
A Note on
‘Further Improving Efficiency of

Higher-Order Masking Schemes by
Decreasing Randomness Complexity’

“Almost” is Like “Not At All”

Gilles Barthe1, François Dupressoir2, and Benjamin Grégoire3

1IMDEA Software Institute
2University of Surrey (fdupress@gmail.com)

3Inria Méditerranée

Abstract. Zhang, Qiu and Zhou [5] propose two optimised masked algo-
rithms for computing functions of the form x 7→ x·`(x) for any linear function
`. They claim security properties. We disprove their first claim by exhibiting
a first order flaw that is present in their first proposed algorithm scheme at
all orders. We put their second claim into question by showing that their
proposed algorithm, as published, is not well-defined at all orders, making
use of variables before defining them. We then also exhibit a counterexample
at order 2, that we believe generalises to all even orders.

Coron, Prouff, Rivain and Roche [3] (CPRR) introduced specialised masked algorithms
for computing a particular functionality of interest that had so far been problematic from
the point of view of security: functions of the form x 7→ x·`(x) for some lineary function `.
Their proposed algorithm–if it improves time complexity–does not, however, improve on
the randomness complexity of the simpler option of simply composing a gadget for ` and
a multiplication gadget, taking care to insert the necessary mask refreshing operation.

Zhang, Qiu and Zhou [5] (ZQZ) recently proposed two masked algorithms for com-
puting these functionalities that have reduced randomness complexity. They claim that
their algorithms enjoy particular probing security properties. In this short note, we give
counterexamples to these claims.

We first recall some definitions before detailing the ZQZ proposals and claims, and
detailing our own claims and counterexamples.

1



1. Definitions

We limit our definitions to the relevant case here: that of gadgets with a single input
and a single output.

Definition 1 (t-Non-Interference). A gadget is t-Non-Interfering (or t-NI) whenever the
joint distribution of any d ≤ t of its intermediate variables can be perfectly simulated
using at most t shares of its input.

Definition 2 (t-Strong-Non-Interference). A gadget is t-Strongly-Non-Interfering (or
t-SNI) whenever the joint distribution of any t1 of its intermediate variables and t2 of
its output shares (with t1 + t2 ≤ t) can be perfectly simulated using at most t1 shares of
its input.

We use the “simulation” terminology of Ishai, Sahai and Wagner [4] and others, but
note that the simulations here are not meant in the usual cryptographic sense. When
we write that a distribution d(a0, . . . , at) (expressed as a function of the input shares
a0, . . . , at since it is the joint distribution of adversary probes) can besimulated using
at most n < t shares of a gadget’s input, we mean that there exists an n-ary function
d′ such that for all a0, . . . , at, we have d′(aπ1 , . . . , aπn) = d(a0, . . . , at). (In other words,
the distribution is fully determined by the value of at most n shares of the input.) We
note in particular that this property makes no assumption on the distribution of inputs,
but rather keeps both the real and simulated distribution dependent on it.

With this in mind, in order to break claims of NI or SNI security, it is sufficient to
exhibit a set of intermediate variables whose distribution clearly depends on more than
the allowed number of input shares. This is the approach we take here.

2. First Proposal

Algorithm 1 shows the first ZQZ proposal, which they claim is t-SNI for all t (and any
linear function `). The algorithm, as the original proposal by Coron et al. [3], assumes
leak-free lookups in a table h such that h[x] = x · `(x) for any x.

2.1. A First-Order Flaw

We now exhibit a first-order flaw in this algorithm that is present at any order, and in
any (boolean) ring or field. In order to show that Algorithm 1 is not 1-SNI, it is sufficient
to exhibit either:

1. An intermediate variable whose distribution cannot be perfectly simulated (or
predicted) given only one share of the input; or

2. An output variable whose distribution cannot be perfectly simulated (or predicted)
without any knowledge about the input shares.

Here we explicitly exhibit only a flaw of the second kind, and therefore do not disprove
that Algorithm 1 is t-NI, simply focusing on disproving that it is t-SNI as claimed by

2



Algorithm 1 The First ZQZ Proposal [5] (Algorithm 2)

function H1
t (a, h)

for i = 0 to t do
for j = i + 1 to t do

ri,j
$← F2n

ti,j
$← h[ri,j ] + h[ai + ri,j ]

tj,i
$← h[ai + ri,j + aj ] + h[aj + ri,j ]

for i = 0 to t do
ci ← h[ai]
for j = 0 to t, j 6= i do

ci ← ci + ti,j

return c

ZQZ.1

The final value of c0 at order t can be expressed as follows:

c0 = a0 · `(a0) +

t∑
j=1

r0,j · `(r0,j) + (a0 + r0,j) · `(a0 + r0,j)

We now show that the distribution of this expression cannot be predicted without
knowledge of a0. First observe that, for a0 = 0, the distribution of c0 is the point
distribution that gives probability 1 to element 0. Indeed, note that:

c0 = a0 · `(a0) +
∑t

j=1 r0,j · `(r0,j) + (a0 + r0,j) · `(a0 + r0,j)

= 0 +
∑t

j=1 r0,j · `(r0,j) + r0,j · `(r0,j)
= 0

It is also easy to see that, if the same (constantly 0) distribution is obtained for other
values of a0, then an adversary can obtain the value of c = a · `(a) by observing the
remaining t shares of c (c1, . . . , ct) and recombining them.

Therefore, it is the case that either i. the distribution of c0 depends on a0 (and in
particular, an adversary observing a value of c0 6= 0 could infer that a0 6= 0); or ii. there
is a set of t observations that reveals the value of a.

Either of these situations is a counterexample to ZQZ’s security claim. We exhibit a
detailed breakdown of the flaw with t = 1, n = 2 and instantiating ` as the function that
swaps the bits of its arguments, in Appendix A.

3. Second proposal

Algorithm 2 shows what we understand is the second ZQZ proposal [5], which they claim
is t-NI for all t (and all `).

1Although we do not prove that Algorithm 1 is not t-NI, this should not be taken as evidence that it
provides any sort of probing security.

3



We first note that the Algorithm is not well-defined for odd values of t. Indeed, in
such cases, the loop at Line 5 initialises only those rj for even values of j such that
0 < j < t. However, Line 17 makes use of ri for all odd values of i such that 0 < i ≤ t
(regardless of the order). In the following, we do not pretend to fix this proposal, and
only consider the security of Algorithm 2 for even values of t.2

Algorithm 2 The Second ZQZ Proposal [5] (Algorithm 3)

1: function H2
t (a, h)

2: for i = 0 to t do
3: for j = 0 to t− i− 1 by 2 do

4: ri,t−j
$← F2n

5: for j = t− 1 downto 1 by 2 do

6: rj
$← F2n

7: for i = 0 to t do
8: ci ← h[ai]
9: for j = t downto i + 2 by 2 do

10: ti,j ← h[ai + ri,j ] + h[ri,j ] + h[ai + rj−1] + h[rj−1]
11: ci ← ci + ti,j

12: if i mod 2 6= t mod 2 then
13: ti,i+1 ← h[ai + ri,i+1] + h[ri,i+1]
14: ci ← ci + ti,i+1

15: if i mod 2 = 1 then
16: for j = i− 1 downto 0 do
17: ti,j ← h[ai + ri + aj ] + h[ai + ri]
18: ci ← ci + ti,j

19: else
20: for j = i− 1 downto 0 do
21: ti,j ← h[rj,i] + h[ai + rj,i]
22: ci ← ci + ti,j

23: return c

3.1. Counterexample

We instantiate Algorithm 2 with t = 2 (as Algorithm 3).
Consider the final distribution of c1 and note that, since ` is linear and the distribution

of r1 (resp. r1,2) is the same as that of a1+r1 (resp. a1+r1,2, we have, denoting “equality
of distributions knowing that r is distributed uniformly” using ∼=r:

2It is likely that the loop at Line 5 can be fixed to always initialise rj with j odd. The presence of
security flaws in the scheme makes investigating its correctness less useful.

4



Algorithm 3 Algorithm 2 with t = 1

function H2
2 (a, h)

r0,2
$← F2n

r1,2
$← F2n

r1
$← F2n

c0 ← h[a0]
t0,2 ← h[a0 + r0,2] + h[r0,2] + h[a0 + r1] + h[r1]
c0 ← c0 + t0,2
c1 ← h[a1]
t1,2 ← h[a1 + r1,2] + h[r1,2]
c1 ← c1 + t1,2
t1,0 ← h[a1 + r1 + a0] + h[a1 + r1]
c1 ← c1 + t1,0
c2 ← h[a2]
t2,1 ← h[r1,2] + h[a2 + r1,2]
c2 ← c2 + t2,1
t2,0 ← h[r0,2] + h[a2 + r0,2]
c2 ← c2 + t2,0
return 〈c0, c1, c2〉

c1 = a1 · `(a1) + (a1 + r1,2) · `(a1 + r1,2) + r0,2 · `(r0,2)
+(a1 + r1 + a0) · `(a1 + r1 + a0) + (a1 + r1) · `(a1 + r1)

∼=r1,2 a1 · `(a1) + r1,2 · `(r1,2) + r0,2 · `(r0,2)
+(a1 + r1 + a0) · `(a1 + r1 + a0) + (a1 + r1) · `(a1 + r1)

∼=r1 a1 · `(a1) + r1,2 · `(r1,2) + r0,2 · `(r0,2) + (r1 + a0) · `(r1 + a0) + r1 · `(r1)
= a0 · `(a0) + a1 · `(a1) + r1 · `(a0) + a0 · `(r1) + r1,2 · `(r1,2) + r0,2 · `(r0,2)

Tables 1 and 2 detail the distribution of c1 as a function of a0 and a1 with t = 2,
n = 2, and ` = x 7→ x� 1. When distributions are single-valued, we simply give that
value. In other cases we describe the probability mass function, omitting elements of
probability 0. Detailed computations for the distribution of r1 · (a0� 1) + a0 · (r1� 1)
are given in Table 3, in an Appendix which also includes a table for the computation of
· in F22 (Table 4). We also note that, for any x, we have

x · (x� 1) =

{
00 if x = 00
10 otherwise.

As a consequence, the distribution of r1,2 · `(r1,2) + r0,2 · `(r0,2), independent of a0 and
a1 is simply expressed as

{
00 7→ 5

8 ; 10 7→ 3
8

}
.

The flaw here is more subtle: we need to show that predicting the distribution of c1
requires information on both a0 and a1.

When a0 = 00, the distribution of c1 clearly depends on a1 (as shown in the first
quarter of Table 1).

5



a0 a1 a0 · (a0� 1) a1 · (a1� 1) r1 · (a0� 1) + a0 · (r1� 1) c1

00 00 00 00 00
{

00 7→ 5
8
; 10 7→ 3

8

}
00 01 00 10 00

{
00 7→ 3

8
; 10 7→ 5

8

}
00 10 00 10 00

{
00 7→ 3

8
; 10 7→ 5

8

}
00 11 00 10 00

{
00 7→ 3

8
; 10 7→ 5

8

}
01 00 10 00

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
01 01 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
01 10 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
01 11 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
10 00 10 00

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
10 01 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
10 10 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
10 11 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
11 00 10 00

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
11 01 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
11 10 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
11 11 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
Table 1: Distribution of c1 as a function of a0.

a1 a0 a1 · (a1� 1) a0 · (a0� 1) r1 · (a0� 1) + a0 · (r1� 1) c1

00 00 00 00 00
{

00 7→ 5
8
; 10 7→ 3

8

}
00 01 00 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
00 10 00 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
00 11 00 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
01 00 10 00 00

{
00 7→ 3

8
; 10 7→ 5

8

}
01 01 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
01 10 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
01 11 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
10 00 10 00 00

{
00 7→ 3

8
; 10 7→ 5

8

}
10 01 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
10 10 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
10 11 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
11 00 10 00 00

{
00 7→ 3

8
; 10 7→ 5

8

}
11 01 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
11 10 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
11 11 10 10

{
00 7→ 1

2
; 10 7→ 1

2

} {
00 7→ 1

2
; 10 7→ 1

2

}
Table 2: Distribution of c1 as a function of a1.

6



Similarly, whatever the value of a1, the distribution of c1 varies with the value of a0.
This is shown more clearly in Table 2.

The leak exhibited here is clearly more subtle than that on the first proposal, for
several reasons:

1. although we suspect similar flaws exist at higher orders, in other structures and
for other instantiations for `, we only explicitly exhibit it for t = 2 and in the case
where n = 2 and ` is the 1-bit rotation function;

2. rather than a single observation leaking information about the input, the flaw on
the second proposal requires the adversary to estimate the distribution of c1 (by
performing multiple measurements) to infer the information.

The bias we exhibit is quite small, but exists, and therefore contradicts the claims of
perfect probing security made by the original authors.

4. Analysis, Discussion and Conclusions

In this short note, we have exhibited counterexamples to both of Zhang, Qiu and Zhou’s
core theorems [5]. However, their compositional proof for the AES SBox would remain
valid given a t-NI gadget with reduced randomness complexity that computes x 7→ x·`(x),
and searching for such a gadget remains a valuable research objective.

We do not claim that the leakage we exhibit here could be exploited in practice, but
simply wish to bring attention to the fact that the gadgets proposed by Zhang, Qiu
and Zhou are not as secure as claimed, and may therefore not be suitable for practical
security-critical applications, despite their improved randomness complexity.

The counterexamples shown here were found using Barthe et al.’s maskVerif tools [1, 2].
Since the proof techniques used in those tools are incomplete (that is, they may fail to
prove true statements), the counterexamples were further verified and refined by hand
(and the first flaw generalised). This short note and its use of formal verification tools
further illustrate, if it was still needed, the value of formal methods and automated
verification tools in the domain of provably secure masked algorithms, for which proofs
are notoriously tedious, error prone and difficult to check.

References

[1] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In Elisa-
beth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056
of LNCS, pages 457–485. Springer, Heidelberg, April 2015.

[2] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16,
pages 116–129. ACM Press, October 2016.

7



[3] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Shiho Moriai, editor,
FSE 2013, volume 8424 of LNCS, pages 410–424. Springer, Heidelberg, March 2014.

[4] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[5] Rui Zhang, Shuang Qiu, and Yongbin Zhou. Further improving efficiency of higher
order masking schemes by decreasing randomness complexity. IEEE Transactions
on Information Forensics and Security, 12(11), November 2017.

A. A Detailed Look at the First Proposal

We now give a detailed account of a particular instance of the flaw we exhibit on ZQZ’s
first proposal (Algorithm 1. We instantiate Algorithm 1 for t = 1 (as Algorithm 4) and
exhibit a single output share whose distribution varies with a0, and therefore cannot be
simulated without knowledge about that input share. This violates the 1-SNI property
claimed by ZQZ [5].

Algorithm 4 Algorithm 1 with t = 1

function H1
1 (a = (a0,a1), h)

r0,1
$← F2n

t0,1 ← h[r0,1] + h[a0 + r0,1]
t1,0 ← h[a0 + r0,1 + a1] + h[a1 + r0,1]
c0 ← h[a0]
c0 ← c0 + t0,1
c1 ← h[a1]
c1 ← c1 + t1,0
return 〈c0, c1〉

Consider the distribution of the final value of c0, and note that, since ` is linear, we
have:

c0 = a0 · `(a0) + r0,1 · `(r0,1) + (a0 + r0,1) · `(a0 + r0,1)

= a0 · `(a0) + r0,1 · `(r0,1) + a0 · `(a0) + a0 · `(r0,1) + r0,1 · `(a0) + r0,1 · `(r0,1)
= a0 · `(r0,1) + r0,1 · `(a0)

For example, choosing n = 2 and `(x) = x� 1 (the left rotation on binary words), it
is clear that the distribution of c0 does in fact depend on the value of a0. For example, if
a0 = 00, then c0 = 00 for all possible values of r0,1, whereas other values of a0 yield the
same two-valued distribution on c0 (see Table 3; Table 4 recalls multiplication in F22).

This proves that Algorithm 1 is not t-SNI for all t and for all `.

8



a0 r0,1 a0� 1 r0,1� 1 a0 · (r0,1� 1) r0,1 · (a0� 1) r0,1 · (a0� 1) + a0 · (r0,1� 1)

00 00 00 00 00 00 00
00 01 00 10 00 00 00
00 10 00 01 00 00 00
00 11 00 11 00 00 00

01 00 10 00 00 00 00
01 01 10 10 10 10 00
01 10 10 01 01 11 10
01 11 10 11 11 01 10

10 00 01 00 00 00 00
10 01 01 10 11 01 10
10 10 01 01 10 10 00
10 11 01 11 01 11 10

11 00 11 00 00 00 00
11 01 11 10 01 11 10
11 10 11 01 11 01 10
11 11 11 11 10 10 00

Table 3: Distribution of c0 as a function of a0: detailed computation.

· 00 01 10 11

00 00 00 00 00

01 00 01 10 11

10 00 10 11 01

11 00 11 01 10

Table 4: Multiplication in F22 .

9


