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Abstract

Threshold Implementation (TI) is one of the most widely used countermeasure for side channel attacks. Over the years several
TI techniques have been proposed for randomizing cipher execution using different variations of secret-sharing and implementation
techniques. For instance, direct-shares is the most straightforward implementation of the threshold countermeasure. But, its usage
is limited due to its high area requirements, whereas, the 3-shares countermeasure for cubic non-linear functions significantly
reduces area and complexity compared to direct-shares.

Nowadays, security of ciphers using a side channel countermeasure is of utmost importance. This is due to the wide range of
security critical applications from smart cards, battery operated IOT devices to accelerated crypto-processors. Such applications
have different requirements (higher speed, energy efficiency, low latency, small area etc.) and hence need different implementation
techniques. This paper presents an in-depth analysis of the various ways in which TI can be implemented for a lightweight
cipher. We chose GIFT for our analysis as it is currently the most energy-efficient lightweight cipher. We present nine different
profiles using different implementation techniques and show that no single technique is good for all scenarios. For example,
the direct-shares technique is good for high throughputs whereas 3-shares is suitable for constrained environments with less
area and moderate throughput requirements. The techniques presented in the paper are also applicable to other blockciphers. For
security evaluation, we performed CPA on the 3-shares technique as it has good area versus speed trade-off. Experiments using
3 million traces show that it is protected against first-order attacks.

I. INTRODUCTION

Implementing secure embedded systems has been a cat-and-mouse game since the last two decades due to the constant
development of side-channel attack techniques followed by new countermeasures. The security of even the smallest of embedded
devices is of a major concern; as most of these devices have become such an important part of our daily lives. The seminal
work by Kocher et al. [1], [2] in the late 90’s showed the world that unprotected cryptographic algorithms are vulnerable
against side-channel attacks.

Over the years, many countermeasure techniques have been proposed to prevent such attacks, for instance introducing noise
in the signal [3], to randomize the intermediate values i.e. masking [3], to balance the power consumption in circuit’s design
[4], etc. Despite these countermeasures, the devices are still vulnerable to some form of the side-channel attacks or the other;
for example, masking still leaks some form of information in the presence of glitches [5], [6]. In 2006, Nikova et al. proposed
a new countermeasure known as Threshold Implementation (TI) [7]. TI is based on secret-sharing and is secure even in the
presence of glitches. TT soon became one of the most widely used countermeasures. As a result, there has been a lot of work
in the past years towards developing new methodologies for secret-sharing and efficient implementation of TI. For example,
in [8] the authors show how to apply TI on the PRESENT cipher. Later, in 2013 Kutzner et al. [9] present the one S-box
Sfor all technique to efficiently implement 3-shares. Furthermore, the authors in [10] describe how to speed-up the search for
decomposed S-box and also derive the results for TT on all 3 x 3 and 4 x 4 S-boxes. Efficient TI implementation of AES is
presented in [11]. The design exploration using all these TI methodologies and implementation techniques have not yet been
performed carefully. In this work, we focus on performing such a detailed design analysis of TI using GIFT [12], which was
introduced by Banik et. al. in CHES 2017. It is currently the smallest block cipher reported in literature.

Our contribution. First, we present a Correlation Power Analysis (CPA) [13] attack for an unprotected FPGA implementation
of the GIFT cipher in section IV-A. Since a single round of GIFT uses 64-bit keys at a time and each S-box operation uses
only 2-bits of the key, we implemented the attack 4 S-boxes at a time. In our experiments using Xilinx Kintex-7 FPGA, we
were able to recover the key in less than 10,000 traces. Second, we implemented an efficient TT countermeasure for GIFT. The
implementation is protected against first-order CPA attacks. We support this claim by providing experimental results of CPA on
3,000,000 real power traces in section IV-B. Third, we implemented the known TI techniques and provide a trade-off analysis
in terms of area, frequency, latency, power and energy. In particular, we focused on three TI techniques — 3-shares, combined
3-shares and direct-shares using various options as discussed in section III-B. For all of the experiments we considered a
round-based implementation of the cipher. Sharing of the non-linear function (in our case S-Box) yields Boolean equations in
Algebraic Normal Form (ANF). The implementation can directly be done using ANF, or it can be further minimized using
a Boolean minimization tool like Espresso [14], [15], BOOM [16], ABC [17] etc. In our analysis, we found that logic
minimization using Espresso and ABC leads to similar results in terms of overall area for GIFT. Whereas, a major difference
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was found between an implementation using ANF compared to the Boolean minimization tools. As a result, we present detailed
analysis contrasting these two implementation methods. In many implementations the key-update masking is skipped, but even
for a very simple key-schedule the leakage of hamming weight for certain parts of the key is possible, hence we considered
it in our analysis.

We implemented all the TT schemes and analyzed the synthesis results using the same library (TSMC 65nm Low Power). As
discussed in section III-C, the 3-shares technique is 44.9% smaller but requires twice the number of clock cycles compared to
the direct-shares technique. It is noteworthy to observe that both the designs have very similar overall energy requirements.
Further, the 3-shares technique results in 13.8% larger area but is about five times faster than the one using combined
3-shares technique. The former is also 2.9 times energy efficient.

II. PRELIMINARIES
A. GIFT Specifications

GIFT is a SPN (substitution-permutation network) based cipher. Its design is strongly influenced by the cipher PRESENT [18].
It has two versions GIFT-64-128: 28 rounds with a block size of 64-bits and GIFT-128-128: 40 rounds with 128-bit
blocks. Both the versions have 128-bit keys. For this work, we focus only on GIFT-128-128.

Initialization. The cipher state S is first initialized from the 128-bit plaintext represented as 32 4-bit nibbles wsy, . . . wa, w1, Wo.
The 128-bit key is divided into 16-bit words k7, kg, . . ., ko and is used to initialize the key register K.

The Round Function. Each round of the cipher comprises of a Substitution Layer (S-layer) followed by a Permutation
Layer (P-layer) and a XOR with the round-key and predefined constants (AddRoundKey).

S-layer (S). Apply the same S-box to each of the 4-bit nibbles of the state S. The truth-table for the S-box is as follows:

TABLE I
GIFT S-BOX

x 0 1 2 3 4 5 6 7 8 9 a
S(x)1 a 4 c 6 £ 3 9 2 d b

b ¢ d e f£
7 5 0 8

P-layer (P). This operation permutes the bits of the cipher state .S from position ¢ to P(7). Please refer to the design document
[12] for the full permutation table.

AddRoundKey. XORs a 64-bit round key RK and a 7-bit round constant Rcon to a part of the cipher state S. The round key
is extracted from the 128-bit key register K as RK = U||V where U <« kj||ky and V < kq||ko. The round key U||V can be
represented as = ugy, ..., u1, Uol||vs1,...,v1,v0. U and V are XORed to the cipher state as follows: by;1o < ba;+o @ u; and
byit1 < bair1 Dv; Vi € {0,...,31}. The round constant (cscacscacico) and a single-bit ‘17 is XORed to the cipher state as
defined below:

bp—1 < bn—1 D1, baz < baz @ c5, big < b1g D ¢4, bis < bis D c3, b11 < b1 D ca, by <= b7 D ¢y and b < b3 ¢y, where
n—1,23,19,15,11,7 and 3 denote bit positions in the cipher state respectively.

Key Expansion and Constants Generation. After AddRoundKey, the key register is updated as follows k7||ks|| . .. ||k1||ko <
k1 >> 2||kg > 12||...||ks||k2. The 6-bit round constant is initialized to zero and is updated before each round as
(csy €453, 02,¢1,¢0) <= (4,3, C2,¢1,C0,C5 D ca B 1).

GIFT Encryption. As shown in Fig. 1, a single block is processed by the application of a series of round functions. At each
round, S-layer, P-layer and AddRoundKey operations are performed on the previous cipher state. After 40 such rounds, the
current state is provided as the ciphertext.

B. Threshold Implementation: Requirements

As mentioned in section I, (TI) is based on secret-sharing and multi-party computations. Over time, TI has received
widespread adoption as it works even in the presence of glitches where certain other countermeasure techniques fail [8], [19],
[11], [10], [9]. Initially, the TI was proposed to prevent only first-order attacks only. But recently, TI has been successfully
applied to prevent Higher Order DPA attacks as well [20]. TI needs the following three properties to be satisfied:

1) Correctness: The property states that the cumulative output of all the shares should be same as the output of the function

without sharing.

2) Non-completeness: Every function should be independent of at-least d shares in order to prevent the d'” order attack.

This is the most important property of TI. It is due to this property that TT works even with glitches.
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Fig. 1. GIFT Encryption

3) Uniformity: At every point of execution, the shares should be uniformly distributed. This property ensures that the mean
leakages when the cipher is executing are independent of the state.

IIT. IMPLEMENTATIONS AND DESIGN ARCHITECTURE
A. Different variants of TT
In this section, we discuss about the three known variants for Threshold Implementations in detail:

1) Sharing using Decomposition of S-box with cubic algebraic degree (3-shares)
2) Sharing using Decomposition with one S-Box for all (combined 3-shares)
3) Direct Sharing (direct-shares)

Sharing using Decomposition (3-shares). In 2011, Poschmann et. al. [8] proposed a technique to decompose a cubic S-box
function into two quadratic functions G and F represented as S(X) = F(G(X)) where S,G, F : GF(2)* — GF(2)*. Fig. 2
shows this method graphically. As the GIFT S-Box is cubic, we can use this technique to decompose it into two quadratic func-
tions. Considering the input and output of G(X) as 4-bit vectors X = (z,y, z, w) and G(X) = (g3(X), g2(X), 91 (X), go(X)).
Each g;, being a quadratic Boolean function, can be represented in ANF as shown below:

Gi(T,y, 2, w) = a; 0 + a1 T + a; 2y + a; 32 + a; 4w + a; 1322

+ @ 14TW + @ 23Y2Z + A 24YW + Q4 342W

where, a; ; are the binary coefficients of the Boolean function. Similar Boolean functions and equations hold for F'(X).
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Fig. 2. Sharing using Decomposition (3-shares)



As discussed in [8], the following two facts were used to reduce the overall search space for the two decomposed functions
G and F:

1) Rewriting S(X) = F(G(X)) as S(G7*(X)) = F(X), one needs to search only for all possible quadratic functions for
G(X). This is then used to compute the other quadratic function F(X) as S(G~}(X)).

2) Assuming G(0) =0, G'(z) = G(X)+ G(0) and F'(X) = F(X + G(0)), the decomposed equation S(X) = F(G(X))
can be re-written as S(X) = F'(G'(X)). This step helps in considering only the variable coefficients in the ANF, thus
reducing the overall search space for the decomposition.

Following steps were implemented in order to compute the desired optimized G and F' quadratic Boolean functions:

1) For all possible combinations of the input to the functions g;, f; where i € {0, 1,2, 3}, compute its corresponding output
from the ANF equations and check if its a vectorial boolean function [21] is balanced or not. If the combination is
balanced, then add it to a set of possible coefficients for the ANF (say P), otherwise discard it.

2) For each balanced coefficient in the set P, compute the corresponding G(X) iteratively.

3) Check whether this computed G(X) is a permutation or not. If yes, compute F'(X) using S(G~1(X)), otherwise discard
this G(X).

4) Check whether the computed F'(X) is a quadratic function or not. If yes, add both the G(X) and F(X) functions to a
set of possible decompositions, otherwise discard both of them. We obtained 80641 possible decompositions after this
step.

5) Now considering the 15 possibilities of the constant term in the ANF, we obtained 1290241 total possible decompositions
for GIFT S-box after filtering.

6) Keep only the G(X) and F(X) combinations which are permutations, discard the rest.

7) In order to choose the decomposition with minimum area, we applied the following two metrics:

o For each of the possible decomposition, calculate the total ANF weight of G(X) and F(X) using the formula
provided in [8]. Sort this set based on the total weight in ascending order.

e After the first metric, we used the LIGHTER tool [22] to generate a good estimate in GE ! (gate equivalents) for
an efficiently implemented hardware circuit for the decomposition.

Finally, we choose the decomposition with a trade-off between minimum total ANF weight and minimum total GE
according to the LIGHTER tool
The finally chosen G(X) and F'(X) satisfying all the three TI requirements - Correctness, Non-Completeness and Uniformity
are shown in Table II. The chosen G(X) belongs to Q293 quadratic class and F'(X) belongs to Q294 class[23]. The ANFs for

TABLE II
GIFT S-BOX DECOMPOSITION
x o 1 2 3 4 5 6 7 8 9 a b c¢c d e f£
G(x)4 4 £ 7 1 a 2 8 5 ¢c e 6 0 b 3 9
F(x)5 6 3 8 1 2 7 ¢ 9 e £ 0 d a b 4

both the quadratic functions are as below:

G(d,c,b,a) = (g3, 92, 91, 90)
gg=a+b+ba+c+d

g1=b+ca
g=1+c
gzs=a+b+cd

F(dvcab’a) = (f3af2af1af0)

fo=1+a

fi=a+b
fo=14+b+c+d+da
fa=ba+d

The corresponding ANFs for eight output shares are provided in the Appendix A.

Sharing using Decomposition (combined 3-shares). In [9], Kutzner et al. proposed a new methodology to implement
the threshold countermeasure presented in [8]. The technique is based on optimizing the area requirements for the protected

IGE: Total cell area divided by the cell area of a 2-input NAND gate.



implementation of a non-linear operation using multiplexers. Referring to ANF equations for the chosen G(X) and F(X) in
Appendix A, one can clearly see that G;, G2 and G3 comprise of similar polynomials and only the indices are different.
Similarly, Fy, F and F3 share a similar template. The constant terms are handled in the respective G(X) and F(X) function.
So, instead of using six different (8 x 4 bit) Boolean functions, we used only two functions — one for G(X) and another for
F(X).

As shown in the Fig. 3, two multiplexers are used to choose the input for the G(X) Boolean function depending on which
part of the secret it is operating on. After that, a de-multiplexer is used to store the result of the G(X) operation to the requisite
register. F'(X) is implemented in a similar manner and the result is stored in the respective output registers 0.S;, OS5 and OSs.
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Fig. 3. Sharing using Decomposition (combined 3-shares)

Direct Sharing (direct-shares). For TI implementation using direct-shares, one use the minimum required number of
shares to share the secret variables. The minimum number of shares, s required to protect a Boolean function from firsz-
order DPA attack is given by s > 1 4 d, where d is the algebraic degree of the function [24]. For example, the function
F(X,Y,Z) = XY + Z has an algebraic degree of two. Hence, it requires at-least three shares. The ANF equations for the
function F' are as stated below:

Fy = Zy + X5 + XoY3 + X3Y5
F3=7+X1Y1 + X1Ys + XoY)

1S4
1S3
o
2
Unprotected
S-Box
1S

Shared S-Box

Fig. 4. Direct Sharing (direct-shares)

In case of GIFT, the only non-linear operation is its S-box. The S-box is a 4 x 4 Boolean function (represented as
S(d,e,b,a) = (w,z,y,x)) and has a cubic degree. Hence, we need a minimum of four shares. Fig. 4 shows the approach
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graphically. The truth table for GIFT S-box is as shown in Table I and its corresponding ANFs are given as:

S(d,c,b,a) = (s3, 52, 51, 0)
so=1+a+b+ba+c+d
si=a+ba+c+ca+d
So =b+c+da+db+ dcb
83:a+db+dca

The output shares (0S1, OS5, OSs, OS4) can be calculated from the above equations. The ANF for the four shares are
listed in Appendix B.

An advantage of this technique is that there is no need for additional registers in the S-layer. As this approach does not attempt
to reduce the degree of the Boolean function before implementation, it results in implementations with significantly large area
compared to other techniques.

B. Implementation Profiles and Their Architecture

Here, we present nine different profiles for TT-GIFT implementation and discuss about various trade-offs. The profiles are
a combination of an approach (described in section III-A) with an option. The different options which can be combined with
an approach are described as below:

Option 1: Sharing of the data-path

Option 2: Sharing of the key-register

Option 3: S-box implemented using ANF
Option 4: S-box equations optimized using ABC

Since all the profiles are protected, data-path is shared for all. As shown in Fig. 5, Profile 1 uses the 3-shares approach
with data sharing and the S-box implemented using ANF representation. Profile 2 is same as Profile 1 with an extra shared key
register. In Profile 3, ABC is used to optimize the S-box. It uses the 3-shares approach with data sharing. Compared to Profile
3, Profile 4 adds sharing of the key register. Profile 6...9 use same set of options as in Profile 1...2, but uses the direct-
shares approach. Profile 5 uses the combined 3-shares approach using multiplexers to switch between the input and output



of G(X) and F(X). The data-path is shared in Profile 5 with ANF representation being used for the S-box implementation.
Fig. 6 presents an overall architecture for all the variants of threshold countermeasures we implemented. The solid lines depict
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Fig. 6. Overall Architecture for TI techniques for GIFT S-box

the unprotected GIFT implementation. The unprotected implementation comprises of a state-register (StReg;), a key-register
(kReg1), a bit-permutation layer and the S-box layer. stReg; is used to keep the current state. A multiplexer is used to select
between the updated state and the input. The same holds for the kReg; key register. The state is updated after applying
the S-box, bit-permutation, key and round constant (Rcon) addition steps. For a parallelized implementation, one round of
unprotected GIFT takes one clock-cycle to update the state-register. So it takes 40 clock cycles to process one block of data.

Additional hardware required for Profile 1...5 are marked by dashed-dotted regions in Fig. 6. Profile I...4 requires
two random-mask values (DM; and DM, 128-bit each), two additional state registers (StReg. and stRegs), two additional
multiplexers and some XORs. Furthermore, if the key is also shared as in the case for Profile 2 and 4, two random-masks
(KM; and KM, 128-bit each) for the key, two key registers (KRegs and kRegs) and two multiplexers are also required.
Implementation of the S-box layer for these profiles depends on whether it is using ANF or ABC, but the overall architecture
presented in Fig. 2 remains the same. These profiles also require three additional registers to store the intermediate state in
the S-box, hence they take 2 clock-cycles per round of the cipher. As a result, these profiles need 80 clock-cycles in all to
process a block. In case of Profile 5, all the hardware overhead compared to Profile I...4 differs only in the architecture of
the S-box. The S-box in this case is implemented using multiplexers and de-multiplexers as shown in Fig. 3. Profile 5 requires
seven times more clock-cycles compared to the unprotected implementation.

Profile 6...9 use the direct-shares technique for TI. In this case, in addition to the hardware overheads for 3-shares
technique, a random-mask (DMs), a state-register (StReg4) and a multiplexer is required if only the data-path is shared as
in the case of Profile 6 and 8. Profile 7 and 9 share both the data-path and the key-register, thus they need an additional
random-mask (KM3), a key-register (kReg,) and a multiplexer. The details of the corresponding S-box is shown in Fig. 4. In
all of the profiles, the unmasking step is performed by XORing all the respective shares.

C. Synthesis Results

The HDL designs for all of the implementation profiles were written in VHDL?. Functional testing was done using the Xilinx
Vivado Simulator version 2016.3. After functional testing, we used Synopsys Design Compiler version J-2014.09 for synthesis

2The HDL files will be available on github after the review process.



of the designs. Synopsys IC Compiler version L-2016.03-SP5-1 was used for placement and routing. We used TSMC 65nm
Low Power Standard Cell Library (TCBN65LP) for all the ASIC implementations. We used compile_ultra during synthesis
to get an optimized design. We also used flags to prevent optimization between hierarchal boundaries. Synopsys PrimeTime
version J-2014.12-SP3-1 was then used on the post-layout design in conjunction with activity factors from simulations done
using Vivado in order to get accurate power consumption estimates. For this analysis, we focused on getting a balanced design
with good area vs. throughput trade-off and hence avoided any specific optimization; this is because aggressive optimization
towards area leads to poor timing results and vice versa. It is also important to note that power estimates assume the design
running at the highest possible clock speed. Running the designs at lower clock speeds leads to significantly reduced dynamic
power consumptions; under such conditions leakage power can be the primary contributor to overall power consumption. The
area and power overheads for the random source has not been considered and we assume that the randomness is provided
externally.

TABLE III
POST-LAYOUT RESULTS FOR DIFFERENT PROFILES OF THRESHOLD COUNTERMEASURE

Metric Unprotected Protected Profiles

GIFT 1 2 3 4 5 6 7 8 9

3SH 3SH-K 3SH 3SH-K C3SH DSH DSH-K DSH DSH-K
ANF ANF ABC ABC ANF ANF ANF ABC ABC

S-Box Area (GE) 632 7286 7286 7661 7657 1705 18129 18110 84103 84198
State Register Area (GE) 800 3358 3358 3360 3360 4477 3200 3206 3258 3314
Key Register Area (GE) 801 1125 3359 1125 3360 808 801 3200 801 3202
Total Area (GE) 2478 13349 16595 13728 16964 11729 24233 27340 90426 93597
Ratio 1.000 5.387 6.697 5.540 6.846 4.733 9.779 11.033  36.492 37.771
Time (ns) 2.31 2.68 2.71 2.74 2.68 4.6 3.52 3.56 5.56 5.93
Frequency (MHz) 432 373 369 364 373 217 284 280 179 168
# Clocks 40 80 80 80 80 280 40 40 40 40
Throughput (Mbps) 1286 562 556 548 562 94 845 833 532 500
S-Box Power (mW) 0.51 3.01 2.95 3.1 3.13 0.42 5.61 5.52 19.6 18.7
State Register Power (mW) 0.7 2 2.01 2.05 2.13 2.66 3.04 3.1 2.54 2.36
Key Register Power (mW) 0.64 0.72 1.82 0.72 1.81 0.06 0.52 1.62 0.32 1
Total Power (mW) 2.396 7.578 9.217 7.75 9.687 3.716 10.3 11.9 23.8 23.6
Energy (pJ/bit) 1777  12.859  15.809  13.487 16.438  37.701  11.625 13.624  42.664 45.013
Random bits 0 256 512 256 512 256 384 768 384 768

Fig. 7 shows the placed and routed physical design for the unprotected, and one of the protected designs. All the protected
profiles were compiled using the same script (with different clock constraints). The script was written to accommodate some
moderate variations in design complexity.

Table III shows the implementation results for all the profiles. As expected, the protected implementations require more
resources than the unprotected one. The smallest protected implementation C3SH is 4.7 times larger. It is clear that most of
the area is taken up by the S-Box. As direct-sharing leads to very large Boolean equations, the overall area becomes quite
large. Depending on the number of shares, key-sharing can triple or quadruple the size of the key-register size. C3SH uses a
sequential design as the decomposed S-Box share a similar template. Multiplexers and de-multiplexers are then used to update
the state for all the 3 shares. This leads to a large number of clocks and an extra intermediate state register, but leads to an
overall smaller design.

It is also interesting to contrast ABC based implementation results with ANF ones. For 3SH the difference is small, whereas
for DSH the difference is quite significant (4.6 times). We believe the reason for this difference is the very large size of
expressions in case of direct-sharing. In these experiments it is clear that any Boolean-minimization is not required as the
synthesis tool, Synopsys Design Compiler was able to perform efficient minimization as it had access to a large library of logic
primitives.
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Fig. 8 shows area vs. throughput for all the profiles. It is clear that 3SH approach leads to smaller area, but as it requires
an intermediate register, it ends up taking twice the number of clocks. This leads to lower throughput compared to DSH. As
can be seen from Fig. 9, DSH using ANF consumes less energy even though it has a significantly larger area than 3SH; this
can be attributed to its higher throughput. As a result both the designs can be used depending on application requirements.
One can also note that the performance and efficiency of C3SH is not good compared to the other designs, so even though it
has the smallest area, using such a design is not recommended.
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Fig. 8. Area vs. Throughput for all the selected profiles.

IV. POWER ANALYSIS

In order to evaluate the security of our design, we implemented the design using HDL and tested it on a SAKURA-X board
with a Xilinx Kintex-7 XC7K160T FPGA. The power consumption was measured by probing the voltage drop across the 50
milliohms resistor on the 1VO FPGA core power line. The output was sampled using a Tektronix MSO4034 at 2.5 Gs/s for
unprotected implementation and a Teledyne LeCroy HDO6104A at 5.0 Gs/s @ 12 bits/sample. As the SAKURA-X board
is lacking an on-board amplifier we had to use an external preamplifier (Langer 3 Ghz, 30 dB). As GIFT is a very small
cipher having very small leakage signature, it was important to use a pre-amplifier, without it the leakage was below the noise
floor and was hardly discernible. In all the experiments, we were running the cipher cores at 48 MHz. The random bits for
the masks were generated using AES-128 in counter mode.

A. CPA on the unprotected GIFT cipher

As mentioned earlier, in this paper we only consider round based hardware implementations (FPGA / ASIC), i.e., for every
clock the implementation executes one round or a portion of a round, but, all the plaintext bits and the requisite key bits are
processed together. In such implementations, a register is used to store the state and is updated at specific clock events.
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Fig. 10. A portion of the GIFT-128 round function. S is the GIFT S-box and RK; is the it round-key. The state registers store the value corresponding
to the position represented by the green horizontal lines.

Fig. 10 shows the round function of GIFT-128. Assuming an unprotected implementation, the value of the state register is
overwritten (updated) at every clock cycle. As a result, the complete cipher execution needs 40 clock cycles (one or two extra
clocks may be needed for reading in and out the data, depending on implementation). In such implementations, the leakage
follows the Hamming Distance (HD) model as the old data in the state register is overwritten by new data which is calculated
by combinatorial circuits.

In Fig. 10, value of the register reg (prev) is over-written by reg (next). Given the bitwise nature of the permutation layer,
for leakage modeling we have to consider one S-box at a time and track which bits are permuted to what locations. Unlike
PRESENT, GIFT uses only 64 bits of the round key every round, as a result, for every S-box we can only guess 2 bits; this
reduces effectiveness of the CPA attack. Fig. 11 shows two power traces for the reference unprotected implementation of
GIFT. For this attack we try to focus on the last round and try to recover the key used in the last round. We also assume
that the cipher-text is known to the attacker; and all the traces use random plain-texts. Considering the first S-box with input
bits 0, 1, 2 and 3, according to the permutation, the output bits go to positions 0, 33, 66, and 99 respectively, and then they
are XORed with the corresponding round key bits (33 and 66). Bits 0 and 99 pass through unchanged and are known as we
know the ciphertext. Now, if we guess two bits of the key (bit 33 and 66 in this case) we can compute the input of the S-box
by computing the inverse S-box operation. As reg (prev) is updated by reg (next), we can now have a valid four bit HD
estimate based on a guess of two key bits. This can be used as a hypothetical power model. For the ease of implementation
we decided to guess 8 bits of the round-key at a time, as a result we had to process 4 S-boxes at a time. In the rest of the
paper, guessing a byte of the key refers to guessing 8 bits which can be in different positions at the last XOR, but arise from
a set of 4 S-boxes. Fig. 12 shows the correlation values for three guessed key bytes vs trace points. Considering CPA for a
successful attack, the correct key has the highest correlation value across the trace points. The peak in the figure for key 0x08
corresponds to the time instant at which maximum correlation with leaked key was found. This is the same location of the
last round execution as per Fig. 11.

In order to extract the complete round key, we repeated the the above steps for the other 8 bytes and recovered 64 bits. Fig.
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Fig. 12. Correlation values vs. Trace Point: For Key Byte 0. A large peak is visible only for the correct key 0x08.

13 shows correlation values for all guesses for the first 2 bytes of the last round key. In order to recover the complete key, we
have to use the fact that we know the last round-key and go one step back and recover rest of the words of the key. This is
possible as the key-schedule uses only rotates and no other function.

B. CPA on the protected GIFT cipher

The protected implementation as mentioned in the previous section uses two registers and 80 clocks for 40 rounds. Within a
round, the first clock is used to evaluate the G function and the second clock computes F', the permutation, Rcon-update and
key-update. This causes the two clock to consume different amounts of power; this is quite clear in the power trace shown in
Fig. 14.

As can be seen from Fig. 15, the protected implementation expectedly does not reveal anything about the key. The highlighted
area in the referred figure shows the correct values for the bytes 0 and 5 whereas the peak in the Correlation values suggests
wrong value for the same bytes.

It is also clear from Fig. 16 that the protected implementation is secure against first order CPA attacks.

Fig. 17 shows the correlation values over the number of traces for every value of the first key byte. From the figure, one
can easily observe that it is not possible to distinguish the correct key byte value from the other hypotheses even after using
3 million traces.

V. CONCLUSION

In this work, we presented a Correlation Power Analysis attack on the cipher GIFT. We also showed that the same attack
does not work on a protected implementation of the cipher. We support this claim by analysing 3 million traces collected
from a protected FPGA implementation. Furthermore, we performed design analysis over nine different strategies and give
trade-off results for area vs throughput (Fig. 8) and area vs energy (Fig. 9). All the required hardware implementation results
are reported in Table III. It is interesting to note certain facts from the presented results:



Byte 0, Correct Value: 0x08

Byte 1, Correct Value: 0x28

| jl\'!‘M J' AJ\W‘ "im,‘ﬂ"w“ ‘f/‘«"w.\, ‘N)v“{ W

64 96 128 160 192 224 256
Key Guess (0-255)

Correlation

Fig. 13. Correlation values for the two bytes of the key (see text). Peaks at positions 8 and 40 correspond to the correct keys.

20
—~ | ‘ \ | \ | | "’
>E 10 I ‘ r | ' ‘ | | | | ] H lJ, ‘ f‘ 1 ! | H | ‘ ! ‘i
E); 0 ‘ | |r‘ ‘ \
_S ( i ‘
2 —10 |
—-20 T T T T

0 208 416 624 832 1,040 1,248 1,456 1,664 1,872 2,080 2,288 2,496
Trace Point (0-2499)
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ANF based implementations takes less area, consumes less power and provides higher or similar throughput as compared
to the ones using direct Boolean minimization.

Even though using combined 3-shares approach for implementation takes lesser area as compared to other approaches
using ANF, its throughput as well as energy requirements are much higher. Hence, using such a design is not recommended
for round-based implementations as most of the expected reduction in area is nullified by the large multiplexers (this is
not a problem in serialized implementations).

The energy requirements of implementations using 3-shares and direct-shares is quite similar. The actual comparison
between the two arises in terms of throughput and area. It is recommended to use direct-shares approach where higher
throughput is required, whereas using 3-shares approach will be a good option in constrained environments with less

area and moderate throughput.

In this work we targeted high performance round based implementations, but most of the previous TI implementations focus
on serialized implementation to reduce the area. Analyzing such implementations can be a possible future extension.

APPENDIX A
ANF EQUATIONS FOR 3-SHARES

G1(az, bz, ca,d2,a3,bs,c3,d3) = (913, 912, 911, 910)

g10 = @z + by + co + dy + azby + azbz + azby
g11 = ba + azce + azc3 + azco

gi2=1+co

g13 = a2 + b + baca + bacs + bzca
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that CPA attack is unsuccessful.

Ga(ar,b1,c1,dr,as,bs, c3,ds) = (923, 922, 921, 920)
g20 = a3 + b3 + c3 +dz + a1b3 + asby + azbs
g21 = bz +aic3 + azer + asces
g22 = C3
go3 = ag + b3 + bics + bscy + bacs

Gz(ay, by, c1,di,az,ba,co,da) = (g33, 932, 931, g30)
g30 = a1 + by +c1 +di + aiby + arbe + azby
g31 = b1 +aicr +aica + azcq
g32 =C1
933 = a1 + by +bic1 + biea + bacy

Fi(az, by, c2,dz, a3, b3, c3,ds) = (f13, fi2, f11, f10)
fi=14az
fi1=a2+ b2
fi2 =14 by + c2 +da + asds + azds + asds
fi13 = da + agba + a2bs + asbs
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Fig. 17. Correlation values vs. Traces: This shows the correlation values for all possible values for the first key byte over the number of traces used.

Fs(ay,b1,c1,d1,a3,bs,c3,ds) = (fos, fo2, fo1, f20)

f20 =a3

Jo1 = az + b3

fo2 = b3 + c3 +d3 + ardz + azdy + azds
fa3 = d3 + a1bsz + azb; + azbs

F3(ai,b1,c1,d1, a2,b2,c2,da) = (f33, f32, f31, f30)

f30 =1

far=a1+b

fz2 =b1 +c1 +di +ardy + ardz + azd;
f33 =di +aiby + aiby + azb;

APPENDIX B
ANF EQUATIONS FOR DIRECT-SHARES

Sl(a27 b2,627d2a as, b37 C3, d37 Gy, b47 C47d4) =
(813, 812, 811, $10)

510 = 1 +az + by + c2 + da + azba + azbs + az2by + a4bs
s11 = ag + ¢z + da + a2ba + agbs + azbs + asbs + azco
+ agc3 + agcqa + aqcy
s12 = by + c2 + aady + asdz + azdy + bady + bads + bady
+ aqds + byds + bacads + bacsde + bacyds + bscyds
+ baczda + bacads + baczds + bacadz + bycads
+ bgcsds 4 bycads + bacady + bacgdy + bocydy
+ bacady + byczdy
§13 = ag + bads + bads + bads + bads + azcads + asxcsds
+ agcads + azcads + agcads + agcads + ascsds
+ agcads 4+ agcods + agczds + agcads + ascody

+ a263d4 + a204d4 + &302d4 + a463d4



Sa (a1, by, c1,d1, a3, b3, c3,ds3, ds, a4, ba, ca,ds) =
(523, 522, S21, 520)

820 = a3 + b3 + c3 + ds + asbs + asbs + azby + a1by

$21 = a3 + c3 + d3 + agbz + agby + azby + arby + azcs
“+ aszcqg + azcy; +ajcy

S92 = b3 4 c3 + asds + aszdy + azdy + bsdz + bzdy + bsdy
+ ardy + bidy + bscsds + bscads + bscrds + bycids
+ bycads + bscsdy + bscady + bycidy + bicsdy
+ bicads + brerdy + bzcgdy + bzeqdy + bycrdy
+ bycsdy + bicydy

S23 = a3 + bsdz + b3dy + b3dy + b1dy + azcads + azcads
+ agcids + agcids + arcads + azcsdy + azcady
+ agcidy + arc3dy + arcady + a1c1dy + azesdy

+ agcqdy + ascidy + agcsdy + aieads

Ss(ai, b, c1,di,a2,ba,¢2,da, as,by,cq,ds) =
(833, 532,531, 530)

530 = G4 + by 4+ c4 + dg + agby + agby + agbs + asby

531 = Q4 + €4 + dy + asby + asby + asbs + asbi + ascy
+ agcy + agco + ascy

532 = by + ¢4 + agdy + agdy + agdy + bydy + bady + bydy
+ axdy + bady + bycady 4 bacidy + bacady + bicads
+ bacidy + bycady + bycrdy + bycady + bacady
+ bacidy + bacady + bycads + bycida + bacads
+ bicads + bacids

533 = Q4 + bady + bady + bado + badi + ascady + agcidy
+ agcody + ajcady + ascidy + ageady + agerdy
+ agcady + ascady + ascidy + ascady + agcads

+ aqcids + agcads + ajcads + azcids

Sy(ai,by,c1,di,az,bz,¢2,d2,a3,bs,c3,d3) =
(543, S42, 841, 840)

840 = a1 + by + c1 +dy + a1by + arbs + a1bz + asbs

541 = a1 + ¢1 + dy + a1by + a1ba + arbs + azby +aic
+aicz +aic3 + asce

S42 = b1 +¢1 + ardy + ards + ar1ds + bidy + bida + bids
+ agds + bsds + bicidy + bicady + bicsdy + bocsdy
+ bgcady + bicida + bicods + bicsde + bycids
~+ bscada + bscsds + bicids + bicads + bicsds
+ bacids + bycads

S43 = a1 + bydy + bids + bids + bzds + ayc1dy + aqcad;y
+ a1cady + azezdy + azcady + arcrds + arcads
+ aicsds + azcrda + agcads + azcads + arcids

+ a162d3 + a103d3 + a261d3 + agcgdg
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