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Abstract

Privacy guarantees of a privacy-enhancing system have to be robust against thousands of observations
for many realistic application scenarios, such as anonymous communication systems, privacy-enhancing
database queries, or privacy-enhancing machine-learning methods. The notion of r-fold Approximate
Differential Privacy (ADP) offers a framework with clear privacy bounds and with composition theorems
that capture how the ADP bounds evolve after r observations of an attacker. Previous work, however,
provides privacy bounds that are loose, which results in an unnecessarily high degree of recommended
noise, leading to low accuracy.

This work improves on previous work by providing upper and lower bounds for r-fold ADP, which en-
ables us to quantify how tight our bounds are. We present a novel representation of pairs of distributions,
which we call ratio buckets. We also devise a numerical method and an implementation for computing
provable upper and lower bounds with these ratio buckets for ADP for a given number of observations.
In contrast to previous work, our bucket method uses the shape of the probability distributions, which
enables us to compute tighter bounds. Our studies indicate that previous work by Kairouz et al. provides
tight bounds for the Laplace mechanism. However, we show that our work provides significantly tighter
bounds for other scenarios, such as the Gaussian mechanism or for real-world timing leakage data. We
show that it is beneficial to conduct a tight privacy analysis by improving, as a case study, the privacy
analysis of the anonymous communication system Vuvuzela. We show that for the same privacy target as
in the original Vuvuzela paper, 10 times less noise already suffices, which significantly reduces Vuvuzela’s
overall bandwidth requirement.

*The authors are in alphabetical order. Both authors equally contributed to this work.
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1 Introduction

Privacy analyses of privacy-enhancing systems, such as anonymous communication systems [18], privacy-
enhancing database queries [4], and privacy-enhancing machine-learning methods [1], play a crucial role in
understanding the effectiveness of these systems. The notion of differential privacy [4] and its important
relaxation approximate differential privacy (written as (ε, δ)-ADP, or ADP for short [5, 15]) quantify, in terms
of two parameters ε and δ, the privacy leakage against a strong worst-case attacker and have become an
important tools for estimating privacy. In many application scenarios, the privacy has to hold under continual
observation, i.e., against attackers that make thousands if not hundreds of thousands of observations. These ε
and δ inevitably grow under continual observation, thus privacy eventually deteriorates (see Apple’s case [17]).

Continual observation is formalized in a notion of r-fold ADP. Beside using randomness that is more robust
under continual observation, the estimation of tight bounds for r-fold ADP can significantly contribute to
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the challenge of developing effective privacy-enhancing systems, i.e., the study of the question: “how much
do ε and δ grow after r repeated observations?”

Since the initial r-fold ADP composition theorem [15], significant improvements were made in finding
increasingly tighter bounds [7, 12]. While experiments indicate that some of these bounds [12] are tight w.r.t.
the Laplace mechanism, this paper shows that for other mechanisms these generic results are not tight and
substantially tighter bounds can be found, e.g., for the Gaussian mechanism or for estimating the privacy
leakage of timing side-channels. Previous work that does not concentrate on one kind of noise lacks one
major ingredient: it is oblivious to the underlying probability distributions and cannot, by its very nature,
factor in the distribution-specific behavior under continual observation. Hence, results for r-fold ADP that
are based on initial ε0 and δ0 values inherently assume a worst-case behavior under composition for those
distributions.

1.1 Contribution

This work presents a numeric method for computing provable upper and lower bounds for r-fold ADP.
Our contribution is fourfold. First, we present a novel representation of the privacy leakage in the sense

of ADP (i.e., worst-case privacy loss). The core idea of this work is to compute for a concrete pair of
distributions (V,W ) and all their atomic events x the quotient V (x)/W (x) and to throw all atomic events
with similar quotients into the same bucket.1 We argue in Section 2 that such a pair of concrete distributions
can be found in many cases by considering worst-case distributions. With these buckets we derive upper
and lower bounds for r-fold ADP. We implement an iterative algorithm that computes these upper and
lower bounds. The runtime complexity is dominated by the composition operation: O(B2), for a number of
buckets B (determining the granularity of the approximation). We can optimize this computation in many
cases, where the input distributions do not change from one observation to the next: via repeated squaring
r-fold ADP only needs log2(r) composition operations.

Second, we illustrate that our method is tighter than the previously best known generic bound: Kairouz
et al.’s composition theorem [12]. As we were not able to directly compare the two results, we carefully
implement an approximation of their bounds. While their bounds seem to be tight for the Laplace mechanism,
we show that they are not tight for the Gaussian mechanism and for a model of timing-leakage measurements
from the anonymous communication system CoverUp [16]. Using our lower bounds we show that our method
is tight.

Third, we use our method to compare the Gaussian with the Laplace mechanism. We find that the r-fold
ADP bounds for Laplace noise converges to the r-fold ADP for Gauss noise with half the variance of the
Laplace noise.2 We show that for the same variance, Gaussian noise provides significantly stronger privacy
guarantees under a high number of observations.

Fourth, we illustrate the relevance of tighter bounds by improving the privacy analysis of the anonymity
network Vuvuzela [18], which uses random noise to increase privacy. Vuvuzela declared a privacy goal of
ε = ln 2 and δ = 10−4. With the original Laplace noise, the tighter analysis shows that 2 to 4-fold reduced
noise achieves the desired privacy goals, while with Gaussian noise already 5 to 10-fold reduced noise achieves
the privacy goals.3 If we do not reduce the amount of noise but keep the amount recommended in the
Vuvuzela paper, the tighter analysis leads for Laplace noise a 3 to 4 orders of magnitude lower delta and for
Gaussian noise with the same variance 4 to 6 orders of magnitude lower delta.

1.2 Discussion of our result

The example of Vuvuzela highlights several important contributions of our approach for practical privacy-
enhancing mechanisms: First, our bucketing method allows for a fast, uncomplicated (re-)evaluation of
existing privacy analyses. Such a re-evaluation using state-of-the-art composition results such as Kairouz et
al.’s composition theorem or our bucketing can yield impressively better results than näıve privacy bounds.
Second, in contrast to Kairouz et al.’s generic composition theorem, our bucketing method retains the shape

1This method is asymmetric, i.e., we have to compute it for V (x)/W (x) and for W (x)/V (x).
2We stress that this is not an example of the central limit theorem, which states that the sum of many independent random

variables is normally distributed. The composition is not the convolution but the product of distributions.
3The more observations are estimated the higher the error of a loose bound; hence, in those cases the tightness of our bounds

leads to a more significant improvement.
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of the distributions which allows us to effectively compare different noise mechanisms and this can again
significantly impact the resulting bounds. Third, our bucketing provides lower bounds and thus shows exactly
to which extent our results could potentially be further improved. In many cases where the lower bounds
(almost) equal the upper bounds our method is provably optimal up to the little difference in the upper and
lower bound.

While our result expects concrete distributions as input, we show that in many cases concrete worst-case
distributions can be found for k-fold ADP with a given sensitivity. Worst-case distributions in this sense
are the output distribution of the mechanism under worst-case inputs. As an example consider counting
queries under the Gaussian mechanism on a database. While the definition of r-fold ADP allows the attacker
to choose two new databases that have a given sensitivity in every rounds (i.e., for every observation), it
suffices to analyze in every round the leakage of a pair of the same Gaussian distributions with the same
scale parameter and with means differing by the sensitivity of the databases.

A disclaimer: this work constitutes a powerful tool for finding tight bounds in a r-fold ADP privacy
analysis of a privacy-enhancing system; devising the privacy analysis is outside of the scope of this work,
e.g., finding the right level of abstraction, a useful attacker model, suitable usage behaviors, the right privacy
mechanism.

1.3 Worst case distributions for Differential Privacy

Classically, differential privacy is defined for all pairs of neighboring databases. The notion argues about all
possible such scenarios and adversarial choices, which is in contrast to our numerical approach: we require two
concrete distributions, not a set of possible distributions. In practice, however, there is a direct connection
between the worst-case choices of scenarios or adversarial decisions and very simple concrete distributions.
Let us consider counting queries q with sensitivity 1 to which Laplace noise is added: the mechanism M that
gets a database D as input is defined as M(D) := q(D) + LP0, where LPi is the Laplace distribution with
mean i. In this example, it suffices to only consider LP0 and LP1 with means 0 and 1, instead of considering
M(D0) and M(D1) for all possible combinations of neighboring databases D0 and D1. Let D0 and D1 be
two such neighboring databases where the true answers to a query q are q(D0) = x and q(D1) = x + 1,
respectively, for some x. We can map any output y drawn from LPi (for i ∈ {0, 1}) to y + x to obtain the
correct adversarial view for the respective scenario M(Di) = q(Di) + LP0. In general, to formally apply
our approach we need two distributions and the existence of a reduction: given a description of the scenario
or an adversarial choice as well as an output of one of the distributions we consider in our calculation, the
reduction produces the respective output within the differential privacy scenario. In other words, there is
an efficient permutation that translates the distributions we analyze into the distributions of the respective
scenario.

2 Related work

Differential privacy Differential Privacy (DP) [4] quantifies how closely related two similar distributions
are from an information-theoretic perspective. In case the probability of any event in any one of the two
distributions is almost the same as the probability of the event in the other distribution, bounded by a
multiplicative factor eε, where ε is a small positive number, we say the distributions are ε-DP. Formally, we
say that two distributions A and B over the universe U are ε-DP, if ∀S ⊆ U . PA(x ∈ S|x) ≤ eε ·PB(x ∈ S|x)
(and vice versa). To extend the applicability of DP, approximate differential privacy [5] (ADP) allows for
distributions to exceed a limiting factor ε, as long as this is in total only exceeded by a small value δ.
Formally, we say that two distributions A and B over the universe U are (ε, δ)-ADP, if ∀S ⊆ U . PA(x ∈
S|x) ≤ eε · PB(x ∈ S|x) + δ (and vice versa). The notion of computational differential privacy [15] replaces
the sets S of events by adversarial distinguisher machines.

Generic bounds for DP under continual observation There ha been significant improvements on the
original composition result. Using concentration bounds Dwork et al. [7] proved the advanced composition
result for adaptive r-fold composition, which was further improved by Kairouz et al. [12]. These generic
bounds have in common that they are oblivious to the actual distributions and their bounds only rely on the
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B:

F = PA(x)
PB(x)

PA(x)

F = f i

`(x)

operation: PA(x)
F

Figure 1: Depiction of how an element x is placed into a bucket. Buckets store f i and PA(x) (accumulated

over all elements in the bucket). We approximate PB(x) with PA(x)
fi , accepting an error of `(x) = PB(x) −

PA(x)
fi .

initial values (ε0, δ0); hence, their optimality only holds for the worst-case distribution with the given (ε0, δ0)
(one-shot DP). We show in this paper, that retaining the shape of the distributions can lead to significantly
tighter bounds.

Adaptive mechanisms For some applications there has been work on adaptive DP-mechanisms that
achieve differential privacy under continued observation by using carefully correlated noise and only using
noise when necessary [1, 6, 8, 10, 11]. While distributions over correlated noise cannot directly be input to
our bucket approach, the proofs of these adaptive mechanisms can still benefit from our results as they often
over-approximate a subset of these correlated distributions with independent distributions, e.g., in order to
apply Azuma’s Inequality [10] (which is stated for independent distributions). A concrete example where
an adaptive mechanism can benefit from our approach is the of Abadi et al. [1] that uses Gaussian noise for
privacy preserving deep learning. While their approach takes the shape of the distribution into account to
some degree and their bounds are significantly tighter than previous work, our bucket approach can achieve
even tighter bounds. We refer to Appendix A.1 for an example calculation.

Dependencies The work of Liu, Chakraborty and Mittal [14] discusses the importance of correctly mea-
suring the sensitivity of databases for differential privacy. They show that in real-world examples entries
can be correlated and thus cannot be independently exchanged as in DP’s basic definition. Their approach,
however, finally results in the same techniques as in previous work being used to achieve the same goal:
noise applied to database queries results in differential privacy, although the sensitivity is calculated in a
more complex manner. Our results can directly be applied in such a setting as well: given the (final) dis-
tributions that potentially consider dependent entries we calculate differential privacy guarantees for these
distributions.

Optimal distributions Recent work [9, 13] made progress on finding optimal mechanisms for DP for a
large class of utility functions. These results concentrate on single observations and do not characterize how
these mechanism behave under k-fold composition.

3 Ratio buckets of two distributions

3.1 Informal description of ratio buckets

Generic bounds for differential privacy under continual observation [7, 12] are stated independently of the
shape of the underlying distributions, simply based on the ADP guarantees before the composition. This
obliviousness is both the greatest strength and the greatest weakness of these generic bounds. The exact
shape of the distribution does not need to be characterized to apply these results, but they cannot devise
tight bounds that are derivable from the shape of the distributions.
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Buckets for given parameters f and n.

Bucket factor: f−n f−n+1 . . . f−2 f−1 f0 f1 f2 . . . fn−1 fn > fn

Index: −n −n+ 1 . . . −2 −1 0 1 2 . . . n− 1 n ∞

Figure 2: Depiction of the buckets (separately) constructed for both BA and BB . For BA each bucket BA(i)
with i ∈ {−n+ 1, . . . , n} contains all elements x ∈ U with f i−1PB(x) ≤ PA(x) ≤ f iPB(x), the bucket
BA(−n) contains all elements with PA(x) ≤ f−nPB(x) and the bucket BA(∞) contains all elements with
PA(x) > fnPB(x).

PA(x) the prob. that x happens in A.
ε, δ parameters for DP.
U universe of all events.
f factor (close to 1) with f > 1.
n determines number of buckets.
∞ symbol for any ratio > fn.

B(A,B, f, n) A/B ratio buckets with indexes
{−n, . . . , n,∞} and ratios
{≤ f−n, . . . ,≤ fn, > fn}.

B(i) for i ∈ N bucket with index i.
B(x) for x ∈ U impact of the event x.

`, `(i), `(x) our “real” error correction term.
˜̀, ˜̀(i), ˜̀(x) bound on the maximum error,

“virtual” error correction term.
ιB(x) index of x in ratio buckets B.

Figure 3: Notation for our ratio buckets.

We now introduce an alternative approach: we approximate the distributions and the ways they are
related. Given two distributions A and B, the most important feature (for differential privacy) of each event
x is the ratio between the probability of x in A, denoted by PA(x), and the probability of x in B, denoted

by PB(x). We group events by this ratio PA(x)
PB(x) . Then, to render this approach feasible, we collect all such

x with a similar factor into the same set, which we call a bucket. Given a factor f > 1, the bucket B(i)

summarizes all events where f i−1 < PA(x)
PB(x) ≤ f i (illustrated in Figure 1). The value of B(i) is the sum over

the probabilities PA(x) of all those events (according to distribution A). We approximate
∑
x PB(x) in B(i)

as B(i)/f i, thereby introducing for each PB(x) an error of `(x) = PB(x)− PA(x)
fi .

This buckets representation is suited for composing two pairs of distributions, say (A1, B1) with (A2, B2).
We combine buckets B1(i) and B2(j) multiplicatively and obtain the probability of all events in a new bucket

(B1 × B2)(i+ j), for which we still have
PA1

(x)

PB1
(x) ·

PA2
(x)

PB2
(x) ≤ f i+j (c.f. Figure 5).

3.2 Differential privacy

We review the definition for approximate differential privacy (ADP), generalized to a pair of distributions.
ADP characterizes privacy by a multiplicative value ε and an additive error value δ. In particular, we
introduce tight ADP to characterize for a given ε the smallest values of δ for which ADP is satisfied.

Definition 1 ((Tight) ADP). Two distributions A and B over the universe U are (ε, δ)-ADP, if ∀ sets

6



Bucket composition example for two events for n = 4.

B1:

B2:

B1×B2:

Index:

x1

x2

x1 · x2

−4 −3 −2 −1 0 1 2 3 4 ∞

Figure 4: Depiction of how individual events x1 with index −2 and x2 with index 4 compose into their new
bucket with index −2 + 4 = 2.

Bucket composition for bucket index 2, n = 4.

B1:

B2:

B1×B2:

Index:

j1 j2 j3 j4 j5 j6 j7

k7 k6 k5 k4 k3 k2 k1

∑
w

jwkw

−4 −3 −2 −1 0 1 2 3 4 ∞

Figure 5: Depiction of the bucket composition for the (new) bucket with index i = 2. We calculate the
value of bucket i by summing over the product of all B1(jw) · B2(kw). Graphically, buckets with the same
color are combined. Note that none of the buckets ∞,−3 and −4 are used for the composition, as for all
j ∈ {−4, . . . , 4}, ∞+ j 6= 2,−3 + j 6= 2 and −4 + j 6= 2.

S ⊆ U ,

PA(S) ≤ eεPB(S) + δ and

PB(S) ≤ eεPA(S) + δ.

A and B are tightly (ε, δ)-ADP if they are (ε, δ)-ADP, and ∀δ′ < δ, A and B are not (ε, δ′)-ADP. 4

We argue that this can be characterized precisely by the following calculation:

Lemma 1. For every ε, two distributions A and B over a finite universe U are tightly (ε, δ)-ADP with

δ = max

(∑
x∈U

max (PA(x)− eεPB(x), 0) ,

∑
x∈U

max (PB(x)− eεPA(x), 0)

)
Proof. Let ε ≥ 0 and let A and B be two distributions over the universe U . We show the equivalence by first
showing that (1) for every set S, the calculation describes an upper bound and then that (2) there exists a
set S such that this bound is tight.

(1) We show that ∀S ⊆ U ,
PA(x ∈ S : x)− eεPB(x ∈ S : x)

≤
∑
x∈U

max (PA(x)− eεPB(x), 0)

4Our bucket approach can also be used to find a bound for ε-tightness for a given δ, i.e., ∀ε′ < ε, A and B are not (ε′, δ)-ADP.
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The inverse direction then follows analogously.

PA(x ∈ S : x)− eεPB(x ∈ S : x)

=
∑
x∈S

PA(x)− eεPB(x)

≤
∑
x∈S

max (PA(x)− eεPB(x), 0)

≤
∑
x∈U

max (PA(x)− eεPB(x), 0)

(2) Let S := {x ∈ U s.t. Pr [x ∈ A] ≥ eεPr [x ∈ B]}. Then,

PA(x ∈ S : x)− eεPB(x ∈ S : x)

=
∑
x∈S

PA(x)− eεPB(x)

=
∑
x∈U

max (PA(x)− eεPB(x), 0) .

Analogously, for S := {x ∈ U s.t. Pr [x ∈ B] ≥ eεPr [x ∈ A]},

PB(x ∈ S : x)− eεPA(x ∈ S : x)

=
∑
x∈S

PB(x)− eεPA(x)

=
∑
x∈U

max (PB(x)− eεPA(x), 0) .

Thus, for every pair of distributions A and B and for every ε ≥ 0 the distributions are tightly (ε, δ)-
differentially private, where δ is calculated as described.

Trade-off between ε and δ It might appear preferable to only include the distinguishing events into δ,
to guarantee pure ε-DP with probability (1− δ). However, ε then inherently grows linearly in the number of
observations r. Allowing, say, 100, 000 observations, results in a factor of e100,000ε, which might deteriorate
the results more than accepting a small increase in δ. An example of such a trade-off is depicted in Figure 15b.

3.3 Composition of differential privacy

One of the main advantages of differential privacy is the fact that guarantees are still sound under composi-
tion, albeit with increasing values for ε and δ.

Definition 2 (k-fold DP of a mechanism). A randomized algorithm M with domain D and range U is k-fold
(ε, δ)-differentially private for sensitivity s if for all S ⊆ Uk and for all (x1, . . . , xk), (y1, . . . , yk) ∈ Dk such
that ∀1 ≤ i ≤ k. ||xi − yi||1 ≤ s:

Pr[(M(x1), . . . ,M(xk)) ∈ S]

≤eε Pr[(M(y1), . . . ,M(yk)) ∈ S] + δ

Note that when we describe differential privacy in terms of distributions over the worst-case inputs, the
composition of differential privacy is equivalent to considering differential privacy for product distributions. If
x0, x1 are the worst-case inputs for a mechanism M , resulting in the distributions M(x0) and M(x1), then the
k-fold composition is described in Definition 1 on the distributions A = M(x0)k and B = M(x1)k. Similarly,
a composition of two different mechanisms M and M ′ with worst-case inputs (in the sense of Section 1.3)
x0, x1 and x′0, x

′
1 respectively, boils down to Definition 1 on the distributions A = M(x0) ×M ′(x′0) and

B = M(x1)×M ′(x′1).
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The main composition results we compare our work with are: naive composition, slightly less naive
composition and two composition result with improved bounds [7, 12]. We recall these results here.

Lemma 2 (Näıve Composition). Let (A1, B1) and (A2, B2) be two pairs of distributions, such that A1 and
B1 are (ε1, δ1)-differentially private and A2 and B2 are (ε2, δ2)-differentially private. Then A1 × A2 and
B1 ×B2 are (ε1 + ε2, δ1 + δ2)-differentially private.

Lemma 3 (Adaptive Composition). Let (A1, B1) and (A2, B2) be two pairs of distributions, such that A1

and B1 are (ε1, δ1)-differentially private and A2 and B2 are (ε2, δ2)-differentially private. Then A1×A2 and
B1 ×B2 are (ε1 + ε2, δ1 + (1− δ1) · δ2)-differentially private.

Lemma 4 (Boosting and Differential Privacy (Advanced Composition) [7]). Let (A1, B1), . . . , (Ak, Bk) be
pairs of distributions, such that Ai and Bi are (ε, δ)-differentially private for all i ∈ {1, . . . , k}. Then A1 ×
. . .×Ak and B1×. . .×Bk are (ε̂δ̂, δ̂)-differentially private, where δ̂ = k·δ and ε̂δ̂ = O

(
kε2 + ε

√
k log

(
e+ (ε

√
k/δ̂)

))
Lemma 5 (Kairouz et al’.s Composition [12]). For any ε ≥ 0 and δ ∈ [0, 1], the class of (ε, δ)-differentially
private mechanisms satisfies

(ε′, δ′)-differential privacy

under k-fold composition, for all i ∈ {0, . . . , bk/2c} where ε′ = (k − 2i)ε and δ′ = 1− (1− δ)k(1− δi)

δi =

∑i−1
`=0

(
k
`

) (
e(k−`)ε − e(k−2i+`)ε

)
(1 + eε)k

These composition results allow for deriving differential-privacy guarantees under composition in a black-
box manner, i.e., only depending on ε and δ. Consequently, these results are oblivious to how the underlying
distributions actually compose and present, in a way, worst-case results under composition. Thus, we cannot
expect that they come close to the tight differential privacy guarantee of the composed distributions. In the
remainder of this paper we introduce, prove sound and discuss our main idea: approximating the distributions
A1, A2, B1, B2 in a way that allows for a sound calculation of a differential-privacy guarantee that takes into
account features of the distribution even under manifold composition. Moreover, we use the same technique
to derive a lower bound for the guarantee, to bound the (unknown) tight differential privacy guarantee from
both directions.

3.4 Ratio buckets

We approximate the features underlying the pair of distributions in a way that is sufficient for calculating
(ε, δ)-ADP, the ratio buckets, and that comes with an efficient way for computing the k-fold (ε, δ)-ADP from
a sequence of ratio buckets.

Independence We assume that all distributions Ai, Bi are independent and moreover independent from
all distributions Aj , Bj for i 6= j. In our composition we acknowledge a certain amount of dependence by
composing all distributions Ai with each other and all distributions Bi with each other. Thus, an adversary
can indeed gain more information with every step. However, the random choices made by the distributions
have to be independent. A result for dependent distributions could be achieved under certain conditions as
well, but for the sake of simplicity, we leave such additional complications for future work.

The infinity symbol ∞ In this paper we will write ∞ to describe the corner case accumulated in the
largest bucket B∞ of our bucket lists. We consider ∞ to be a distinct symbol and in an abuse of notation,
we use the following mathematical rules to interact with it:

� ∞ > i for all i ∈ Z.

� ∞+ i =∞ for all i ∈ Z.
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Bucket list Given two distributions A and B, the idea is to group all atomic events of A and B by the
ratio between their probabilities in A and in B: if x is an atomic event from the universe U , we consider
PA(x)
PB(x) and, depending on this value, decide in which set we put the event. If this fraction is undefined because

PB(x) = 0, we put the event in a specific set.
Given two system parameters f and n, we then summarize these groups into 2n + 2 sets (the buckets),

where f is the separation-factor f and n the limit. For i ∈ {−n, . . . , n} we assign an elementary event x
to the set Si, if PA(x) ≤ f iPB(x) and if for all j ∈ {−n, . . . , n} with j < i we have PA(x) > f jPB(x) (c.f.
Figure 1). All remaining events with fnPB(x) < PA(x) are assigned to the special set S∞. For each set Si
(including S∞), we accumulate the PA(x) of all events x ∈ Si to obtain the respective bucket B(i). After
creating the buckets, we do not keep any information about the atomic events or the sets Si; all further
calculations are based on the 2n+ 2 buckets B(−n), . . . ,B(n),B(∞), the bucket list. Thus, the runtime of all
further calculations only depends on the number of buckets. After composing two such ratio buckets with
each other, we yield another ratio bucket with the same parameters for f and n. Although the precision of
our method may decrease with the number of compositions, the complexity of all operations remains the
same.

Our bucket approach is asymmetric as we consider the probabilities of events occurring in A in relation
to the probabilities of the same events occurring in B and over-approximate the factor between them slightly
(c.f. Figure 1). Thus, A/B ratio buckets only deliver guarantees on one direction of differential privacy – in
practice we create both direction, A/B and B/A ratio buckets.

Definition 3. Let A,B be two distributions over the same universe U and let f ∈ R with f > 1 and even
n ∈ N (i.e., there is a q ∈ N such that n = 2q). Then, B(A,B, f, n) describes A/B ratio buckets B over the
universe {−n,−n+ 1, . . . , n} ∪ {∞} s.t.

∀i ∈ {−n, . . . , n} ∪ {∞} .B(i) =
∑
x∈Si PA(x),

where the sets Si are defined as follows:

S∞ = {x ∈ U .PA(x) > fnPB(x)}
∀i ∈ {−n+ 1, . . . , n}Si =

{
x ∈ U . f i−1PB(x) < PA(x) ≤ f iPB(x)

}
S−n =

{
x ∈ U .PA(x) ≤ f−nPB(x)

}
.

Note that since the sets Si for i ∈ {−n, . . . , n} ∪ {∞} describe a partitioning of U , we have∑
i∈{−n,...,n}∪{∞} B(i) = 1.

We next define ADP directly on a bucket list. For all events x in Si 6= S∞, we know that PA(x) ≤
f iPB(x). We perform a slight over-approximation by treating this inequality as an equality and then use
PA(x)−PA(x)/f i as in Lemma 1. For x ∈ S∞, we add PA(x) to δ, counting them as total privacy-breakdowns.

Definition 4 (Delta). Let f > 1 and n ∈ N and let B(A,B, f, n) = B be A/B ratio buckets. We say that
B(A,B, f, n) is (ε, δ)-ADP, if∑

i∈{−n,...,n}(max(0,B(i) · (1− eε

fi ))) + B(∞) ≤ δ

Computing the composition of ratio buckets We proceed by defining how to compose ratio buckets.
The composition operation shows the main guiding principle behind creating buckets in an exponential
manner, described by fractions f i. Consider the distributions A1, A2, B1, B2. When composing two buckets
B1(i) and B2(j), we write the result into the bucket B3 with index i+ j. The idea behind this strategy is as
follows(illustrated in Figure 4). Since events x1 in B1(i) satisfy PA1(x1) ≤ f iPB1(x) and events x2 in B2(j)
satisfy PA2(x2) ≤ f jPB2(x), we know that the combined events (x1, x2) satisfy

PA1×A2
((x1, x2))

=PA1
(x1) · PA2

(x2)

≤f iPB1
(x1) · f jPB2

(x2)

=f i+jPB1×B2((x1, x2)).

10



Bucket squaring example for n = 4.

B:

�B:

Index:−4 −3 −2 −1 0 1 2 3 4 ∞

Figure 6: Depiction of the bucket squaring. Events from each bucket B(i) are moved into bucket B(di/2e),
with the exception of B(∞), which remains unchanged.

Following this strategy, we can hence maintain the desired property PA(x) ≤ f iPB(x) for all events in bucket
i, even after composition We refer to Figure 5 for a graphical depiction of the bucket composition for one
bucket. More formally, we define the composition of two ratio buckets as follows.

Definition 5 (Composition of Buckets). Let f > 1 and n ∈ N and let B(A1, B1, f, n) = B1 and B(A2, B2, f, n) =
B2 be A1/B2 and A2/B2 ratio buckets (resp.). We define the composition of the pairs as B1 × B2, where
∀i ∈ {−n,−n+ 1, . . . , n} ∪ {∞} ,

B1 × B2(i) :=


∑
j+k=i B1(j) · B2(k) i ∈ N \ {−n}∑
j+k≤−n B1(j) · B2(k) i = −n∑
j+k>n B1(j) · B2(k) i =∞

We stress that as the sets Si for i ∈ {−n, . . . , n} ∪ {∞} describe a partitioning of U and the buckets B1

and B2 add up to 1, i.e, ∑
i∈{−n,...,n}∪{∞} B1 × B2(i) = 1.

When composing ratio buckets, the bucket list naturally “broadens”, i.e., the buckets that are farther
away from the middle bucket (with factor f0) gain higher values. When creating ratio buckets for a given
number n, this effect leads to a trade-off between the granularity (i.e., the choice of the bucket factor f) and
the expected number of compositions: the smaller the value of f , the more precise the ratio buckets model of
the features of the distributions, but the fewer compositions before a significant amount of events reaches the
corner buckets

(
B(−n) and B(∞)

)
, which again reduces the precision. To counter this effect, we introduce

an additional operation which we call squaring : we square the factor f , thus halving the precision of the ratio
buckets, and merge the ratio buckets into these new, more coarse-grained ratio buckets. Squaring allows us
to start with much more fine-grained ratio buckets and reduce the granularity as we compose, which can
significantly improve the overall precision of the approach. We choose to square f instead of increasing it to
an arbitrary f ′ to ease the computation of the new ratio buckets: we simply combine buckets 2i− 1 and 2i
with factors f2i−1 and f2i into the new bucket i with factor (f2)i = f2i. We refer to Figure 6 for a graphical
depiction of squaring.

�B1(i) :=


B1(2i− 1) + B1(2i) i ∈ [−n/2 + 1, n/2]

B1(∞) i =∞
0 otherwise

The composition of ratio buckets is commutative but not associative. Moreover, when and how often the
squaring was performed influence the resulting ratio buckets. Hence, we need to keep track of the order in
which we applied composition and squaring. To this end, we define composition trees. These are important
for our proofs, but not for calculating actual results (since we show that any composition tree leads to sound
results), and can thus be considered a purely technical definition.

Definition 6 (Composition trees). For two sets of tuples (A1, . . . , AW) and (B1, . . . , BW) of the same size
u, a composition tree over (A1, . . . , AW) and (B1, . . . , BW) is a tree with three kinds of nodes that are all
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labeled with a bucket factor f > 1; leaves (T = l(Ai, Bi)) are additionally labeled with a pair of distributions,
composition nodes (T = T1 × T2) with exactly two child nodes and squaring nodes (T = �T1) with exactly
one child node. We require that each pair of distributions (Ai, Bi) is the label of exactly one leaf, that for
each composition node the child nodes have the same f in the label, and that the label of each squaring node
contains f2 if the child node’s label contains f .

For ease of notation we write (Ai, Bi) to describe the tree consisting only of a leaf l(Ai, Bi). For brevity,
we even write Ai or Bi for the same tree, if we only talk about the respective distribution.

For discussing our results and the soundness of our results, we want to compare the differential privacy
guarantees of ratio buckets with the real differential privacy guarantees (calculating which might not be
feasible). To this end and for talking about individual elementary events, we assign an index to each such
event. The index specifies the (one) bucket the respective event influences. For ratio buckets that have been
created from distributions (and not composed), this index is simply the bucket the event was assigned to.
After composition, the index depends on how the indexes of the respective buckets interacted: in the most
simple case, if x1 and x2 are events with indexes i and j, then the event (x1, x2) will have the index i + j.
However, the corner cases can modify the index, as the index can only be in the set {−n, . . . , n,∞}.

Definition 7 (Index of an event according to buckets). Let (Ak, Bk)Wk=1 be pairs of distributions over the
universes (Ui)Wk=1, let f > 1 and let n ∈ N. We define the set of indexes for events x = (x1, . . . , xW) ∈ (Ui)Wk=1

as follows. First, we define for the individual components xk ∈ Uk with k ∈ {1, . . . ,W}, ιl(Ak,Bk)(xk) := i
where

i =


l if l ∈ {−n+ 1, . . . , n}∧

f l−1PBk(xk) < PAk(xk) ≤ f lPBk(xk)

∞ if PAk(xk) > fnPBk(xk)

−n otherwise

For any pair of composition trees T1, T2 over some probability distributions, and for T = T1 × T2 we define
the index of x = (x1, x2) as

ιT (x) = ιT1×T2(x1, x2) :=


−n if ιT1

(x1) + ιT2
(x2) < −n

∞ if ιT1
(x1) + ιT2

(x2) > n

ιT1(x1)+ιT2(x2) otherwise,

where we assume that ∀y, z ∈ Z, y +∞ =∞ > z.

for T = �T1 we define the index of x as

ιT (x) = ι�T1
(x) :=

{
dιT1

(x)/2e if ιT1
(x) 6=∞

∞ otherwise,

We stress that ιT1×T2
(x1, x2) is not necessarily associative, i.e., there are distributionsA1, A2, A3, B1, B2, B3,

and x1, x2, x3 such that
ι(T1×T2)×T3

(x1, x2, x3) 6= ιT1×(T2×T3)(x1, x2, x3).

Soundness of differential privacy guarantees for ratio buckets We can now start to argue about
the differential privacy guarantees we calculate for ratio buckets. We will show that if ratio buckets are
(ε, δ)-ADP, then the distributions from which the pair was created (either directly or via composition) is
also (ε, δ)-ADP. Simply put, the guarantees we calculate are sound.

We begin by showing a helpful lemma that directly follows our main strategy: all atomic events x that
are assigned an index i 6=∞ (according to a composition tree T ) satisfy PA(x) ≤ f iPB(x).

Lemma 6. Let (Ak, Bk)Wk=1 be pairs of distributions over the universes (Ui)Wk=1, let n ∈ N, let A :=
∏W
k=1Ak

and B :=
∏W
k=1Bk. For all x ∈ ∏Wk=1 Uk and for every composition tree T over A1, . . . , AW such that

ιT (x) 6=∞ and the root node has f in the label, we have PA(x) ≤ f ιT (x)PB(x). Analogously, with ιTB (x) 6=∞
we have PB(x) ≤ f ιT (x)PA(x).
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Proof. We show the lemma by a structural induction over the composition tree.
Let x = (x1, . . . , xW) ∈∏Wk=1 Uk. Note that if ιT (x) 6=∞, then for all k ∈ {1, . . . ,W} ιl(Ak,Bk)(xk) 6=∞.
For each k such that ιl(Ak,Bk)(xk) = −n, from the case distinction of ιl(Ak,Bk)(xk) in Definition 7 it

follows that

PAk(xk) ≤ f−nPBk(xk) (1)

PAk(xk) ≤ f ιl(Ak,Bk)(xk)PBk(xk). (2)

Hence, we get from Definition 7 and Equation (2) that for all k such that ιl(Ak,Bk)(xk) 6=∞, we have

PAk(xk) ≤ f ιl(Ak,Bk)(xk)PBk(xk). (3)

For composition nodes (i.e., T = T1× T2), where both children are labeled with f (and consequently the
composition node is also labeled with f), we get for x,

PA(x) =

W∏
k=1

PAk(xk)︸ ︷︷ ︸
≤fιl(Ak,Bk)(xk)

PBk (xk)

≤
W∏
k=1

f ιl(Ak,Bk)(xk)PBk(xk)

=

W∏
k=1

f ιl(Ak,Bk)(xk)

︸ ︷︷ ︸
≤fιT (x)

W∏
k=1

PBk(xk)︸ ︷︷ ︸
=PB(x)

≤f ιT (x)PB(x)

Note that
∑

k∈{1,...,W}
ιl(Ak,Bk) ≤ ιT (x) holds by definition of the index over any composition tree: at every

node at least the sum of the underlying nodes is considered (or −n if that sum is < −n).
For squaring nodes (i.e., T = �T1), where the child node is labeled with f (and the squaring node thus

is labeled with f2), we know that ιT (x) 6= ∞ ≡ ιT1
(x) 6= ∞. For ιT1

(x) 6= ∞ we know by the induction
hypothesis that PA(x) ≤ f ιT1 (x)PB(x). By definition, we have

PA(x) ≤ f ιT1 (x)PB(x) = f2ιT1 (x)/2PB(x)

≤ (f2)dιT1 (x)/2ePB(x) = (f2)ιT (x)PB(x)

Lemma 7 (Bucket values are sums over atomic events). Let (Ak, Bk)Wk=1 be pairs of distributions over the
universes (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = Bk be Ak/Bk
ratio buckets and let T be a composition tree. Let ε ≥ 0. Let BA :=

∏T
k∈{1,...,W} B(Ak, Bk, fk, n). Then,

B(i) =
∑
x s.t. ιT (x)=i PA(x) .

Proof. We show the lemma via structural induction over T . We only show the lemma for A, but the proof
follows analogously for B. Let N = {−n, . . . , n}.

If T = l(Ai, Bi): Let i ∈ N ∪ {∞}. By Definitions 3 and 7 with Si as in Definition 3,

B(i) =
∑
x∈Si PA(x) =

∑
x,ι(x)=i PA(x).

Otherwise, assume the lemma holds for ratio buckets B1 over a universe U1 and B2 over a universe U2 with
composition trees T1 and T2 over distributions A1, B2 and A2, B2. Let U = U1 × U2 and A = A1 × A2. We
have for i ∈ N \ {−n}
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BucketDelta(A,B, f, n, t, ε):
B(−n) = . . . = B(n) = B(∞) = 0
for x ∈ U do

if ∃i < n. PA(x) ≤ f iPB(x) then
B(max(−n, i)) += PA(x)

else
B(∞) += PA(x)

for i from 0 to t do
B′ = B × B
if B′(∞) > 2.2 · B(∞) then
B = �B

B = B × B
return δ(B, ε)

Figure 7: Depiction of how we create buckets – for simplicity without error correction terms and for the
common special case where we compose the same distributions (A1 = A2 = . . . = Ar and B1 = B2 = . . . =
Br). We use repeated squaring to compute r-fold DP for r = 2t compositions.

B1 × B2(i) =
∑

j,k∈N.j+k=i

B1(j) · B2(k)

IV
=

∑
j,k∈N s.t. j+k=i

 ∑
x1∈U1s.t. ιT1 (x1)=j

B1(x1)

 ·
 ∑
x2∈U2s.t. ιT2 (x2)=k

B2(x2)


=

∑
x=(x1,x2)∈U1×U2 s.t. ιT1 (x1)+ιT2 (x2)=i

B1(x1) · B2(x2)

We know from Definition 7 that ιT (x) = ιT1
(x1) + ιT2

(x2), since ιT (x) ∈ {−n+ 1, . . . , n}.

=
∑

x=(x1,x2)∈U1×U2 s.t. ιT (x)=i

B1(x1) · B2(x2)

Definition 7
=

∑
x=(x1,x2)∈U s.t. ιT (x)=i

B(x).

For i ∈ {−n,∞} the proof follows analogously, where for −n we have j + k ≤ −n and we know from
Definition 7 that ιT (x) = −n is equivalent to ιT1(x1) + ιT2(x2) ≤ −n and for ∞ we have j + k > n and we
know from Definition 7 that ιT (x) =∞ is equivalent to ιT1(x1) + ιT2(x2) ≥ n.

For i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n}

�B1(i) = 0 =
∑
x∈∅ PA1(x) =

∑
x∈U1,ι�T1=i PA1(x).

For i = ∞, we have �B1(∞) = B1(∞), so the statement follows from the IH. For i ∈ {−n/2 + 1, . . . , n/2}
we have

�B1(i) = B1(2i) + B1(2i− 1)

IH
=
∑
x∈U1,ιT1 (x)=2i PA1(x) +

∑
x∈U1,ιT1 (x)=2i−1 PA1(x)

=
∑
x∈U2ιT (x)=i PA1

(x).

The statement for �B1(−n/2) follows analogously.

We now state the first theorem of our paper: the buckets are sound.
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Theorem 1 (Buckets are sound). Let (Ak, Bk)Wk=1 be pairs of distributions over the universes (Ui)Wi=1, let
f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = Bk be ratio buckets and let T be a

composition tree. Let ε ≥ 0. Moreover, let BA :=
∏T
k∈{1,...,W} B(Ak, Bk, fk, n) and analogously BB :=∏T

k∈{1,...,W} B(Bk, Ak, fk, n).

If for ε, δ ≥ 0, BA is (ε, δ)-ADP and BB is (ε, δ)-ADP, then A and B are (ε, δ)-differentially private.

The theorem follows quite trivially from the proof of Lemma 13 in the subsequent chapter. We still
present the proof as it could be helpful in understanding the soundness of our ratio buckets.

Proof. We show the proof for BA; the proof for BB follows analogously.Let N = {−n, . . . , n}. By definition,
BA is (ε, δ)-ADP if

δ ≥∑i∈N
(
max

(
0,B(i) · (1− eε/f i)

))
+ B(∞).

We ignore B(∞) for now and apply Lemma 7 and get∑
i∈N

(
max

(
0,
∑
x∈U.ιT (x)=i PA(x) · (1− eε

fi )
))

=
∑
i∈N.fi>eε

(∑
x∈U.ιT (x)=i PA(x) · (1− eε

fi )
)

Using Lemma 6 we get ∑
x∈U.ιT (x)=∈N.fιT (x)>eε max (0, PA(x)− eεPB(x)) .

With B(∞) (where we also apply Lemma 7) we yield∑
x∈U.ιT (x)∈N.fιT (x)>eε max (0, PA(x)− eεPB(x))

+
∑
x∈U.ιT (x)=∞ PA(x)

≥∑x∈U max (0, PA(x)− eεPB(x)) .

We repeat the calculation analogously for B and using Lemma 1 we see that A and B are indeed (ε, δ)-
ADP.

4 Reducing and bounding the error

We have already presented a sound way of approximating a distribution pair by creating ratio buckets.
Our calculations from the previous section lead to sound and, in many cases, better results than generic
composition theorems from the literature. In this section we explore the precision of our results: we define
error (correction) terms that help us to both find a lower bound on the differential privacy guarantee for
the considered distributions even under manifold composition, and to find a tighter guarantee for differential
privacy.

We distinguish between two types of error correction (EC) terms: the real EC term ` that captures the
value we use to tighten our result in a sound way and the virtual EC term ˜̀ that captures the maximal
influence an EC term can have. The virtual EC term accurately captures the difference between the prob-

ability an event x appears to have in the alternative distribution (using the bucket factor) PA(x)
fι and the

probability that it actually has in the alternative PB(x). In some cases, however, we misplace an event such
that it ends up in a bucket with an index that is too large: events x that should not be considered for the
overall guarantee, i.e., that have PA(x) − eεPB(x)) < 0 can appear in a bucket with index i s.t. eε < f i.
Thus, correctly calculating the EC term while possibly misplacing events can lead to wrong results.

There are two reasons for why events can be misplaced: First, when composing ratio buckets, events can
be misplaced by one bucket. We take care of this by not including the EC terms of a certain number of
buckets, depending on the number of compositions. Second, when events are put into the smallest bucket
(with index −n), they can be arbitrarily “misplaced”, particularly after a composition. To counter this
effect, we introduce the real EC term, in which we do not include the error of the smallest bucket (with
index −n).
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4.1 Buckets with error correction terms

Our strategy is as follows. Assume two distributions A and B: Whenever we enter an event x into a bucket
B(i), we store the difference between the probability that the event occurs in A, adjusted by the bucket

factor, and the probability that the same event occurs in B: `(i) += PB(x) − PA(x)
fi . Recall that the main

purpose of the buckets is to keep track of the ratio between those two probabilities. We sum up all these
error correction terms (or EC terms) per individual bucket. We refer to Figure 1 for a graphical intuition of
our error correction.

As an example consider one bucket B(i), containing events x ∈ Si for a set Si:

B(i)

f i
− `(i) =

∑
x∈Si PA(x)

f i

−
∑
x∈Si

(
PB(x)− PA(x)

f i

)
=
∑
x∈Si

PB(x).

Thus, only considering one additional value per bucket, we can precisely remember the probability that the
events occurred in B and we can then use this probability to calculate a more precise differential privacy
guarantee. We omit the EC terms for the bucket B(∞), as there is no bucket factor attached to it (so there
is no value the error correction term could correct).

We later see that given a value for ε we need to be careful when dealing with exactly one bucket: the
bucket B(j) with f j−1 < eε ≤ f j . If we were precise in our calculations, we would only consider some of
the events from that bucket, namely the ones with PA(x) ≤ eεPB(x), but since we combined them all into
one bucket, we cannot distinguish the individual events anymore. To retain a sound guarantee, we don’t
consider the EC term of this bucket when calculating δ. Under composition this error slightly increases, as
events can be “misplaced” by more than one bucket when we compose the buckets. Consequently, every
composition increases the number of buckets for which we don’t consider an EC term.

Definition 8 (Ratio buckets with error correction terms). Let A,B be distributions over the universe U , let
f > 1 and n ∈ N and let N = {−n, . . . , n}. We define A/B ratio buckets with EC terms B(A,B, f, n) =
(B, ˜̀, `, f, 1), as ∀i ∈ N ∪ {∞}

B(i) :=
∑
x∈U s.t. ι(x)=i PA(x)

˜̀(i) :=

{∑
x∈U,ι(x)=i PB(x)− PA(x)

fi i ∈ N
0 i =∞

`(i) :=

{
˜̀(i) i ∈ N \ {−n}
0 i ∈ {−n,∞}

For completeness we re-define the composition and squaring of buckets first (which is unchanged from
the previous section) and then define how the error terms behave under both composition and squaring: For
the composition, we want to calculate the error correction (EC) term for the combined events: given events

x1 and x2 with (individual) error terms PB1
(x1) − PA1

(x)

fι1 and PB2(x2) − PA2
(x2)

fι2 we want (in the typical

case, ignoring corner cases) to have an EC term for the pair of the form PB1×B2((x1, x2))− PA1×A2
((x1,x2))

fι1+ι2
.

However, the buckets cannot keep track of the value for PB1×B2
((x1, x2))– recall that this is precisely why

we have introduced the error terms. Fortunately, we can calculate the desired EC terms from the previous
EC terms `1, `2, the bucket values B1,B2, and the bucket factor f as

`(i) :=
∑
j+k=i

B1(j)
fj `2(k) + B2(k)

fk
`1(j) + `1(j)`2(k).

Similarly, for the squaring, we quantify how the error terms change when we modify the buckets. Although
each new bucket is composed of two previous buckets, the bucket factor actually only changes for one half
of the values: the evenly indexed buckets B(2i) with factor f2i are now moved into buckets B(i) with the
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same factor (f2)i and thus their EC terms are still correct. The other half of buckets B(2i− 1) with factor
f2i−1 are moved into the same buckets B(i) with factor (f2)i and thus the EC terms need to be modified to
capture this change in the bucket factor, based on the previous EC terms `1 and bucket values B1:

`(i) := `1(2i− 1) + B1(2i− 1)

(
1

f2i−1
− 1

f2i

)
+ `1(2i).

We define the composition and squaring as follows.

Definition 9 (Composition and squaring with EC terms). For ratio buckets (B1, ˜̀
1, `1, f1, u1) over a universe∏W1

k=1 Uk and (B2, ˜̀
2, `2, f2, u2) over a universe

∏W1+W2

k=W1+1 Uk, with f1 = f2 = f , let N = {−n, . . . , n}. We
have

(B1, ˜̀
1, `1, f1, u1)× (B2, ˜̀

2, `2, f2, u2)

:=(B1 × B2, ˜̀
1 × ˜̀

2, `1 × `2, f, u1 + u2)

In all of the following sums we sum over all j, k ∈ N .

B1 × B2(i) :=


∑
j+k=i B1(j) · B2(k) i ∈ N \ {−n}∑
j+k≤−n B1(j) · B2(k) i = −n∑
j+k>n B1(j) · B2(k) i =∞

To ease readability we define V (j, k, x, y) = B1(j)
fj y(k) + B2(k)

fk
x(j) + x(j)y(k) and based on V we define the

EC terms as

˜̀
1 × ˜̀

2(i) :=


∑
j+k=i V (j, k, ˜̀

1, ˜̀
2) i ∈ N \ {−n}∑

j+k≤−n V (j, k, ˜̀
1, ˜̀

2) i = −n
0 i =∞

`1 × `2(i) :=

{∑
j+k=i V (j, k, `1, `2) i ∈ N \ {−n}

0 i ∈ {−n,∞}

For ratio buckets (B1, ˜̀
1, `1, f1, u1) over a universe

∏W1

k=1 Uk, we have

�(B1, ˜̀
1, `1, f1, u1) := (�B1, �˜̀

1, �`1, f
2
1 , du1/2e+ 1)

where we define

�B1(i) :=


B1(2i− 1) + B1(2i) i ∈ [−n/2 + 1, n/2]

B1(∞) i =∞
0 otherwise

To ease the readability we define a function W (i, x) := x(2i − 1) + B1(2i − 1)
(

1
f2i−1
1

− 1
f2i
1

)
+ x(2i). We

define the EC terms as

�˜̀
1(i) :=


W (i, ˜̀

1) i ∈ [−n/2 + 1, n/2]
˜̀
1(−n) i = −n/2

0 otherwise

�`1(i) :=

{
W (i, `1) i ∈ [−n/2 + 1, n/2]

0 otherwise

To improve the readability of our proofs we introduce a more compact notation for ratio buckets that
stem from a composition tree, by slightly abusing the

∏
symbol.
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Definition 10 (Notation for composing ratio buckets). Given a composition tree T = l(A,B) over the
distributions A and B, we write

T∏
k∈{1}

B(Ak, Bk, fk, n) = B(A,B, f, n).

Given a composition tree T = T1 × T2, where T1 is over the distributions (A1, . . . , Aj) and (B1, . . . , Bj)
and T2 is over the distributions (Aj+1, . . . , AW) and (Bj+1, . . . , BW), we write

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n) =

 T1∏
k∈{1,...,j}

B(Ak, Bk, fk, n)

×
 T2∏
k∈{j+1,...,W}

B(Ak, Bk, fk, n)

 .

Given a composition tree T = �T1, where T1 is over the distributions (A1, . . . , AW), we write

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n) = �

 T1∏
k∈{1,...,j}

B(Ak, Bk, fk, n)

 .

Whenever we say that ratio buckets (B, ˜̀, `, f, u) over a universe
∏W
k=1 Uk is defined for a value n and

with a composition tree T , we mean

(B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

where (l(A1, B1), . . . ,l(AW , BW)) are the leaf nodes of T .

4.2 Buckets and error correction terms per element

Before we can show the first helpful lemmas for the soundness of our error correction (EC) terms, we introduce
the impact that each individual event x has on the bucket terms that are influenced by x. We first simply
define these terms per element separately and then continue by showing that each bucket value (and EC
term) is simply the sum over the respective terms of all elements contributing to this bucket. This marks
a significant step in the correctness (and tightness) of our results: Although we only consider a few values
(one bucket value and one EC value per bucket) we still capture all individual events. The only exception
to this precision then comes from misplaced events, which we will analyze subsequently.

Definition 11 (Ratio buckets with EC terms per element). Let A,B be a pair of distributions over the
universes U , let f > 1 and n ∈ N and N = {−n, . . . , n}. We define the ratio buckets with EC terms per
element as follows

B(x) := PA(x)

˜̀(x) :=

{
PB(x)− PA(x)

fιT (x) ιl(A,B)(x) ∈ N,
0 ιl(A,B)(x) =∞,

`(x) :=

{
˜̀(x) ιl(A,B)(x) ∈ N \ {−n} ,
0 ιl(A,B)(x) ∈ {−n,∞} .

Both the composition and squaring for our terms per element behave identically to the corresponding
terms per bucket. The only difference here is that we rely on the index per element ιT instead of the bucket
indexes.

Definition 12 (Composition with EC terms per element). For ratio buckets (B1, ˜̀
1, `1, f1, u1) over a universe∏W1

k=1 Uk and (B2, ˜̀
2, `2, f2, u2) over a universe

∏W1+W2

k=W1+1 Uk, both defined with the same values f and n, and
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with composition trees T1 and T2 we have for each x = (x1, x2) ∈∏W1

k=1 U×
∏W1+W2

k=W1+1 Uk,

B1 × B2(x) := B1(x1) · B2(x2)

and we define the EC terms as

if ιT1×T2(x) ∈ {−n, . . . , n}

˜̀
1 × ˜̀

2(x) :=

( B1(x1)

f ιT1 (x1)
+ ˜̀

1(x1)

)
˜̀
2(x2) + ˜̀

1(x2)

( B2(x2)

f ιT2 (x2)
+ ˜̀

2(x2)

)
− ˜̀

1(x1)˜̀
2(x2)

if ιT1×T2(x) ∈ {∞}
˜̀
1 × ˜̀

2(x) := 0

if ιT1×T2
(x) ∈ {−n+ 1, . . . , n,∞}

`1 × `2(x) :=

( B1(x1)

f ιT1 (x1)
+ `1(x1)

)
`2(x2) + `1(x2)

( B2(x2)

f ιT2 (x2)
+ `2(x2)

)
− `1(x1)`2(x2)

if ιT1×T2(x) ∈ {−n,∞}
`1 × `2(x) := 0.

For a squaring node (T = �T1), we keep the bucket value as �B1(x) := B1(x1) and we define the EC terms
as follows (where f is the old factor, from the label of T1):

if ιT1(x) ∈ {−n, . . . , n}

�˜̀
1(x) := ˜̀

1(x) + B1(x) ·
(

1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
if ιT1

(x) ∈ {∞}
�˜̀

1(x) := 0

if ιT1
(x) ∈ {−n+ 1, . . . , n}

�`1(x) := `1(x) + B1(x) ·
(

1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
if ιT1(x) ∈ {−n,∞}
�`1(x) := 0.

We now show our first important lemma for the soundness of our buckets and EC terms: the terms we
defined just previously indeed characterize the impact of each individual event on the overall bucket values
and EC terms. These terms indeed are just the sum of the respective values per element for all elements of
an index that equals the bucket index.

Lemma 8 (All values are sums over atomic events). Let (Ak, Bk)Wk=1 be pairs of distributions over the

universes (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1) be

ratio buckets (with EC terms) and let T be a composition tree. Let ε ≥ 0. Let

(B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

Then, the following statements hold for all i ∈ {−n, . . . , n,∞}:
� B(i) =

∑
x s.t. ιT (x)=i B(x)

�
˜̀(i) =

∑
x s.t. ιT (x)=i

˜̀(x)

� `(i) =
∑
x s.t. ιT (x)=i `(x)

Proof. We show the lemma via structural induction over T . We only show the lemma for A, but the proof
follows analogously for B.
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If T = l(Ai, Bi): Let i ∈ {−n, . . . , n,∞}.

� By definition, B(x) = PA(x) (c.f., Definition 11). Thus, B(i) =
∑
x s.t. ι(x)=i PA(x) =

∑
x s.t. ι(x)=i B(x).

� If i ∈ {−n, . . . , n}, then ˜̀(i) =
∑
x s.t. ι(x)=i PB(x)− PA(x)

fi =
∑
x s.t. ι(x)=i

˜̀(x). Otherwise ˜̀(i) = 0 =∑
x s.t. ι(x)=i 0 =

∑
x s.t. ι(x)=i

˜̀(x).

� If i ∈ {−n+ 1, . . . , n}, then `(i) =
∑
x s.t. ι(x)=i PB(x)− PA(x)

fi =
∑
x s.t. ι(x)=i `(x). Otherwise `(i) =

0 =
∑
x s.t. ι(x)=i 0 =

∑
x s.t. ι(x)=i `(x).

If T = T1×T2: We assume the lemma holds for ratio buckets (B1, ˜̀
1, `1, f1, u1) over a universe U1 and ratio

buckets (B2, ˜̀
2, `2, f2, u2) over a universe U2 with composition trees T1 and T2. Then, with U = U1×U2 and

T = T1 × T2, we have for i ∈ {−n+ 1, . . . , n}

B1 × B2(i) =
∑

j,k∈{−n,...,n} s.t.j+k=i

B1(j) · B2(k)

IV
=

∑
j,k∈{−n,...,n} s.t. j+k=i

 ∑
x1∈U1s.t. ιT1 (x1)=j

B1(x1)

 ·
 ∑
x2∈U2s.t. ιT2 (x2)=k

B2(x2)


=

∑
x=(x1,x2)∈U1×U2 s.t. ιT1 (x1)+ιT2 (x2)=i

B1(x1) · B2(x2)

We know from Definition 7 that ιT (x) = ιT1(x1) + ιT2(x2), since ιT (x) ∈ {−n+ 1, . . . , n}.

=
∑

x=(x1,x2)∈U1×U2 s.t. ιT (x)=i

B1(x1) · B2(x2)

=
∑

x=(x1,x2)∈U s.t. ιT (x)=i

B(x).

For i ∈ {−n,∞} the proof follows analogously, where for −n we have j + k ≤ −n and we know from
Definition 7 that ιT (x) = −n is equivalent to ιT1(x1) + ιT2(x2) ≤ −n and for ∞ we have j + k > n and we
know from Definition 7 that ιT (x) =∞ is equivalent to ιT1

(x1) + ιT2
(x2) ≥ n.

For the virtual error, we distinguish the following cases:
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� ιT (x) ∈ {−n+ 1, . . . , n}. Then,

˜̀
1 × ˜̀

2(i)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

(B1(k)

fk
+ ˜̀

1(k)

)
˜̀
2(l) + ˜̀

1(k)

(B2(l)

f l
+ ˜̀

2(l)

)
− ˜̀

1(k)˜̀
2(l)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

B1(k)

fk
˜̀
2(l) + ˜̀

1(k)
B2(l)

f l
+ ˜̀

1(k)˜̀
2(l)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

(∑
x1∈U1s.t. ιT1 (x1)=k B1(x1)

fk

 ∑
x2∈U2s.t. ιT2 (x2)=l

˜̀
2(x2)


+

 ∑
x1∈U1s.t. ιT1 (x1)=k

˜̀
1(x1)

∑x2∈U2s.t. ιT2 (x2)=l B2(l)

f l

+

 ∑
x1∈U1s.t. ιT1 (x1)=k

˜̀
1(x1)

 ∑
x2∈U2s.t. ιT2 (x2)=l

˜̀
2(x2)

)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

∑
x1∈U1s.t. ιT1 (x1)=k

∑
x2∈U2s.t. ιT2 (x2)=l

(
B1(x1)

fk
˜̀
2(x2)

+ ˜̀
1(x1)

B2(l)

f l
+ ˜̀

1(x1)˜̀
2(x2)

)

=
∑

(x1,x2)∈U1×U2 s.t. ιT1 (x1)+ιT2 (x2)=i

(
B1(x1)

f ιT1 (x1)
˜̀
2(x2) + ˜̀

1(x1)
B2(l)

f ιT2 (x2)
+ ˜̀

1(x1)˜̀
2(x2)

)

We know from Definition 7 that ιT (x) = ιT1(x1) + ιT2(x2), since ιT (x) ∈ {−n+ 1, . . . , n}.

=
∑

x∈U s.t. ιT (x)=i

˜̀(x)

� ιT (x) = −n. The proof of the case from above follows analogously with k + l ≤ −n, since we know
from Definition 7 that ιT (x) = −n is equivalent to ιT1

(x1) + ιT2
(x2) ≤ −n.

� ιT (x) =∞.

˜̀
1 × ˜̀

2(i)

= 0 =
∑

x∈U s.t. ιT (x)=i

0

=
∑

x∈U s.t. ιT (x)=i

˜̀(x).

If T = �T1:

We assume the lemma holds for ratio buckets (B1, ˜̀
1, `1, f1, u1) over a universe U1 with a composition

tree T1. Then, with U = U1 and T = �T1, we have for i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n}

�B1(i) = 0 =
∑
x∈∅
B1(x) =

∑
x∈U s.t. ιT=i

B1(x)
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For i =∞, we have

�B1(∞) = B1(∞)
IH
=

∑
x∈U s.t. ιT1 (x)=∞

B(x) =
∑

x∈U s.t. ιT (x)=∞
B(x).

For i ∈ {−n/2 + 1, . . . , n/2} we have

�B1(i) = B1(2i) + B1(2i− 1)

IH
=

∑
x∈U s.t. ιT1 (x)=2i

B1(x) +
∑

x∈U s.t. ιT1 (x)=2i−1

B1(x)

=
∑

x∈U s.t. ιT1 (x)=2i

B(x) +
∑

x∈U s.t. ιT1 (x)=2i−1

B(x)

=
∑

x∈U s.t. ιT (x)=i

B(x).

For i = −n/2 we have

�B1(−n/2) = B1(−n)

IH
=

∑
x∈U s.t. ιT1 (x)=−n

B1(x)

=
∑

x∈U s.t. ιT1 (x)=−n
B(x)

=
∑

x∈U s.t. ιT (x)=−n/2
B(x).

We hence go forward to show the lemma for the EC terms.

For the EC terms and for i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n}

�˜̀
1(i) = 0 =

∑
x∈∅

˜̀
1(x) =

∑
x∈U s.t. ιT=i

˜̀
1(x)

For i =∞, we have

�˜̀
1(∞) = 0 =

∑
x∈U s.t. ιT (x)=∞

0 =
∑

x∈U s.t. ιT1 (x)=∞

˜̀(x) =
∑

x∈U s.t. ιT (x)=∞

˜̀(x).
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For i ∈ {−n/2 + 1, . . . , n/2} we have

�˜̀
1(i) = ˜̀

1(2i− 1) + B1(2i− 1)

(
1

f2i−1
− 1

f2i

)
+ ˜̀

1(2i)

IH
=

∑
x∈U s.t. ιT1 (x)=2i−1

˜̀
1(x) +

∑
x∈U s.t. ιT1 (x)=2i−1

B1(x)

(
1

f2i−1
− 1

f2i

)
+

∑
x∈U s.t. ιT1 (x)=2i

˜̀
1(x)

=
∑

x∈U s.t. ιT1 (x)=2i−1

�˜̀
1(x)− B1(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)

+
∑

x∈U s.t. ιT1 (x)=2i−1

B1(x)

(
1

f2i−1
− 1

f2i

)

+
∑

x∈U s.t. ιT1 (x)=2i

�˜̀
1(x)− B1(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)

=
∑

x∈U s.t. ιT1 (x)=2i−1

�˜̀
1(x)− B1(x) ·

(
1

f2i−1
− 1

f2i

)
+ B1(x)

(
1

f2i−1
− 1

f2i

)
+

∑
x∈U s.t. ιT1 (x)=2i

�˜̀
1(x)

=
∑

x∈U s.t. ιT (x)=i

�˜̀
1(x)

The proof for ˜̀(i) in case i = −n/2 and the `(i) follow analogously to the proof for ˜̀(i) with the exception
that the case −n/2 is analogous to the case ∞ instead to the cases i ∈ {−n+ 1, . . . , n} for `(i).

The proof for BB , ˜̀
B , and ` is symmetric.

With Lemma 8 we now have a powerful tool for proving a set of properties for our EC terms that will
ultimately allow us to show the soundness of our results: We can relate every bucket value and every EC
term to the underlying events and can thus analyze our properties per event.

4.3 Helpful properties of error correction terms

In this rather technical subsection we present and show a set of helpful properties of our EC terms that
we require for our proof of soundness (and for our lower bound). We show that all error terms are positive
(which means that not considering one of them can only increase the δ of our result), we show that our
real EC term is always smaller than the virtual EC term and finally we show that for every event x, the
virtual EC term after an arbitrary amount of composition and squaring following the composition tree T

still precisely captures PB(x)− PA(x)
fιT .

Lemma 9 (Positive real and virtual error correction terms). Let (Ak, Bk)Wk=1 be pairs of distributions over

the universes (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1)

be Ak/Bk ratio buckets (with EC terms) and let T be a composition tree. Let ε ≥ 0. Let

BT := (B1, ˜̀
1, `1, f1, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

The real EC terms `(i) and `B(i) for i ∈ {−n, . . . , n,∞} are positive, i.e., `(i) ≥ 0 and `B(i) ≥ 0. Moreover,
the virtual EC terms ˜̀(i) and ˜̀

B(i) for i ∈ {−n, . . . , n,∞} are positive as well.
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Proof. We show the lemma via structural induction over T . For leaf nodes T = l(A,B), the real EC term

of an initial bucketing is calculated as the sum of EC terms for each x ∈ U , which are either PB(x)− PA(x)

fιT (x)

or 0. By definition we know that PA(x) ≤ f ιT (x)PB(x), so all these values are positive. For composition

T1×T2 we have either 0 or V (j, k, x, y) = B1(j)
fj y(k) + B2(k)

fk
x(j) + x(j)y(k), which is the sum and product of

positive terms (the latter we know from the induction invariant). Analogously we notice that for squaring

�T1 we have either 0 or `1(2i− 1) +B1(2i− 1)
(

1
f2i−1 − 1

f2i

)
+ `1(2i), which again consists purely of positive

terms (again via induction invariant).
More precisely, we distinguish the following cases:

For T = l(A,B), the real EC term of an initial bucketing is calculated as the sum of EC terms for each

x ∈ U `(x) = PB(x)− PA(x)

fιT (x) if ιT (x) /∈ {n−,∞} and 0 otherwise. For ιT (x) ∈ {−n, . . . , n} by definition we

have PA(x) ≤ f ιT (x)PB(x). Thus, for all i ∈ {−n, . . . , n,∞} are positive, i.e., `(i) ≥ 0 and analogously we
get `B(i) ≥ 0.

For T = T1 × T2, BT is the result of composing ratio buckets (B1, ˜̀
1, `1, f1, u1) and

ratio buckets (B2, ˜̀
2, `2, f2, u2). By induction hypothesis, `1 and `2 are positive. We calculate the com-

posed EC terms as either 0 (if i ∈ {−n,∞}) or as

`(i) = `A1×A2
(i) =

∑
j,k s.t. j+k=i

((BA1
(j)

f j

)
`2(k) +

(BA2
(k)

fk

)
`1(j) + `1(j)˜̀

2(k)

)
,

which is positive as well since all the EC terms and all bucket terms are positive.

For T = �T1, We calculate the EC terms as either 0 (if i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n,∞}) or as

`(i) = �`1(i) =`1(2i− 1) + B1(2i− 1)

(
1

f2i−1
− 1

f2i

)
+ `1(2i),

which is positive as well since all the EC terms and all bucket terms are positive. 5 Analogously, we can
show that the virtual EC terms ˜̀ are positive as well.

We now show that the real EC term is smaller than the virtual EC term.

Lemma 10 (The real error ` is smaller than the virtual error ˜̀). Let (Ak, Bk)Wk=1 be pairs of distributions over

the universes (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1)

be Ak/Bk ratio buckets (with EC terms) and let T be a composition tree. Let ε ≥ 0. Let

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

Then, the real error is always smaller than the virtual error: `(x) ≤ ˜̀(x) and `B(x) ≤ ˜̀
B(x).

Proof. We show the lemma via structural induction over T .

For T = l(A,B): We know that ˜̀(x) ≥ 0. By definition, for u = 1, either `(x) = 0 or `T (x) = ˜̀
T (x)

holds. Thus, `T (x) ≤ ˜̀
T (x).

5Note that in the case −n/2 there is only one term instead of two. This term, however, is still positive.
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For T = T1×T2: BT is the result of composing ratio buckets (B1, ˜̀
1, `1, f1, u1) and ratio buckets (B2, ˜̀

2, `2, f2, u2).
By induction hypothesis, `1 ≤ ˜̀

1 and `2 ≤ ˜̀
2. For ιT (x) = −n, `(x) = 0. By Lemma 9 we know that 0 ≤ ˜̀(x),

hence `(x) = 0 ≤ ˜̀(x). For ιT (x) 6= −n, with x1 ∈ U1 and x2 ∈ U2 we have

`(x) = `1 × `2(x) =

(
PA1(x1)

f ιT1 (x1)
+ `1(x1)

)
`2(x2) +

(
PA2(x2)

f ιT2 (x2)
+ `2(x2)

)
`1(x1)− `1(x1)`2(x2)

=

(
PA1(x1)

f ιT1 (x1)

)
`2(x2)︸ ︷︷ ︸
IH

≤˜̀
2(x2)

+

(
PA2

(x2)

f ιT2 (x2)

)
`1(x1)︸ ︷︷ ︸
IH

≤˜̀
1(x1)

+ `1(x1)︸ ︷︷ ︸
IH

≤˜̀
1(x1)

`2(x2)︸ ︷︷ ︸
IH

≤˜̀
2(x2)

IH
≤
(
PA1(x1)

f ιT1 (x1)

)
˜̀
2(x2) +

(
PA2(x2)

f ιT2 (x2)

)
˜̀
1(x1) + ˜̀

1(x1)˜̀
2(x2)

=˜̀
1 × ˜̀

2(x) = ˜̀(x)

For T = �T1: This case directly holds by induction hypothesis, as the squaring operation is analogously
defined for the real and the virtual error.

We now show our main lemma for the lower bound on δ: the virtual EC term is precise for any event
with an index other than ∞. We can directly use this lemma to get a lower bound for δ if we ignore the
bucket with index ∞. Note that although the virtual error is precise on a per-event basis, events can still
be misplaced and thus negatively contribute to δ if we use the virtual EC term. For our upper bound on δ
we circumvent this problem by over-approximating misplaced events (using the real EC term) and by not
using EC terms in some buckets with a bucket factor f i close to eε.

Lemma 11 (Characterizing the virtual error after compositions and rescaling). Let (Ak, Bk)Wk=1 be pairs
of distributions over the universes (Ui)Wi=1, let f > 1 be the bucketing factor of the root node and n ∈ N and
let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀

k, `k, fk, 1) be Ak/Bk ratio buckets (with EC terms) and
let T be a composition tree. Let ε ≥ 0,

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n).

Then, for x ∈ U with ιT (x) 6=∞ we have

˜̀(x) = PB(x)− PA(x)

f ιT (x)

Proof. We show the lemma via structural induction over T . For T = l(A1, B1), the statement follows by
construction:

PB(x)− PA(x)

f i
= PB1

(x)− PA1(x)

f i
= ˜̀(i),

where f is the bucketing factor of the leaf.
For T = T1 × T2, BT is the result of composing ratio buckets (B1, ˜̀

1, `1, f1, u1) and
ratio buckets (B2, ˜̀

2, `2, f2, u2), both with the same bucketing factor f as the composition node. By in-
duction hypothesis, the statement holds for ˜̀

1 and ˜̀
2. By definition of the EC term composition we get with
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x1 ∈ U1 and x2 ∈ U2

˜̀(x) =(˜̀
1 × ˜̀

2)(x)

=

(
PA1(x1)

f ιT1 (x1)
+ ˜̀

1(x1)

)
˜̀
2(x2) +

(
PA2

(x2)

f ιT2 (x2)
+ ˜̀

2(x2)

)
˜̀
1(x1)− ˜̀

1(x1)˜̀
2(x2)

=
PA1

(x1)

f ιT1 (x1)
· ˜̀2(x2) +

PA2
(x2)

f ιT2 (x2)
· ˜̀1(x1) + ˜̀

1(x1)˜̀
2(x2)

IH
=
PA1

(x1)

f ιT1 (x1)
·
(
PB2

(x2)− PA2
(x2)

f ιT2 (x2)

)
+
PA2

(x2)

f ιT2 (x2)
·
(
PB1

(x1)− PA1
(x1)

f ιT1 (x1)

)
+

(
PB1

(x1)− PA1
(x1)

f ιT1 (x1)

)
·
(
PB2

(x2)− PA2
(x2)

f ιT2 (x2)

)
=
PA1

(x1)

f ιT1 (x1)
· PB2

(x2)− PA(x)

f ιT (x)

+
PA2

(x2)

f ιT2 (x2)
· PB1

(x1)− PA(x)

f ιT (x)

+ PB(x)− PA1
(x1)

f ιT1 (x1)
· PB2

(x2)− PA2(x2)

f ιT2 (x2)
· PB1

(x1) +
PA(x)

f ιT (x)

=PB(x)− PA(x)

f ιT (x)

For T = �T1, we know that for all x ∈ U , ιT1
(x) ∈ {−n/2, . . . , n/2}∪{∞}. Since the index∞ is excluded

in our lemma, we focus on the remaining values for the index. Note that the bucketing factor in this case
changes from f (of the child node) to f2 (of the squaring node). By induction hypothesis, we have

˜̀
1(x) = PB(x)− PA1(x)

f ιT (x)

Consequently and since ιT1(x) ∈ {−n/2, . . . , n/2}, we get,

˜̀(x) = �˜̀
1(x) = ˜̀

1(x) + BA1
(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
IH
= PB(x)− PA(x)

f ιT1 (x)
+ PA(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
= PB(x)− PA(x)

f ιT1 (x)
+ PA(x) ·

(
1

f ιT1 (x)
− 1

f2ιT (x)

)
= PB(x)− PA(x)

(f2)ιT (x)
.

4.4 The approximated delta with error correction

Finally, we define how to calculate a sound upper bound on δ based on ratio buckets with EC terms. We note
that when using the real EC term, events cannot harm the soundness by being misplaced as a result of parts
of the event having been placed in the smallest bucket (with index −n). However, every composition can
misplace events into the next larger bucket. This slight misplacement poses a problem for a small number of
buckets with a bucket factor f i just slightly larger than eε, as they can now contain events that should have
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been placed in a lower bucket (with factor f i
∗
< eε) and that now actually have a negative contribution

to δ: PA(x) − eεPB(x) < 0. All sets of A/B ratio buckets carry a value u that increases by 1 for every
composition (and that can be reduced by squaring). If jε is the index of the bucket with the smallest bucket
factor larger than eε, we don’t consider the the EC term for buckets with index i < jε + uand instead fall
back to Definition 4 for those buckets. For the remaining buckets with i ≥ jε +u, which typically is the vast
majority of buckets, we make use of the real EC term to reduce the error.

Definition 13 (Approximated delta with error correction). Let (Ak, Bk)Wk=1 be pairs of distributions over

the universes (Ui)Wi=1, let ε > 0 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1)

be Ak/Bk ratio buckets (with EC terms) and let T be a composition tree. Let ε ≥ 0. Let

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n).

We define δ(BT , ε) with jε ∈ N such that f jε−1 < eε ≤ f jε as

δ(BT , ε) :=∑
i∈{jε,...,jε+u−1}

B(i)− eεB(i)

f i

+
∑

i∈{jε+u,...,n}

(
B(i)− eε

(B(i)

f i
+ `(i)

))
+ B(∞)

Moreover, for all individual events x ∈ U we define

δ(BT , x, ε) :=


PA(x) ·

(
1− eε

fιT (x)

)
1. if jε ≤ ιT (x) ≤ jε + u− 1

PA(x)− eε
(
PA(x)

fιT (x) + `E(x)
)

2. if jε + u ≤ ιT (x) ≤ n
PA(x) 3. if ιT (x) =∞
0 4. otherwise

Note that if j > n, we only consider elements in the bucket B∞.
Next we show that the real EC terms are bounded by the value of u: For every event x the real EC term

`(x) can never exceed a fraction of 1
fιT (x)−u − 1

fιT (x) of the probability of the event. Intuitively, this means

that the value of the real EC term can never be larger than what a misplacement by u buckets would result
in.

Lemma 12 (An upper bound for `). Let (Ak, Bk)Wk=1 be pairs of distributions over the universes (Ui)Wi=1,

let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1) be ratio buckets (with

EC terms) and let T be a composition tree. Let ε ≥ 0 and with jε ∈ N such that f jε−1 < eε ≤ f jε . Let

BT := (B, ˜̀, `, f, u) :=
∏T
k∈{1,...,W} B(Ak, Bk, fk, n).

If jε + u ≤ ιT (x) 6=∞, then the EC term never makes a negative contribution to the approximated delta

with EC: `(x) ≤ PA(x)

fιT (x)−u − PA(x)

fιT (x) .

Proof. We show the lemma via structural induction over T .

Let T = l(A,B). If ιT (x) = −n then

`(x) = 0 ≤ PA(x) ·
(

1

f−n−1
− 1

f−n

)
.

Otherwise, if ιT (x) > −n, we know that by definition of ιT (x) we have f ιT (x)−1PB(x) ≤ PA(x)

`(x) =PB(x)− PA(x)

f ιT (x)

≤ PA(x)

f ιT (x)−1
− PA(x)

f ιT (x)
.
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Let T = T1×T2. If ιT (x) = −n, then `(x) = 0 ≤ PA(x)

fιT (x)−u − PA(x)

fιT (x) . Otherwise, BT is the result of composing

ratio buckets (B1, ˜̀
1, `1, f1, u1) and ratio buckets (B2, ˜̀

2, `2, f2, u2). By induction hypothesis, the statement
holds for `1 `2. For x1 ∈ U1 and x2 ∈ U2 we know that ιT (x) = ιT1

(x1) + ιT2
(x2). Moreover, we know that

PA(x) = PA1
(x1) · PA2

(x2). Thus, for u = u1 + u2 we get

`(x) =

(
PA1(x1)

f ιT1 (x1)
+ `1(x1)

)
`2(x2) +

(
PA2(x2)

f ιT2 (x2)
+ `2(x2)

)
`1(x1)− `1(x1)`2(x2)

=

(
PA1(x1)

f ιT1 (x1)

)
`2(x2) +

(
PA2(x2)

f ιT2 (x2)

)
`1(x1) + `1(x1)`2(x2)

IH
≤
(
PA1

(x1)

f ιT1 (x1)

)(
PA2

(x2)

f ιT2 (x2)−(u−u1)
− PA2

(x2)

f ιT2 (x2)

)
+

(
PA2

(x2)

f ιT2 (x2)

)(
PA1

(x1)

f ιT1 (x1)−u1
− PA1

(x1)

f ιT1 (x1)

)
+

(
PA1

(x1)

f ιT1 (x1)−u1
− PA1

(x1)

f ιT1 (x1)

)(
PA2

(x2)

f ιT2 (x2)−(u−u1)
− PA2

(x2)

f ιT2 (x2)

)
=

PA(x)

f ιT (x)−(u−u1)
− PA(x)

f ιT (x)

+
PA(x)

f ιT2 (x2)+ιT1 (x1)−u1
− PA(x)

f ιT2 (x2)+ιT1 (x1)

+
PA(x)

f ιT (x)−u1−(u−u1)
− PA(x)

f ιT (x)−(u−u1)
− PA(x)

f ιT (x)−u1
+
PA(x)

f ιT (x)

=
PA(x)

f ιT (x)−u2
− PA(x)

f ιT (x)

+
PA(x)

f ιT (x)−u1
− PA(x)

f ιT (x)

+
PA(x)

f ιT (x)−u −
PA(x)

f ιT (x)−u2
− PA(x)

f ιT (x)−u1
+
PA(x)

f ιT (x)

=
PA(x)

f ιT (x)−u −
PA(x)

f ιT (x)

Let T = �T1. In this case, if the child node has a bucketing factor of f1 and a value of u1, the squaring
node has a bucketing factor of f2

1 = f and a value of u = du1/2e+ 1. We know that �`(x) = `1(x) + B1(x) ·(
1

f
ιT1

(x)

1

− 1

f
2·dιT1 (x)/2e
1

)
. Since we excluded ιT =∞ = ιT1

and jε + u ≤ ιT , we know that ιT ∈ {0, . . . , n/2}.
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Thus,

`(x) = �`1(x)

= `1(x) + B1(x) ·
(

1

f
ιT1 (x)
1

− 1

f
2·dιT1 (x)/2e
1

)
IH
≤ PA(x)

f
ιT1 (x)−u1

1

− PA(x)

f
ιT1 (x)
1

+ B1(x) ·
(

1

f
ιT1 (x)
1

− 1

f
2·dιT1 (x)/2e
1

)

=
PA(x)

f
ιT1 (x)−u1

1

− PA(x)

f
ιT1 (x)
1

+
PA(x)

f
ιT1 (x)
1

− PA(x)

f
2·dιT1 (x)/2e
1

=
PA(x)

(f2
1 )

ιT1
(x)−u1
2

− PA(x)

(f2
1 )ιT (x)

≤ PA(x)

(f2
1 )dιT1 (x)/2e−(du1/2e+1)

− PA(x)

(f2
1 )ιT (x)

=
PA(x)

(f2
1 )ιT (x)−u −

PA(x)

(f2
1 )ιT (x)

From Lemma 12 we can deduct that no event in a bucket with index i ≥ jε + u can have a negative
impact on δ. Since moreover for each event we consider an impact that is at least as large as the actual
impact of the event (as in the precise calculation of δ from Lemma 1) we can show the soundness of our
result:

Lemma 13 (Soundness of the approximated delta with error correction). Let (Ak, Bk)Wk=1 be pairs of dis-
tributions over the universes (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) =
(Bk, ˜̀

k, `k, fk, 1) be Ak/Bk ratio buckets (with EC terms) and let T be a composition tree. Let ε ≥ 0. Let

BT := (B, ˜̀, `, f, u) :=
∏T
k∈{1,...,W} B(Ak, Bk, fk, n). Then, the following statement holds:

δ(BT , ε) ≥
∑
x∈U

max (0, PA(x)− eεPB(x))

Proof. As δ(BT , ε) is is a sum over BA and `, Lemma 8 implies that

δ(BT , ε) =
∑
x∈U

δ(BT , x, ε)

We next distinguish the the four cases of the definition of δ(BT , x, ε).
Case 1. This case occurs if jε ≤ ιT (x) ≤ jε + u− 1. By Lemma 6, we know the following

PA(x) ≤f ιT (x)PB(x)

⇔ PA(x)

f ιT (x)
≤PB(x)

⇔ PA(x)− eεPA(x)

f ιT (x)
≥PA(x)− eεPB(x)

By definition of δ(BT , ε), we get

δ(BT , x, ε) = PA(x)− eεPA(x)

f ιT (x)
≥PA(x)− eεPB(x)
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Moreover, as ιT (x) >= jε, we know that eε ≤ f ιT (x). Hence, we also get

δ(BT , x, ε) = PA(x)− eε

f ιT (x)︸ ︷︷ ︸
≤1

PA(x) ≥ 0

Case 2. This case occurs if ιT (x) ≥ jε + u.
We show two things: (i)

PA(x)− eε
(
PA(x)

f ιT (x)
+ `(x)

)
by Lemma 12 we know that `(x) ≤ PA(x)

fιT (x)−u − PA(x)

fιT (x) holds; hence, we get

≥PA(x)− eε
(
PA(x)

f ιT (x)
+

PA(x)

f ιT (x)−u −
PA(x)

f ιT (x)

)
=PA(x)− eε

(
PA(x)

f ιT (x)−u

)
≥PA(x)− f jε

f ιT (x)−uPA(x)

=PA(x) ·
(

1− f jε

f ιT (x)−u

)
as by assumption ιT (x) ≥ jε + u, we get

≥0

(ii) Note that

PA(x)

f ιT (x)
+ `(x)︸︷︷︸
≤˜̀(x)

≤ PA(x)

f ιT (x)
+ ˜̀(x)

Lemma 11
=

PA(x)

f ιT (x)
+ PB(x)− PA(x)

f ιT (x)
= PB(x)

Thus,

PA(x)− eε
(
PA(x)

f ιT (x)
+ `(x)

)
≥ PA(x)− eεPB(x)

From (i) and (ii) we get

δ(A,B, x, f, n, u, ε) =PA(x)− eε
(
PA(x)

f ιT (x)
+ `(x)

)
≥max(0, PA(x)− eεPB(x))

Case 3. By definition of δ, we have δ(x) = PA(x) > max (0, PA(x)− eεPB(x)).
Case 4. Thus, for all x with ιT (x) ≤ jε,

PA(x)− eεPB(x)

≤PA(x)− f jεPB(x)

≤PA(x)− f ιT (x)PB(x)
Lemma 6
≤ 0

and thus,

δ(x) = 0 = max (0, PA(x)− eεPB(x))
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We now present our main result: Given any value for ε ≥ 0 and a value δε, s.t. the distributions are
tightly (ε, δε)-differentially private, the value δ calculated as in Definition 13 presents a sound upper bound
on δε from Lemma 1 and we introduce a lower bound δlow, s.t. δlow presents a lower bound on δε.

Theorem 2 (Buckets with EC terms are sound). Let (Ak, Bk)Wk=1 be pairs of distributions over the universes

U := (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1)

be Ak/Bk ratio buckets (with EC terms) and let T be a composition tree. Let ε ≥ 0 and jε ∈ N s.t.
f jε−1 < eε ≤ f jε ,

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

δε = max

(∑
x∈U

max (PA(x)− eεPB(x), 0) ,

∑
x∈U

max (PB(x)− eεPA(x), 0)

)

δlow :=
∑

i∈{jε,...,n}
max

(
0,B(i)− eε

(B(i)

f i
+ ˜̀(i)

))
Then,

∏W
k=1Ak and

∏W
k=1Bk are (ε, δε)-differentially private, and

δlow ≤ δε ≤ δ(BT , ε),

Proof. Lemma 1 shows that
∏W
k=1Ak and

∏W
k=1Bk are (ε, δε)-differentially private, and Lemma 13 proves

that δε ≤ δ(BT , ε) holds true.
Next, we show that δlow ≤ δε:

δlow =
∑

i∈{jε,...,n}
max

(
0,B(i)− eε

(B(i)

f i
+ ˜̀(i)

))

Lemma 8
=

∑
i∈{jε,...,n}

max

0,
∑

x∈U,ιT (x)=i

PA(x)− eε
(
PA(x)

f i
+ ˜̀(x)

)
Lemma 11

=
∑

i∈{−n,...,n,∞}
max

0,
∑

x∈U,ιT (x)=i

PA(x)− eε
(
PA(x)

f i
+

(
PB(x)− PA(x)

f ιT (x)

))
=

∑
i∈{jε,...,n}

max

0,
∑

x∈U,ιT (x)=i

PA(x)− eεPB(x)


≤

∑
i∈{jε,...,n}

∑
x∈U,ιT (x)=i

max (0, PA(x)− eεPB(x))

≤
∑
x∈U

max (0, PA(x)− eεPB(x))

Hence, we conclude that

δlow ≤
∑
x∈U

max (0, PA(x)− eεPB(x)) = δε

Thus, the bounds calculated present a sound over-approximation of the real differential privacy values.
We emphasize that distributions can be used to calculate differential privacy in a variety of applications. We
make the notion of worst-case inputs formal. We require the existence of worst-case inputs that allow us to
directly derive the relevant distributions.
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Definition 14 (Worst-case inputs). Inputs x0, x1 are worst-case inputs for a given sensitivity s and a
mechanism M if Pr[M(x0) ∈ S] ≤ eε Pr[M(x1) ∈ S] + δ, implies M is (ε, δ)-ADP for all inputs with
sensitivity s.

Corollary 1. For any privacy-enhancing mechanism M for which there exist worst-case inputs x0, x1, let
B(M(x0),M(x1), f, n) be a M(x0)/M(x1) ratio buckets. If for ε, δ ≥ 0, B(M(x0),M(x1), f, n) is (ε, δ)-ADP,
then M is (ε, δ)-ADP. Moreover, if B(M(x0),M(x1), f, n)r is (ε, δ)-ADP then then M is (ε, δ)-ADP under
r-fold composition.

Proof. Consider the reduction that replaces all inputs of the attacker with sensitivity s with the worst case
inputs for sensitivity s. If there were inputs x′0, x

′
1 such that for any ε, Pr[M(x′0) ∈ S] ≥ eε Pr[M(x′1) ∈ S]+δ′,

although Pr[M(x0) ∈ S] ≤ eε Pr[M(x1) ∈ S]+ δ and δ′ > δ, then x0, x1 cannot be the worst-case inputs.

Our approach can be applied, for instance, whenever worst-case inputs of the mechanism can be found
independently of the random coins used by the mechanism in the previous rounds. This is commonly the
case when differential privacy is applied (see Section 1.3).

4.5 Implementation

We implemented δ(BT , ε) (c.f. Theorem 2) in Python using the NumPy [2] and the SciPy [3] libraries in 655
LoC. The most time consuming part in the computation is the composition. We phrased the composition
as a series of inner products and use the NumPy library, which has an efficient implementation of inner
products. We added a simple form of parallelization (62 LoC), but expect that a massive parallelization via
GPUs should be several orders of magnitudes more efficient than our current implementation.

Given a bucket factor as well as a number of buckets 2n+ 2, our implementation constructs ratio buckets
from any given histogram / distribution with a limed number of events. For Laplacian noise and Gaussian
noise we have implemented special constructors that create ratio buckets for those functions in a more-or
less precise fashion.

Given any ratio buckets and a number of rounds r, our implementation then calculates both upper bounds
(with error correction) and lower bounds using repeated squaring: we compose the bucket distribution with
itself in each round, thus calculating 2r compositions in a time linear in r (and quadratic in the number of
buckets n). Our implementation adaptively decides whether or not to perform “squaring”, i.e., to rebase the
factor depending on whether the bucket with index∞ would otherwise grow too much. Empirically, we found
that an increase of weight of the ∞ bucket by more than a factor of 2.2 is a good indicator that squaring
should be performed. Additionally, we include a parameter that disables squaring as long as the B(∞) is
below this parameter, which is important for cases where B(∞) is initially zero or very small. Finally, we
compute an (ε, δ)-graph by calculating δ as in Definition 13 for every ε = f i with i ∈ {0, . . . , n}.

5 Comparison to Kairouz et al.’s composition theorem

Kairouz et al. proved a composition theorem [12] that significantly improves on the standard and advanced
composition theorem. This composition theorem [12] provides a composition result where each ε, δ pair
after r-fold composition is solely derived from one ε, δ pair of the original pair of distributions. Hence, this
composition result does take the entire shape of the distribution into account. In other words, the resulting
epsilon and delta bounds are not necessarily tight in the sense of Definition 1.

Recall that we show that our ratio buckets approach provides an upper and a lower bound and that
the distance between these two bounds can be made arbitrarily small by increasing the granularity of the
buckets. The ratio buckets can be seen as an approximation of the two ε, δ graphs6 of the original pair of
distributions A and B. As a consequence, our results show that the two ε, δ graphs of A and B capture all
features that are relevant for computing the two ε, δ graphs after k-fold composition (i.e., of Ak and Bk).

We show in this section that Kairouz et al.’s composition theorem seems to be tight for the Laplace
mechanisms but not for all mechanisms, such as the Gaussian mechanism or the measured timing-leakage
of the CoverUp system [16]. While our approach does not provide significantly tighter bounds for Laplace

6There are two ε, δ graphs since the DP definition is asymmetric.
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mechanism, our ratio buckets significantly improve the privacy bounds on other mechanisms, such as Gaus-
sian mechanism and CoverUp-data. We first describe how we compute these mechanisms and then how
we compute the composition theorem. Subsequently, we compare the tightness of the bounds from our
ratio buckets approach to the bounds from Kairouz et al.’s composition theorem in these three scenarios.
In the three case studies of this section we consider one-dimensional data, e.g., in responses to statistical
queries over sensitive databases or leakage due to suspicious timing delays. However, our approach and our
implementation can also deal with higher-dimensional data.

5.1 Embedding the Laplace mechanism

We analyze the Laplace mechanism, the classical mechanism to achieve DP, by comparing two distributions
of Laplace noise with means 0 and 1 respectively. This case corresponds to many applications of the Laplace
mechanism for DP, such as counting queries for databases with sensitivity 1. We choose in our case study
a Laplace distribution with mean µ = 0 and scale factor γ = 200, denoted as LP(µ, γ). As a result, an
attacker either makes observations from LP(0, 200) or from LP(1, 200) (as the sensitivity is 1). We consider
truncated Laplace distributions, since that corresponds closer to real-world applications. If not mentioned
otherwise, we truncate at µ− 2500 and µ+ 2500.

We want to give strong evidence that both Kairouz et al.’s composition theorem and our ratio buckets
are tight for the bounds of the Laplace mechanism. As a consequence, we carefully embed the Laplace
mechanism in a way that has a small discretization error. The bucket method introduced in Definition 8
iterates over all atomic events in the support of the distributions. For modeling the Laplace distribution,
or rather, two Laplace distributions A and B, we consider the quotients of the probability mass functions
and integrate distribution A over the range of events that fall into each bucket: for B(i) we integrate over
all events x such that f i < pA(x)/pB(x) ≤ f i+1. This technique can also be applied to other distributions
with an infinitely large support, where all areas where B has a probability of zero naturally contribute to
the bucket B∞.

Recall the probability density function for the Laplace distribution with mean µ and scale parameter γ

as Laplace(x) := 1
2γ e

−|x−µ|
γ . For differential privacy we often compare two such distributions with the same

scale parameter γ and different medians µ1 and µ2, where the means are the real values to which we add
Laplace noise with scale parameter γ. We know that without composition, we get (ε, 0)-ADP with ε = 1

γ .

Consequently, we can describe the quotient f at each point x as We calculate the quotient f(x) =
Laplaceµ1 (x)

Laplaceµ2 (x)

depending on the relation between the values for x, µ1 and µ2:

� x ≤ min(µ1, µ2): f(x) = e−(µ1−x)ε/e−(µ2−x)ε = e(−µ1+x−x+µ2)ε = e(µ2−µ1)ε

� µ1 ≥ x ≥ µ2: f(x) = e−(µ1−x)ε/e−(x−µ2)ε = e(−µ1+x+x−µ2)ε = e(−µ1−µ2+2x)ε

� µ1 ≤ x ≤ µ2: f(x) = e−(x−µ1)ε/e−(µ2−x)ε = e(−x+µ1+µ2−x)ε = e(µ1+µ2−2x)ε

� x ≥ max(µ1, µ2): f(x) = e−(x−µ1)ε/e−(x−µ2)ε = e(µ1−x+x−µ2)ε = e(µ1−µ2)ε

It turns out that for a pair of Laplace distributions the quotient in the region min(µ1, µ2) ≤ x ≤
max(µ1, µ2) is either monotonically increasing or monotonically decreasing. For any x smaller than min(µ1, µ2),
the quotient is stable at e−ε and for any x larger than max(µ1, µ2) the quotient is stable at eε. Recall that
our buckets capture a range of quotients: bucket i captures all x such that f i < pA(E)/pB(E) ≤ f i+1. As
a result, each bucket i contains contiguous points and defines an interval on the x− axis. For each interval
we define the bucket borders, i.e., for the bucket with index i, we call the value x with f(x) = f i−1 the left
bucket border lbb(i) and the value x with f(x) = f i the right bucket border rbb(i).
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For µ1 > µ2, the right bucket border rbb(i) is the x such that

e(2x−µ1−µ2)ε =f i = e(iε/gr) =: ej

⇔ (2x− µ1 − µ2)ε =j

⇔ (2x− µ1 − µ2) =j/ε

⇔ 2x =µ1 + µ2 + j/ε

⇔ x =(µ1 + µ2 + j/ε)/2

⇔ x =(µ1 + µ2 +
(iε/gr)

ε
)/2

⇔ x =(µ1 + µ2 + i/gr)/2

=⇒ rbb(i) =1/2(µ1 + µ2 + i/gr)

=⇒ rbb(i− 1) =1/2(µ1 + µ2 + i/gr− 1/gr)

=rbb(i)− 1/(2gr)

=lbb(i)

For µ1 < µ2, the right bucket border rbb(i) is the x such that

e(−2x+µ1+µ2)ε =f i = e(iε/gr) =: ej

⇔ (−2x+ µ1 + µ2)ε =j

⇔ (−2x+ µ1 + µ2) =j/ε

⇔ 2x =µ1 + µ2 − j/ε
⇔ x =(µ1 + µ2 − j/ε)/2

⇔ x =(µ1 + µ2 −
(iε/gr)

ε
)/2

⇔ x =(µ1 + µ2 − i/gr)/2

=⇒ rbb(i) =1/2(µ1 + µ2 − i/gr)

=⇒ rbb(i− 1) =1/2(µ1 + µ2 − i/gr + 1/gr)

=rbb(i) + 1/(2gr)

=lbb(i)

As a result, the bucket i has the value
∫ rbb(i)

lbb(i)
Laplace(µ1, 1/ε).

We compute the error correction term as `(i) :=
∫ rbb(i)

lbb(i)

(
B(x)− A(x)

fi

)
and we can directly compute the

virtual error from this term.
For the buckets with index ±i s.t. f i = eε we integrate over the respective remaining areas B(−i) =∫ rbb(−i)

−∞ Laplace(µ1, 1/ε) and to B(i) we add
∫∞

rbb(i)
Laplace(µ1, 1/ε). As we chose f to fit eε the events in

these regions exactly have the respective quotient of the bucket and we don’t have errors for these integrals.
Consequently, the error terms for bucket B(−i) are zero and the error terms for bucket B(i) are composed
of the error terms for the values x with lbb(i) < x < rbb(i).

Truncated Laplace distributions. The truncation of each of either of these functions, causes the quotient
of a region to be either 0 or to have 0 in the denominator, which we treat as infinity. The regions are captured
by the outer buckets with indexes −n and ∞ respectively.

5.2 Embedding the Gaussian mechanism

The truncated Gaussian mechanism is also an often-used mechanism in privacy-preserving applications. It
works similar to the Laplace mechanism insofar as it convolves the input (e.g., a query response) with
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a Gaussian distribution. In this work, we use a mean µ = 0 and a standard deviation σ = 200
√

2 (to
achieve the same variance as LP(0, 200)), denoted as GS(µ, σ2), and we truncate these distributions at
µ − 2500 and µ + 2500, if not mentioned otherwise. For the truncated Gaussian mechanism, we do not
use a precise embedding but rather produce a histogram for each of the two distributions, using SciPy’s
scipy.stat.norm function. Then, we use the normal interface of our bucketing implementation that parses
a pair of histograms and produces a bucketlist vector, a real error vector, and a virtual error vector. We
accept that this implementation may produce discretization artifacts that, however, should be both small
w.r.t. the values concerned and should not lead to a significantly different shape of the distributions under
composition.

5.3 Embedding CoverUp’s data

Classical anonymous communication networks (ACN) have the goal of hiding the IP address of the sender
and the recipient of a communication. Such ACNs do however not hide the participation time, i.e., whether,
when, and for how long a party uses an ACN. This participation time can be used for long-term attacks (e.g.,
intersection attacks) and can raise suspicion national state-level adversaries. Sommer et al. [16] propose a
system, called CoverUp, that has the goal of hiding this participation time leakage. CoverUp assumes a
collaborating popular web service with a significant amount of regular visitors. This webpage would be
incorporated into the usage of an ACN and trigger all its visitors to produce cover traffic. This web page
would serve an iFrame that loads content from a trusted server, which in turn would serve a piece of JavaScript
code that executes a dummy client for the ACN on the visitors browser. ACN users would act as a normal
visitor, receive the JS code, but additionally have a dedicated CoverUp browser extension installed. The
browser extension would enable a communication channel to an external application by replacing the dummy
messages from the dummy client with actual messages from an external application and by forwarding all
messages from the network to the external application. For CoverUp to properly hide the participation time
ACN users (called voluntary participants) and normal website visitors (called involuntary participants) have
to be indistinguishable. While both execute the same piece of JS code, the voluntary participants perform
additional computations. As a consequence, the response time of the voluntary participants differs by a few
milliseconds from the response time of the involuntary participants. CoverUp remedies this timing leakage
by adding random delays in the JS code, i.e., for voluntary and involuntary participants.

The CoverUp paper presents an analysis of this timing leakage (after adding the noise) and aims for a
high degree of privacy after more than 250k observations. The CoverUp authors experimentally measured
the timing delays of voluntary and involuntary participants in the lab and produced histograms of these
timing delays. These histograms are used as a model for the timing delays of voluntary and involuntary
participants to assess the timing leakage of CoverUp. We apply our algorithm to these histograms of timing
delays, to illustrate that and how well our approach works on measured data. We use data from the CoverUp
project, which is openly available online.7

In this comparison, we only consider those measured delays on a Linux system that are observable after
the webpage has been loaded, called the “periodic” measurements in the CoverUp paper.

5.4 Computing Kairouz et al.’s composition theorem

We directly implement the bounds from Kairouz et al.’s theorem. We do not use any statements specific to
Gauss or Laplace, as those are simplified and provide worse bounds.

Theorem 3 ([12]). For any ε ≥ 0 and δ ∈ [0, 1], the class of (ε, δ)-ADP mechanisms satisfies (ε′, δ′)-ADP
under r-fold composition, for all i ∈ {0, . . . , br/2c} where ε′ = (r − 2i)ε and δ′ = 1− (1− δ)r(1− δi)

δi =

∑i−1
`=0

(
r
`

) (
e(r−`)ε − e(r−2i+`)ε

)
(1 + eε)r

We compute for a given number r of compositions the epsilon-delta graph by looking up for a fine-grid
of ε values the corresponding δ value of the original pair of distributions and then computing and storing all
(ε′, δ′) pairs according to the theorem above, i.e., for all i ∈ {0, . . . , br/2c}. From these stored (ε′, δ′) pairs,

7Available under http://coverup.tech.
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Figure 8: The ε, δ graphs computed with Kairouz et al.’s composition theorem and with our ratio buckets
after 512 compositions for the Laplace mechanism, the Gaussian mechanism, and the CoverUp data (upper
bound solid, lower bound dotted). The y-axis depicts the δ-values and the x-axis the eε values. The
variance of the Gaussian mechanism and the Laplace mechanism is 80, 000, the sensitivity is 1 (the centers
at µ1 = 0 and µ2 = 1) respectively, and in both mechanisms truncation happens at −2500 and +2500 from
the respective µi.

we remove all pairs for which we have stored lower (ε′′, δ′′) pairs, i.e., pairs such that ε′′ ≤ ε′ and δ′′ ≤ δ′.
We output the remaining list of (ε′, δ′) pairs, which form a monotonically decreasing (ε, δ)-graph. Due to
our direct implementation of δi, we can only evaluate the composition theorem up to r = 512 before the
intermediate computation results (in particular, the eO(k)-terms) become too large.

In our computation, the granularity of the grid of ε values of the original pair of distributions naturally
leads to an imprecision. We use a fine grid of

eε ∈ {(1 + 10−14)1.1j | j ∈ {0, . . . , n}},

where we choose n as a point where the (ε, δ) after r-fold composition becomes stationary. While we concede
that it might be possible to obtain a slightly lower bound from the composition theorem, we are confident
that, due to this fine grid, the resulting graphs for Kairouz et al.’s composition theorem that we compute
are representative.

5.5 Comparing evaluations

We are finally in a position to evaluate how our ratio buckets compare against Kairouz et al.’s composition
theorem. Figure 8a shows that our upper and lower bounds coincide, i.e., our results are tight. Also,
Kairouz et al.’s composition theorem is tight with respect to a pair of Laplace distributions (i.e., the Laplace
mechanism). Figure 8a shows that for the Gaussian mechanism that composition theorem is already after
512 compositions not very tight. Figure 8b shows that for the CoverUp-data our ratio buckets are tight,
while there is a large gap to the bounds from Kairouz et al’s composition theorem.

Figure 9 compares for fixed epsilon values the evolution of the delta bounds from Kairouz et al.’s com-
position theorem and from our approach. This comparison again uses the Laplace mechanism, the Gaussian
mechanism and the CoverUp data.

The tightness of Kairouz et al.’s[12] bounds for the Laplace mechanism suggests that there is no noise
distribution with the same, or smaller, initial ε and δ values that has a worse composition behavior than the
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Figure 9: Growth of eε over the number of compositions (y-axis) for fixed δ values (different line-styles) for
a growing number of compositions with mechanisms as in Figure 8.

Laplace mechanism.

6 Comparison of the Gaussian and the Laplace mechanism

As we have seen in Section 5.5, Kairouz et al.’s composition theorem is fairly tight for the Laplace mechanism
but not for the Gaussian mechanism. Figure 10 (upper two graphs) compares a truncated Laplace and a
truncated Gaussian mechanism and find that for the same variance the Gaussian mechanism provides a
significantly higher degree of privacy. For a fixed variance of 80, 000, a sensitivity of 1 (mu1 = 0 and µ2 = 2),
and a truncation at −2500 and 2500 for µ1 (and −2499 and 2501 for µ2), the upper left graph in Figure 10
depicts how, for different but fixed epsilon values, the delta increases over the course of 512 evaluations. The
graph clearly shows that in the course of 512 compositions, the reduced leakage of the Gaussian mechanism
becomes visible. The lower left graph in Figure 10 shows the full epsilon-delta graphs of a Gaussian and a
Laplace mechanism after 512 compositions, where the two mechanisms use noise that has the same variance
(80, 000). In particular, the delta-value where the (ε, δ) graph levels out is 4 orders of magnitude lower for
Gaussian noise than it is for Laplace noise, since the Gaussian distribution falls much steeper than Laplace
distribution. This difference of the Gaussian and the Laplace mechanisms becomes even more pronounced in
our analysis and improvement of the Vuvuzela protocol in Section 7. The analysis of Vuvuzela also illustrates
that the steepness of the Gaussian distribution enables a much tighter truncation, i.e., the distribution can
be truncated much earlier than a Laplace distribution without sacrificing privacy. This tighter truncation,
in turn, leads to a smaller range of noise that is required to achieve the same privacy goals as with Laplace
noise.

Additionally, we found evidence that the epsilon-delta graph of the Laplace mechanism converges toward
the epsilon-delta graph of a Gaussian mechanism with half the variance of the Laplace mechanism. For
the same sensitivity, and truncations as above, the two right graphs in Figure 10 illustrate that after 512
compositions these two graphs converge toward each other. The upper right graph in Figure 10 depicts
how, for different but fixed epsilon values, the delta increases over the course of 512 evaluations. The graph
clearly shows how in the course of 512 compositions, the delta values of the Laplace mechanism converge
toward the delta values of the Gaussian mechanism. The lower right graph in Figure 10 shows the full
epsilon-delta graphs of a Gaussian and a Laplace mechanism after 512 compositions, where the Laplace
mechanism has twice the variance (80, 000) of the Gaussian mechanism (40, 000). This figure shows how
close the two epsilon-delta graphs are and that they almost only differ due to their different y-values at the
point where they have been truncated. This difference, however, is crucial. As explained above, it is caused
by the steepness of the Gaussian distribution and enables a much tighter truncation, which in turn can lead
to significantly less noise overhead, as we illustrate in our analysis of Vuvuzela. We leave it for future work
to investigate this connection further.
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(b) The ε, δ graphs (upper and lower bounds) after k = 512 compositions applied to a Gaussian and a Laplace
mechanism with δ on the y-axis and eε on the x-axis.

Figure 10: Truncated Gaussian mechanisms (red) vs. truncated Laplace mechanism (blue) both with sensi-
tivity = 1. For both mechanism truncation is at µi − 2500 and µi + 2500 (µ1 = 0 and µ2 = 1). At twice the
variance the Laplace mechanism converges towards the Gaussian mechanism, so much that the blue lines
almost completely cover the red lines.

7 Application to Vuvuzela

In this section, we show how aiming for tight bounds in a privacy analysis can significantly improve the
bandwidth overhead of a protocol. As a case study, we use the Vuvuzela [18] protocol, which is an anonymous
communication system tailored towards messengers. Vuvuzela uses Laplace noise to achieve strong privacy
properties. Using the insights from Section 6, we not only estimate tighter bounds for the Laplace noise but
also propose to change the shape of the noise distribution to Gaussian noise. With our bucketing approach,
we show that already 5 to 10 times less noise8 suffices to achieve the same strong privacy properties. 9

8The more observations are estimated, the higher the error of the advanced composition result, which is used in the original
analysis from the Vuvuzela paper; hence, in those cases the tightness of our bounds leads to a more significant improvement.

9We acknowledge that for the analysis of the Laplace noise previous results [12] would already yield tight results, but for
the Gaussian noise our approach yields much tighter results (see Section 6).
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We refer to the original Vuvuzela paper for a full presentation and restrict our presentation to the
bare bones that are needed to understand the noise messages that Vuvuzela uses to achieve strong privacy
properties.

We stress that our work contributes to improving the epsilon-delta bounds and thus to improve a given
privacy analysis. This work is not meant to help in finding a suitable attacker model, a suitable definition
or accurate usage profiles. Hence, we stick to Vuvuzela’s privacy analysis, as it was presented in the original
paper.

7.1 Protocol overview

Vuvuzela clients communicate by deposing their encrypted messages in virtual locations in the one of the
mixes (the locations are called dead drops). For agreeing on such a dead drops, Vuvuzela deploys a dialing
protocol where the dialer sends the ID of a dead drop to dedicated invitation dead drops. This ID is encrypted
with the peer’s public key with an encryption schemes that is designed to hide the recipient’s identity. On
the dialer’s side directly the conversation protocol is started where the client regularly retrieves the chat
messages from and deposits chat messages to the dead drop from the invitation. If the recipient receives and
accepts the invitation, the recipient also starts the conversation protocol.

Privacy analysis Vuvuzela assumes a global network-level attacker that is additionally able to compromise
some mixes. To achieve strong resistance against compromised servers, each path in Vuvuzela traverses all
nodes. To counter traffic correlation attacks, Vuvuzela clients produce dummy trafic at a constant rate. The
Vuvuzela paper argues that the only remaining source of leakage is the patterns of registering invitations
and patterns of access requests to these dead drops: single requests to dead drops, corresponding to dummy
messages or messages before the peer accepted the conversation, and pairs of requests to the same dead drop,
corresponding to an active conversation.

Privacy-enhancing measures Vuvuzela reduces the information that an attacker can learn by triggering
each mix to produce cover stories for potentially communicating parties. For the dialing protocol, the mixes
produce cover stories (i) by sending dummy invitation registrations and invitation requests to the dedicated
invitation dead drops. The number of these dummy registrations and dummy requests is in each round
drawn from the truncated Laplace distribution dmax(0,Laplace(γd, µd))e for some system parameters γd
and µd. For the conversation protocol, the mixes produce cover stories (ii) for idle parties, by sending pairs
of dummy access requests to uniform-randomly chosen dead drops, and (iii) for (bi-directionally) commu-
nicating parties, by sending (single) dummy access requests to uniform-randomly chosen dead drops. The
number of (single) dummy access requests (ii) is in each round drawn from the truncated Laplace distribu-
tion dmax(0,Laplace(γc, µc))e for system parameters γc and µc, and the number of pairs of dummy access
requests (iii) is in each round drawn from the truncated Laplace distribution dmax(0,Laplace(µc/2, γc/2))e.
The system parameters µd, µc, γd, γc determine how much noise-overhead the protocol produces and how
much privacy it will offer.

Privacy-impact of the dummy requests The goal of the these dummy requests and invitations is to
produce a cover stories for dialing parties (i), for idle parties (ii), and for conversing (iii). The Vuvuzela
paper separately conducts a privacy analysis for the dialing protocol ((i)) and the conversation protocol
((ii) and (iii) combined). For the dialing protocol, the paper concludes that it suffices to bound the r-fold
(ε, δ) differential privacy of max(0,Laplace(µd, γd)) and max(0,Laplace(µd + 2, γd)), i.e., the (ε, δ) differ-
ential privacy of the product distributions max(0,Laplace(µd, γd))

r and max(0,Laplace(µd + 2, γd))
r. The

parameter r indicates the number of rounds at which that the attacker conducts an observation. For the
conversation protocol, the paper concludes that it suffices to estimate the r-fold (ε, δ) differential privacy of
max(0,Laplace(µc, γc))+max(0,Laplace(µc/2, γc/2)) and max(0,Laplace(µc+2, γc))+max(0,Laplace(µc/2+
1, γc/2)). The Vuvuzela paper uses the advanced composition theorem for differential privacy [7] to bound
ε and δ. The paper analyzes for the conversation protocol three system parameters: µ = 150k, γ = 7.5k,
µ = 300k, γ = 13.8k, and µ = 450k, γ = 20k. We show that the resulting bounds can be significantly
improved and we indicate all new bounds with a “∗” sign in the respective figures.
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Figure 11: The privacy bounds for Vuvuzela’s dialing protocol. The left graph shows the eε-values on the
y-axis and the number of observations r on the x-axis (i.e., r-fold composition) in log-scale and the right
graph shows the corresponding δ-values on the y-axis. The solid green (µ = 8k, γ = 500), the dashed red
(µ = 13k, γ = 770k), and the dotted blue line (µ = 20k, γ = 1130) are from the original Vuvuzela paper,
and the solid magenta line (Gaussian noise, µ = 4.1k∗, σ = 320) is computed with this work’s technique.

We apply our method to estimate tighter ε and δ bounds for Vuvuzela, and to reduce the recommended
noise. Recall that we observed in Section 6 that Gaussian noise for the same variance behaves better under
composition than Laplacian noise. This section studies how much our tighter bounds enable us to reduces
the noise in the case that Gaussian noise is used or that Laplace noise is used, and this section studies how
much the originally recommended amount of noise improves the degree of privacy, in case Gaussian noise
is used or Laplace noise is used. We stress that while in the case of Vuvuzela there is no utility function
that we have to preserve other than to minimize the bandwidth overhead, our approach is also suited for
applications where a utility function has to be preserved. In those cases, we would probably reduce the
variance to an appropriate level and then compute tight bounds.

7.2 Tighter privacy analysis for the dialing protocol

For the dialing protocol, we show that with Gaussian noise the noise rate can be reduced by a factor of
almost 5 while still meeting the privacy requirements, and for the conversation protocol the noise rate can be
reduced by a factor of 10 while still meeting the privacy requirements. With Laplace noise the noise rate can
be reduced by a factor of 2 and for the conversation protocol by a factor of 4. We refer to Figures 13 and 16,
placed in the appendix. As the conversation protocol produces more observations (i.e., more compositions)
and the untightness of the bounds that the original Vuvuzela paper used amplifies more heavily for a high
the number of observations, the tightness of our bounds is more pronounced for the conversation protocol.

For comparability, we depict in Figure 11 the original graphs from the Vuvuzela analysis, which show
the epsilon graph and the delta graph with increasing r, respectively, for the dialing protocol and estimated
with the advanced composition result. We extend those Figures with the lowest, magenta graphs (marked
with a ∗) that show the performance of our proposed Gaussian noise that uses nearly 5 times less noise and
is computed with our bucketing approach. As our method computes not only one ε, δ pair for each number
of observations r but an entire ε, δ graph, we chose representative ε values that are close to (and even below)
the epsilon values for the highest noise configuration LP(20k, 1130) from the original Vuvuzela paper. The
figure shows that our bounds with the reduced noise and with using Gaussian noise GS(4.1k, 8332) are below
the previous bounds for the highest noise configuration LP(20k, 1130), proving that a noise reduction of
nearly a factor of 5 still yields for the dialing protocol to achieve the privacy requirements of eε ≤ 2 and
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Figure 12: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the dialing protocol). The figure depicts
upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).

δ ≤ 10−4.
Next, we illustrate that our method computes bounds that are several orders of magnitude better than

Vuvuzela’s original bounds. For r = 8, 192 observations, Figure 12b illustrates that using the highest
noise configuration with Laplace noise LP(20k, 1130) results in a privacy bound that is almost 3 orders
of magnitude lower, in terms of the delta, and with Gaussian noise GS(20k, 15982) more than 4 orders of
magnitude. The figure depicts the ε, δ graphs computed by our approach for the highest noise configuration
LP(20k, 1130), for the corresponding Gaussian noise GS(20k, 15982), for the configuration that we propose
GS(4.1k, 8332)), and compares it against Vuvuzela’s previous bounds LP(20k, 1130). We additionally depict
the respective lower bounds, which show that our bounds are quite tight in the sense that there is not much
room for improvement. Moreover, due to the more comprehensive view that a full ε, δ graph provides, we can
see that the the highest noise configuration with Gaussian noise GS(20k, 15982) even achieves the privacy
requirements (δ ≤ 10−4) for less than eε = 1.5 after 8, 192 observations.10

We would like to stress that the lower bounds show that our result is tight up to δ ≥ 10−4 for
GS(4.1k, 8332), δ ≥ 10−6 for LP(20k, 1130), and GS(20k, 15982) for δ ≥ 10−8. This tightness is solely a
scalability issue and ultimately only depends on the number (and hence granularity) of the buckets. A
more optimized implementation (e.g., based on GPUs) would be able to significantly increase the number of
buckets, thus achieving even tighter upper and lower bounds.

For completeness, we also show in Figure 12a the ε, δ graphs for the dialing protocol for low r: r = 1024
and the recommended parameters µ = 8k, γ = 500. Here, we can see that our bound is 2 orders of magnitude
lower than Vuvuzela’s previous bounds for the noise level. The figure also shows that reducing the noise by
a factor of 5, i.e., GS(1.6k, 320), still achieves the privacy requirements (eε ≤ 2 and δ ≤ 10−4).

As a comparison, using Laplace noise only enables a noise reduction of a factor of 2, as shown in Figure 16
in the appendix. Interestingly, the reduced Laplace noise achieves the same privacy bounds as the reduced
Gaussian noise if the Laplace noise has twice the variance as the Gaussian noise (i.e., γ = σ) but a 2.5 times
wider range, as indicated in Section 6. This shows what a significant effect the steepness of the Gaussian

10Recall that the variance of GS(µ, (
√

2x)2) = 2x2 equals the variance of LP(µ, x) = 2x2.
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Figure 13: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the conversation protocol). The figure
depicts upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).

noise can have in practice.

7.3 Tighter privacy analysis for the conversation protocol

Figure 14 depicts the epsilon graph and the delta graph with increasing r, respectively, for the conversation
protocol. We compare Gaussian noise GS-new2 with the previous bounds for the recommended noise config-
urations. The figure shows that a noise reduction by a factor of 10 is sufficient for the conversation protocol
to achieve the privacy requirements of eε ≤ 2 and δ ≤ 10−4.

For r = 524, 288 observations, Figure 15b shows that using LP-high results in bounds for δ that are
almost 4 orders of magnitude lower, and for the corresponding Gaussian noise GS-high more than 6 orders
of magnitude in comparison to their original result. Also, Figure 15b shows the corresponding lower bounds.
We can see that our bounds for the reduced noise configuration GS-new2 are tight up to δ ≥ 10−5, for LP-high
up to δ ≥ 10−8, and for GS-high up to δ ≈ 10−10 for reasonably small values of ε. Furthermore, we can see
that GS-high even meets and exceeds the privacy requirements (eε = 1.25, δ = 10−4 or eε = 1.45, δ = 10−10)
for r = 524, 288 observations.

For completeness, we also show in Figure 15a the ε, δ graphs for the conversation protocol for r = 65, 536.
Here, we can also see the tightness of our bound: for LP-low up to δ ≥ 10−7, for GS-low up to δ ≥ 10−11,
and for GS-new1 up to δ ≥ 10−6. We can see that GS-low is more than 7 orders of magnitude lower than
Vuvuzela’s previous bounds for the same noise level. Moreover, we can see that GS-low meets and even
exceeds the privacy requirements (eε = 1.25, δ = 10−4 or eε = 1.4, δ = 10−11) for r = 65, 536 observations.

As a comparison, using Laplace noise only enables a noise reduction of a factor of 4, as shown in Figure 13
in the appendix. Also here, we can observe that the Laplace noise has twice the variance of the Gaussian
noise and has a 2.5 times wider range, illustrating the advantages of Gaussian noise in practice.

8 Conclusion and future work

In this paper we have presented ratio buckets, a sound numerical approach for computing upper and lower
bounds for differential privacy after r-fold composition. Our approach is based on concrete distributions,
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Figure 14: The privacy bounds for Vuvuzela’s conversion protocol. The left graph shows the eε-values on
the y-axis and the number of observations r on the x-axis (i.e., r-fold composition) in log-scale and the right
graph shows the corresponding δ-values on the y-axis. The first three lines show the bounds from the original
Vuvuzela analysis, the last line our new bound for Gaussian noise (with better parameters).
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(b) After r = 524, 288 observations with Gaussian noise
with µ = 45k and σ = 7.5k (solid), Laplace noise µ =
450k, γ = 20k (dashed), and Gaussian noise with µ =
450k and σ = 28.2k (dotted), and the red dot represents
the ε, δ combination for µ = 450k, γ = 20k from the
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Figure 15: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the conversation protocol). The figure
depicts upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).
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but can be applied in a variety of cases, which can include adaptive composition, evolving sequences of
distributions and static distributions. All compositions, as well as our reshaping operation of squaring the
bucket factor have been shown sound and (empirically) tight in many cases.

We applied our ratio buckets to the anonymity network Vuvuzela where we computed bounds for more
than half a million compositions, deriving significantly better results than their previous analysis and we
found that by exchanging the Laplace noise with Gaussian noise, even better results can be achieved. We also
compared our approach to the Kairouz et al.’s composition theorem and found that their theorem provides
reasonably tight bounds for the Laplace mechanism but not for other distributions, such as the Gaussian
mechanism or for a pair of histograms of timing-leakage measurements from the CoverUp system. We also
observed that Gaussian mechanism behaves much better under a high number of compositions than a Laplace
mechanism with the same variance, and we found evidence that the (ε, δ)-graph of a Laplace mechanism
converges to the (ε, δ)-graph of a Gaussian mechanism with half the variance.

We encourage the application of our ratio buckets to other ADP mechanisms, such as to the optimal
ADP mechanisms [9, 13] (e.g., comparing their composition behavior to the Gaussian mechanism) and to
privacy-preserving ML methods [1], as well as to improve existing privacy analyses. We consider exploring
the relationship between ADP of the Gaussian mechanism and ADP of the Laplace mechanism, as well as
analyses probing the development of ADP provided by other noise distributions under composition interesting
future work.
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Figure 16: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the dialing protocol). The figure depicts
upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).
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A Appendix

A.1 Example calculation for [1]

In their paper, Abadi et al. cleverly combine methods to reduce the noise they require by a factor of q, which
in one of their examples is q = 0.01. While the authors significantly improve the differential privacy bounds
compared to prior work, their bound is not optimal. If we compare the (ε, δ) values for σ that their bound
achieves with the results that we achieve for Gaussian noise, we get the following calculation.

We start by deriving values for c1, c2 from their example and we see that the closest possible values in
their inequalities are c1 ≈ 1.26 and c2 ≈ 1.485. Using as an example our Gaussian noise with sensitivity
one for 512 compositions, where we have σus =

√
2 · 200, we see that in order to apply their result, we need

ε < c1 · q2 · T ≈ 1.26 · 0.012 · 500 ≈ 0.063. We use this value for ε and choose the appropriate δ output by

our bucket distributions as δ ≈ 0.01. Consequently we get σ ≥ c1 · q
√
T ·log(1/δ)

ε = 1.485 · 0.01·
√

500 log(100)

0.0639 ≈
11.1515. If we consider that the linear improvement of q to σ would also apply if we analyze the rest of the
formula with our ratio buckets, we get σ = q · σus = 0.01 ·

√
2 · 200 ≈ 2.8284, which is significantly smaller

(almost by a factor of 4) than their bound of σ > 11.1515.
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