two properties in Definition 4.
At the very beginning, T (S−124) is implemented by 20-round AES round trans-

formations. If we assume AES is a pseudo random permutation (PRP), then S−124

is a PRP. Hence the input values of T are uniformly distributed, i.e., during each

Algorithm 2 A perturbations-enabled white-box compiler CD

Input: K, c
Output: [D∗

K]
1: for each e ∈ {0, 1}24, calculate S−1

24 (e) with K, let 〈e〉 equals to the output.
2: add all of the 〈e〉 into a table T in the order of e.
3: for i = 1 to u do
4: run Dspn(ci), mark the input of table accesses in the last round as

e46i , e
47
i , e

48
i , e

49
i , e

50
i (because Dspn has 10 rounds with each round 5 table ac-

cesses, we use superscript 46-50)
5: update T : let 〈e46i 〉 = 〈e50i 〉, 〈e47i 〉 = 〈e46i 〉, 〈e48i 〉 = 〈e47i 〉, 〈e49i 〉 = 〈e48i 〉, 〈e50i 〉 =

〈e49i 〉.
6: end for
7: generate the white-box program [D∗

K] with T , [D∗
K] is a perturbated white-box

implementation of Dspn

8: return [D∗
K]

table access, a uniformly distributed entry is lookup. In other words, table ac-
cesses are independent events.
(1) ∀i ∈ [1, u], run Dspn(ci) executes 50 table accesses, so run Dspn(c) exe-
cutes 50u table accesses in total. According to lemma 2 in [2016practical], for
50u table accesses, the expected value of the number of used entries in T is
224 · [1 − (1 − 1

224)50u]. Let A denotes this variable, we get 50u − 1 < A < 50u,
since A is an integer, let A = 50u. So, 50u table accesses requires 50u entries.
This implies in each table access, a distinct entry is lookup.
Finally, we get two immediate observations. On the one hand, the entries e46i ,e47i ,e48i ,e49i ,e50i
are not lookup in preceding 9 rounds when running Dspn(ci). On the other hand,
the entries e46i , e

47
i , e

48
i , e

49
i , e

50
i are not lookup when runningDspn(c1),...,Dspn(ci−1), Dspn(ci+1),...,Dspn(cu).

So when run [D∗K](ci), the output must be m′i = 〈e50i 〉||〈e46i 〉||〈e47i 〉||〈e48i 〉||〈e49i 〉||,
while when run Dspn(K, ci), the output is mi = 〈e46i 〉||〈e47i 〉||〈e48i 〉||〈e49i 〉||〈e50i 〉||.
Because T is a PRP, these 5 values are different. So we get m′i 6= mi, i.e.,
[D∗K](ci) 6= Dspn(K, ci).
(2)After updating T , there are 5u entries are modified, we call them dysfunction-
al entry. ∀c ∈ C/c, run [D∗K](c) executes 50 table accesses, requires 50 entries.
If each of these entries are not dysfunctional entry, then c will be correctly de-
crypted with probability 1. Otherwise, c may be correctly or wrongly decrypted.
So, the probability that c will be correctly decrypted is evaluated by

p ≥
(

224 − 5u

224

)50

. (4)

When u is appropriate (for instance, u < 10), p is very close to 1. We can say
[D∗K](c) = Dspn(K, c). �

Now that we construct perturbations-enabled white-box compiler which can
add some perturbations to a white-box program, such that the perturbative
white-box program can identify a consumer. We need to verify such perturbations

can not be corrected by an adversary (a consumer). This means that it is hard
to recover the original output of the perturbation ciphertexts. This requirement
is formalized with the security notion of Perturbation-Value Hiding (PVH).

Definition 6. (Perturbation-Value Hiding, [DLPR13]) Let CD is a perturbations-
enabled white-box compiler as defined in Definition 4, let A be an adversary. Let

SuccPVH
A,CD

def
= Pr

m $←M; c = E(K,m); c = (c);
[D∗K] = CD(K, c); : m̃ = m
m̃← AO(c, [D∗K])


denotes the probability of A winning the PVH game as below. Here O is a re-

compiling oracle O(·) def
= CD(K, (c, ·)) that takes as input a list of perturbation

ciphertexts containing c and return a perturbated program. CD is said to be (τ, ε)-
secure in the sense of PVH if A running in time at most τ implies SuccPVH

A,CD
≤ ε.

PVH game, [DLPR13]:

1. The challenger selects m
$←M and calculates c = E(K,m), let c=(c).

2. The challenger compile [D∗K] = CD(K, c), and sends c, [D∗K] to the adversary
A.
3. A runs on input (c, [D∗K]).
4. A return some message m̃.
5. A wins if m̃ = m.

Theorem 7. Let CD is the white-box compiler constructed in Algorithm 2, then
SuccPVH

A,CD
is upper bounded by 1

2120 .

Proof. ∀ PPT adversary A (PPT means A has time O(λc), λ is a security pa-
rameter, c is a constant), A can call recompiling oracle polynomial times, and
generate polynomial perturbated programs [D∗K]′. Each [D∗K]′ perturbates u ci-
phertexts containing c, and each [D∗K]′ has 5u dysfunctional entries containing
the dysfunctional entries of c in its table T . Because S−124 is a PRP, i.e., the
former T generated in step 2 of Algorithm 2 is a PRP. Naturally, the new T
after step 5 is still a PRP. So it is infeasible to extract K from T . Besides, since
each [D∗K]′ perturbates c, the values of dysfunctional entry of c in each [D∗K]′

is the same, it is infeasible to recover them. Finally, when A randomly correct
a dysfunctional entry of c, the successes probability is less than 1

224 . So A can
randomly correct the output of [D∗K](c) with the successes probability of less

than
(

1
224

)5
, i.e., he can return a correct message with the probability of less

than 1
2120 . So we get Pr[m̃ = m] ≤ 1

2120 . In a word, CD is (O(λc), 1
2120)-secure in

the sense of PVH. �

It is shown in [DLPR13] that perturbated programs can be made traceable
assuming the white-box compiler is secure under PVH. Now Our evaluation
shows that CD is secure under PVH, so [D∗K] can be made traceable. So far,
we construct secure white-box compiler that can generate traceable white-box
programs. Now we construct tracing scheme T , which includes a setup algorithm
T .setup and a tracing algorithm T .trace.

– T .setup. Input (N,K), output ([D∗K]i, TK).
Suppose there are N consumers, for each user ui, i ∈ [1, N], choose ci as the
tracing ciphertext set of ui, let ci 6= cw when i 6= w(w ∈ [1, N]), then call
[D∗K]i = CD(K, ci). Finally, calculate tracing outputs set mi = [D∗K]i(ci).
TK is the secret tracing key, return TK = [(c1,m1), (c2,m2), ...(cN ,mN)].
Distributing [D∗K]i to ui, each ui will get a unique decryption white-box
implementation that can identify him.

– T .trace. Input(Q,TK), output (i).
When a leaked decryption function Q is detected, for i = 1 to N , run Q(ci) =
m̃i, check whether m̃i = mi, if yes then return index i is the leaker.

T .setup needs CP to generate N white-box decryption implementations,
which are different but have the same structure. In next section we will dis-
cuss the security of them.

5 Security and Performance

Now we show our solution satisfy the DRM security requirements in Section
2. Because key extraction security and code lifting security are related to the
large table T , and the white-box decryption implementations at the side of the
consumer have the same structure of T (they are all PRP), it is enough to discuss
one of the white-box decryption implementations. Without loss of generality, we
discuss a representational implementation [D∗K] generated in Algorithm 2.

5.1 Key Extraction Security

Key extraction security requires it is hard to derive the keyK from [D∗K]. Because
[D∗K] is produced by CD, we can first demonstrate it is hard to derive the key
from CD, then key extraction security of [D∗K] is direct. This is formalized by
the security notion of unbreakability (UBK).

Definition 8. (Unbreakability, [DLPR13]) Let CD is a white-box compiler
as defined in Definition 4, let A be an adversary. Let

SuccUBK−CCA
A,CD

def
= Pr

ci
$← C, i ∈ [1, u]; c = (c1, ..., cu);

k
$← K; [D∗k] = CD(k, c); : k̃ = k

k̃ ← AO([D∗k])


denotes the probability of A winning the UBK game as below. Here CCA repre-

sents chosen ciphertext attack, A is a decryption oracle O(·) def
= D(k, ·). CD is

said to be (τ, ε)-secure in the sense of UBK-CCA if for any adversary A running
in time at most τ implies SuccUBK−CCA

A,CD
≤ ε.

UBK game [dlpr13]:

1. The challenger generates a key k
$← K and ci

$← C, i ∈ [1, u], let c = (c1, ..., cu).

2. The challenger runs [D∗k] = CD(k, c), then sends [D∗k] to the adversary A.
3. A is run on input [D∗k] .

4. A returns a guess k̃ ∈ K.
5. A succeeds if k̃ = k holds.

Theorem 9. Let CD is a perturbations-enabled white-box compiler, then CD is
secure under UBK-CCA.

Proof. For any k ∈ A, S−124 is a PRP. According to the proof of Theorem 7,
the new T after step 5 of Algorithm 2 is still a PRP. In other words, T is
indistinguishable with a random permutation in 24 bits. Because it is infeasible
to recover the key from a random permutation, it is infeasible to recover k from
T . That means the successes probability of extracting k from T is negligible:
SuccUBK−CCA

A,T ≤ ε where ε is a negligible function of security parameter λ ∈ IN.
According to [2016practical], extracting k from [D∗k] can be reduced to recovering
k from T in [D∗k] in black-box model, i.e., SuccUBK−CCA

A,CD
≤ SuccUBK−CCA

A,T . So

we get SuccUBK−CCA
A,CD

≤ ε where ε is a negligible function of λ. Now we can say
CD is secure under UBK-CCA. �

5.2 Code Lifting Security

There are some similar description of code lifting security, such as (λ, δ) - in-
compressibility [dlpr13], weak white-box [14yami], (M,Z)-space hardness [15ccs]
[16practical], as well as weak and strong incompressibility [16provable]. They all
reflect incompressibility, which has the goal of preventing an adversary producing
a more compact implementation.Here we adopt a more formal security notion
coined ENC-TCOM(c.f. [2016provable]) to analyze incompressibility of [D∗K].
With consideration of the scenario, we need to discuss DEC-TCOM. Because
in εspn = (Gspn, Espn, Dspn), Espn and Dspn are deterministic encryption and
decryption being inverse of each other, we can exchange roles without loss of
generality and get the definition of DEC-TCOM as below. Moreover, because
[D∗K] is a white-box decryption program with traceability, the security game
should be sightly modified in order to fit the scenario.

Definition 10. (Weak Incompressibility, DEC-TCOM) Let CD is a perturbations-
enabled white-box compiler, [D∗k] is a decryption scheme produced by CD. T is
the large table which hides k in [D∗k]. Let A be an adversary. Let

SuccA,[D∗
k]

def
= Pr

 ci
$← C, i ∈ [1, u]; c = (c1, ..., cu);

k
$← K; [D∗k] = CD(k, c); : [D∗k](c) = m̃

c
$← C, m̃← AT (c)


denotes the probability of success of A playing the incompressibility game as be-
low. Here AT represents that A can adaptively query some (limited) entries of T
and get the values of them. [D∗k] is said to be τ -secure for (s, λ, δ)-incompressibility
if A running in time at most τ implies SuccA,[D∗

k]
≤ δ.

Incompressibility Game [16yami]:

1. The challenger generates a key k
$← K and ci

$← C, i ∈ [1, u], let c = (c1, ..., cu).
2. The challenger runs [D∗k] = CD(k, c), store T generated in step 5 of Algorithm
2. T is indeed a function which represents a mapping: {0, 1}24 ← {0, 1}24, k is
hidden in this mapping.
3. The adversary A adaptively chooses qi ∈ {0,1}24, i ∈ [0, s), and receives
T (qi) = 〈qi〉 from the challenger. s is the the number of entries in T the adversary
can adaptively query.
At this point the adversary is tasked with trying to decrypt a random message:
4. The challenger chooses c ∈ C uniformly at random, sends c to the adversary.
5. The adversary returns a guess m̃ ∈M.
6. The adversary wins if m̃ = [D∗k](c) holds.

Theorem 11. Let [D∗K] is the white-box decryption program generated in Al-

gorithm 2, then SuccA,[D∗
K] is upper bounded by N

2120 + 2120−N
2120 ·

(
s

224

)50
with

N =
loge(1− s

224
)

50 , e = 224−1
224 .

Proof. According to [2016practical,Theorem 3], SPNbox-24 has weak ACS-(
M,− log2

(
N

2120 + 2120−N
2120 ·

(
M
T

)50))
-space hardness. This means when given

code size is less than M , it is infeasible to decrypt any random ciphertext with

probability more than N
2120 + 2120−N

2120 ·
(
M
T

)50
. So in the above game, when an ad-

versary adaptively store code with size M , i.e., he can get s = 224·MT entries, then

SuccA,[D∗
K] is less than N

2120 + 2120−N
2120 ·

(
s

224

)50
. In other words, ∀ PPT adversary

A, [D∗K] is O(λc)-secure for
(
s, λ, N

2120 + 2120−N
2120 ·

(
s

224

)50)
-incompressibility. �

5.3 Traceability

It is shown in Secion 4.2 that [D∗K]1, ..., [D∗K]N is traceable, now we show T .trace
will return the correct leaker. When Q is detected, there exists i ∈ [1, N] such
that Q = [D∗K]i, so when run Q(ci) for all i ∈ [1, N], there exists i such that
m̃i = mi with the probability of 1. Hence T .trace will return the correct leaker
with the probability of 1.

Compared with the example tracing scheme in [18], our scheme only needs
constant size perturbations, namely, the number of perturbation ciphertext (u)
is independent with user number N . Because if the number of tracing ciphertexts
is linearly or sublinearly grow with N , for instance, O(N) or O(logN), then the
properties of perturbations-enabled white-box compiler may be compromised.

5.4 Performance Analysis

At the side of the producer, the performance mainly depends on the black-
box encryption implementation of SPNbox-24 and the white-box compiler, it is
shown in [13] that SPNbox family block cipher can provide an optimized high-
performance software implementation(encryption and decryption, black-box and

white-box). The running time of a white-box compiler mainly rely on generating
the big table, in SPNbox-24, there are 224 entries in the table. So for each 24-bit
entry e ∈ (0, 1)24, the white-box compiler need to calculate the output of e by
calling 20-round AES round transformation. Since AES has fast software im-
plementation in contemporary processors, the white-box compiler can efficiently
execute. Suppose the white-box compiler can generates a white-box program in
time O(τ), then it will cost O(τ) to generate N traceable white-box programs,
assuming the producer supports parallel processes. At the side of the consumer,
only some entries in the table are modified, this dose not influence the decryption
performance of original white-box implementation.

6 Conclusion

In our work, we put three severe threats of DRM together, they are key extrac-
tion, code lifting, and illegal distribution. We have proposed an efficient solution
based on white-box cryptography, we construct white-box compiler that can
generate traceable white-box programs, in addition, we prove our construction
is secure. This result set the stage for more traceable white-box implementations.
However, there are still many to do in the future, because the actual situation
is always more complex than we consider. Two possible directions of this work
are as below.

– It is interesting to investigate whether the performance of SPNbox family
block cipher can be improved. Or, whether there exists possibility to design
new white-box secure ciphers as our building block.

– A constraint associated with our solution lies in we cannot give absolute
answer whether our tracing scheme resist collusion. Namely, if there exist
a coalition U = (u1, u2, ..., ut) with t ∈ [1, N], ∀ua ∈ U, ua provides some
code segments of his own [D∗K]i(espically, ua should provide some entries
of his own T), then U can construct a new lookup table T ∗ to produce a
new decryption software PD. We can intuitionally observe it is hard for U
to produce a perfect PD(perfect means PD can correctly decrypt ccontent
with the probability of 1), since T ∗ cannot include all of the entries in ef
with probability 1 . But once a perfect PD is generated, we do not know
whether there exists a new T can trace at least one traitor in U . So we
might consider one more threat within illegal distribution in the presence of
collusion. Till date, many traitor tracing systems based on PLBE towards
fully or t collusion-resistant were proposed, but the ciphertext size is O(N),
O(
√
N) [21], or O(logN) [22]. Schemes with constant ciphertext size are yet

to be provided. But our solution needs the number of tracing ciphertexts (u)
be independent with user number N , because the function of the traceable
white-box program is influenced by u. So we would like to study and design
collusion-resistant tracing scheme with constant ciphertext size. Or we can
find new achieved secure white-box compiler that can help us implementing
collusion-resistant tracing scheme.

References

1. Kuo, C. -C. J., Kalker, T., Zhou, W.: Digital rights management. IEEE Signal
Process. Mag. 21(2), 11-14 (2004)

2. OMA digital rights management v2.1 (2010). www.openmobilealliance.org-/

release/DRM/V2_1_1-20100406-A/

3. Marlin Specifications. www.marlin-community.com/technology#Marlin_

Specifications

4. Technical specification of digital rights management for internet television (2014).
5. De Mulder, Y.: White-box cryptography: analysis of white-box AES implementa-

tions. Ph.D. thesis, Katholieke Universiteit Leuven (2014)
6. Wyseur, B.: White-box cryptography. Ph.D. thesis, Katholieke Universiteit Leuven

(2009)
7. Gilbert, H.: On White-Box Cryptography. invited talk, Fast Software Encryption

2016 (2016). http://fse.rub.de/slides/wbc_fse2016_hg_2pp.pdf
8. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: A white-box DES implementation

for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp.
1-15. Springer, Heidelberg (2003).

9. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (Extended Abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63-84.
Springer, Heidelberg (2014).

10. Minaud, B., Derbez, P., Fouque, P.A., and Karpman, P.: Key-recovery attacks on
ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, LNCS, vol. 9453,
pp. 3-27. Springer, Heidelberg (2015).

11. Gilbert, H., Plut, J., Treger, J.: Key-recovery attack on the ASASA cryptosystem
with expanding S-boxes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 475?490. Springer, Heidelberg (2015).

12. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1058-1069. ACM (2015)

13. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 126-158. Springer, Heidelberg (2016).

14. Fouque, P.A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-
box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 159-188. Springer, Heidelberg (2016).

15. Chor, B., Fiat, A., and Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYP-
TO 1994. LNCS, vol. 839, pp. 257-270. Springer, Heidelberg (1994).

16. Billet, O., Gilbert, H.: A traceable block cipher. In: Laih, C.S. (ed.) ASIACRYPT
2003. LNCS, vol. 2894, pp. 331-346. Springer, Heidelberg (2003).

17. Faugere, J.C., Perret, L.: Polynomial equivalence problems: algorithmic and theo-
retical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
30-47. Springer, Heidelberg (2006).

18. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisonĕk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247-264, Springer, Heidelberg (2014).

19. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.: White-box cryptography and an
AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595,
pp. 250-270. Springer, Heidelberg (2003).

www.openmobilealliance.org - /release/DRM/V2_1_1-20100406-A/
www.openmobilealliance.org - /release/DRM/V2_1_1-20100406-A/
www.marlin-community.com/technology#Marlin_Specifications
www.marlin-community.com/technology#Marlin_Specifications
http://fse.rub.de/slides/wbc_fse2016_hg_2pp.pdf

20. Ghită, S.V., Patriciu, V.V., Bica, I.: A new DRM architecture based on mobile
code and white-box encryption. In: 2012 9th International Conference on Commu-
nications, pp. 303-306. IEEE (2012)

21. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573-592. Springer, Heidelberg (2006)

22. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480-499. Springer, Heidelberg (2014)

	A New Digital Rights Management Solution Based on White-Box Cryptography

