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Abstract

Dziembowski, Pietrzak, and Wichs (ICS–2010) introduced the notion of non-malleable codes
as a useful message integrity assurance for scenarios where error-correction or, even, error-
detection is impossible. Intuitively, a non-malleable code ensures that the tampered codeword
encodes the original message or a message that is entirely independent of the original message.
However, if the family of tampering functions is sophisticated enough to include the decoding
algorithm itself, then such codes are impossible.

Motivated by several applications like non-malleable secret sharing schemes, one of the fun-
damental research directions in the field of non-malleable code construction considers encoding
the message into k separate states, where k > 2, such that each state is tampered independently
by an arbitrary function. The decoding procedure in this k-split-state model, on the other hand,
relies on aggregating the information stored across all the k states. The general goal is to reduce
the number of states k, thus, protecting from stronger tampering functions, and, simultaneously,
achieve high encoding rate, i.e., the ratio of the message-length to the cumulative size of all the
k encoded states.

The ideal result for this line of inquiry will be a 2-split-state non-malleable code with rate
(close to) 1/2, the upper-bound to maximum achievable rate. The current state-of-the-art
construction, following a sequence of highly influential works guided by this goal, achieves rate
1/ log ` (Li, STOC–2017), where ` is the length of the encoded message. Our work contributes
to this research effort by constructing the first constant-rate (≈ 1/3) non-malleable code in the
3-split-state model, which is only half of the upper-bound on the maximal achievable rate in this
model. The primary technical contribution of our work is a general bootstrapping technique to
construct non-malleable codes that achieve high rate by leveraging a unique characteristic of the
(rate-0) non-malleable code for 2-states provided by Aggarwal, Dodis, and Lovett (STOC–2014)
in conjunction with an additional state.

We also study the construction of non-malleable codes in the streaming version of the k-
split-state model, i.e., the tampering function of each state encounters the state as a stream,
and it tampers each bit of the state based only on the part of the state seen thus far. We show
that similar to the general k-split-state model, the maximum achievable rate of a non-malleable
code is at most 1 − 1/k in the streaming version as well. We construct the first constant-rate
(≈ 1/3) non-malleable code in the 2-split-state streaming model, which is only a factor-(3/2)
smaller than the upper-bound on the maximum rate.
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1 Introduction

Dziembowski, Pietrzak, and Wichs [DPW10] introduced the notion of non-malleable codes as a
useful message integrity assurance for scenarios where error-correction or, even, error-detection is
impossible. For example, consider the simple tampering function that overwrites the encoding of
the message with a fixed codeword. Intuitively, given a family of tampering function F , our goal is
to design a pair of encoding and decoding algorithms (Enc,Dec) for messages in {0, 1}` such that
the (possibly, randomized) encoding c ∈ {0, 1}n of a message m ∈ {0, 1}` has the following property.
The decoding of the tampered codeword c̃ = f(c), where f ∈ F is a tampering function, is either
identical to the original message m or an entirely unrelated message. For instance, against the
family of tampering functions that add an arbitrary error of low Hamming weight, we can design
error-correcting codes to recover the original message. Moreover, against the family of tampering
functions that add an arbitrary constant, we can design Algebraic Manipulation Detection codes to
detect the tampering with high probability [CDF+08]. For even more complex families of tampering
functions, non-malleable codes ensure that the decoding of the tampered codeword, i.e., the message
Dec(f(Enc(m)), is either the original message m or a simulator Simf , which is entirely independent
of the original message, can simulate it. Ensuring this weak message integrity turns out to be
extremely useful for cryptography. For example, tampering the secret-key of a signature scheme
either yields the original secret-key (in which case the signature’s security already holds) or yields
an unrelated secret-key (which, again, is useless for forging signatures using the original secret-key).

However, if F is the set of all functions from the domain {0, 1}n to the range {0, 1}n, then no
non-malleable code exists against this family of tampering functions. In particular, note that if the
tampering family contains the function f that can decode the codeword c to retrieve the original
message m and then write a particular encoding of the related message m`

1, where m1 is the first
bit of m, then it is impossible to achieve non-malleability against this tampering function. So,
it is necessary to ensure that the decoding algorithm Dec (or its approximations) does not lie in
the tampering function family itself. Therefore, given a fixed family of tampering functions F , we
design a non-malleable code that is resilient to any tampering function from that particular family
of functions.

Split-State Tampering. A natural restriction on the tampering function family is that k > 2
separate states store the encoding, and the tampering function can only tamper each state inde-
pendently, à la the k-split-state model. More formally, the message m ∈ {0, 1}` is encoded as
c = (c1, c2, . . . , ck) ∈ {0, 1}n1 × {0, 1}n2 ×· · · × {0, 1}nk . A tampering function is a k-tuple of func-
tions f = (f1, f2, . . . , fk) such that the function fi is an arbitrary function over {0, 1}ni . Since the
decoding algorithm can aggregate information across all the states while the tampering functions
only have local influence, non-malleable codes in the k-split-state model, for k > 2, exist. Intu-
itively, the reduction in the number of states k increases the power of the tampering functions, thus,
significantly escalating the complexity of designing non-malleable codes for smaller values of k.

However, if k is small then the k-split-state seems more naturally enforceable in cryptographic
contexts, for example, the states can correspond to separated parts of memory or storage. The
overhead of achieving non-malleability, measured by the rate R = `/(n1 + n2 +· · ·nk), is another
crucial attribute determining the efficiency of using these codes in cryptographic contexts. Overall,
this brings to fore the central guiding principle of non-malleable code design.

“Construct non-malleable code for the k-split-state model for small k that achieves high rate R.”

The objective of reducing the number of states k is inimical to the objective of achieving high rate R.

1



The holy grail for this research endeavor is a rate 1/2 non-malleable code in the 2-split-state model,1

which, by even the most optimistic estimates, seems distant. A sequence of highly influential works
has established rate 1/ log ` as the current state-of-the-art [Li17]. Our work constructs a rate 1/3
non-malleable code in the 3-split-state model, i.e., it achieves close-to-optimal rate by employing
an additional state. In the context of tamper-resilient cryptographic applications of non-malleable
codes, our results imply that if one can ensure three separate memory/storage units, then the
overhead of non-malleability is not significant.

1.1 Our Contribution

Let Sn represent the set of all functions from {0, 1}n to {0, 1}n. Define Sn1
×Sn2

×· · · × Snk as the
set of all k-tuples of functions (f1, f2, . . . , fk) such that fi ∈ Sni is an arbitrary function, for each
i ∈ {1, 2, . . . , k}. In the k-split-state, the codeword is distributed over k states of size n1, n2, . . . , nk,
respectively, and the i-th state is tampered by fi independently. The set of all tampering functions
in this model is identical to Sn1

×· · · × Snk , and the maximum achievable rate in this model is
(1− 1/k) [CG14a]. Our first result proves the following theorem, and Figure 1 positions this result
relative to relevant prior works.

Theorem 1 (Rate-1/3 NMC in 3-Split-State). There exists a non-malleable code, with negligible
simulation error, in the 3-split-state model Sn1

×Sn2
×Sn3

, where n1 = `, n2 = (2+o(1)), n3 = o(`),
and ` is the length of the message.

9/10

1/2

1/3

1

2 3 4 10

Rate

k

[CZ14]

[KOS17]

Our work

[DKO13, ADL14, ADKO15, Li17]

Upper bound by [CG14a]
Infeasible

Figure 1: A pictorial summary of prior results for non-malleable codes in the k-split-state model
and positioning our result among them.

This result relies on leveraging a unique characteristic of the (rate-0) non-malleable code in 2-
split-state provided by Aggarwal, Dodis, and Lovett [ADL14], namely augmented non-malleability,
which was identified by [AAG+16]. At a high-level, our construction preserves a small digest of the
message and the randomness used in our encoding procedure using the augmented non-malleable
code of [ADL14] in the 2-split-state model. Using one additional state, we can prove that our
entire encoding is non-malleable in the 3-split-state. This design principle allows us to achieve

1 In the information-theoretic setting, the maximum achievable rate of any non-malleable code in the 2-split-state
model is 1/2 [CG14a].
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close-to-optimum rate. Additionally, we can merge two appropriate states in our encoding if the
tampering functions are suitably restricted, which yields the 2-split-state result in the streaming
model summarized below.

Streaming Model. Instead of considering an arbitrary function, we consider tampering functions
that encounter the information of each state as a stream. Let LAn1,n2,...,nB

be the set of all functions
f : {0, 1}n1+n2+···+nB → {0, 1}n1+n2+···+nB such that there exists functions f (1), f (2), . . . , f (B) with
the following properties.

1. For inputs x1 ∈ {0, 1}n1 , x2 ∈ {0, 1}n2 , . . . , xB ∈ {0, 1}nB ,
2. For each 1 6 i 6 B, we have f (i) : {0, 1}n1+n2+···+ni → {0, 1}ni , and
3. The function f(x1, x2, . . . , xB) is the concatenation of f (i)(x1, x2, . . . , xi), for 1 6 i 6 B.

Intuitively, the state arrives as B blocks of information, and the i-th block is tampered based on
all the previous blocks {1, 2, . . . , i}. Note that this is similar to the notion of lookahead func-
tions introduced in [ADKO15] (who introduced this tampering family to assist the construction
of non malleable codes in the 2-split-state model) and block-wise tampering functions introduced
by [CGM+16]. In the streaming version of the k-split-state model, the tampering function for each
state is a streaming function.

Note that LA1, 1, . . . , 1︸ ︷︷ ︸
n-times

(for brevity, alternatively represented by LA1⊗n) is the set of all stream-

ing functions where each bit is a block, and every LAn1,n2,...,nB
tampering family, such that

n1 + n2 + · · · + nB = n, contains this tampering family. Analogous to the result of Cheraghchi
and Guruswami [CG14a] for the k-split-state model, we prove that the rate of any non-malleable
code against the tampering family LA1⊗n1×· · ·×LA1⊗nk

in the k-split-state model is at most 1−1/k
(see Theorem 5 in Appendix B). The current state-of-the-art in non-malleable code construction in
the streaming version of the k-split-state model coincides with the general k-split-state model. In
particular, prior to our work, no constant-rate non-malleable codes for k = 2 and k = 3 even in the
restricted streaming version of the k-split-state model was known. We resolve this problem in the
positive for the most complex model, i.e., for k = 2.

Theorem 2 (Rate-1/3 NMC in Streaming 2-Split-State). There exists a non-malleable code, with
negligible simulation error, in the streaming version of the 2-split-state model LAn1,n2

× LAn3,n4
,

where n1 = (2 + o(1))`, n2 = o(`), n3 = o(`), n4 = `, and ` is the length of the message.

[ADKO15] motivated achieving non-malleability against streaming functions along with another
particular family of functions (namely, forgetful functions) as an intermediate step to constructing
constant-rate non-malleable codes in the 2-split-state model. We achieve partial progress towards
this goal, and Theorem 3 summarizes this result.

1.2 Prior Relevant Works

It is not possible to do justice to the vast literature on the related topics of non-malleability, error-
correcting codes, and algebraic manipulation detection codes, and summarize them in one section.
Even the field of non-malleable codes and extractors is sufficiently immense that an exhaustive
survey is beyond the scope of this paper.

As explained earlier, it is impossible to construct non-malleable codes against the set of all
tampering functions. If the size of the tampering family F is bounded then Monte-Carlo con-
structions of non-malleable codes exist [FMVW14, CG14a]. However, explicit constructions are
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known only for a few tampering families. For example, (1) bit-level perturbation and permuta-
tions [DPW10, CG14b, AGM+15], and (2) local or AC0 tampering functions [BDKM16, CL16] are
a few representative families of tampering functions.

Another famous tampering function family is the k-split-state model, for k > 2, where the tam-
pering function tampers each state independently. Cheraghchi and Guruswami [CG14a] proved an
upper bound of 1−1/k on the rate of any non-malleable code in the k-split-state model. Decreasing
the number of states k escalates the complexity of constructing non-malleable codes significantly.
For k = 2, technically the most challenging problem and most reliable for cryptographic applications,
[DKO13] constructed the first explicit non-malleable code for one-bit messages. In a breakthrough
result, Aggarwal, Dodis, and Lovett [ADL14] presented the first multi-bit non-malleable code with
rate O(`−ρ), for a suitable constant ρ > 1. The subsequent work of [ADKO15] introduced the gen-
eral notions of non-malleable reductions and transformations and exhibited their utility for modular
constructions of non-malleable codes. Currently, the best rate of 1/ log ` is achieved by [Li17].

For higher values of k, Chattopadhyay, and Zuckerman [CZ14] constructed the first constant-rate
non-malleable code when k = 10. Note that a non-malleable code in the k-split-state model implies
non-malleable codes for a k′-split-state model, for all k′ > k. Recently, [KOS17] constructed a rate-
1/3 non-malleable code in the 4-split-state model. The construction of constant rate non-malleable
codes in the 2-split-state and 3-split-state models was open.

Computational 2-Split-State. The computational version of this problem restricts to only com-
putationally efficient tampering functions, and [AAG+16] provided the qualitatively and quantita-
tively optimal solution. In the 2-split-state model, they showed that one-way functions are necessary
to surpass the upper bound of 1/2 on the rate in the information-theoretic setting [CG14a], and
one-way functions suffice to achieve rate-1.

Streaming Model. In the streaming model, tampering functions encounter the state as a stream,
and the tampering functions tampers a block of the state based solely on the blocks of the state
it has seen thus far. This family of tampering has also been considered by [ADKO15] (lookahead
tampering) as an interesting pit stop on the route to constructing non-malleable codes in the 2-split-
state model. [CGM+16] also considers this family of tampering functions (referred to as block-wise
tampering) but their results are in the computational setting.

Observe that a non-malleable code in the k-split-state model is also a non-malleable code in
its streaming version. Currently, the state-of-the-art in the streaming k-split-state model coincides
with the general k-split-state-model. In particular, there are no known constant-rate non-malleable
codes in the information-theoretic setting for k = 2 and k = 3.

1.3 Technical Overview

We provide a summary of the intuition underlying our constructions. We use the rate-1/3 non-
malleable code construction in the 3-split-state model as a representative example to illustrate our
primary technical contribution. Figure 3 presents the encoding and decoding procedures for this
non-malleable code. Figure 2 provides a block-diagram of our construction, which employs a hybrid
of two forms of message integrity guarantees.

First, we XOR the message m with a random private-key r and obtain the cipher-text c. In the
final construction, we derive the key r from a source w using a seed s. However, to build intuition,
it suffices to assume that c and r form the payload. The cipher-text c and the key r must be
allocated to separate states; otherwise, a tampering function can recover m and then perform a
message-dependent tampering.
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m ⊕
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Figure 2: An intuitive summary of our non-malleable code construction in the 3-split-state model,
where the message is m. Each gray rectangle represents a state.

1. The first message integrity primitive ensures that the payload (c, r) cannot change if the associ-
ated secret-key remains untouched. This component generates a short digest of the payload such
that the total size of the digest and the secret-key is at most `σ, where σ is an arbitrarily small
positive constant.

2. The second message integrity primitive protects the critical, although small-sized, digest and key
of the first primitive against tampering using an elaborate mechanism, which results in encodings
of size 6 `ρσ, where ρ > 1 is an appropriate constant. We can choose the σ in the first step small
enough so that ρσ 6 1. A rate-o(1) non-malleable code in the 2-split-state model, for instance,
suffices. Let its two states be L and R.

Since we are working with k = 3, either the cipher-text c or the key r must be in the same state
as L or R. Suppose, the key r and L are in the same state. Now, the tampering on the key r can
depend on L, which creates two main issues.

1. Ordinary non-malleable codes in the 2-split-state only ensure that the “the digest and the secret-
key” remain intact or is replaced by an unrelated pair of digest and key. However, they cannot
ensure that the tampering on r using L is not dependent on the digest, which in turn depends
on m. To resolve this, we need the augmented non-malleability of the 2-split-state non-malleable
code of [ADL14].

2. Tampering r based on L creates circularity issues as well, which is evident from Figure 2. The
direction of the arrows indicates the direction of information flow in our scheme. The addition
of an arrow from L to r, representing a tampering of r based on L, introduces a cycle. To
resolve this, we employ techniques from leakage-resilient cryptography. Instead of using r, we
use a (sufficiently large) source w and seed s to derive the key r. In the hybrid arguments, we
can emulate the effect of the tampering functions by performing suitable bounded-size leakage
on the source w such that the source retains sufficient min-entropy. Using this min-entropy, the
extracted r (roughly) becomes independent of the source, thus, breaking the circularity.

Figure 4 presents our simulator and Appendix A presents the proof of security, thus proving Theo-
rem 1.
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A similar construction, where the first state is (w,R) and the second state is (L, c), is a non-
malleable code in the streaming version of the 2-split-state model (refer to Figure 5 and the proof
of security in Appendix C), which yields Theorem 2.

2 Preliminaries

For any natural number n, the symbol [n] denotes the set {1, 2, . . . , n}. For a probability distribution
A over a finite sample space Ω, A(x) denotes the probability of sampling x ∈ Ω according to the dis-
tribution A and x ∼ A denotes that x is sampled from Ω according to A. For any n ∈ N, Un denotes
the uniform distribution over {0, 1}n. Similarly, for a set S, US denotes the uniform distribution
over S. For two probability distributions A and B over the same sample space Ω, the statistical
distance between A and B, represented by SD(A,B), is defined to be 1

2

∑
x∈Ω |A(x)−B(x)|.

Let f : {0, 1}p×{0, 1}q −→ {0, 1}p×{0, 1}q. For any x ∈ {0, 1}p, y ∈ {0, 1}q, let (x̃, ỹ) = f(x, y).
Then, we define fx(y) = ỹ and fy(x) = x̃. Note that fx : {0, 1}q → {0, 1}q and fy : {0, 1}p → {0, 1}p.
.

2.1 Non-malleable codes.

We follow the presentation in previous works and define non-malleable codes below.

Definition 1 (Coding Schemes). Let Enc: {0, 1}` → {0, 1}n and Dec: {0, 1}n → {0, 1}k ∪ {⊥} be
functions such that Enc is a randomized function (that is, it has access to private randomness) and
Dec is a deterministic function. The pair (Enc,Dec) is called a coding scheme with block length n
and message length ` if it satisfies perfect correctness, i.e., for all m ∈ {0, 1}`, over the randomness
of Enc, Pr[Dec(Enc(m)) = m] = 1.

A non-malleable code is defined w.r.t. a family of tampering functions. For an encoding scheme
with block length n, let Fn denote the set of all functions f : {0, 1}n → {0, 1}n. Any subset F ⊆ Fn
is considered to a family of tampering functions. Please refer to Section 1.1 for definition of k-split-
state tampering function family Sn1

×Sn2
×· · · × Snk and the streaming version of the k-split-state

tampering function family LA1⊗n1 ×· · · × LA1⊗nk
.

Next, we define the non-malleable codes against a family F of tampering functions. We need
the following copy(x, y) function defined as follows:

copy(x, y) =

{
y, if x = same*;

x, otherwise.

Definition 2 ((n, `, ε)-Non-malleable Codes). A coding scheme (Enc,Dec) with block length n and
message length ` is said to be non-malleable against tampering family F ⊆ Fn with error ε if for
all function f ∈ F , there exists a distribution Simf over {0, 1}` ∪ {⊥} ∪ {same*} such that for all
m ∈ {0, 1}`,

Tampermf ≈ε copy (Simf ,m)

where Tampermf stands for the following tampering distribution

Tampermf :=

{
c ∼ Enc(m), c̃ = f(c), m̃ = Dec(c̃)

Output: m̃.

}

The rate of a non-malleable code is defined as `/n.
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Our constructions rely on leveraging a unique characteristic of the non-malleable code in 2-
split-state (Sn1

×Sn2
s.t. n1 + n2 = n) provided by Aggarwal, Dodis, and Lovett [ADL14], namely

augmented non-malleability, which was identified by [AAG+16]. We formally define this notion next.
Below, we denote the two states of the codeword as (L,R) ∈ {0, 1}n1 × {0, 1}n2 .

Definition 3 ((n1, n2, `, ε)-Augmented Non-malleable Codes against 2-split-state tampering fam-
ily). A coding scheme (Enc,Dec) with message length ` is said to be a augmented non-malleable
coding scheme against tampering family Sn1

×Sn2
with. n1 + n2 = n with error ε if for all function

f, g ∈ Sn1
× Sn2

, there exists a distribution SimPlusf,g over {0, 1}n1 × ({0, 1}` ∪ {⊥} ∪ {same*})
such that for all m ∈ {0, 1}`,

TamperPlusmf,g ≈ε copy (SimPlusf,g,m)

where TamperPlusmf,g stands for the following augmented tampering distribution

TamperPlusmf,g :=

(L,R) ∼ Enc(m), L̃ = f(L), R̃ = g(R)

Output
(
L,Dec(L̃, R̃)

) 
Note that above we abuse notation for copy (SimPlusf,g,m). Formally, it is defined as follows:

copy (SimPlusf,g,m) = (L,m) when SimPlusf,g = (L, same*) and SimPlusf,g otherwise.
It was shown in [AAG+16] that the construction of Aggarwal et al. [ADL14] satisfies this stronger

definition of augmented non-malleability with rate 1/ poly(`) and negligible error ε. More formally,
following holds.

Imported Theorem 1 ([AAG+16]). For any message length `, there is a coding scheme (Enc+,Dec+)
of block length n = p(`) (where p is a polynomial) that satisfies augmented non-malleability against
2-split-state tampering functions with error that is negligible in `.

2.2 Building Blocks.

Next, we describe building blocks average min-entropy seeded extractors with small seed and one-
time message authentication codes that we use in our construction.

Definition 4 (Average conditional min-entropy). The average conditional min-entropy of a distri-
bution A conditioned on distribution L is defined to be

H̃∞(A|L) = − log

(
E`∼L

[
2−H∞(A|L=`)

])
Following lemma holds for average conditional min-entropy in the presence of leakage.

Lemma 1 ([DORS08]). Let L be an arbitrary κ-bit leakage on A, then H̃∞(A|L) > H∞(A)− κ.

Definition 5 (Seeded Average Min-entropy Extractor). We say Ext : {0, 1}n × {0, 1}d −→ {0, 1}`
is a (k, ε)-average min-entropy strong extractor if for every joint distribution (A,L) such that
H̃∞(A|L) > k, we have that (Ext(A,Ud), Ud, L) ≈ε (U`, Ud, L).

It is proved in [Vad12] that any extractor is also a average min-entropy extractor with only a
loss of constant factor on error. Also, [GUV07] gave strong extractors with small seed length that
extract arbitrarily close to k uniform bits. We summarize these in the following lemma.

Combining this results with the following known construction for extractors, we have that there
exists average min-entropy extractor that require seed length O(log n+ log(1/ε)) and extracts ran-
domness with length arbitrary close to conditional min-entropy.
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Lemma 2 ([GUV07, Vad12]). For all constant α > 0 and all integers n > k, there exists an
efficient (k, ε)-average min-entropy strong extractor Ext : {0, 1}n × {0, 1}d −→ {0, 1}` with seed
length d = O(log n+ log(1/ε)) and ` = (1− α)k −O(log(n) + log(1/ε)).

Next, we define one-time message authentication codes.

Definition 6 (Message authentication code). A µ-secure one-time message authentication code
(MAC) is a family of pairs of function{

Tagk : {0, 1}α −→ {0, 1}β, Verifyk : {0, 1}α × {0, 1}β −→ {0, 1}
}
k∈K

such that
(1) For all m, k, Verifyk(m,Tagk(m)) = 1.
(2) For all m 6= m′ and t, t′, Prk∼UK [Tagk(m) = t | Tagk(m

′) = t′] 6 µ.

Message authentication code can be constructed from µ-almost pairwise hash function family
with the key length 2 log(1/µ). For the completeness of our proof, we give a construction in the
Appendix E.

3 Construction for 3-Split State Non-malleable Code

In this section, we provide our construction for 3-state non-malleable code against split-state tamper-
ing functions. Our construction relies on the following tools. Let (Tag,Verify) (resp., (Tag′,Verify′))
be a µ (resp., µ′) secure message authentication code with message length ` (resp., n), tag length
β (resp., β′) and key length γ (resp., γ′). Let Ext : {0, 1}n × {0, 1}d → {0, 1}` be a (k, ε1)
average min-entropy strong extractor. We define k later during parameter setting. Finally, let
(Enc+,Dec+) be (n+

1 , n
+
2 , `

+, ε+)-augmented 2-split-state non-malleable code (see Definition 3),
where `+ = γ + γ′ + β + β′ + d. We denote the codewords of this scheme as (L,R) and given a
tampering function, we denote the output of the simulator SimPlus as (L,Ans).

Construction Overview. We define our encoding and decoding functions formally in Figure 3.
In our encoding procedure, we first sample a uniform source w of n bits and a uniform seed s of d
bits. Next, we extract a random r from (w, s) using the extractor Ext. We hide the messagem using
the key r as one-time pad to obtain a ciphertext c. Next, we authenticate the ciphertext c using
Tagk1 and authenticate the source w using Tag′k2 to tags t1 and t2, respectively. Now, we think
of (k1, k2, t1, t2, s) as the digest and protect it using an augmented 2-state non-malleable encoding
Enc+ to obtain (L,R). Finally, our codeword is (c1, c2, c3) where c1 = c, c2 = (w,L) and c3 = R.

We also note that n1 := |c1| = |m| = `, n2 := |c2| = |w| + |L| = n + n+
1 and n3 := |c3| = n+

2 .
From the Figure 3, it is evident that our construction satisfies perfect correctness.

Proof of Non-malleability against split-state tampering. Given a tampering function
(f, g, h) ∈ Sn1

×Sn2
×Sn3

, we define our simulator Simf,g,h. We formally describe our simulator in
Figure 4.

Note that the function g acts on both (w,L) to produce (w̃, L̃). Our simulator describes a
leakage function L(w) that captures the leakage required on the source w in order to simulate
the tampering experiment. This leakage has four parts (Ans,flag1,flag2,mask). Ans denotes the
second part of output of SimPlus on tampering function (gw, h), where gw represents the tampering
function on L given w. Next, for the case when Ans = same*, flag1 denotes the bit w̃ = w. When
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Enc(m):

1. Sample w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. Compute r = Ext(w, s), c = m⊕ r

3. Compute the tags t1 = Tagk1(c) and t2 =
Tag′k2(w)

4. Compute the 2-state non-malleable encoding
(L,R) ∼ Enc+(k1, k2, t1, t2, s)

5. Output the three states
(
c, (w,L), R

)

Dec(c1, c2, c3):

1. Let the tampered states be c̃ := c1, (w̃, L̃) :=

c2, R̃ := c3

2. Decrypt (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
4. (Else) If Verifyk̃1(c̃, t̃1) = 0 or Verify′

k̃2
(w̃, t̃2) = 0,

then output ⊥
5. (Else) Output c̃⊕ Ext(w̃, s̃)

Figure 3: Compiling an augmented 2-state non-malleable code (Enc+,Dec+) into a 3-state non-
malleable code.

1. w ∼ Un
2. For the tampering function (g, h) we define the following leakage function
L(w) : {0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

(a) (L,Ans) ∼ SimPlusgw,h, w̃ = gL(w)
(b) If Ans =

◦ Case same*: flag1 = 1 iff (w̃ = w).
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′

k̃2
(w̃, t̃2) = 1. And mask = Ext(w̃, s̃).

(c) L(w) := (Ans, flag1, flag2,mask)

3. r ∼ U`, c = 0` ⊕ r, c̃ = f(c)
4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
, output same*, else output ⊥

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=1 and flag2

)
, output c̃⊕mask, else ⊥.

Figure 4: The simulator Simf,g,h for the non-malleable code in the 3-split-state model.

Ans = (k̃1, k̃2, t̃1, t̃2, s̃), flag2 captures the bit Verify′
k̃2

(w̃, t̃2), i.e., whether the new key k̃2 and tag

t̃2 are valid authentication on new source w̃. In this case, the last part of leakage mask is set of new
extracted value.

We give the formal proof on indistinguishability between simulated and tampering distributions
in Appendix A using a series of statistically close hybrids.

Rate analysis. We will use λ as our security parameter. By Corollary 7, we will let k1, k2 be of
length 2λ, i.e. γ = γ′ = 2λ and t1, t2 will have length λ, i.e. β = β′ = λ and both (Tag,Verify) and
(Tag′,Verify′) will have error 2−λ.

Since we will need to extract ` bits as a one-time pad to mask the message, by Lemma 2, we
will set min-entropy k to be (1 + α′)` for some constant α′ and let Ext be a ((1 + α′)`, 2−λ)-strong
average min-entropy extractor that extract `-bit randomness with seed length O(log n+λ). By our
analysis in Appendix A, it is suffice to have n − 6λ − ` − O(log n + λ) − 3 > (1 + α′)`. Hence, we
will set n = (2 + α)` for some constant α > α′.

Now the message length for our augmented 2-state non-malleable code will be 2λ + 2λ + λ +
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λ + O(log n + λ) = O(log n + λ). Now by Theorem 1, we will let ζ be the constant such that
p(nζ) = o(n) and set λ = O(nζ). Hence, the length of (L,R) will be o(n). Therefore, the total
length of our coding scheme will be `+ (2 +α)`+o(n) and the rate is 1

3+α with error O(2−n
ζ
). This

completes the proof for Theorem 1.

4 Streaming version of the Split State Model

We prove an upper-bound on the maximum achievable rate for any non-malleable code in the
streaming version of the k-split-state model. Theorem 5 (proven in Appendix B), roughly, states
that the maximum achievable rate is 1− 1/k, similar to the result of [CG14a]. On the other hand,
for k = 2, the technically most challenging model, we construct a non-malleable code that achieves
rate 1/3. Figure 5 presents the non-malleable code in the streaming version of the 2-split-state
model. The construction is similar to the construction in Figure 3, except the manner of merging
the payload with the 2-split-state encoding (L and R) of the digest. Appendix C provides the
security proof.

Enc(m):

1. Sample w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. Compute r = Ext(w, s), c = m⊕ r

3. Compute the tags t1 = Tagk1(c), t2 = Tag′k2(w)

4. Compute the 2-state non-malleable encoding
(L,R) ∼ Enc+(k1, k2, t1, t2, s)

5. Output the states
(
(w,R), (L, c)

)

Dec
(
(c1, c2), (c3, c4)

)
:

1. Let the tampered states be w̃ := c1, R̃ := c2, L̃ :=
c3, c̃ := c4

2. Decrypt (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
4. (Else) If Verifyk̃1(c̃, t̃1) = 0 or Verify′

k̃2
(w̃, t̃2) = 0,

output ⊥
5. (Else) Output c̃⊕ Ext(w̃, s̃)

Figure 5: Non-malleable coding scheme against LAn1,n2
× LAn3,n4

, where n1 = |w|, n2 = |R|,
n3 = |L|, and n4 = |c|.

5 Forgetful tampering in the Streaming 2-Split-State Model

In this section we restrict ourselves to the streaming version of the 2-split-state model. Let us define
an additional family of tampering functions. Consider a tampering function f : {0, 1}n1+n2+n3+n4 →
{0, 1}n1+n2+n3+n4 . The function f is 1-forgetful, if there exists a function g : {0, 1}n2+n3+n4 →
{0, 1}n1+n2+n3+n4 such that f(x1, x2, x3, x4) = g(x2, x3, x4) for all x1 ∈ {0, 1}n1 , x2 ∈ {0, 1}n2 ,
x3 ∈ {0, 1}n3 , and x4 ∈ {0, 1}n4 . Intuitively, the tampering function f forgets its first n1-bits of the
codeword. The set of all such functions that are 1-forgetful are represented by FORn1,n2,n3,n4−{1}.
Analogously, we define FORn1,n2,n3,n4−{i}, for each i ∈ {2, 3, 4}.

[ADKO15] proved that we can construct constant-rate non-malleable code in the 2-split-state
from a constant-rate non-malleable code that protects against the tampering family

LAn1,n2
× LAn3,n4

4⋃
i=1

FORn1,n2,n3,n4−{i}

We make partial progress towards this goal and prove the following theorem in Appendix D.

Theorem 3. For all constant α, there exists a constant ζ and a non-malleable coding scheme against(
LAn1,n2 × LAn3,n4

)
∪ FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3} with rate 1

4+α and error 2−n
ζ .
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A Proof of 3-Split-State Non-malleability (Theorem 1)

Here we will prove that the encoding scheme shown in Figure 3 is secure against 3-split-state
tampering. The formal description of the simulator Simf,g,h was provided in Figure 4. More
formally, we will use a series of statistically close hybrids to show that

(
c, (w,L),R

)
∼ Enc(m)

c̃ = f(c), (w̃, L̃) = g(w,L), R̃ = h(R)

Output: m̃ = Dec
(
c̃, (w̃, L̃), R̃

)
 = Tampermf,g,h ≈ copy

(
Simf,g,h,m

)

Throughout this section, we use the following color/highlight notation. In a current hybrid, the
text in red denotes the changes from the previous hybrid. The text in shaded part represents the
steps that will be replaced by red part of the next hybrid.

Our first hybrid is exactly the same as Tampermf,g,h. We just open up the definition of Enc and
Dec.

H0(f, g, h,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)
3. (L,R) ∼ Enc+(k1, k2, t1, t2, s)

4. c̃ = f(c), (w̃, L̃) = g(w,L) , R̃ = h(R)

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)
6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
7. Else if

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

8. Else output c̃⊕ Ext(w̃, s̃)

In the next hybrid, we re-write (w̃, L̃) = g(w,L) as w̃ = gL(w) and L̃ = gw(L). The hybrids
H0(f, g, h,m) and H1(f, g, h,m) are identical.

H1(f, g, h,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)
3. c̃ = f(c)

4. (L,R) ∼ Enc+(k1, k2, t1, t2, s)

5. L̃ = gw(L), R̃ = h(R)

6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

7. w̃ = gL(w)
8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
9. Else if

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

10. Else output c̃⊕ Ext(w̃, s̃)

Notice that step 4,5,6 in H1(f, g, h,m) is exactly TamperPlus
(k1,k2,t1,t2,s)
gw,h

, replace this with sim-
ulator SimPlusgw,h gives us H2(f, g, h,m). We note that hybrids H1(f, g, h,m) and H2(f, g, h,m)
are ε+-close. If not, we can use the tampering function (gw, h) and message (k1, k2, t1, t2, s) to break
the ε+ augmented non-malleability of (Enc+,Dec+).
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H2(f, g, h,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)
3. c̃ = f(c)
4. (L,Ans) ∼ SimPlusgw,h

5. (k̃1, k̃2, t̃1, t̃2, s̃) = copy
(

Ans, (k1, k2, t1, t2, s)
)

6. w̃ = gL(w)

7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

8. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

9. Else output c̃⊕ Ext(w̃, s̃)

Now in hybrid H3(f, g, h,m), instead of doing copy(), we do a case analysis on Ans. We note
that the hybrids H2(f, g, h,m) and H3(f, g, h,m) are identical.

H3(f, g, h,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)
3. c̃ = f(c)
4. (L,Ans) ∼ SimPlusgw,h
5. w̃ = gL(w)
6. If Ans =

◦ Case ⊥: Output ⊥

◦ Case same*: If
(

Verifyk1(c̃, t1)=0 or Verify′k2(w̃, t2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s)

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

Next, in hybrid H4(f, g, h,m) we change the case when Ans = same*. Note that Ans = same*
says that the both the authentication keys k1, k2 as well as the tags are unchanged. Hence, with
probability at least (1− µ− µ′), both authentications would verify only if w and c are unchanged.
Hence, in H5(f, g, h,m), we check if the ciphertext c and source w are the same.

Given that (Tag,Verify) and (Tag′,Verify′) are µ and µ′-secure message authentication codes,
H3(f, g, h,m) ≈µ+µ′ H4(f, g, h,m).
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H4(f, g, h,m):

copy

(

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)

3. c̃ = f(c)
4. (L,Ans) ∼ SimPlusgw,h
5. w̃ = gL(w)
6. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output

⊥
Else output c̃⊕ Ext(w̃, s̃)

,m

)

We note that the variables k1, k2, t1, t2, s are no longer used in the hybrid. Hence, we remove the
sampling of these in the next hybrid. It is clear that the two hybridsH4(f, g, h,m) andH5(f, g, h,m)
are identical.

H5(f, g, h,m):

copy

(

1. w ∼ Un, s ∼ Ud, r = Ext(w, s), c = m⊕ r
2. (L,Ans) ∼ SimPlusgw,h
3. c̃ = f(c), w̃ = gL(w)
4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output

⊥
Else output c̃⊕ Ext(w̃, s̃)

,m

)

Now, we wish to use the property of average min-entropy extractor to remove the dependence
between c and w. Before we do the trick, we shall first rearrange the steps in H5(f, g, h,m) to get
H6(f, g, h,m). We process all the leakage we need at the first part of our hybrid and use only the
leakage of w in the remaining. Intuitively, when Ans = same*, flag1 records whether w̃ = w and
when Ans = (k̃1, k̃2, t̃1, t̃2, s̃), flag2 records whether w̃ can pass the MAC verification under new key
and tag and mask is the new one-time pad we need for the decoding the tampered message. We
note that the hybrids H5(f, g, h,m) and H6(f, g, h,m) are identical.
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H6(f, g, h,m):

copy

(

1. w ∼ Un
2. (L,Ans) ∼ SimPlusgw,h, w̃ = gL(w)
3. If Ans =

◦ Case same*: flag1 = 1 iff (w̃ = w)
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′

k̃2
(w̃, t̃2) = 1. Set mask =

Ext(w̃, s̃).

4. s ∼ Ud, r = Ext(w, s), c = m⊕ r, c̃ = f(c)
5. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

In the next hybrid, we formalize (Ans,flag1,flag2,mask) as the leakage on source w. Note that
the hybrids H6(f, g, h,m) and H7(f, g, h,m) are identical.

H7(f, g, h,m):

copy

(

1. w ∼ Un
2. For the tampering function (g, h) we define the following leakage function
L(w) : {0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

(a) (L,Ans) ∼ SimPlusgw,h, w̃ = gL(w)
(b) If Ans =

◦ Case same*: flag1 = 1 iff (w̃ = w)
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′

k̃2
(w̃, t̃2) = 1. Set mask =

Ext(w̃, s̃)

(c) L(w) := (Ans,flag1,flag2,mask)

3. s ∼ Ud, r = Ext(w, s) , c = m⊕ r, c̃ = f(c)
4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

In the next hybrid, we replace the extracted output r with a uniform random ` bit string. We
argue that the hybrids H7(f, g, h,m) and H8(f, g, h,m) are ε1 close for appropriate length n of
source w.

Since L(w) outputs a `+`++3 bits of leakage, by Lemma 1, H∞(W |L(W )) = k > n−(`+`++3).
Here, W denotes the random variable corresponding to w. We will pick n such that k > ` for the
min-entropy extraction to give a uniform string (see Lemma 2).
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H8(f, g, h,m):

copy

(

1. w ∼ Un
2. For the tampering function (g, h) we define the following leakage function
L(w) : {0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

(a) (L,Ans) ∼ SimPlusgw,h, w̃ = gL(w)
(b) If Ans =

◦ Case same*: flag1 = 1 iff (w̃ = w)
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′

k̃2
(w̃, t̃2) = 1. Set mask =

Ext(w̃, s̃)

(c) L(w) := (Ans,flag1,flag2,mask)

3. r ∼ U`, c = m⊕ r , c̃ = f(c)
4. If Ans =

◦ Case ⊥: Output ⊥

◦ Case same*: If
(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)
, output ⊥

Else output c̃⊕mask

,m

)

Finally, notice that the distribution of c is independent of m and we can use the message 0`.
This gives us our simulator. Clearly H8(f, g, h,m) = H9(f, g, h,m). Notice that H9(f, g, h,m) =

copy
(

Simf,g,h,m
)
.

H9(f, g, h,m):

copy

(

1. w ∼ Un
2. For the tampering function (g, h) we define the following leakage function
L(w) : {0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}`

(a) (L,Ans) ∼ SimPlusgw,h, w̃ = gL(w)
(b) If Ans =

◦ Case same*: flag1 = 1 iff (w̃ = w)
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag2 = 1 iff Verify′

k̃2
(w̃, t̃2) = 1. Set mask =

Ext(w̃, s̃)

(c) L(w) := (Ans,flag1,flag2,mask)

3. r ∼ U`, c = 0` ⊕ r, c̃ = f(c)
4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*, else output ⊥

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or flag2 = 0
)
, output ⊥

Else output c̃⊕mask

,m

)
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B Impossibility results for Streaming version of the Split State
Model

Let LAn1,n2,...,nk ⊂ ({0, 1}n){0,1}
n

, where n =
∑

i∈[k] ni, denote the family of look-ahead tampering

functions f = (f (1), f (2), . . . , f (k)) for f (i) : {0, 1}
∑
j∈[i] nj → {0, 1}ni such that

c̃ := f(c) = f (1)(c1)||f (2)(c1, c2)|| . . . f (i)(c1, . . . , ci)|| . . . ||f (k)(c1, . . . , ck)

for c = c1||c2|| . . . ||ck and for all i ∈ [k], ci ∈ {0, 1}ni . That is, if c consists of k parts such that ith

part has length ni, then ith tampered part depends on first i parts of c. We use LAm⊗k to denote
the family of look-ahead tampering functions LAm,m, . . . ,m︸ ︷︷ ︸

k-times

.

In this section, we prove an upper-bound on rate of any non-malleable encoding against 2-split-
state lookahead tampering function, i.e., LA1⊗n/2 × LA1⊗n/2 .

In our proof, we use ideas similar to [CG14a] and the following result of [CG14a] that was used
in proof of Theorem 5.3.

Imported Lemma 1. For any encoding scheme (Enc,Dec) with block length n and rate 1−α+ δ,
the following holds. Any codeword c be written as (c1, c2) ∈ {0, 1}αn × {0, 1}(1−α)n. Let η = δ

4α .
Then, there exists a set Xη ⊆ {0, 1}αn and two messages m0,m1 such that

Pr[c1 ∈ Xη|Dec(c) = m0] > η

Pr[c1 ∈ Xη|Dec(c) = m1] 6 η/2

Theorem 4. Let (Enc,Dec) be any encoding scheme that is non-malleable against the family of
tampering functions LA1⊗n/2 × LA1⊗n/2 and achieves rate 1/2 + δ, for any constant δ > 0 and
simulation error ε. Then, ε > δ/16α.

Proof. Note that any codeword c in support of Enc consists of two states c1 and c2, each of length
n/2. We use ci,j for i ∈ {1, 2} and j ∈ {1, . . . , n/2} to denote the jth bit in state i. Any tampering
function f = (f1, f2) generates a tampered codeword c̃ = (c̃1, c̃2) = (f1(c1), f2(c2)). Below, we will
construct a tampering function f∗ such that any simulated distribution Simf∗ will be ε far from
tampering distribution Tamperf∗ .

Next, we fix a message m̂ and its codeword ĉ(0) = (ĉ
(0)
1 , ĉ

(0)
2 ) ∈ Enc(m̂) such that the following

holds. Let ĉ(1) ∈ {0, 1}n be such that for all j ∈ {1, . . . , n/2 − 1}, ĉ(0)
1,j = ĉ

(1)
1,j , ĉ

(0)
1,n/2 6= ĉ

(1)
1,n/2 and

ĉ
(0)
2 = ĉ

(1)
2 . Moreover, we require that Dec(ĉ(1)) 6= m̂. That is, the two codewords are identical

except the last bit of first block and the second codeword does not encode the same message2 m̂.
Above condition is still satisfied if Dec(ĉ(1)) = ⊥.

Since the rate of the given scheme (Enc,Dec) is 1 − 1/2 + δ (with a constant δ), by Imported
Lemma 1, we have that there exists special messages m0,m1 and set Xη with the above guarantees
where c1 corresponds to the first state. In fact, Imported Lemma 1 gives many such pair of messages
and we will pick such that m̂,m0,m1 are all unique.

Now, our tampering function f∗ = (f∗1, f
∗

2) is as follows: f∗ tampers a codeword c = (c1, c2)

to c̃ = (c̃1, c̃2) such that for all j ∈ {1, . . . , n/2− 1}, c̃1,j = ĉ
(0)
1,j , c̃1,n/2 = ĉ

(0)
1,n/2 if c1 ∈ Xη, else ĉ

(1)
1,n/2

2We note that such codewords would exist otherwise we can show that the last bit of the first state is redundant
for decoding. This way we can obtain a smaller encoding. Then, w.l.o.g., we can apply our argument on this new
encoding.
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and c̃2 = ĉ
(0)
2 . That is, if c1 ∈ Xη, the resulting codeword is ĉ(0), else it is ĉ(1). Note that the above

tampering attack can be done using a split-state look-ahead tampering function.
Finally, it is evident that for messagem0, the tampering experiment results in m̂ with probability

at least η. On the other hand, for message m1, the tampering experiment results in m̂ with
probability at most η/2. Hence, probability assigned by Tamperm0

f∗ and Tamperm1
f∗ to message m̂

differs by at least η/2. Since m̂ is different from m0,m1, it holds that ε, the simulation error of
non-malleable code, is at least η/4 by triangle inequality. �

The above result can be extended to look-ahead tampering in the k-split-state model to give us
the following result:

Theorem 5. Let (Enc,Dec) be any encoding scheme that is non-malleable against the family of
tampering functions LA1⊗n1 . . .× . . .LA1⊗nk and achieves rate 1/k+ δ, for any constant δ > 0 and
simulation error ε. Then, ε > δ/16α.

Proof Outline. The proof follows by doing a similar analysis as above for the largest state. We
note that the above proof does not require all states to have the same size. It suffices to have a
state whose size is larger than n/k that holds by averaging argument.

C Proof of Non-Malleability in the Streaming Model (Theorem 2)

In this section, we prove that our code scheme Figure 5 is secure against the tampering family
LAn1,n2

× LAn3,n4
.

Figure 5 presents the formal description of our coding scheme and we have the following theorem.

Theorem 6. For all constant α, there exists a constant ζ and a non-malleable coding scheme which
is secure against LAn1,n2 × LAn3,n4 with rate 1

3+α and error 2−n
ζ .

Again the perfect correctness is trivial. In order to prove the non-malleability, we need to
show that for all tampering functions (f, g) ∈ LAn1,n2 × LAn3,n4 , where f = (f (1), f (2)) and
g = (g(1), g(2)), there exists a simulator Simf,g such that for all m, we have the following guarantee.

(
(w,R), (L, c)

)
∼ Enc(m)

w̃ = f (1)(w), R̃ = f (2)(w,R)

L̃ = g(1)(L), c̃ = g(2)(L, c)

Output: m̃ = Dec
(
(w̃, R̃), (L̃, c̃)

)

 = Tampermf,g ≈ copy
(

Simf,g , m
)

The following sequence of hybrids will lead us from tampering experiment to the simulator.
The initial hybrid represents the tampering experiment Tampermf,g and the last hybrid represents
copy(Simf,g,m).
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H0(f, g,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)
3. (L,R) ∼ Enc+(k1, k2, t1, t2, s)

4. w̃ = f (1)(w), R̃ = f (2)(w,R) , L̃ = g(1)(L), c̃ = g(2)(L, c)

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)
6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
7. Else If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

8. Else Output c̃⊕ Ext(w̃, s̃)

Rearranging steps leads to the next hybrid.

H1(f, g,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)

3. w̃ = f (1)(w)

4. (L,R) ∼ Enc+(k1, k2, t1, t2, s)

5. L̃ = g(1)(L), R̃ = f
(2)
w (R)

6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

7. c̃ = g
(2)
L (c)

8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
9. Else If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

10. Else Output c̃⊕ Ext(w̃, s̃)

Now we use the augmented simulator to replace the tampering experiment of augmented two-
state non-malleable codes.

H2(f, g,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)

3. w̃ = f (1)(w)
4. (L,Ans) ∼ SimPlus

g(1),f
(2)
w

5. (k̃1, k̃2, t̃1, t̃2, s̃) = copy
(

Ans, (k1, k2, t1, t2, s)
)
.

6. c̃ = g
(2)
L (c)

7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

8. Else If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

9. Else Output c̃⊕ Ext(w̃, s̃)

Rearrange steps gives us H3(f, g,m).
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H3(f, g,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)

3. w̃ = f (1)(w)
4. (L,Ans) ∼ SimPlus

g(1),f
(2)
w

5. c̃ = g
(2)
L (c)

6. If Ans =

◦ Case ⊥: Output ⊥

◦ Case same*: If
(

Verifyk1(c̃, t1)=0 or Verify′k2(w̃, t2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s)

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

Now we use the properties of message authentication codes.

H4(f, g,m):

copy

(

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)

3. w̃ = f (1)(w)
4. (L,Ans) ∼ SimPlus

g(1),f
(2)
w

5. c̃ = g
(2)
L (c)

6. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output

⊥
Else output c̃⊕ Ext(w̃, s̃)

,m

)

Clean up and remove the redundant steps.

H5(f, g,m):

copy

(

1. w ∼ Un, s ∼ Ud, r = Ext(w, s), c = m⊕ r
2. (L,Ans) ∼ SimPlus

g(1),f
(2)
w

3. w̃ = f (1)(w), c̃ = g
(2)
L (c)

4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output

⊥
Else output c̃⊕ Ext(w̃, s̃)

,m

)
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Now, compute information about w we need in the first part of the hybrid.

H6(f, g,m):

copy

(

1. w ∼ Un
2. (L,Ans) ∼ SimPlus

g(1),f
(2)
w
, w̃ = f (1)(w)

3. If Ans =

◦ Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0.

Let mask = Ext(w̃, s̃)

4. s ∼ Ud, r = Ext(w, s), c = m⊕ r, c̃ = g
(2)
L (c)

5. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

Formally define the information as a leakage function of w.

H7(f, g,m):

copy

(

1. w ∼ Un
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}p1 × {0, 1}β+β′+γ+γ′+d+1 ×
{0, 1} × {0, 1} × {0, 1}` as the following function:

(a) (L,Ans) ∼ SimPlus
g(1),f

(2)
w
, w̃ = f (1)(w)

(b) If Ans =

◦ Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

◦ Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0
flag2 = 0, mask = 0`

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0

Let mask = Ext(w̃, s̃)

(c) L(w) := (L,Ans,flag1,flag2,mask)

3. s ∼ Ud, r = Ext(w, s) , c = m⊕ r, c̃ = g
(2)
L (c)

4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

Using the property of average min-entropy extractor to replace the extraction step with uniform
random bits.
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H8(f, g,m):

copy

(

1. w ∼ Un
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}p1 × {0, 1}β+β′+γ+γ′+d+1 ×
{0, 1} × {0, 1} × {0, 1}` as the following function:

(a) (L,Ans) ∼ SimPlus
g(1),f

(2)
w
, w̃ = f (1)(w)

(b) If Ans =

◦ Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

◦ Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0
flag2 = 0, mask = 0`

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0

Let mask = Ext(w̃, s̃)

(c) L(w) := (L,Ans,flag1,flag2,mask)

3. r ∼ U`, c = m⊕ r , c̃ = g
(2)
L (c)

4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

Finally, fixing the message to 0` would not affect the distribution of the output of our hybrid.
This last hybrid is our simulator.
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H9(f, g,m):

copy

(

1. w ∼ Un
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}p1 × {0, 1}β+β′+γ+γ′+d+1 ×
{0, 1} × {0, 1} × {0, 1}` as the following function:

(a) (L,Ans) ∼ SimPlus
g(1),f

(2)
w
, w̃ = f (1)(w)

(b) If Ans =

◦ Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

◦ Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0
flag2 = 0, mask = 0`

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0

Let mask = Ext(w̃, s̃)

(c) L(w) := (L,Ans,flag1,flag2,mask)

3. r ∼ U`, c = 0` ⊕ r, c̃ = g
(2)
L (c)

4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

D Proof of Non-malleability against Forgetful Functions (Theo-
rem 3)

In this section, we shall prove Theorem 3. We now give a construction Figure 6 of constant-rate
non-malleable code against

(
LAn1,n2 × LAn3,n4

)
∪ FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3}.

Enc(m):

1. Sample w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ ,
k2 ∼ Uγ′ , Let w := (w1, w2)

2. Compute r = Ext(w, s), c = m⊕ r

3. Compute the tags t1 = Tagk1(c), t2 = Tag′k2(w)

4. Compute the 2-state non-malleable encoding
(L,R) ∼ Enc+(k1, k2, t1, t2, s)

5. Output the four states w1, R, (w2, L), c

Dec
(
c1, c2, c3, c4

)
:

1. Let the tampered states be w̃1 := c1, R̃ :=
c2, (w̃2, L̃) := c3, c̃ := c4, Let w̃ := (w̃1, w̃2)

2. Decrypt (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
4. Else If Verifyk̃1(c̃, t̃1) = 0 or Verify′

k̃2
(w̃, t̃2) = 0,

output ⊥
5. Else Output c̃⊕ Ext(w̃, s̃)

Figure 6: Non-malleable coding scheme against
(
LAn1,n2 × LAn3,n4

)
∪ FORn1,n2,n3,n4−{1} ∪

FORn1,n2,n3,n4−{3}

Now we divide the proof of non-malleability into two parts. In Subsection D.1, we show our
coding scheme is non-malleable against tampering from FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3}.
In Subsection D.2, we show non-malleability against LAn1,n2 × LAn3,n4 . Together they prove the
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non-malleability of our coding scheme.

D.1 Non-malleability against FORn1,n2,n3,n4−{1} ∪ FORn1,n2,n3,n4−{3}

In this section, for codeword c = (c1, c2, . . . , ck), we write c−i to denote (c1, . . . , ci−1, ci+1, . . . , ck).
Intuitively, our scheme is secure when the tampering function forget about the first or third state
because forgetting any one of those two states essentially means forgetting about the message.
Specifically, if we use cm to denote the random variable Enc(m), we are going to show that for all
m 6= m′,

cm−i ≈ε1 cm
′
−i i = 1 or 3 (1)

Recall ε1 is the error of our extractor Ext. This would immediately imply non-malleability because
for all f ∈ FORn1,n2,n3,n4−{i}, we could write (see Section 5 for definition of forgetful family)

Dec(f(Enc(m))) = Dec(g(cm−i)) ≈ε1 Dec(g(cm
′
−i)) = Dec(f(Enc(m′)))

We shall prove Equation 1 for i = 1 next. Fix keys k1, k2, if given leakage t2 and w2, we still have
H̃∞(w|t2, w2) > k, by the property of our strong average min-entropy extractor, we have

k1, k2, t2, w2, s,Ext(w, s) ≈ε1 k1, k2, t2, w2, s, U`

Therefore, we have (recall we use r to denote Ext(w, s))

k1, k2, t2, w2, s, r ⊕m ≈ε1 k1, k2, t2, w2, s, r ⊕m′

which leads to (since t1 is a deterministic function of k1 and c = r ⊕m)

(k1, k2, t1, t2, s), w2, r ⊕m ≈ε1 (k1, k2, t1, t2, s), w2, r ⊕m′

which implies
R, (w2, L), r ⊕m ≈ε1 R, (w2, L), r ⊕m′

which is equivalent to
cm−1 ≈ε1 cm

′
−1

Using similar arguments, as long as H̃∞(w|t2, w1) > k, we have

cm−3 ≈ cm
′
−3

Note that this also requires w2 to have length l + o(l).

D.2 Non-malleability against LAn1,n2 × LAn3,n4

In order to prove non-malleability, we need to show that for all tampering (f, g) ∈ LAn1,n2×LAn3,n4 ,
where f = (f (1), f (2)) and g = (g(1), g(2)), there exists a simulator Simf,g such that for all m,

(
(w1, R, (w2, L), c)

)
∼ Enc(m)

w̃1 = f (1)(w1), R̃ = f (2)(w1, R)

(w̃2, L̃) = g(1)(w2, L), c̃ = g(2)(w2, L, c)

Output: m̃ = Dec
(
w̃1, R̃, (w̃2, L̃), c̃

)

 = Tampermf,g ≈ copy
(

Simf,g , m
)

The following hybrid will lead us from tampering experiment to the simulator.
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H0(f, g,m):

1. w1 ∼ Un, w2 ∼ Un′ s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ . Let w := (w1, w2)
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)
3. (L,R) ∼ Enc+(k1, k2, t1, t2, s)

4. w̃1 = f (1)(w1), R̃ = f (2)(w1, R), (w̃2, L̃) = g(1)(w2, L), c̃ = g(2)(w2, L, c) . Let w̃ = (w̃1, w̃2)

5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)
6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
7. Else if

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

8. Else output c̃⊕ Ext(w̃, s̃)

Decompose the shaded equation into individual tampering equations.

H1(f, g,m):

1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ . Let w := (w1, w2)
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)

3. w̃1 = f (1)(w1)

4. (L,R) ∼ Enc+(k1, k2, t1, t2, s)

5. L̃ = g
(1)
w2 (L), R̃ = f

(2)
w1 (R)

6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec+(L̃, R̃)

7. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥
9. Else if

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output ⊥

10. Else output c̃⊕ Ext(w̃, s̃)

Use SimPlus to replace the tampering experiment of augmented 2-state non-malleable code.

H2(f, g,m):

1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ . Let w := (w1, w2)
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)

3. w̃1 = f (1)(w1)
4. (L,Ans) ∼ SimPlus

g
(1)
w2
,f

(2)
w1

5. (k̃1, k̃2, t̃1, t̃2, s̃) = copy
(

Ans, (k1, k2, t1, t2, s)
)

6. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥

8. Else if
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

9. Else output c̃⊕ Ext(w̃, s̃)

Rearrange steps.

27



H3(f, g,m):

1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ Let w := (w1, w2)
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)

3. w̃1 = f (1)(w1)
4. (L,Ans) ∼ SimPlus

g
(1)
w2
,f

(2)
w1

5. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

6. If Ans =

◦ Case ⊥: Output ⊥

◦ Case same*: If
(

Verifyk1(c̃, t1)=0 or Verify′k2(w̃, t2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s)

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(c̃, t̃1)=0 or Verify′
k̃2

(w̃, t̃2) = 0
)
, output ⊥

Else output c̃⊕ Ext(w̃, s̃)

Use the property of message authentication codes.

H4(f, g,m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ Let w := (w1, w2)

2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w)

3. w̃1 = f (1)(w1)
4. (L,Ans) ∼ SimPlus

g
(1)
w2
,f

(2)
w1

5. c̃ = g
(2)
w2,L

(c), w̃2 = g
(1)
L (w2). Let w̃ := (w̃1, w̃2)

6. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output

⊥
Else output c̃⊕ Ext(w̃, s̃)

,m

)

Remove the redundant steps.
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H5(f, g,m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ , s ∼ Ud, r = Ext(w, s), c = m⊕ r Let w := (w1, w2)

2. (L,Ans) ∼ SimPlus
g
(1)
w2
,f

(2)
w1

3. w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ := (w̃1, w̃2), c̃ = g

(2)
w2,L

(c)
4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or Verify′

k̃2
(w̃, t̃2) = 0

)
, output

⊥
Else output c̃⊕ Ext(w̃, s̃)

,m

)

Process the leakage on w in the first part of our hybrid and only use the leakage in the remainder
of our hybrid.

H6(f, g,m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ . Let w := (w1, w2)

2. (L,Ans) ∼ SimPlus
g
(1)
w2
,f

(2)
w1

, w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ := (w̃1, w̃2)

3. If Ans =

◦ Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If
(

Verify
k̃1

(w̃, t̃2)
)

= 1,flag2 = 1, Else flag2 = 0

Let mask = Ext(w̃, s̃)

4. s ∼ Ud, r = Ext(w, s), c = m⊕ r, c̃ = g
(2)
w2,L

(c)
5. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

Formally define the leakage function.
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H7(f, g,m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ Let w := (w1, w2)
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n′ × {0, 1}p1 ×
{0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}` as the following function:

(a) (L,Ans) ∼ SimPlus
g
(1)
w2
,f

(2)
w1

, w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ :=

(w̃1, w̃2)
(b) If Ans =

◦ Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

◦ Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0
flag2 = 0, mask = 0`

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0

Let mask = Ext(w̃, s̃)

(c) L(w) := (w2, L,Ans,flag1,flag2,mask)

3. s ∼ Ud, r = Ext(w, s) , c = m⊕ r, c̃ = g
(2)
w2,L

(c)
4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

Use the property of min-entropy extractor to replace extraction step with true uniform bits.
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H8(f, g,m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ Let w := (w1, w2)
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n′ × {0, 1}p1 ×
{0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}` as the following function:

(a) (L,Ans) ∼ SimPlus
g
(1)
w2
,f

(2)
w1

, w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ :=

(w̃1, w̃2)
(b) If Ans =

◦ Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

◦ Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0
flag2 = 0, mask = 0`

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0

Let mask = Ext(w̃, s̃)

(c) L(w) := (w2, L,Ans,flag1,flag2,mask)

3. r ∼ U`, c = m⊕ r , c̃ = g
(2)
w2,L

(c)
4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

Now, we are finally ready to replace m with 0`. And this give us the hybrid.
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H9(f, g,m):

copy

(

1. w1 ∼ Un, w2 ∼ Un′ Let w := (w1, w2)
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}n′ × {0, 1}p1 ×
{0, 1}β+β′+γ+γ′+d+1 × {0, 1} × {0, 1} × {0, 1}` as the following function:

(a) (L,Ans) ∼ SimPlus
g
(1)
w2
,f

(2)
w1

, w̃1 = f (1)(w1), w̃2 = g
(1)
L (w2) Let w̃ :=

(w̃1, w̃2)
(b) If Ans =

◦ Case ⊥: flag1 = 0, flag2 = 0, mask = 0`

◦ Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0
flag2 = 0, mask = 0`

◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0

Let mask = Ext(w̃, s̃)

(c) L(w) := (w2, L,Ans,flag1,flag2,mask)

3. r ∼ U`, c = 0` ⊕ r, c̃ = g
(2)
w2,L

(c)
4. If Ans =

◦ Case ⊥: Output ⊥
◦ Case same*: If

(
c̃ = c and flag1

)
= 1, output same*

Else output ⊥
◦ Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1)=0 or flag2 = 0

)
, output ⊥

Else output c̃⊕mask

,m

)

Notice that in our hybrid argument, we have some additional leakage w2 of w, which is of length
l + o(l) by our analysis in Subsection D.1. Therefore, the total leakage of w is 2l + o(l) and that
makes w of length 3l + o(l) in our construction.

E Message Authentication Code: Choice of Parameters

Lemma 3. Suppose {hk : {0, 1}α −→ {0, 1}β} is a µ-almost pairwise independent hash family.
Then the following family of pair of functions is a µ-secure message authentication code.{

Tagk(x) = hk(x)

Verifyk(x, y) = 1 if and only if y = hk(x)

}
k∈K

Proof. Obviously, for all m, k, Verify(m,hk(m)) = 1. Also, for all m 6= m′ and t, t′,

Pr
k∼UK

[
Tagk(m

′) = t′
∣∣Tagk(m) = t

]
=

Prk∼UK [Tagk(m
′) = t′ ∧ Tagk(m) = t]

Prk∼UK [Tagk(m) = t]
6
µ · 2−β

2−β
= µ �

Lemma 4. Suppose α = ` · β and write m as (m1,m2, . . . ,m`) where mi ∈ {0, 1}β. Let K =
{0, 1}β ×{0, 1}β and write k as (k1, k2). Define hk1,k2(m) = k1 +m1k2 +m2k

2
2 + · · ·+mlk

`
2, which

is seen as a polynomial in GF[2β]. Then {hk} is a α
β·2β -almost pairwise independent hash family.

Proof. For all m, t,

Pr
k∼U2β

[hk(m) = t] = Pr
k2∼Uβ

[
Pr

k1∼Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+mlk

`
2 = t

]]
= Pr

k2∼Uβ

[
2−β

]
= 2−β
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For all m 6= m′ and t, t′,

Pr
k∼U2β

[hk(m) = t ∧ hk(m′) = t′]

= Pr
k1∼Uβ ,k2∼Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2 = t∧ k1 +m′1k2 +m′2k

2
2 + · · ·+m′`k

`
2 = t′

]
= Pr

k2∼Uβ

[∑̀
i=1

(mi −m′i)ki2 = t− t′
]
· Pr
k1∼Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2 = t

]
6

`

2β
· 2−β

where the last inequality is because a degree ` polynomial in a field can have at most ` many zeros.
Since ` = α/β, this completes the proof. �

Corollary 7. For all message length α and Tag length β, there exists a α
2β
-secure message authen-

tication code scheme with key length 2β.
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