
A Faster Software Implementation of the Supersingular Isogeny
Diffie-Hellman Key Exchange Protocol

Armando Faz-Hernández1, Julio López1, Eduardo Ochoa-Jiménez2, and Francisco
Rodríguez-Henríquez2

1 Institute of Computing, University of Campinas.
Campinas, São Paulo, Brazil.

armfazh@ic.unicamp.br, jlopez@ic.unicamp.br
2 Computer Science Department.

CINVESTAV-IPN, Mexico.
jochoa@computacion.cs.cinvestav.mx, francisco@cs.cinvestav.mx

Abstract

Since its introduction by Jao and De Feo in 2011, the supersingular isogeny Diffie-Hellman (SIDH)
key exchange protocol has positioned itself as a promising candidate for post-quantum cryptography.
One salient feature of the SIDH protocol is that it requires exceptionally short key sizes. However,
the latency associated to SIDH is higher than the ones reported for other post-quantum cryptosys-
tem proposals. Aiming to accelerate the SIDH runtime performance, we present in this work several
algorithmic optimizations targeting both elliptic-curve and field arithmetic operations. We intro-
duce in the context of the SIDH protocol a more efficient approach for calculating the elliptic curve
operation P +[k]Q. Our strategy achieves a factor 1.4 speedup compared with the popular variable-
three-point ladder algorithm regularly used in the SIDH shared secret phase. Moreover, profiting
from pre-computation techniques our algorithm yields a factor 1.7 acceleration for the computation
of this operation in the SIDH key generation phase. We also present an optimized evaluation of the
point tripling formula, and discuss several algorithmic and implementation techniques that lead to
faster field arithmetic computations. A software implementation of the above improvements on an
Intel Skylake Core i7-6700 processor gives a factor 1.33 speedup against the state-of-the-art software
implementation of the SIDH protocol reported by Costello-Longa-Naehrig in CRYPTO 2016.

Keywords: SIDH protocol, Montgomery ladder, post-quantum cryptography, Montgomery reduc-
tion.

1 Introduction

Over the last decade there has been an intense research effort to find hard mathematical problems that
would be presumably hard to solve by a quantum attacker and at the same time could be used to build
reasonably efficient public-key cryptoschemes. One such proposal is the hardness of finding an isogeny
map between two elliptic curves, i.e., given two elliptic curves E0 and E1, the problem of finding a
morphism φ : E0 → E1 that maps points from E0 to E1 while preserving φ(OE0) = OE1 . This proposal
has spawned a new line of research generally known as isogeny-based cryptography.

Reportedly Couveignes made the first suggestions towards the usage of isogenies for cryptographic
purposes in a seminar held in 1997, which he later reported in [15]. The first published work of a concrete
isogeny-based cryptographic primitive was presented by Charles, Lauter and Goren in [7, 8], where the
authors introduced the hardness of path-finding in supersingular isogeny graphs and its application

1

mailto:armfazh@ic.unicamp.br
mailto:jlopez@ic.unicamp.br
mailto:jochoa@computacion.cs.cinvestav.mx
mailto:francisco@cs.cinvestav.mx

to the design of hash functions. It has since been used as an assumption for other cryptographic
applications such as key-exchange and digital signature protocols.

Stolbunov studied in [35] the hardness of finding isogenies between two ordinary elliptic curves
defined over a finite field Fq, with q a prime power. The author proposed to use this setting as the
underlying hard problem for a Diffie-Hellman-like key exchange protocol. Nevertheless, Childs, Jao
and Soukharev discovered in [9, 10] a Lq(

1
2 ,
√
3
2) subexponential complexity quantum attack against

Stolbunov’s scheme.
In 2011, Jao and De Feo proposed the problem of finding the isogeny map between two supersingular

elliptic curves, a setting where the attack in [9] does not apply anymore. This proposal led to the
Supersingular Isogeny-based Diffie-Hellman key exchange protocol (SIDH) [21] (see also [17]). As of
today, the best-known algorithms against the SIDH protocol have an exponential time complexity for
both classical and quantum attackers.1

Although the SIDH public key size for achieving a 128-bit security level in the quantum setting
was already reported as small as 564 bytes in [13], this SIDH public key size was recently further
reduced in [12] to just 330 bytes. However impressive, these key size credentials have to be contrasted
against SIDH relatively slow runtime performance. Indeed, the SIDH key exchange protocol has a
latency in the order of milliseconds when implemented in high-end Intel processors. This timing is
significantly higher than the one achieved by several other quantum-resistant cryptosystem proposals.
Consequently some recent works have focused on devising strategies to reduce the runtime cost of the
SIDH protocol. For example, Koziel et al. presented a parallel evaluation of isogenies implemented
on an FPGA architecture [24,25], reporting important speedups for this protocol. These developments
show the increasing research interest on developing techniques able to accelerate the SIDH protocol
software and hardware implementations.

In order to reduce the running time of the SIDH protocol it is important to identify performance-
critical operations. Upon initial inspection it is noted that this scheme computes a shared secret by
performing a high number of elliptic curve and field arithmetic operations. Taking into consideration
the above, our main contributions for accelerating the performance of the SIDH key exchange protocol
can be summarized as follows:

• Building on the scalar multiplication procedures reported in [33], we propose a right-to-left
Montgomery ladder that efficiently computes the elliptic curve scalar multiplication P + [k]Q
required by the two main phases of the SIDH protocol. Our strategy achieves a factor 1.4 speedup
compare with the well-known three-point ladder algorithm presented in [17]. Further, when the
base point Q is known in advance our algorithm can take advantage of a precomputed look-up
table derived from Q, which in principle allows us to accelerate the aforementioned computation.
Nevertheless, this approach led us to discover several unforeseen implementation difficulties which
are somewhat related to the parameter selection used by Costello et al. in [13]. We describe how
these issues were efficiently circumvented allowing us to also report a higher speedup factor for
the SIDH fixed-point scalar multiplication computation.

• We present an optimized point tripling formula specialized for Montgomery elliptic curves. We
consider the case when the elliptic curve parameter A that defines the elliptic curve equation is
expressed as a quotient A = A0/A1. Our formulation saves one multiplication at the cost of one
squaring and one addition, which are performed in the quadratic extension field Fp2 . This saving
is valuable if one considers that Bob has to perform hundreds of point tripling computations in
both phases of the SIDH protocol.

• We developed an optimized prime field arithmetic that takes advantage of the recent instruc-
tions devoted to achieve ultra fast integer arithmetic computations, such as the Bit Manipulation

1See §2 for a detailed description of the SIDH protocol.

2

Instructions (BMI2) and the addition instructions with independent carry chains (ADX) [18] sup-
ported by high-end Intel and AMD 64-bit processors.

Combining all the above improvements, the execution of our library achieves a factor 1.33 speedup
compared with the running time associated to the fastest SIDH software implementation reported in
the literature (see §6 for more details about the performance achieved by our library).

The remaining of this paper is organized as follows. In §2, a brief description of the SIDH key
exchange protocol and Montgomery curves and related arithmetic is given. In §3, a detailed description
of a right-to-left Montgomery ladder procedure and how to adapt it to the key generation and the
key exchange phases of the SIDH protocol is presented. Based on a quotient representation of the
A parameter of the Montgomery elliptic curve, we present in §4 a more efficient formulation of the
point tripling elliptic curve operation. In §5, an extensive description of the underlying field arithmetic
implementation is given. This material focuses in the efficient implementation of integer multiplication,
squaring and modular reduction. In §6, a summary of the SIDH protocol performance speedups that
were achieved by applying the techniques described in this paper are given. Finally, we draw our
concluding remarks and future work in §7.

2 Supersingular Isogeny Diffie-Hellman

The main purpose of the classical Diffie-Hellman protocol is that two entities securely agree on a shared
secret over a public communication channel that is considered insecure under passive attacks. In the case
of the SIDH protocol this secret is obtained by computing the j-invariant of two isomorphic supersingular
elliptic curves generated by Alice and Bob that happens to be isogenous to an initial supersingular curve
E0.

The SIDH domain parameters are given as follows. Choose a supersingular elliptic curve E over Fp2 ,
where p is a large prime of the form2,

p = (lA)
eA(lB)

eBf ± 1, (1)

and where lA and lB are small prime numbers, eA and eB are positive integers, and f is a small
cofactor. Then the cardinality of E is given as, #E = (lA

eA lB
eBf)2 . To simplify the notation let us

define rA = lA
eA and rB = lB

eB . One then chooses two pairs of independent elliptic curve points so
that the subgroups E[rA] and E[rB] are generated as, 〈PA, QA〉 = E[rA] and 〈PB, QB〉 = E[rB]. Notice
that the prime p, the curve E and the generating points PA, QA, PB, and QB, are all considered public
domain parameters.

Given a point R of order le, an isogeny φ : E → E/〈R〉 is calculated as a composition of l-degree
isogenies φ = φe−1 ◦ · · · ◦ φ0, as follows3. Let E0 = E and R0 = R, then for 0 ≤ i < e, compute:
Ei+1 = Ei/〈le−i−1Ri〉, φi : Ei → Ei+1, and Ri+1 = φi(Ri). Thus, E/〈R〉 = Ee. Using the point
le−i−1Ri, the curve Ei+1 and the isogeny φi can be readily computed in polynomial time by means of
Vélu’s formulas (see [38, theorem 12.16]).

The SIDH key exchange protocol consists of two main phases. In the first one, also known as the
key generation phase, both parties proceed as follows:

• Alice selects two random numbers mA, nA ∈ ZrA and computes the isogeny φA : E → EA with
kernel 〈mAPA+nAQA〉 = 〈RA〉. Then Alice calculates {φA(PB), φA(QB)} and sends to Bob these
points together with her computed curve EA.

2 Some primes used in the SIDH protocol are Pierpont primes (a prime number of the form p = 2i3j + 1, for i, j > 0,
is known as a Pierpont prime [6, 34]) By extending this definition, a generalized Pierpont (GP) prime has the form
p = ±1 + Πk

i=1(pi)
ei , where pi are distinct primes.

3See [17] for a comprehensive discussion on optimal approaches for computing a le-degree isogeny.

3

• Analogously, Bob selects two random numbers mB, nB ∈ ZrB and computes the isogeny φB : E →
EB with kernel 〈mBPB + nBQB〉 = 〈RB〉. Then Bob calculates {φB(PA), φB(QA)} and sends to
Alice these points together with his computed curve EB.

In the second phase of the protocol, Alice and Bob compute a shared secret as follows:

• Once Alice receives {EB, φB(PA), φB(QA)} from Bob, she calculates the isogeny φAB : EB → EAB
that has kernel 〈mAφB(PA)+nAφB(QA)〉 = 〈φB(RA)〉. Finally Alice obtains the shared secret as
the j-invariant of EAB.

• Once Bob receives {EA, φA(PB), φA(QB)} from Alice, he calculates the isogeny φBA : EA → EBA
that has kernel 〈mBφA(PB) + nBφA(QB)〉 = 〈φA(RB)〉. Finally Bob obtains the shared secret as
the j-invariant of EBA.

One can instantiate the SIDH protocol using different elliptic curve forms such as the Edwards or
the Montgomery curves. In this work we will focus in the latter form due to its generally more efficient
isogeny and elliptic curve arithmetic operations.

2.1 Montgomery Curves and Their Arithmetic

We report the computational cost of the main elliptic curve operations in terms of field arithmetic
operations. As usual, we denote with M, S, A, and I the cost of one multiplication, squaring, addition
(or subtraction), and multiplicative inverse in the field Fq, respectively. Note that q = p2, unless
otherwise specified.

Given a finite field Fq, Montgomery elliptic curves are defined by the equation:

E/Fq : By2 = x3 +Ax2 + x , (2)

such that A,B ∈ Fq, A2 6= 4 and B 6= 0. The set of solutions of (2) plus the neutral element O (called
the point at infinity) form an abelian additive group. The negative of a point (x, y) is (x,−y). The
point P = (0, 0) satisfies (2) and has order two since P + P = O. The j-invariant of E is calculated as,

j(E) = 256
(A2 − 3)3

A2 − 4
. (3)

Moving to projective coordinates (P2) implies that an affine point (x, y) is represented by (λX : λY : λZ)
such that λ 6= 0, x = X/Z and y = Y/Z. The point at infinity is a special case that is written as
O = (0: 1 : 0). Points can also be mapped to P1 using4

χ : P2 → P1

(X : Y : Z) 7→ (X : Z)
O 7→ (1 : 0) .

(4)

We write χ(P) = (X : Z) ∈ P1(Fp) when both X and Z belong to the field Fp.
In his landmark paper [30], Montgomery introduced the concept of a differential addition operation,

which given χ(P), χ(Q), and χ(P − Q), calculates χ(P + Q). It is noticed that this formula fails
whenever P −Q ∈ {O, (0, 0)} (refer to [4] for a formal proof).

Let P,Q ∈ E(Fq) and R0, R1, R2 ∈ P1. Then we denote a point doubling operation as [2]R0 and
a differential addition as R0 +(R2) R1, such that R0 = χ(P), R1 = χ(Q), and R2 = χ(P − Q). A
differential addition can be computed at a cost of 4M+2S, whereas a point doubling takes 2M+2S [14].
When performing a differential addition one multiplication can be saved whenever ZP−Q = 1.

4This map sets O = (1: 0) since (0 : 0) /∈ P1, see [14, Section 3].

4

Montgomery also introduced in [30] a procedure that calculates χ([k]P) from χ(P) and an integer k.
This procedure is better known as the Montgomery ladder. A high level description of the Montgomery
ladder is shown in Algorithm 1. To recover the y-coordinate of [k]P one can use the Okeya-Sakurai
technique [31], which extends the y-recovery formula of López-Dahab that applies to the binary elliptic
curve case [28]. The Okeya-Sakurai formula calculates the y-coordinate of [k]P from the y-coordinate
of P, χ([k]P) and χ([k + 1]P) (this latter value is also computed by the Montgomery ladder).

Algorithm 1 Montgomery ladder algorithm.
Input: (k, χ(P)), where k is a t-bit number, and χ(P) ∈ P1 is a representation of P ∈ E(Fq).
Output: χ([k]P) ∈ P1.
1: Initialize R0 ← χ(O), R1 ← χ(P), and R2 ← χ(P).
2: for i← t− 1 to 0 do
3: if ki = 1 then
4: (R0, R1)← (R0 +(R2) R1, 2R1)
5: else
6: (R0, R1)← (2R0, R0 +(R2) R1)
7: end if
8: end for
9: return R0 // For y-coordinate recovery, return also R1.

The Montgomery ladder processes the scalar k from the most significant to the least significant bit
updating at each iteration the accumulators R0 and R1. The bits of the scalar determine which of the
accumulators is updated by the results of the point doubling or the differential addition operations.
Each step of the ladder performs the same number of operations preserving the relation R0 −R1 = P.
This is an advantageous property, since usually the scalar k is a secret value. Therefore, a regular
execution pattern helps to prevent threats caused by some simple side-channel attacks. Let k be a t-bit
number. Then Algorithm 1 takes 5tM+4tS, which in practice translates to a 7.6M-per-bit cost, under
the assumption that 1S ≈ 0.66M in Fq.

Performing all elliptic curve operations in P1 minimizes the use of multiplicative inverses, which tend
to be quite costly. Hence, it is desirable to perform the scalar multiplication computations required by
the SIDH using this strategy.

3 Efficient Computation of P + [k]Q

At each stage of the SIDH protocol, Alice and Bob must compute the kernel of an isogeny by calculating
the point [m]P + [n]Q, where P and Q are linearly independent points of order r; and n,m ∈ Zr are
secret values. Invoking efficiency reasons, De Feo et al. [17] suggested to compute instead the point
P + [nm−1]Q, for a scalar m that has a multiplicative inverse modulo r. Therefore, the isogeny’s secret
kernel is generated by performing the operation P + [k]Q for some k ∈ Zr.

Since it is generally more efficient to perform the SIDH scalar point multiplications using P1 arith-
metic, we will review in the following two common strategies to compute χ(P + [k]Q).

Method 1: Given P , Q, and k, use the classical Montgomery ladder (Algorithm 1) for computing the
x-coordinate of [k]Q followed by the application of the Okeya-Sakurai formula to recover the y-coordinate
of [k]Q. Finally, perform a projective point addition of the points (xP : yP : 1) and (X[k]Q : Y[k]Q : Z[k]Q)
to obtain χ(P + [k]Q). This strategy requires the knowledge of the y-coordinate of the points P and Q.
The time computational expense of this algorithm is given by the execution cost of the Montgomery
ladder plus a constant number of prime field multiplications (< 30M).

Method 2 (three-point ladder): In [17], De Feo et al. proposed a three-point ladder procedure
that given the x-coordinate of the points P , Q, and Q−P, computes χ(P+[k]Q). This method performs

5

two differential additions and one doubling per bit of the scalar k. This is the same number of operations
as computing [m]P + [n]Q using the Bernstein’s two-dimensional ladder algorithm [3]. One advantage
of the three-point ladder is that all elliptic curve operations are performed using only the x-coordinate
of the involved points.

To improve the computation of the SIDH protocol, these two methods can be combined as follows.
Notice that during the SIDH key generation phase the initial points are fixed. This situation allows
us to apply the Method 1 efficiently since the y-coordinate of the points are known in advance. On
the other hand, during the SIDH shared secret phase Alice and Bob exchange points in P1. Hence,
in order to use Method 1 Alice must recover the y-coordinate of the points sent by Bob. However,
this will increase the protocol’s latency and/or bandwidth. Therefore, Method 2 emerges as a suitable
alternative for this scenario, and in fact the three-point ladder algorithm has been adopted by most if
not all state-of-the-art implementations of the SIDH protocol (see [12, 13,16,26]).

In the following section we introduce in the context of the SIDH protocol, novel strategies for com-
puting χ(P + [k]Q). Our approach performs fewer elliptic curve operations than the methods presented
above. Moreover, our algorithms can be used to improve the running time of both, the key generation
and the shared secret computation phases of the SIDH protocol.

3.1 A Novel Algorithm for Computing χ(P + [k]Q)

The Montgomery ladder (Algorithm 1) is known as a left-to-right algorithm, since it computes [k]P by
scanning the bits of the scalar k from the most-significant to the least-significant bit. A right-to-left
evaluation of the Montgomery ladder was recently introduced to accelerate the scalar multiplication
operation in the fixed-point scenario. This approach was first applied in the contex of binary elliptic
curves [22,32], and then, it was further extended to Montgomery curves [33]. Building on the right-to-left
ladder technique of [33] we present here an algorithm that computes χ(P + [k]Q) efficiently.

Algorithm 2 Variable-point multiplication of χ(P + [k]Q).
Input: (k, χ(P), χ(Q), χ(Q − P)), where k is a t-bit number; and χ(P), χ(Q), χ(Q − P) ∈ P1 are a

representation of P,Q,Q− P ∈ E(Fq), respectively.
Output: χ(P + [k]Q).
1: Initialize R0 ← χ(Q), R1 ← χ(P) and R2 ← χ(Q− P)
2: for i← 0 to t− 1 do
3: if ki = 1 then
4: R1 ← R0 +(R2) R1

5: else
6: R2 ← R0 +(R1) R2

7: end if
8: R0 ← [2]R0

9: end for
10: return R1

The proposed approach is shown in Algorithm 2, which given the points χ(P), χ(Q), and χ(Q−P)
computes χ(P + [k]Q) provided that P,Q − P /∈ {O, (0, 0)}. Algorithm 2 uses three accumulators,
namely R0, R1, R2 ∈ P1, and scans the bits of k from the least-significant to the most-significant bit.
At the i-th iteration, the ki bit value determines whether R0 must be accumulated in R1 or in R2.
Thereafter R0 is doubled unconditionally. Accumulators are updated by one differential addition and
one point doubling and they always preserve the relation R0 − R1 = R2. This is the same invariant
relation that holds for the classical Montgomery ladder of Algorithm 1. However notice that in the
case of Algorithm 2, the value stored in R2 may vary between iterations, unlike Algorithm 1 where R2

6

is always fixed to χ(P). In summary, Algorithm 2 performs 6tM+4tS, which for a practical software
implementation implies a cost of approximately 8.6M-per-bit.

As observed in [33], in the case that Q is a fixed point known in advance, one can construct a
look-up table T (Q) by pre-computing constants that are obtained from the x-coordinate of multiples of
the point Q as,

T (Q) = (T0, . . . , Tt−1), where Ti =
xi + 1

xi − 1
, and

(xi, yi) = [2i]Q, for 0 ≤ i < t,
(5)

where t is the size in bits of the scalar k. Using this approach, the point doubling computation in
line 8 of Algorithm 2 can be replaced by a query to the look-up table T. For completeness, we show
in Algorithm 3 the fixed-point version of Algorithm 2. The differential additions in lines 4 and 6 of
Algorithm 3 are computed more efficiently (using 3M+2S) using the precomputed value Ti as input [33].
It is worth to mention that the look-up table queries of Algorithm 3 use non-secret indexes. This is in
stark contrast with other fixed-point multiplication algorithms where protecting look-up table accesses
is mandatory, a measure that unavoidably introduces performance overheads. The computational cost
of Algorithm 3 for computing χ(P + [k]Q) drops to 3tM+2tS, which is around 4.3M-per-bit.

Algorithm 3 Fixed-point multiplication of χ(P + [k]Q).
Input: (k, χ(P), χ(Q− P)), where k is a t-bit number; and χ(P), χ(Q− P) ∈ P1 are a representation

of P,Q− P ∈ E(Fq), respectively.
Precomputation: T (Q) is a look-up table defined as in Eq. 5.
Output: χ(P + [k]Q).

1: Initialize R1 ← χ(P), and R2 ← χ(Q− P).
2: for i← 0 to t− 1 do
3: if ki = 1 then
4: R1 ← Ti +(R2) R1

5: else
6: R2 ← Ti +(R1) R2

7: end if
8: end for
9: return R1 // For y-coordinate recovery, return also R2.

As in the case of the classical Montgomery ladder we show how to recover the y-coordinate of P+[k]Q
from the values computed by the right-to-left ladder algorithm. This method will be discussed at length
in §3.3.

3.2 Applying the New Algorithm to the SIDH Protocol

As already mentioned, the P + [k]Q operation must be performed in both phases of the SIDH protocol.
During the key generation phase, this operation uses points that are known in advance. Conversely,
during the shared secret generation phase operations are performed over unknown points. In the re-
maining of this section we describe the application of our algorithms to these scenarios and we also
discuss some relevant issues that appeared on their implementations. We present first the description
of the variable point case.

7

R0 = O R1 = P R2 = Q− PR2 = Q

k4 = 0 O QP

k3 = 1 Q 2QP + Q

k2 = 1 3Q 4QP + 3Q

k1 = 0 6Q 7QP + 6Q

k0 = 0 12Q 13QP + 12Q

(a) Three-point ladder from [17].

R1 = P R0 = Q R2 = Q− P

k0 = 0 2QP 2Q− P

k1 = 0 4QP 4Q− P

k2 = 1 8QP + 4Q 4Q− P

k3 = 1 16QP + 12Q 4Q− P

k4 = 0 32QP + 12Q 20Q− P

(b) Algorithm 2 (This work)

Figure 1: Calculating P + [12]Q, where the scalar is a 5-bit number (12)10 = (01100)2. In (a) we show
the steps for the three-point ladder algorithm, and in (b) the steps for the ladder of Algorithm 2. If we
remove the central column in (a), it becomes clear that the three-point ladder procedure is in essence
a classical Montgomery ladder. Also note that the column in the center of (b) shows a sequence of
consecutive point doublings of Q. When Q is a fixed point, this column can be precomputed.

3.2.1 Computing P + [k]Q in the Variable-point Scenario

During the shared secret generation phase, Alice5 receives χ(φB(PA)), χ(φB(QA)) from Bob. After-
wards, Alice must calculate χ(φB(PA) + [nA]φB(QA)). To that end, Method 1 could be applied in
this scenario. Nevertheless, this would require that Alice must know the y-coordinate values of the
points φB(PA) and φB(QA). To circumvent this difficulty, Bob could send the y-coordinate of these two
points, but this would increase the public key sizes considerably. Alternatively, Bob could encode the
y-coordinate of each point into one bit. However, this would force Alice to decompress a point using
time-consuming square-roots over Fq. We conclude that Method 1 becomes an inadequate choice for
this scenario.

On the other hand if Bob additionally sends χ(φB(PA − QA)), then Alice can perform the three-
point ladder algorithm [17] (corresponding to Method 2 described in the previous section). This is the
mechanism followed by most of the state-of-the-art implementations, such as [12,13,16,26]. Nevertheless
notice that the three-point ladder algorithm has a higher computational cost as compared to Method 1.

A more efficient approach consists of applying Algorithm 2 since it provides a significant saving of
field arithmetic operations when compared to Method 1 or Method 2. Furthermore given the same input
values, Algorithm 2 and the three-point ladder procedure produce the same output. This implies that
both algorithms can share the same interface, which is especially valuable for minimizing the changes
of existent software implementations. An extra advantage of adopting Algorithm 2 is that it does not
increase the public key size. Figure 1 shows an example contrasting the execution of Algorithm 2 and
the three-point ladder procedure when processing the same scalar k = 12.

By replacing the three-point ladder algorithm with Algorithm 2, we estimate to achieve a factor 1.38
speedup (cf. Table 1). In §6, this prediction is experimentally verified through the benchmarking of our
SIDH protocol implementation.

5Since the same analysis applies to Bob by just swapping sub-indexes, in this section we only summarize the operations
performed by Alice.

8

3.2.2 Computing P + [k]Q in the Fixed-point Scenario

In this phase, one can exploit more avenues for further optimizations. First of all, the involved points
are fixed, allowing us to use precomputed look-up tables that could possibly accelerate operations. In
this scenario it is clear that Method 1 is more efficient than Method 2. However, it is not obvious how
these two strategies could benefit from pre-computation techniques.

Taking advantage of the fact that the points are known in advance one can directly apply Algorithm 3.
Using this procedure one can expect a factor 1.77 speedup when compared with Method 1 (cf. Table 1).
Hence, the SIDH key generation phase can be also accelerated in a similar way as it happens in the
ECDH protocol implementation reported in [33].

Algorithm 3 was designed to perform arithmetic operations over Fq, where in the general setting
q = p2. However, Algorithm 3 can also be useful in the setting q = p. For the rest of this section, we
adhere to the elliptic curve parameters proposed by Costello et al. [13].

Let PA = (xPA
, yPA

) and PB = (xPB
, yPB

) be the base points of Alice and Bob, respectively. By
construction, the authors of [13] selected PA and PB in such a way that their affine coordinates lie in Fp.
Using the distortion map action, they obtained the points QA = (−xPA

, yPA
i) and QB = (−xPB

, yPB
i),

which happen to be linearly independent to PA and PB, respectively. Let us recall that Alice’s points
have order rA = 2eA , while Bob’s points have order rB = 3eB . Under these conditions, Costello et al. [13]
employed the following method to compute χ(P + [k]Q) in the fixed-point scenario.

Method 3: Compute the Montgomery ladder algorithm in Fp to obtain χ([k]Q) ∈ P1(Fp). Then
recover the y-coordinate of [k]Q, and finally perform a projective point addition to obtain χ(P + [k]Q).
The cost of Method 3 is of about 8.2 m̂-per-bit, where m̂ denotes a multiplication in Fp. Assuming
1M = 3m̂, one concludes that Method 3 takes around one third of the cost of Method 1.

Sticking to the same conditions, we consider to perform operations of Algorithm 3 over Fp. To
that end, this procedure requires χ(Q− P) ∈ P1(Fp). Unfortunately, this is not the case for the points
selected using the parameter generation of [13]. Indeed, note that one of the projective coordinates of
χ(Q− P) = ((x2P + 1)i : 2xP) is not in Fp. As a consequence, it would appear that the point selection
method used in [13] restricts the use of Algorithm 3.

However, not all is lost. We prevent these issues and propose an alternative solution that combines
the efficiency offered by Algorithm 3 and the parameter selection described above.

Our idea consists of employing Algorithm 3 to compute χ(S+[k′]Q) for an order-d point S ∈ E(Fp2),
such that χ(Q− S) ∈ P1(Fp) and k′ ≡ k/d mod r. Thereafter one can compute χ([k]Q) = [d]χ(S +
[k′]Q), followed by the recovery of the y-coordinate of [k]Q, and finally the addition of the point P (as
in Method 3) to end up with χ(P + [k]Q). We must ensure that S /∈ 〈Q〉, and for efficiency reasons we
also impose the restriction that the point S must have a low order d 6= 2. These steps are summarized
in Algorithm 4.

Looking for a suitable point S the most natural choice to obtain low order points is that Alice uses
Bob’s points and vice versa. Hence, let us define the following points,

S =

{
SA = [3eB−1]QB , for Alice;
SB = [2eA−2]QA , for Bob.

(6)

By construction SA and SB were chosen such that both χ(QA − SA) and χ(QB − SB) are in P1(Fp).
The cost of Algorithm 4 is similar to the cost of Algorithm 3 plus a constant number of multiplications

(< 30M). However, the scalar multiplication operations are performed over Fp resulting in a cost of
approximately 4.6 m̂-per-bit. Thus, Algorithm 4 provides an acceleration of a factor 1.78 speedup
compared to the performance of Method 3.

Table 1 summarizes the computational costs of the algorithms discussed in this section. We consid-
ered two scenarios: the first one is when points are fixed and known in advance; and the second one
when dealing with unknown points. For both scenarios our methods outperform the techniques used in

9

Algorithm 4 Proposed algorithm to compute χ(P + [k]Q) in the fixed-point scenario and adapted to
the elliptic curve parameters defined in [13]. Let I ∈ {A = Alice, B = Bob} denote the SIDH protocol
participant.
Input: (k, tI , PI , QI , SI), where k is an tI -bit number (tA = 372 and tB = 379), PI and QI are points

of order rI (defined as in [13]), and SI is a point of order dI (defined as in Eq. 6).
Precomputation: Compute a look-up table T (QI) defined as in Eq. 5. Compute U0, U1, V0, V1 ∈

E(Fp2) defined as in Eq. 8.
Output: χ(PI + [k]QI).

1: k′ ← k/dI mod rI
2: if I = Alice then // Section 3.3.1.
3: (α, β, k′)← (k′eA−1, k

′
eA−2, k

′ mod 2eA−2)
4: end if
5: R1, R2 ← Algorithm3q=p,T (QI)(k

′,χ(SI), χ(QI − SI))
// R1 = χ(SI + [k′]QI)

6: R1 ← [dI]R1, R2 ← [dI]R2

7: (XR1 : YR1 : ZR1)← y-Recover(R1, R2) // Section 3.3.
8: if I = Alice then // Section 3.3.1.
9: U ← cmove(α,U0, U1)

10: V ← cmove(β, V0, V1)
11: R3 ← (XR1 : YR1 : ZR1) + U + V
12: else if I = Bob then
13: R3 ← (XR1 : YR1 : ZR1) + PB
14: end if
15: return χ(R3)

state-of-the-art implementations [12,13,16,26]. In §6, we report the impact yielded by these algorithms
on the SIDH protocol overall performance.

3.3 Recovering the y-coordinate of P + [k]Q

As in the classical Montgomery ladder, one can recover the y-coordinate of P + [k]Q using the values
computed in the last iteration of the right-to-left algorithm. This can be done by restating the formula
given in Okeya-Sakurai’s paper [31, Corollary 2] as discussed next.

Let us consider an affine point (x, y) with y 6= 0, and the points Pi = (Xi : Zi) ∈ P1, for i = 1, 2, 3
such that, (X2 : Z2) = (X1 : Z1)− (x, y), and (X3 : Z3) = (X1 : Z1) + (x, y). Then one can compute,

X ′1 = 4ByZ1Z2Z3X1

Y ′1 = (X2Z3 − Z2X3)(X1 − Z1x)
2

Z ′1 = 4ByZ1Z2Z3Z1 ,
(7)

such that the point (X ′1 : Y ′1 : Z ′1) ∈ P2 belongs to the same equivalence class of the point (X1 : Z1) ∈ P1.
Recall that the loop-invariant of the right-to-left ladder is R0−R1 = R2. Thus, the accumulators in

the i-th iteration hold the values R0 = [2i]Q, R1 = P + [k mod 2i]Q, and R2 = [2i−(k mod 2i)]Q−P ,
respectively. Since k is a t-bit number, then after t iterations one can compute R3 = R0 +(R2) R1

and use the points stored in those four accumulators to apply Eq. 7 as: (x, y)← R0; (X1 : Z1)← R1;
(X2 : Z2)← R2; and (X3 : Z3)← R3. This allows the recovery of the y-coordinate of the point R1 =
P + [k]Q. The cost of the y-coordinate recovering just described is one differential addition more than
the original Okeya-Sakurai technique. Thus, the only requirement is to have a previous knowledge of
the point [2t]Q.

10

Table 1: Algorithms for computing χ(P + [k]Q) in the fixed- and variable-point scenario. The third
column shows ladder step arithmetic operation costs and the fourth column shows the predicted accel-
eration factor. We assume that 1M = 3m̂, 1S = 0.66M, and 1ŝ = 0.8m̂.

Scenario Field Mult-per-bit AF Algorithms

Fixed-point
Fp2

7.6M Method 1
4.3M 1.77 Alg. 3 (this work)

Fp
8.2 m̂ Method 3 [13]
4.6 m̂ 1.78 Alg. 4 (this work)

Variable-point Fp2
11.9M 3-point ladder [17]
8.6M 1.38 Alg. 2 (this work)

In the fixed-point scenario, the point [2t]Q can be saved together with the look-up table constants.
This enables the usage of Algorithm 3 as a subroutine of Algorithm 4 for accelerating the P + [k]Q
operation in the fixed-point scenario. Nonetheless, the fact that Alice uses points of 2-smooth order
produces some troubles for recovering the y-coordinate of [k]QA. We dedicate the next subsection for
exposing this issue and the solution that we found to it.

3.3.1 An Implementation Issue: Alice’s y-Coordinate Recovering

We found a subtle issue when Alice tries to recover the y-coordinate of [k]QA. Since QA has order 2eA
then R0 = [2i]QA = O for all i ≥ eA. Note that for a t-bit scalar k, the point R0 = [2t]Q is directly
involved in the recovery of the projective coordinates of the point P + [k]Q. Hence, after running eA
steps of the right-to-left ladder we end up having yR0 = 0, which makes the usage of Eq. 7 impossible.
In order to overcome this problem we propose the solution described in Algorithm 4. The main idea
consists of running only t′ iterations of Algorithm 3, where t′ is the largest number such that t′ < eA
and the y-coordinate of R0 = [2t

′
]Q is different than 0. This allows us to recover the y-coordinate using

Eq. 7. However notice that if we set t′ = eA − 1, then R0 becomes a point of order two, i.e. yR0 = 0.
For this reason, we chose t′ = eA − 2, since then R0 = [2t

′
]QA, and yR0 6= 0. The points corresponding

to the last two missing steps of the ladder can be conditionally added together with the point PA.
Referring to Algorithm 4, in step 1 the scalar k′ is computed. Then in steps 2-4 the values of the two

most significant bits of k′ are saved as α = k′eA−1 and β = k′eA−2. Also k
′ is updated to consider only its

t′ least significant bits. Then, Algorithm 3 computes SA+[k′]QA performing exactly t′ iterations. After
clearing SA, the accumulators hold R0 = R1 +R2 = [2eA−2]QA and yR0 6= 0. This allows to recover the
y-coordinate of [3(k′ mod 2eA−2)]QA using Eq. 7. Thereafter, in steps 9-11 the points 3k′eA−12

eA−1QA
and 3k′eA−22

eA−2QA are conditionally added to obtain [3k′]QA = [k]QA. Finally the procedure returns
χ(PA + [k]QA).

The conditional point additions of steps 9-11 must be computed in a secure way. One common
technique is to conditionally select U ∈ E(Fq) from {U,O} according to the bit value (this can be
securely implemented using a conditional move or conditional swap). However, there is an issue when
the bit chooses O due to the projective point addition is not complete, i.e. it can not handle the point
at infinity. To remedy this situation, we precompute the following points:

U0 = −PA , U1 = U0 + [3× 2eA−1]QA ,
V0 = [2]PA , V1 = V0 + [3× 2eA−2]QA.

(8)

Steps 9-11 of Algorithm 4 show how to select these points by using the auxiliary function cmove, which
conditionally moves the points according to the input bit value. Note that regardless the bit values, our
procedure always add PA.

11

Table 2: Cost of point tripling formulas (in P1) for a Montgomery elliptic curve with parameter A =
A0/A1.

A = A0/A1 Cost Precomputation Reference

A1 = 1
7M + 4S + 8A {(A+ 2)/4} [30]

6M + 5S + 9A ∅ [36]

A1 arbitrary

8M + 4S + 8A {A0 + 2A1, 4A1} [13]

7M + 5S + 10A {A0 ± 2A1} [11]

7M + 5S + 9A {A0 − 2A1, 2A1} Our work

The overhead caused by these modifications in Alice’s side is negligible in comparison with Bob’s
method. By using this approach, both Alice and Bob can benefit from the usage of a pre-computation
table to accelerate the key generation phase.

4 Optimization of Point Tripling in Montgomery Curves

The calculation of large-degree isogenies requires to compute either [2i]χ(P) or [3i]χ(P) for some point
P ∈ E(Fq) and some integer i. These operations are computed repeatedly applying point doubling or
tripling algorithms using projective formulas in P1. For the sake of efficiency, we look for an optimized
formula that computes the point tripling operation faster.

A common technique to compute [3]P consists of performing a point doubling followed by a dif-
ferential point addition, i.e. [3]P = [2]P +(P) P . This method has a cost of 7M+4S+8A field arith-
metic operations. Recently, Subramanya Rao [36] showed a more efficient formula to compute a point
tripling. Given P = (X1 : Z1) and let A be the Montgomery curve parameter, such a formula calculates
[3]P = (X3 : Z3) as follows:

λ =
(
X1

2 − Z1
2
)2

γ = 4(X1
2 + Z1

2 +AX1Z1)

X3 = X1

(
λ− γZ1

2
)2

Z3 = Z1

(
λ− γX1

2
)2
.

(9)

This formula is derived by coalescing the point doubling and differential addition and its computational
cost is 6M+5S+9A field operations.

In the SIDH context, the parameter A of the Montgomery elliptic curve (see Eq. 2) is not fixed, since
it may change due to the computation of isogenies. Because of this, the parameter A is represented as a
quotient A = A0/A1. This representation, which was introduced in [13], avoids the usage of inversions
for the computation of large-degree isogenies. Therefore, tripling formulas must be modified to operate
with A0 and A1. Table 2 shows the cost of several tripling formulas reported in the literature.

We optimize the calculation of the tripling formula observing that 2X1Z1 can be calculated from
X1

2, Z1
2, and (X1 + Z1)

2 as:

2X1Z1 = (X1 + Z1)
2 − (X1

2 + Z1
2) ; (10)

thus, λ from (9) can be also calculated using (10) as follows:

λ = (X1 + Z1)
2(X1 − Z1)

2

= (X1 + Z1)
2
[
(X1

2 + Z1
2)− 2X1Z1

]
;

(11)

12

likewise, γ from (9) is given as:

γ = 4
(
X1

2 + Z1
2 +AX1Z1

)
= 2

[
2(X1

2 + Z1
2 +AX1Z1)

]
= 2

[
2(X1 + Z1)

2 + (A− 2)(2X1Z1)
]
.

(12)

Using Eq. (10)-(12) and considering that A = A0/A1, we calculate [3]P = (X3 : Z3) as follows:

λ = (2A1)(X1 + Z1)
2
[
(X1

2 + Z1
2)− 2X1Z1

]
γ = 4

[
(2A1)(X1 + Z1)

2 + (A0 − 2A1)(2X1Z1)
]

X3 = X1

(
λ− γZ1

2
)2

Z3 = Z1

(
λ− γX1

2
)2
.

(13)

Assuming A′0 = A0 − 2A1 and A′1 = 2A1 are precomputed, then our point tripling formula requires
7M+5S+9A using the following sequence of operations:

1: t0 ← (X1)
2

2: t1 ← (Z1)
2

3: t2 ← X1 + Z1

4: t2 ← (t2)
2

5: t3 ← t0 + t1
6: t4 ← t2 − t3
7: t5 ← A′0 × t4

8: t2 ← A′1 × t2
9: t5 ← t2 + t5

10: t5 ← t5 + t5
11: t5 ← t5 + t5
12: t0 ← t0 × t5
13: t1 ← t1 × t5
14: t4 ← t3 − t4

15: t2 ← t2 × t4
16: t0 ← t2 − t0
17: t1 ← t2 − t1
18: t0 ← (t0)

2

19: t1 ← (t1)
2

20: X3 ← X1 × t1
21: Z3 ← Z1 × t0

It can be seen that our formula improves point tripling computation by 1M-1S-1A with respect to the
formula used by Costello et al. in [13] (cf. Table 2). Independent work of Costello and Hisil [11] gives
formulas for point tripling; however, our formulas are one field addition faster.

Bob’s isogeny computations require the frequent computation of point tripling operations to calculate
points of the form [3i]P. Therefore, one can see that any improvement in the tripling formula impacts
directly the calculation of large-degree isogenies, which are by far the most time-consuming operations
in the SIDH protocol.

5 Finite Field Arithmetic Implementation

The instantiation of the SIDH protocol by Costello et al. [13] uses a prime modulus of the form,
pCLN = 23723239 − 1. Notice that this prime can be represented using twelve 64-bit words.

Since the SIDH protocol computes isogenies of supersingular elliptic curves defined over the field
Fp2 , a sensible implementation of the SIDH protocol must implement fast arithmetic in the quadratic
field Fp2 . Quadratic field arithmetic can be performed more efficiently by means of a field towering
approach that relies on an optimized implementation of the base field arithmetic Fp. For example, the
multiplication and squaring operations in the quadratic extension field translate to the computation of
three and two field multiplications in the base field Fp as discussed next.

Let Fq=p2 = Fp[i]/(i2 + 1), where i2 + 1 is an irreducible binomial6 in Fp[i]. The field elements
a, b ∈ Fq can be written as a = a0 + a1 · i and b = b0 + b1 · i. Using a Karatsuba approach the field
multiplication c = a · b = c0 + c1 · i can be computed as,

c0 = a0 · b0 − a1 · b1,
c1 = (a0 + a1)(b0 + b1)− a0 · b0 − a1 · b1,

(14)

6Always true whenever p mod 4 = 3.

13

which can be performed at a cost of three integer multiplications, five integer additions and two modular
reductions. Similarly the field squaring operation, for a ∈ Fq, is computed as a2 = (a0 + a1 · i)2 =
(a0+a1) · (a0−a1)+2a0a1 · i at a cost of two integer multiplications, two modular reductions and three
integer additions.

In the following, several programming and algorithmic techniques that lead to a fast implementation
of the field multiplication and squaring operations in the base field Fp will be discussed. Our software
library relies heavily on novel instruction sets recently introduced in modern Intel and AMD processors,
which have been especially designed for achieving a faster execution of multi-precision integer arithmetic.
For the sake of concreteness our description will be mainly focused on the popular prime modulus pCLN
striving to exploit its very special form.

5.1 Features of x86_64 Arithmetic Instructions

In order to reduce the latency of the field arithmetic operations, we took advantage of the ADCX/ADOX
and MULX instructions available in the newest Intel and AMD micro-architectures. These instructions
were designed for speeding-up integer multi-precision arithmetic operations.

Starting from the Intel Haswell micro-architecture, the instruction MULX was introduced as a part of
the Bit Manipulation Instruction set (BMI2). MULX is an extension of the traditional 64-bit multiplication
instruction MUL. More specifically, MULX computes the multiplication of two unsigned 64-bit operands
without affecting the arithmetic flags. Additionally, MULX uses a three-operand code that allows the
programmer to choose the registers that will be used for storing the upper and lower part of the output
product. This feature permits to preserve the data stored in the input registers. Further, MULX can be
combined with specialized addition instructions that do not affect the carry chain state.

On the other hand the set of instructions ADX (addition instructions with independent carry
chains) [18], which was first supported in the Intel Broadwell micro-architecture, includes the instruc-
tions ADCX and ADOX. These two instructions are extensions of the traditional 64-bit addition instructions
ADD/ADC, and were designed for handling two independent carry chains. The new instructions compute
unsigned 64-bit integer additions with an input carry, and generate an output carry without modifying
the carry flag (CF) and the overflow flag (OF), respectively. These features permit that ADCX and ADOX
can be executed concurrently.

The combined usage of these novel instructions, it allows a more efficient implementation of the field
arithmetic operations that will be studied in the remaining of this section.

5.2 Base Field Multiplication and Squaring

Field multiplication (or squaring) over Fp is performed by first computing an integer multiplication
(or an integer squaring) followed by a modular reduction. Our integer arithmetic implementation is
described next.

5.2.1 Integer Multiplication

Integer multiplication was performed using a combination of the Karatsuba and the schoolbook multipli-
cation methods. After experimenting with different settings we arrived to an optimal combination that
consists of implementing one Karatsuba level recursion followed by the application of the schoolbook
method for the lower product computations.

Let a, b ∈ Fp be written as, a = aL + aH · x and b = bL + bH · x, such that x = rn/2, r = 264, and
n = 12. Using once again a Karatsuba approach (this time at the base field level), let us define cL, cM ,
and cH as,

cL = aL · bL , cM = (aL + aH) · (bL + bH) , cH = aH · bH .

14

It follows that the integer product c = a · b can be computed as,

c = cL + (cM − cL − cH) · x+ cH · x2 .

In spite of its quadratic complexity with respect to the word size of the operands, for small values
of n the schoolbook method tends to outperform a Karatsuba-based product computation. Hence, the
multiplications involving six-word operands required for obtaining the auxiliary operands cH , cL, and
cM were performed using the schoolbook method.

The efficiency of the schoolbook method crucially depends on the selection of the partial products
and the way that they are added. Integer multiplication can be performed using a product-scanning
multiplication strategy that computes all the partial products column-wise. Alternatively, one can also
process the operands row-wise. In this case the multiplicand operand is multiplied by each word of
the multiplier. After performing all word multiplications, the partial products are properly shifted and
added to obtain the output product. For Intel architectures this latter approach appears to be more
advantageous because the carry propagation performed by means of the CF flag provides a more efficient
carry management. This approach also permits to take full advantage of the MULX instruction, since it
does not corrupt the carry flag when combined with the addition instructions7. Finally, this strategy
profits from the usage of the ADCX/ADOX instructions, which can handle two independent carry chains
concurrently. Hence, integer multiplication a · b for up to eight-word operands a and b was performed
using the operand scanning implementation of the schoolbook multiplication, at a computational cost
of n2 and (n− 1)2 64-bit word multiplications and additions, respectively.

We only used a first level of Karatsuba because according to our experiments, the schoolbook method
outperforms the Karatsuba approach for operands that can be accommodated with eight 64-bit words
or less. For example, an eight-word Karatsuba multiplication performs 48 word multiplications, for a
total execution time of 147 clock cycles, whereas the schoolbook method requires 64 word multiplications
at an overall runtime of 141 clock cycles. For operands requiring nine words or more, our experiments
show that the Karatsuba approach yields a better time performance than the one associated to the
schoolbook method.

5.2.2 Integer Squaring

Field squaring was performed using a combination of the Karatsuba and the schoolbook methods as
follows. Let us represent an arbitrary element a ∈ Fp as a = aL + aH · x, such that x = rn/2, r = 264,
and n = 12. Then the integer squaring operation c = a2 can be computed as,

c = cL + 2 · (aL · aH) · x+ cH · x2,

where cL = aL
2 and cH = aH

2. Integer squaring was computed using two Karatusba recursion levels,
which are followed by a schoolbook computation of integer squaring and multiplication operations per-
formed on three-word operands, respectively. The reason why in this case we used one more Karatsuba
level is mainly because by unrolling the main loop of the schoolbook algorithm, we managed to optimize
the required addition computations. This way, the addition computations were optimized by perform-
ing a batch computation of as many of them as possible. From our experiments, we observed that for
a six-word operand a, the Karatsuba and the schoolbook squaring methods require 73 and 102 clock
cycles, respectively. In the case of a four-word operand, the schoolbook method requires 34 clock cycles
versus 41 clock cycles required by the Karatsuba method.

7We stress that this observation applies mainly for architectures supporting the ADX instruction set, such as the Intel
Skylake micro-architecture.

15

5.2.3 Modular Reduction

Montgomery introduced in [29] an algorithm that performs a modular multiplication a·b mod p, without
computing expensive divisions by p. Montgomery multiplication projects the operands a, b ∈ Zp to the
integers ã, b̃ ∈ Zp using the mappings, ã = a ·R mod p and b̃ = b ·R mod p. The parameter R is usually
chosen as a power of two, which is co-prime to the odd modulus p. The integers ã, b̃ are said to be in
the Montgomery domain. Montgomery reduction [29], named by its author as the REDC algorithm, is
generally considered the most efficient approach for performing multi-precision modular arithmetic.

Once again, let n denote the number of words or digits used to represent integers in radix-2w, where
w is the word size of the targeted architecture. The REDC algorithm can be implemented computing
exactly n2 + n word multiplications [29, p. 2]. Algorithm 5 presents a multi-precision version of the
REDC algorithm. The input parameter T of Algorithm 5 is an 2n-digit register that holds the result of
performing the integer multiplication T = a · b, where a, b ∈ Zp are n-digit numbers. A constant-time
execution of Algorithm 5 can be achieved by omitting the conditional subtraction of steps 7-9 using the
techniques introduced by Walter in [37].

Algorithm 5 Multi-precision REDC algorithm.
Input: T , an integer such that 0 ≤ T < Rp, R = 2wn, and a constant p′ = −p−1 mod 2w.
Output: C, an integer such that C = TR−1 mod p.

1: for i← 1 to n do
2: t← T mod 2w

3: q ← tp′ mod 2w

4: T ← (T + q · p)/2w
5: end for
6: C ← T
7: if C ≥ p then
8: C ← C − p
9: end if

10: return C

Several authors [1,20,23,27] have exploited special classes of moduli, which are especially amenable
for reducing the number of word multiplications associated to the REDC Algorithm. These moduli,
which are sometimes named Montgomery-friendly, have the following property. We say that a modulus p
is λ-Montgomery-friendly if p ≡ ±1 mod 2λ·w for positive integers λ and w.8 This property implies that
−p−1 ≡ ∓1 mod 2λ·w, which saves the multiplication computation of step 3 in Algorithm 5. This saving
immediately implies that the REDC algorithm can be computed using only n2 digit multiplications.
However, we can improve the performance of the REDC algorithm further as discussed next.

Exploiting the Special Form of the SIDH Moduli

The main algorithmic idea of the REDC multi-precision version shown in Algorithm 5 is that of cal-
culating a quotient q that makes T + q · p divisible by 2w. This allows to update T as (T + q · p)/2w,
which implies that at each iteration of Algorithm 5, the size of T is decreased by one word. Notice
that the value of q in step 3 directly depends on the updated value of T. This situation is commonly
known as a loop-carried dependency that prevents a further parallelization of Algorithm 5. Therefore,
this procedure can only process one q · p product per iteration with an associated cost of one 1×n digit
multiplication.

8Notice that the prime pCLN is a 5-Montgomery-friendly modulus setting w = 64.

16

t0t1t2t3t4t5t6t7t8t9t10t11t12t13t14t15t16t17t18t19t20t21t22t23

c0c1c2c3c4c5c6c7c8c9c10c11

l5l6l7l8l9l10l11 q i = 0

l5l6l7l8l9l10l11 q i = 1

l5l6l7l8l9l10l11 q i = 2

l5l6l7l8l9l10l11 q i = 3

l5l6l7l8l9l10l11 q i = 4

l5l6l7l8l9l10l11 q i = 5

l5l6l7l8l9l10l11 q i = 6

l5l6l7l8l9l10l11 q i = 7

l5l6l7l8l9l10l11 q i = 8

l5l6l7l8l9l10l11 q i = 9

l5l6l7l8l9l10l11 q i = 10

l5l6l7l8l9l10l11 q i = 11

Figure 2: Multi-precision execution of C = REDC(T) for n = 12. Given the input T = (t0, . . . , t23),
REDC calculates n times the product q · (p + 1), where p is a 5-Montgomery-friendly prime. This
implies that p + 1 can be expressed as (p11, p10, p9, p8, p7, p6, p5, 0, 0, 0, 0, 0). In order to update T, at
each iteration the partial products lj = pjq, for 5 ≤ j < 12 are computed. The dependency for
calculating q at each iteration is highlighted with arrows. Notice that the first five values of q only
depends on the unmodified value of T (this fact is represented by solid arrows).

Nevertheless, when Algorithm 5 is executed using a λ-Montgomery-friendly modulus the loop-carried
dependency can be avoided in up to λ iterations of the main loop. To see how this trick works notice
that in step 2 the value t is assigned with the least significant word of T. If p is a λ-Montgomery-friendly
modulus and p′ = 1. This implies that in step 3 there is no multiplication to be performed but a simple
assignment q = t. It follows that step 4 can be computed as,

(T + q · p)
2w

=
(T + t · p)

2w
=

(T + t · (p− 1)− t)
2w

.

Since p+1 can be represented as (pn−1, . . . , p0), where pi = 0 for 0 ≤ i < λ, the λ least-significant words
of the product t · (p+ 1) are all equal to zero. This implies that we can compute step 4 of Algorithm 5
by multiplying t with the n − λ most-significant words of p + 1, adding the resulting product with T,
and completely ignoring the least-significant word of this computation. In other words,

(T + q · p)
2w

=
(T + t · (p+ 1)− t)

2w
=

⌊
T + t · (p+ 1)

2w

⌋
.

We observe that since the least-significant words of T are not modified, then the value of q for the
next iteration can be obtained in advance, thus breaking the loop-carried dependency. In general, for
a λ-Montgomery-friendly prime one can calculate the value of q for λ iterations without the knowledge
of the values that T will be getting in those iterations.

We illustrate in Figure 2 the execution of the multi-precision REDC algorithm using as a modulus
p = pCLN, which is a 5-Montgomery-friendly modulus that has a size of n = 12 words. At the i-th
iteration of the REDC algorithm an updated value of q is calculated and multiplied by p+1. Then, the
result is added to T (on top), and the least-significant word of T is removed. After n iterations, the final
result is stored in C, which is composed of the twelve most-significant words of T . The vertical arrows
denote the dependencies associated to the computation of q. Since p is a 5-Montgomery-friendly prime,

17

from the first to the fifth iteration q only depends on the original value of T . However in the sixth
iteration q depends on T and on the value of q · (p+ 1) from the first iteration (this fact is highlighted
by the dashed arrows and the vertical rectangles). As can be seen, no loop-carried dependencies appear
during the first five iterations, allowing to compute up to five q · (p + 1) products before updating T
becomes necessary. These products can be viewed as a 7 × 4 digit multiplication followed by a 64-bit
left-shift in the case of pCLN modulus (these operations are highlighted in the shadowed area). Thus,
after performing three 7 × 4 digit multiplications and three 64-bit left-shifts the modular reduction is
completed. This latter observation inspired us to come out with the modified version of Algorithm 5
shown in Algorithm 6.

Algorithm 6 Modified modular reduction algorithm for a λ-Montgomery-friendly modulus.
Input: T , an integer such that 0 ≤ T < Rp, R = 2wn, p is a λ-Montgomery-friendly modulus, and

0 < B ≤ λ.
Output: C, an integer such that C = TR−1 mod p.

1: λ0 ← bn/Bc
2: λ′0 ← n mod B
3: M ← b(p+ 1)/2λ·wc
4: for i← 1 to λ0 do
5: Q← T mod 2B·w

6: T ← bT/2B·wc+ 2(λ−B)·wQ ·M
7: end for
8: if λ′0 6= 0 then
9: Q← T mod 2λ

′
0·w

10: T ← bT/2λ′0·wc+ 2(λ−λ
′
0)·wQ ·M

11: end if
12: C ← T
13: if C ≥ p then
14: C ← C − p
15: end if
16: return C

The modified REDC procedure is presented in Algorithm 6. Given a λ-Montgomery-friendly modulus
p, the number of iterations without loop-carried dependency can be chosen as, 0 < B ≤ λ (this value
B is equals four for the example in Figure 2). In step 5 of Algorithm 6 the value Q = T mod 2B·w

is computed. Thereafter Q is multiplied by the λ1 = n − λ most-significant words of p + 1 given by
M = b(p+1)/2λ·wc. It is noticed that Q is a B-digit number. Hence, Q ·M can be calculated as a B×λ1
digit product. At this point, the value 2(λ−B)·wQ·M is added to bT/2B·wc. Hence, the B least-significant
digits of T are discarded. Repeating this procedure λ0 = b nB c times, the size of T is decreased by Bλ0
words. In the case that n mod B = 0, the modular reduction has been completed. Otherwise, λ′0 = n
mod B digits of T must still be reduced by applying one extra iteration using B = λ′0 (lines 8-11 of
Algorithm 6).

Algorithm 6 shares similar ideas as the ones presented by Bos and Friedberger in [5]. In particular,
the strategy named shifted (sh) in [5] that allows to trade multiplications by right-shift operations can
be easily adapted to the setting described here and shown in Algorithm 6.

Correctness

From the previous discussion, it follows that the first B iterations of the multi-precision REDC Algo-
rithm 5 do not show loop-carried dependencies. Thus, the first B values of q can be computed at once,

18

Table 3: Performance comparison of different modular reduction algorithms. For Algorithm 6, the
admissible values of B for the prime pCLN = 23723239 − 1 were measured. The timings are reported in
clock cycles measured on a Skylake micro-architecture. sh stands for the shifted technique as proposed
in [5].

Ref. B Instr. Set Operation Counts Clock
CyclesMul Add Mov Other

T
hi
s
w
or
k

1
mul/adc 84 251 204 8 281
mulx/adc 84 191 24 8 232
mulx/adx 84 191 24 8 230

2
mul/adc 84 289 207 10 244
mulx/adc 84 257 27 10 208
mulx/adx 84 149 27 16 187

3
mul/adc 84 301 210 10 227
mulx/adc 84 281 34 10 210
mulx/adx 84 137 34 18 193

4
mul/adc 84 307 210 10 218
mulx/adc 84 292 36 10 191
mulx/adx 84 130 42 17 162

4 + (sh)
mul/adc 72 265 186 46 204
mulx/adc 72 253 36 46 189
mulx/adx 72 118 36 55 156

[5]

1 mul/adc 84 332 157 41 254

2 mul/adc 84 358 202 61 275

1+(sh) mul/adc 72 299 223 86 240

by setting Q = T mod 2B·w (line 5 of Algorithm 6). Then T is updated with bT/2λ′0·wc+2(λ−λ
′
0)·wQ·M .

In this way the B least-significant words of T are removed. After λ0 iterations, the size of T will be
reduced Bλ0 words exactly as it would happen after n − λ′0 iterations of a regular execution of the
multi-precision REDC algorithm. Whenever B - n, one additional iteration is processed to reduce the
remaining λ′0 digits. Since Algorithm 6 performs the same reduction that Algorithm 5 computes, the
final conditional subtraction step of lines 13-15 is also required.

Case Study pCLN = 23723239 − 1

Here we focus our attention to the problem of fine-tuning the design parameters of Algorithm 6 when
dealing with the modulus pCLN.

We performed several experiments with different values of the parameter B trying to determine the
optimal value of this parameter that yields the modular reduction with the smallest latency. In order
to provide a fair comparison, we performed the implementation of this operation using three different
variants, which mainly differ in the type of x86_64 arithmetic instructions that were used (cf. §5.1).
The benchmarked timings obtained from our experiments are reported in Table 3. It can be seen that
the best results were obtained using the combination of MULX and ADCX/ADOX instructions and setting
B = 4, along with the shifted technique, this latter techinque was proposed in [5]. Using this design
choice, the modular reduction has a cost of three 6 × 4 64-bit multiplications, three 52-bit right-shifts
over 10-word operands, and three additions over 11-word operands. The measured latency is of 156 clock
cycles.

Our fastest modular reduction timing (reported in Table 3) is more efficient by a factor 1.6 than
the one achieved in [5] with B = 1, which corresponds to the modular reduction based in the product

19

scanning multiplication as presented in Costello et al. [13]. Moreover, we obtained a modular reduction
that is faster by a factor 1.5 than the one reported in [5] with B = 1 and the shifted technique (sh). This
latter result somewhat contradicts the conjecture that a value B > 1, may lead to a lower performance
than the one associated with the choice B = 1, adopted by Bos and Friedberger in [5].

6 Implementation and Benchmark Results

We benchmarked our software on an Intel Core i7-4770 processor supporting the Haswell micro-architec-
ture and on an Intel Core i7-6700K processor that supports the Skylake micro-architecture. To guarantee
the reproducibility of our measurements, the Intel Hyper-Threading and Intel Turbo Boost technologies
were disabled. Our source code was compiled using the GNU C Compiler (gcc) v6.1.0 with the -O3
optimization flag and using the options -mbmi2 -fwrapv -fomit-frame-pointer and -mbmi2 -madx
-fwrapv -fomit-frame-pointer for the Haswell and Skylake micro-architectures, respectively. Our
code is available at: [http://github.com/armfazh/flor-sidh-x64].

6.1 Related Works

Due to the novelty of the SIDH protocol only a few software and hardware implementations have
so far been reported. Several of these implementations use different elliptic curve parameters, which
makes it difficult to come out with a fair comparison. The publicly-available implementation of Costello
et al. [13] is a portable software library called SIDH v2.0. This library includes optimized 64-bit
code for field arithmetic, public key compression algorithms and an instantiation of the Diffie-Hellman
protocol. SIDH v2.0 is widely considered the state-of-the-art software library for implementing the SIDH
protocol. Other SIDH publicly available software libraries include [2, 16]. In [16], De Feo reports an
implementation of the SIDH protocol supporting several prime sizes [16]. His implementation relies on
the GMP library [19] as a modular arithmetic back-end. The implementation by Azarderakhsh et al. [2]
is also publicly available. However, the performance of this library is significant slower than the library
presented in [13].

In this work, we rely on the software library of Costello et al. [13], since it is the fastest one reported
in the open literature. Further, in order to report a more complete picture of the SIDH protocol
acceleration provided by the techniques presented in this paper, we plugged-in our elliptic curve and
field arithmetic functions in that library.

6.2 Prime Field Arithmetic

In Table 4, the running time of relevant prime field and elliptic curve operations for the Haswell and
Skylake micro-architectures are reported.

Comparing with the implementation of Costello et al., the multiplication in the quadratic extension
field Fp2 , which is a performance-critical operation, was consistently accelerated by a factor 1.32-1.34
speedup in both platforms. This improvement produces an immediate acceleration of all elliptic curve
operations, yielding a factor 1.13-1.25 speedup in the Haswell micro-architecture. For Skylake, the
impact of our implementation is higher, since our library benefits from more specialized multi-precision
arithmetic instructions. In Skylake, the elliptic curve operations achieved a factor 1.14-1.32 speedup.

6.3 Impact of the P + [k]Q optimization

We measured the performance rendered by the ladder algorithms presented in §3. To that end, we take
as a baseline the original SIDH v2 library and plugged in our algorithms using the same prime field
arithmetic interface.

20

http://github.com/armfazh/flor-sidh-x64

Table 4: Timing performance of selected base field, quadratic and elliptic-curve arithmetic operations.
The last column shows the acceleration factor that our library obtained in comparison with the SIDH
v2 library [13]. All timings are reported in clock cycles measured in the Haswell and Skylake micro-
architectures.

Domain Operation Haswell Skylake

CLN [13] Our work AF CLN [13] Our work AF

Fp

Modular reduction 279 242 1.15 212 156 1.36
Multiplication 670 605 1.11 486 415 1.17
Squaring 724 526 1.38 523 395 1.32
Inversion 622,761 462,099 1.35 456,621 354,373 1.29

Fp2

Multiplication 2,143 1,626 1.32 1,582 1,183 1.34
Squaring 1,420 1,256 1.13 1,026 880 1.16
Inversion 625,904 463,773 1.35 458,706 355,889 1.29

E(Fp2)

Dif. Addition 10,160 8,316 1.22 7,371 5,896 1.25
Point Doubling 12,019 9,619 1.25 8,855 6,969 1.27
Point Tripling 24,024 19,247 1.25 17,799 13,528 1.32
Ladder Step (Fp2) 19,715 16,123 1.22 14,384 11,802 1.22
Ladder Step (Fp) 7,403 6,085 1.22 5,259 4,327 1.21
Iso. Gen. 3-degree 11,678 9,737 1.19 8,537 6,873 1.24
Iso. Gen. 4-degree 8,174 7,252 1.13 5,980 5,241 1.14
Iso. Eval. 3-degree 15,817 12,842 1.23 11,864 9,369 1.27
Iso. Eval. 4-degree 21,480 17,154 1.25 15,932 12,377 1.29

The benchmarked timings are summarized in Table 5. In all the cases, we were able to corroborate
the theoretical predictions summarized in Table 1. For example for the variable-point scenario, the SIDH
v2 library computes the three-point ladder in 11.2× 106Haswell clock cycles. Our software accelerates
this timing by a factor 1.38 speedup to compute the same operation. Thank to this, Alice and Bob
shared-secret time performance are accelerated by around 6-7% (cf. Table 6). In the case of the fixed-
point scenario it can be observed that using either Algorithm 3 or Algorithm 4 our approach is ≈ 1.7
faster than the methods implemented in the SIDH v2 library. Once again these results confirm the
theoretical estimates given in Table 1. The pre-computed look-up tables have a size of around 35KB.
This relatively moderate size permits that a large part of the look-up tables can fit in the Level-1 Data
cache memory of the target platforms (which have a size of 32KB).

Regarding side-channel protection, we want to note that the right-to-left algorithms were imple-
mented considering classic countermeasures; for example, using a straight and a regular execution of
instructions. Moreover, no secret values were used to index look-up tables or to bifurcate the execution
of any function.

6.4 Point Tripling Impact

Clearly, the most time consuming SIDH operation is the calculation of large-degree isogenies. In the
case of Bob, this process implies to perform a large number of point tripling computations.

Our implementation of the point tripling formula proposed in §4 saves up to 400 clock cycles,
corresponding to the difference 1M-1S-1A (cf. Table 4). This reduction in the cost of the point tripling
computation yields a small but noticeable acceleration of the whole protocol. More concretely, replacing
the tripling formula implemented in the SIDH v2 library by our proposed formula yields a speedup of
around 1-2% in the SIDH protocol execution.

21

Table 5: Performance comparison of different methods to compute χ(P + [k]Q). The implementation
of Methods 1, 2 and 3 were taken from the SIDH-v2 library [13]. All timings are given in 106 clock
cycles and were measured on a Haswell and on a Skylake micro-architecture.

Scenario Field Haswell Skylake Algorithm

Fixed-point
Fp2

6.7 4.9 Method 1
3.9 2.9 Alg. 3 (this work)

Fp
2.5 1.7 Method 3
1.5 1.0 Alg. 4 (this work)

Variable-point Fp2
11.2 8.1 3-point ladder
8.0 5.9 Alg. 2 (this work)

6.5 Performance Comparison of the SIDH Protocol

In Table 6, the running timings associated with the execution of both phases of the SIDH protocol
are reported. It is noted that the achieved speedups are highly correlated with the ones obtained for
the multiplication operation in the quadratic extension field Fp2 . This confirms the high-impact of this
operation in the performance of the whole protocol. For all of the SIDH operations, the performance
measured on Skylake was between 1.38 to 1.41 times faster than the one measured on the Haswell
processor (cf. Table 6). This acceleration can be seen as a consequence of the higher performance
achieved by the latest integer arithmetic instruction sets (which are available in Skylake but not in
Haswell).

Table 6: Performance comparison of the SIDH protocol. The running time is reported in 106 clock
cycles to compute the two phases of the SIDH protocol. Additionally, the speedup factor with respect
to the SIDH v2 library [13] is also reported.

Protocol Phase
Haswell Skylake

CLN This AF CLN This AF[13] work [13] work

Key Generation Alice 48.3 38.0 1.27 35.7 26.9 1.33

Bob 54.5 42.8 1.27 39.9 30.5 1.31

Shared Secret Alice 45.7 34.3 1.33 33.6 24.9 1.35

Bob 52.8 39.6 1.33 38.4 28.6 1.34

7 Conclusions

In this work we presented a number of optimizations targeting the supersingular isogeny-based Diffie-
Hellman protocol. We focused our attention on optimizing both the finite field and the elliptic curve
arithmetic layers.

We accelerated operations in the base field Fp and in its quadratic extension Fp2 , using the newest
arithmetic instruction sets available in modern Intel processors and also, by taking advantage of the
special form of the pCLN prime chosen in [13]. The combination of these techniques allowed us to
compute finite field arithmetic about 1.38 faster than the performance obtained by running the library
of [13] on the same Intel processor architectures.

22

Building on [33], we adapted a right-to-left Montgomery ladder variant to the context of the SIDH
protocol, where the elliptic curve operation P + [k]Q must be computed. In the case when the involved
points are known in advance, our algorithm enables for the first time the usage of precomputed look-up
tables to accelerate the SIDH key generation phase. We also presented an improved formula for elliptic
curve point tripling. Our formula permits to save one multiplication at the cost of one extra squaring
and one extra addition performed in the quadratic extension Fp2 .

Executing our software on an Intel Skylake Core i7-6700 processor we are able to compute the two
phases of the SIDH protocol, namely, key generation and shared secret, in less than 51.8 and 59.1
millions of clock cycles for Alice’s and Bob’s computations, respectively. This gives us a 1.33 times
speedup against the software implementation of Costello et al.

As a final remark, we stress that any source code based on the library SIDH v2 [13], can also be
benefited by our optimizations. For instance, the isogeny-based signature scheme recently presented
in [39].

References
[1] T. Acar and D. Shumow, “Modular Reduction without Pre-computation for Special Moduli,” Microsoft Research,

Tech. Rep., 2010.

[2] R. Azarderakhsh, D. Fishbein, and D. Jao, “Efficient Implementation of a Quantum-Resistant Key-Exchange Protocol
on Embedded Systems,” Center of Applied Cryptographic Research (CACR), Tech. Rep. CACR 2014-20, 2014.

[3] D. J. Bernstein, “Differential addition chains,” Feb. 2006. [Online]. Available: https://cr.yp.to/ecdh/
diffchain-20060219.pdf

[4] D. J. Bernstein and T. Lange, “Montgomery curves and the Montgomery ladder,” in Topics in Computational Number
Theory Inspired by Peter L. Montgomery, ser. London Mathematical Society Lecture Note. Cambridge University
Press, Oct. 2017, ch. 4, pp. 82–115.

[5] J. W. Bos and S. Friedberger, “Fast Arithmetic Modulo 2xpy − 1,” in 2017 IEEE 24th Symposium on Computer
Arithmetic (ARITH), July 2017, pp. 148–155. [Online]. Available: http://doi.org/10.1109/ARITH.2017.15

[6] C. K. Caldwell, “The Prime Glossary,” Dec. 2016. [Online]. Available: http://primes.utm.edu/glossary/xpage/
PierpontPrime.html

[7] D. Charles, E. Goren, and K. Lauter, “Cryptographic hash functions from expander graphs,” Cryptology ePrint
Archive, Report 2006/021, 2006. [Online]. Available: http://eprint.iacr.org/2006/021

[8] D. X. Charles, K. E. Lauter, and E. Z. Goren, “Cryptographic Hash Functions from Expander Graphs,” Journal of
Cryptology, vol. 22, no. 1, pp. 93–113, Jan 2009. [Online]. Available: https://doi.org/10.1007/s00145-007-9002-x

[9] A. Childs, D. Jao, and V. Soukharev, “Constructing elliptic curve isogenies in quantum subexponential
time,” Journal of Mathematical Cryptology, vol. 8, no. 1, pp. 1–29, Feb. 2014. [Online]. Available:
https://doi.org/10.1515/jmc-2012-0016

[10] A. M. Childs, D. Jao, and V. Soukharev, “Constructing elliptic curve isogenies in quantum subexponential time,”
2010. [Online]. Available: http://arxiv.org/abs/1012.4019

[11] C. Costello and H. Hisil, “A Simple and Compact Algorithm for SIDH with Arbitrary Degree Isogenies,” in Advances
in Cryptology – ASIACRYPT 2017: 23nd International Conference on the Theory and Application of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Dec. 2017.

[12] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik, “Efficient Compression of SIDH Public
Keys,” in Advances in Cryptology – EUROCRYPT 2017: 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 – May 4, 2017, Proceedings, Part I, J.-S.
Coron and J. B. Nielsen, Eds. Cham: Springer International Publishing, 2017, pp. 679–706. [Online]. Available:
https://doi.org/10.1007/978-3-319-56620-7_24

[13] C. Costello, P. Longa, and M. Naehrig, “Efficient Algorithms for Supersingular Isogeny Diffie-Hellman,” in Advances
in Cryptology – CRYPTO 2016: 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part I, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 572–601. [Online]. Available: https://doi.org/10.1007/978-3-662-53018-4_21

[14] C. Costello and B. Smith, “Montgomery curves and their arithmetic,” Journal of Cryptographic Engineering, pp.
1–14, 2017. [Online]. Available: http://dx.doi.org/10.1007/s13389-017-0157-6

23

https://cr.yp.to/ecdh/diffchain-20060219.pdf
https://cr.yp.to/ecdh/diffchain-20060219.pdf
http://doi.org/10.1109/ARITH.2017.15
http://primes.utm.edu/glossary/xpage/PierpontPrime.html
http://primes.utm.edu/glossary/xpage/PierpontPrime.html
http://eprint.iacr.org/2006/021
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1515/jmc-2012-0016
http://arxiv.org/abs/1012.4019
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-662-53018-4_21
http://dx.doi.org/10.1007/s13389-017-0157-6

[15] J.-M. Couveignes, “Hard Homogeneous Spaces,” Cryptology ePrint Archive, Report 2006/291, 2006, http://eprint.
iacr.org/2006/291.

[16] L. De Feo, “Software for “Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies”,” 2011,
http://github.com/defeo/ss-isogeny-software.

[17] L. De Feo, D. Jao, and J. Plût, “Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve
Isogenies,” Journal of Mathematical Cryptology, vol. 8, no. 3, pp. 209–247, Sep. 2014. [Online]. Available:
http://doi.org/10.1515/jmc-2012-0015

[18] V. Gopal, J. Guilford, G. Wolrich, W. Feghali, E. Ozturk, M. Dixon, S. Mirkes, M. Merten, T. Li, and T. Bret,
“Addition instructions with independent carry chains,” Jan. 9 2014, uS Patent App. 13/993,483. [Online]. Available:
https://www.google.com/patents/US20140013086

[19] T. Granlund and the GMP development team, GNU MP: The GNU Multiple Precision Arithmetic Library, 6th ed.,
2016, http://gmplib.org/.

[20] S. Gueron and V. Krasnov, “Fast prime field elliptic-curve cryptography with 256-bit primes,” Journal of
Cryptographic Engineering, pp. 1–11, 2014. [Online]. Available: http://dx.doi.org/10.1007/s13389-014-0090-x

[21] D. Jao and L. De Feo, “Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies,”
in Post-Quantum Cryptography: 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 –
December 2, 2011. Proceedings, B.-Y. Yang, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 19–34.
[Online]. Available: https://doi.org/10.1007/978-3-642-25405-5_2

[22] M. Joye, “Highly Regular Right-to-Left Algorithms for Scalar Multiplication,” in Cryptographic Hardware and
Embedded Systems - CHES 2007: 9th International Workshop, Vienna, Austria, September 10-13, 2007. Proceedings,
P. Paillier and I. Verbauwhede, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 135–147. [Online].
Available: https://doi.org/10.1007/978-3-540-74735-2_10

[23] M. Knežević, F. Vercauteren, and I. Verbauwhede, “Speeding Up Bipartite Modular Multiplication,” in Arithmetic
of Finite Fields: Third International Workshop, WAIFI 2010, Istanbul, Turkey, June 27-30, 2010. Proceedings,
M. A. Hasan and T. Helleseth, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 166–179. [Online].
Available: https://doi.org/10.1007/978-3-642-13797-6_12

[24] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-Quantum Cryptography on FPGA Based on
Isogenies on Elliptic Curves,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 1, pp.
86–99, Jan 2017. [Online]. Available: http://doi.org/10.1109/TCSI.2016.2611561

[25] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Fast Hardware Architectures for Supersingular Isogeny
Diffie-Hellman Key Exchange on FPGA,” in Progress in Cryptology – INDOCRYPT 2016: 17th International
Conference on Cryptology in India, Kolkata, India, December 11-14, 2016, Proceedings, O. Dunkelman and
S. K. Sanadhya, Eds. Cham: Springer International Publishing, 2016, pp. 191–206. [Online]. Available:
http://doi.org/10.1007/978-3-319-49890-4_11

[26] B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao, and M. Mozaffari-Kermani, “NEON-SIDH: Efficient Implementation
of Supersingular Isogeny Diffie-Hellman Key Exchange Protocol on ARM,” in Cryptology and Network Security:
15th International Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings, S. Foresti
and G. Persiano, Eds. Cham: Springer International Publishing, 2016, pp. 88–103. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-48965-0_6

[27] A. K. Lenstra, “Generating RSA Moduli with a Predetermined Portion,” in Advances in Cryptology —
ASIACRYPT’98: International Conference on the Theory and Application of Cryptology and Information Security
Beijing, China, October 18–22, 1998 Proceedings, K. Ohta and D. Pei, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 1–10. [Online]. Available: https://doi.org/10.1007/3-540-49649-1_1

[28] J. López and R. Dahab, “Fast Multiplication on Elliptic Curves Over GF(2m) without precomputation,” in
Cryptographic Hardware and Embedded Systems: First International Workshop, CHES’99 Worcester, MA, USA,
August 12–13, 1999 Proceedings, Ç. K. Koç and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 316–327. [Online]. Available: http://dx.doi.org/10.1007/3-540-48059-5_27

[29] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of Computation, vol. 44, pp.
519–521, 1985. [Online]. Available: http://doi.org/10.1090/S0025-5718-1985-0777282-X

[30] ——, “Speeding the Pollard and Elliptic Curve Methods of Factorization,” Mathematics of Computation, vol. 48,
no. 177, pp. 243–264, 1987. [Online]. Available: http://dx.doi.org/10.2307/2007888

[31] K. Okeya and K. Sakurai, “Efficient Elliptic Curve Cryptosystems from a Scalar Multiplication Algorithm with
Recovery of the y-Coordinate on a Montgomery-Form Elliptic Curve,” in Cryptographic Hardware and Embedded
Systems — CHES 2001: Third International Workshop Paris, France, May 14–16, 2001 Proceedings, Ç. K. Koç,
D. Naccache, and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 126–141. [Online].
Available: http://dx.doi.org/10.1007/3-540-44709-1_12

24

http://eprint.iacr.org/2006/291
http://eprint.iacr.org/2006/291
http://github.com/defeo/ss-isogeny-software
http://doi.org/10.1515/jmc-2012-0015
https://www.google.com/patents/US20140013086
http://gmplib.org/
http://dx.doi.org/10.1007/s13389-014-0090-x
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-540-74735-2_10
https://doi.org/10.1007/978-3-642-13797-6_12
http://doi.org/10.1109/TCSI.2016.2611561
http://doi.org/10.1007/978-3-319-49890-4_11
http://dx.doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/3-540-49649-1_1
http://dx.doi.org/10.1007/3-540-48059-5_27
http://doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.2307/2007888
http://dx.doi.org/10.1007/3-540-44709-1_12

[32] T. Oliveira, D. F. Aranha, J. López, and F. Rodríguez-Henríquez, “Fast Point Multiplication Algorithms for
Binary Elliptic Curves with and without Precomputation,” in Selected Areas in Cryptography – SAC 2014:
21st International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised Selected Papers, A. Joux
and A. Youssef, Eds. Cham: Springer International Publishing, 2014, pp. 324–344. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-13051-4_20

[33] T. Oliveira, J. López, H. Hışıl, A. Faz-Hernández, and F. Rodríguez-Henríquez, “How to (pre-)compute a ladder,” in
Selected Areas in Cryptography – SAC 2017: 24th International Conference, Ottawa, Ontario, Canada, August 16 -
18, 2017, Revised Selected Papers, J. Camenisch and C. Adams, Eds. Springer International Publishing, Aug. 2017.

[34] J. Pierpont, “On an undemonstrated theorem of the Disquisitiones Arithmeticæ,” Bull. Amer. Math. Soc., vol. 2,
no. 3, pp. 77–83, 12 1895. [Online]. Available: http://projecteuclid.org/euclid.bams/1183414527

[35] A. Stolbunov, “Constructing public-key cryptographic schemes based on class group action on a set of isogenous
elliptic curves,” Advances in Mathematics of Communications, vol. 4, no. 2, pp. 215–235, 2010. [Online]. Available:
http://doi.org/10.3934/amc.2010.4.215

[36] S. R. Subramanya Rao, “Three Dimensional Montgomery Ladder, Differential Point Tripling on Montgomery Curves
and Point Quintupling on Weierstrass’ and Edwards Curves,” in Progress in Cryptology – AFRICACRYPT 2016:
8th International Conference on Cryptology in Africa, Fes, Morocco, April 13-15, 2016, Proceedings, D. Pointcheval,
A. Nitaj, and T. Rachidi, Eds. Cham: Springer International Publishing, 2016, pp. 84–106. [Online]. Available:
https://doi.org/10.1007/978-3-319-31517-1_5

[37] C. D. Walter, “Montgomery exponentiation needs no final subtractions,” Electronics Letters, vol. 35, no. 21, pp.
1831–1832, Oct 1999. [Online]. Available: http://doi.org/10.1049/el:19991230

[38] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Second Edition, 2nd ed. Chapman &
Hall/CRC, 2008.

[39] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, “A Post-Quantum Digital Signature Scheme based on
Supersingular Isogenies,” in Financial Cryptography and Data Security: FC 2017 International Workshops, BITCOIN,
TA, VOTING, WAHC, and WTSC, Malta, April, 2017. Berlin, Heidelberg: Springer Berlin Heidelberg, Apr. 2017.

25

http://dx.doi.org/10.1007/978-3-319-13051-4_20
http://projecteuclid.org/euclid.bams/1183414527
http://doi.org/10.3934/amc.2010.4.215
https://doi.org/10.1007/978-3-319-31517-1_5
http://doi.org/10.1049/el:19991230

	Introduction
	Supersingular Isogeny Diffie-Hellman
	Montgomery Curves and Their Arithmetic

	Efficient Computation of P+[k]Q
	A Novel Algorithm for Computing x(P+[k]Q)
	Applying the New Algorithm to the SIDH Protocol
	Computing P+[k]Q in the Variable-point Scenario
	Computing P+[k]Q in the Fixed-point Scenario

	Recovering the y-coordinate of P+[k]Q
	An Implementation Issue: Alice's y-Coordinate Recovering

	Optimization of Point Tripling in Montgomery Curves
	Finite Field Arithmetic Implementation
	Features of x86_64 Arithmetic Instructions
	Base Field Multiplication and Squaring
	Integer Multiplication
	Integer Squaring
	Modular Reduction

	Implementation and Benchmark Results
	Related Works
	Prime Field Arithmetic
	Impact of the P+[k]Q optimization
	Point Tripling Impact
	Performance Comparison of the SIDH Protocol

	Conclusions

