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Abstract. In this paper we investigate the sparse structure of the superpoly in cube attack,
and further reduce the complexity of superpoly recovery.

We apply our technique to stream cipher Trivium and Kreyvium. For Trivium, benefited
from our techniques, we, for the first time, can recover the superpoly of 833-rounds with cube
dimension 73, and complexity 276.91. Furthermore, for 833-rounds, we can find a new cube of
dimension 74, with only one secret key bit involved, thus the complexity is 275. For 839-rounds,
we find a cube of dimension 78, with only one secret key bit involved in the superpoly.

For Kreyvium, the lower complexity evaluation enables us to recover the superpoly of 849-
rounds with time complexity of 281.7. Moreover, we find a new cube of dimension 102, which
can achieve 888-rounds with complexity 2111.38. So far as we know, all of our results are the
best.
Key words: Cube attack, Division property, MILP, Trivium, Kreyvium

1 Introduction

Cube attack is one of the general cryptanalytic techniques against symmetric-key cryptosystems pro-
posed by Dinur and Shamir [DS09]. Especially, cube attack has been successfully applied to various ci-
phers, including stream ciphers [ADMS09,DS11,FV13,SBD+16], hash functions [DMP+15,HWX+17]
[LBDW17], and authenticated encryptions [LDW17,DLWQ17]. The conventional cube attack as-
sumes that the output bit (variable) of a cipher is given as a blackbox polynomial f(x,v) of the
input secret variables x and public variables v. The main observation used in the attack is that when
this polynomial has a (low) algebraic degree d in terms of public variables, then summing its outputs
over 2d−1 inputs, in which a subset of public variables (i.e. , a cube) of dimension (d − 1) ranges
over all possible values, and the other public variables are fixed to some constant, yields a linear
function of secret variables (i.e. superpoly, denoted as p(x,v)). By querying the oracle encryption,
one can build a system of linear equations of the secret variables. After solving this system, the
secret variables can be recovered.

In the original paper on cube attacks [DS09], the authors introduced a linearity test to reveal the
structure of the superpoly. If the linearity test always passes, the Algebraic Normal Form (ANF) of
the superpoly is recovered by assuming that the superpoly is linear. Moreover, a quadraticity test
was introduced in [MS12], and the ANF of the superpoly is similarly recovered. The quadraticity test
was also used in the key-recovery attack against Trivium [FV13]. Note that these are experimental
cryptanalysis, and it is possible that cube attacks do not actually work. For example, if the superpoly
is a highly unbalanced function for specific variables, we cannot ignore the probability that the
linearity and quadraticity tests fail.



Higher-order differential has been first proposed in cryptography by Lai [Lai94] and was later
applied to differential cryptanalysis of block ciphers by Knudsen [Knu94]. When a block cipher is
analyzed, attackers first evaluated the algebraic degree of the reduced round (say r-round) and con-
struct a r-round higher-order differential where the (d+1)st order difference is always 0 if the degree
is at most d. Then, the key recovery is dependently appended after the r-round higher order differ-
ential characteristic. Namely, attackers guess round keys used in last several rounds and compute
backward the (d+ 1)st order difference of the rth round. If the (d+ 1)st order difference is always 0,
then the round key guessed is correct, otherwise, the guessed round keys is wrong. Nowadays, many
advanced techniques similar to the higher-order differential attack have been developed to analyze
block ciphers, e.g. , integral attack [DKR97,Luc01,KW02].

Cube attack can be seen as a type of higher-order differential attacks because it also evaluates the
algebraic degree of the cipher. However, the major difference between cube attack and higher-order
differential attack is whether or not secret variables are directly recovered from the characteristic.
Note that we cannot use the strategy of key recovery attack based on higher-order differentials
against many stream ciphers because for a stream cipher the secret key is generally used during
the initialization phase and is not involved when generating a keystream, i.e. even if there is a
distinguisher in the key stream, it cannot be directly utilized for key recovery attacks by appending
key recovery rounds in the key generation phase. To execute the key-recovery attack of stream
ciphers, we have to recover the secret key by only using key streams that attackers can observe.
Therefore, more advanced and complicated analyses are required than the simple degree estimation
of higher-order differential attack or square, saturation, and integral characteristics. In the context
of the cube attack, we have to analyze the ANF of the superpoly. It is unlikely to well analyze
because symmetric-key cryptosystems are complicated. Therefore, stream ciphers have usually been
experimentally analyzed in the cube attack.

As a generalized integral property, division property was proposed by Todo [Tod15b]to search
more accurate integral distinguishers for symmetric-key primitives including SPNs and Feistel struc-
tures, because the algebraic degree of the S-box was ingeniously exploited in the propagation of the
division property. One prominent application was the attack on MISTY1 [Tod15a], where the S-Box
S7 was shown to have an important vulnerability in terms of division property. By employing this a
new 6-round integral distinguisher was constructed, and a full-round attack on MISTY1 was achieved
for the first time. Motivated by narrowing the 5 rounds gap between the integral distinguishers for
SIMON32 in [WLV+14] and [Tod15b], bit-based division property [TM16] was introduced at FSE
2016, where for the first time the bit-level division property was considered. As a result, the same
integral distinguishers for SIMON32 in [WLV+14] were found. However, as pointed out in [TM16],
for a block cipher with block size n, the time and memory complexity is lower bounded by 2n. As
most ciphers adopt block size larger than 32, this makes searching integral distinguisher by bit-based
division property under this framework computationally infeasible. In order to solve this problem,
Xiang et al. [XZBL16] built an automatic tool based on mixed integer linear programming (MILP)
to study the division property of SPNs with bit-permutation linear layers (e.g. PRESENT). They
first introduced notion division trail to track the division propagation and built the objective func-
tion, then represented the operations (and, xor and copy) of the ciphers by linear (in)equalities to
constrain the objective function. After setting the required stopping rules of searching division trails,
they can determine the existence of certain number of rounds integral distinguishers by optimizing
the MILP. As a result, they managed to find many interesting integral distinguishers for the targeted
ciphers.

For the first time, Todo et al. [TIHM17] applied division property to the cube attack on stream
ciphers Trivium, Grain128a and authenticated encryption ACORN, and achieved the best key
recovery attacks against all of them. After choose a cube CI with the indices of the public variables
as a set I, by evaluating the division property of the cipher, they manage to determine the secret
variables involved in the ANF of the superpoly p(x,v), denote by J as the set of indices. Then,
the variation of the sum over the cube is at most 2|J| for each constant part of public variables,
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where |J | denotes the size of J . All sums were evaluated by guessing |J |-bit secret variables, and
the time complexity to recover the ANF of the superpoly is 2|I|+|J| encryptions. Then they query
the encryption oracle and get the sum over the cube. Finally, one polynomial about secret variables
is deduced, from which the secret variables can be recovered. The most important step in the cube
attack is the superpoly recovery and is the main focus of this paper. The time complexity for the
superpoly recovery is upper bounded by 2|I|+|J| in [TIHM17].

Our contribution. We further investigate the sparse structure of the superpoly of given cubes. By
further extending the division property application in [TIHM17], we are able to find all the quadratic
terms of the superpoly, and denote the indices set as J2. More general, assume the algebraic degree
of the superpoly is d, and denote Jt (1 ≤ t ≤ d) as the indices set of the terms of degree t, then

we can provide a better bound of the complexity of the superpoly recovery as 2|I| × (1 +
∑d
t=1 |Jt|)

where |J1| = |J |. Note that our new bound is much lower than the one in [TIHM17], especially when
|I| and d are large. We will give more details in Sect. 4.

Moreover, we represent our superpoly as a graph, where vertices correspond to the involved
secret key bits in the superpoly (i.e. indices in J1), and edges between any pair of the vertices
are the quadratic terms involved in the superpoly (i.e. indices in J2). Therefore, we deduce the
computation of Jt to the problem of finding the maximal t-clique problem. And from a very simple
algorithm we can easily give an upper bound of the size of Jt. By this approach, we can reduce the
time complexity of the superpoly recovery in [TIHM17].

As applications, we apply our approach to stream cipher Trivium and Kreyvium. In [TIHM17],
832 initialization rounds of Trivium can be analyzed with a cube of dimension 72, and the number
of secret variables involved in the superpoly is 5, so the complexity of recovering the superpoly is
bounded by 277. Our new cube attack can reduce this to 275.58, which is not great since the size
of J1 equals to 5 and the degree of the superpoly is only 3, with these small values our bound has
less advantage. We find a new cube of dimension 73 for 833 rounds, where |J1| = 7 and d = 3. If
we evaluate the complexity as in [TIHM17], then it reaches 273+7 = 280 which makes the attack
fail. However, when applying our new bound, the complexity can be reduced to 276.91. In this way,
we can achieve one more round than [TIHM17]. Also, we find a new cube of dimension 78 for 839
rounds, and only one secret variable is involved.

The design of Kreyvium [CCF+16] is recently motivated by the application for homomorphic
friendly encryption. Kreyvium shares the same internal structure as Trivium, but allows for larger
keys of 128 bits than 80 bits of Trivium. With a cube of size 61 [Liu17], we can recover 849
initialization rounds of Kreyvium with time complexity 281.7 while the bound should be 2124 if
we calculate it as in [TIHM17]. Furthermore, for 888 rounds with a cube of dimension 102, we
can recover the superpoly with time complexity 2113.38. The summarized results of Trivium and
Kreyvium are in Table 1.

The remainder of the paper is organized as: Sect. 2 introduces the preliminaries, and Sect. 3
describes the MILP models of Trivium and Kreyvium. In Sect. 4, we discusses our new bound of
the time complexity, and applied it to analyze Trivium and Kreyvium in Sect. 5. Plans about the
future work and conclusions are given in Sect. 6.

2 Preliminaries

2.1 Mixed Integer Linear Programming

The deployment of the mixed integer linear programming (MILP) to cryptanalysis was shown by
Mouha et al. in [MWGP11]. Then, MILP has been applied to search for differential [SHW+14b,SHW+14a],
linear [SHW+14a], impossible differential [CJF+16,ST17], zero-correlation linear [CJF+16], and inte-
gral characteristics with division property [XZBL16]. The use of MILP for the integral characteristic
with division property is expanded in this paper.
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Table 1. Summary of our results. The complexity in this table shows the time complexity to recover the
superpoly of a cube.

Applications # Rounds Cube size |J | Complexity Reference

Trivium

799 32 † - practical [FV13]

832 72 5 277 [TIHM17]

832 72 5 275.58 Sect. 5.1

833 73 7 276.91 Sect. 5.1

833 74 1 275 Sect. 5.1

839 78 1 279 Sect. 5.1

Kreyvium

849 61 23 281.7 Sect. 5.2

870 85 2 286.58 Sect. 5.2

872 85 39 294.61 Sect. 5.2

888 102 36 2111.38 Sect. 5.2

† 18 cubes whose size is from 32 to 37 are used, where the most efficient cube is shown to recover one bit of
the secret key.

The MILP problem is an optimization or feasibility program where variables are restricted to
integers. We create an MILP model M, which consists of variables M.var, constraints M.con, and
an objective function M.obj. As an example, let us consider the following optimization program.

Example 1.

M.var ← x, y, z as binary.

M.con← x+ 2y + 3z ≤ 4

M.con← x+ y ≥ 1

M.obj ← maximize x+ y + 2z

The answer of the model M is 3, where (x, y, z) = (1, 0, 1).

MILP solver can solve such optimization problem, and it returns infeasible if there is no feasible
solution. Moreover, if there is no objective function, the MILP solver only evaluates whether this
model is feasible or not.

We used Gurobi optimization as the solver in our experiments [Inc15].

2.2 Cube Attack

The cube attack is a key-recovery attack proposed by Dinur and Shamir in 2009 [DS09] and is the
extension of the higher-order differential cryptanalysis [Lai94].

Let x = (x1, x2, . . . , xn) and v = (v1, v2, . . . , vm) be n secret variables and m public variables,
respectively. Then, the symmetric-key cryptosystem is represented as f(x,v), where f denotes a
polynomial and the size of input and output is n + m bits and 1 bit, respectively. In the case of
stream ciphers, x is the secret key, v is the initialization vector (iv), and f(x,v) is the first bit of
the key stream. The core idea of the cube attack is to simplify the polynomial by computing the
higher-order differential of f(x,v) and to recover secret variables from the simplified polynomial.
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For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n}, which is referred as cube indices and
denote by tI the monomial as tI = vi1 · · · vi|I| . Then, we can decompose f(x,v) as

f(x,v) = tI · p(x,v) + q(x,v),

where p(x,v) is independent of {vi1 , vi2 , . . . , vi|I|} and the effective number of input variables of p
is n+m− |I| bits. Moreover, q(x,v) misses at least one variable from {vi1 , vi2 , . . . , vi|I|}.

Let CI , which is referred as a cube (defined by I), be a set of 2|I| values where variables in
{vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values, and all remaining variables are
fixed to some arbitrary values. Then the sum of f over all values of the cube CI is⊕

CI

f(x,v) =
⊕
CI

tI · p(x,v) +
⊕
CI

q(x,v)

= p(x,v).

The first term is reduced to p(x,v) because tI becomes 1 for only one case in CI . The second term
is always canceled out because q(x,v) misses at least one variable from {vi1 , vi2 , . . . , vi|I|}. Then,
p(x,v) is called the superpoly of the cube CI .

Blackbox Analysis. If the cube is appropriately chosen such that the superpoly is enough sim-
plified to recover secret variables, the cube attack succeeds. However, f(x,v) in real symmetric-key
cryptosystems is too complicated. Therefore, the cube attack regards f as a blackbox polynomial.

In the preprocessing phase, attackers first try out various cubes, change values of public and
secret variables, and analyze the feature of the superpoly. The goal of this phase is to reveal the
structure of p(x,v). Especially, the original cube attack searches for linear superpoly p(x,0) by the
summation over the chosen cube. If the superpoly is linear,

p(x⊕ x′,0) = p(x,0)⊕ p(x′,0)⊕ p(0,0)

always holds for arbitrary x and x′. By repeating this linearity test enough, attackers can know
that the superpoly is linear with high probability, and the Algebraic Normal Form (ANF) of the
superpoly is recovered by assuming its linearity.

In the online phase, attackers query to an encryption oracle by controlling only public variables
and recover secret variables. Attackers evaluate the sum of f(x,v) over all values of the cube CI .
Since the sum is right hand side of the superpoly, the part of secret variables is recovered. Please
refer to [DS09] and [ADMS09] to well understand the principle of the cube attack.

2.3 Division Property

Underlying mathematical background of the cube attack is the same as that of the higher-order dif-
ferential attack. Unlike the cube attack, the common higher-order differential attack never regards
the block cipher as a blackbox polynomial. Attackers analyze the structure of a block cipher and
construct higher-order differential characteristics, where attackers prepare the set of chosen plain-
texts such that the sum of corresponding ciphertexts of reduced-round block cipher is 0. After the
proposal of the higher-order differential attack, many advanced techniques similar to the higher-
order differential attack have been developed to analyze block ciphers, e.g. , square attack [DKR97],
saturation attack [Luc01], multi-set attack [BS01], and integral attack [KW02].

Division Property. At 2015, the division property, which is an improved technique to find higher-
order differential (integral) characteristics for iterated ciphers, was proposed in [Tod15b]. Then, the
bit-based variant was introduced in [TM16], and it is defined as follows7.

7 Two kinds of bit-based division property are proposed in [TM16]. In this paper, we only focus on the
conventional bit-based division property.
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Definition 1 ((Bit-Based) Division Property). Let X be a multiset whose elements take a value
of Fn2 . Let K be a set whose elements take an n-dimensional bit vector. When the multiset X has the
division property D1n

K , it fulfils the following conditions:

⊕
x∈X

xu =

{
unknown if there exist k ∈ K s.t. u � k,

0 otherwise,

where u � k if ui ≥ ki for all i, and xu =
∏n
i=1 x

ui
i .

We first evaluate the division property of the set of chosen plaintexts and then evaluate the division
property of the set of corresponding ciphertexts by evaluating the propagation for every round
function.

Some propagation rules for the division property are proven in [Tod15b,TM16]. Attackers deter-
mine indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n} and prepare 2|I| chosen plaintexts where variables
indexed by I are taking all possible combinations of values. The division property of such chosen
plaintexts is D1n

k , where ki = 1 if i ∈ I and ki = 0 otherwise. Then, the propagation of the division
property from D1n

k is evaluated as

{k} def
= K0 → K1 → K2 → · · · → Kr,

where DKi
is the division property after i-round propagation. If the division property Kr does not

have an unit vector ei whose only ith element is 1, the ith bit of r-round ciphertexts is balanced.

Propagation of Division Property with MILP. Evaluating the propagation of the division
property is not easy because the size of Ki extremely increases. At ASIACRYPT 2016, Xiang et al.
showed that the propagation is efficiently evaluated by using MILP [XZBL16]. First, they introduced
the division trail as follows.

Definition 2 (Division Trail). Let us consider the propagation of the division property {k} def
=

K0 → K1 → K2 → · · · → Kr. Moreover, for any vector k∗i+1 ∈ Ki+1, there must exist a vector k∗i ∈
Ki such that k∗i can propagate to k∗i+1 by the propagation rule of the division property. Furthermore,
for (k0,k1, . . . ,kr) ∈ (K0 ×K1 × · · · × Kr) if ki can propagate to ki+1 for all i ∈ {0, 1, . . . , r − 1},
we call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round iterated cipher. Then, if there are division trails k0
Ek−−→ kr = ei,

attackers cannot know whether the ith bit of r-round ciphertexts is balanced or not. On the other

hand, if we can prove that there is no division trail k0
Ek−−→ ei, the ith bit of r-round ciphertexts is

always balanced. Therefore, we have to evaluate all possible division trails to verify whether each bit
of ciphertexts is balanced or not. In [Tod15b], [Tod15a], and [TM16], all possible division trails are
evaluated by using a breadth-first search. Unfortunately, such a search requires enormous memory
and time complexity. Therefore, it is practically infeasible to apply this method to iterated ciphers
whose block length is not small.

MILP can efficiently solve this problem. We generate an MILP model that covers all division
trails, and the solver evaluates the feasibility whether there are division trails from the input division
property to the output one or not. If the solver guarantees that there is no division trail, higher-order
differential (integral) characteristics are found.

Let copy, xor, and and be three fundamental operations, where 1 bit is copied into m bits in
copy, the xor of m bits is computed in xor, and the and of m bits is computed in and. Note that
MILP models for copy, xor, and and are sufficient to represent any circuit.

Proposition 1 (MILP Model for COPY). Let a
COPY−−−−→ (b1, b2, . . . , bm) be a division trail of

COPY. The following inequalities are sufficient to describe the propagation of the division property
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for copy. {
M.var ← a, b1, b2, . . . , bm as binary.

M.con← a = b1 + b2 + · · ·+ bm

Proposition 2 (MILP Model for XOR). Let (a1, a2, . . . , am)
XOR−−−→ b be a division trail of XOR.

The following inequalities are sufficient to describe the propagation of the division property for xor.{
M.var ← a1, a2, . . . , am, b as binary.

M.con← a1 + a2 + · · ·+ am = b

Proposition 3 (MILP Model for AND). Let (a1, a2, . . . , am)
AND−−−→ b be a division trail of AND.

The following inequalities are sufficient to describe the propagation of the division property for and.{
M.var ← a1, a2, . . . , am, b as binary.

M.con← b ≥ ai for all i ∈ {1, 2, . . . ,m}

To accept multiple inputs and outputs, three propositions are generalized from the original ones
shown in [XZBL16]. Moreover, Propositions 1 and 2 are also introduced in [SWW16]. Note that
Proposition 3 includes redundant propagations of the division property, but they do not affect
obtained characteristics.

Thanks to all these efforts, the propagation of division property has now become generating a
MILP modelM whose variables and constraints are generated according to the round functions. By
imposing constraints to the

2.4 The Bit-Based Division Property for Cube Attack

Recently at CRYPTO 2017, Todo et al. successfully apply the bit-based division property to the
cube attack [TIHM17]. They prove the following Lemma 1 and Proposition 4.

Lemma 1. Let f(x) be a polynomial from Fn2 to F2 and afu ∈ F2 (u ∈ Fn2 ) be the ANF coefficients.

Let k be an n-dimensional bit vector. Then, assuming there is no division trail such that k
f−→ 1, afu

is always 0 for u � k.

Proposition 4. Let f(x,v) be a polynomial, where x and v denote the secret and public variables,
respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}, let CI be a set of 2|I| values
where the variables in {vi1 , vi2 , . . . , vi|I|} are taking all possible combinations of values. Let kI be an

m-dimensional bit vector such that vkI = tI = vi1vi2 · · · vi|I| , i.e. ki = 1 if i ∈ I and ki = 0 otherwise.

Assuming there is no division trail such that (eλ,kI)
f−→ 1, xλ is not involved in the superpoly of the

cube CI .

Based on these theoretic findings, they can identify the key bits that might be involved in the super-
poly of any cube CI using MILP-aided bit-based division property. The method can be summarized
as Algorithm 1 that outputs set of indices J satisfying: for j ∈ J , there exist assignment v s.t. the
secret key bit xj is involved in pv(x); for j /∈ J , the secret key bit xj can never be involved in pv(x)
for any v assignment.
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Algorithm 1 Evaluate secret variables by MILP

1: procedure attackFramework(Cube indices I)
2: Declare an empty MILP model M
3: Declare x as n MILP variables of M corresponding to secret variables.
4: Declare v as m MILP variables of M corresponding to public variables.
5: M.con← vi = 1 for all i ∈ I
6: M.con← vi = 0 for all i ∈ ({1, 2, . . . ,m} − I)
7: M.con←

∑n
i=1 xi = 1

8: Update M according to round functions and output functions
9: do

10: solve MILP model M
11: if M is feasible then
12: pick index j ∈ {1, 2, . . . , n} s.t. xj = 1
13: J = J ∪ {j}
14: M.con← xj = 0
15: end if
16: whileM is feasible
17: return J
18: end procedure

2.5 Key Recovery Attack Procedure

With J and I decided, the key recovery process can be summarized as follows:

1. Offline Phase: Identify the superpoly. Attackers assign the non-cube IVs a proper constant
value, and prepare a cube by flipping bits in I. Then, for all possible values of the secret variables
{xj1 , xj2 , . . . , xj|J|}, they compute and store the value of the superpolys as pv(x) =

⊕
CI
f(x,v).

The 2|J| values compose the truth table of pv(x) and the ANF of the superpoly is determined
accordingly. Finally, they search for the preferable superpoly (its truth table is balanced) by
changing the value of the non-cube IV.

2. Online Phase: Recover the part of secret variables. After the truth table of the balanced
superpoly and the proper assignments of non-cube IVs are given, attackers query the cube CI
to encryption oracle and get one bit pv(x) through summation. Then, we get one polynomial
about involved secret variables, and the half of values in involved secret variables is discarded
because the superpoly is balanced.

3. Brute-force search phase. Attackers guess the remaining secret variables to recover the entire
value in secret variables.

Phase 1 takes 2|I|+|J| encryptions to construct a truth table of size 2|J|. Phase 2 requires 2|I|

encryptions to sum over the cube CI . Additional 2|J| table lookups are also necessary in order to
identify the 2|J|−1 candidate keys but such a complexity is negligible in comparison with the cube
summation so the complexity of Phase 2 can be regarded as 2|I|. The complexity of Phase 3 is 2n−1.
The attack can be meaningful only if |I|+ |J | < n.

If we want to attack more rounds, we have to use higher dimensional cubes which increase the size
of I. On the other hand, due to the linear diffusion, more active IVs makes |J | increase accordingly.
Therefore, we propose several techniques that enable us to acquire the superpoly even if |I|+|J | ≥ n.

Previous MILP model can only tell that for some assignment to the non-cube IVs, the superpoly
pv(x) involves the key bits J . In other words, there exist probability that for some v, pv(x) is
constant whose value is irrelevant with any secret key bits and Phase 1 might be repeated the
2|I|+|J| encryptions several times before identifying a preferable assignment to the non-cube IVs.
Therefore, as is stated in [TIHM17], the availability of the attack is based on the following two
assumptions.
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Assumption 1 (Strong Assumption) For a cube CI , there are many values in the constant part
of iv whose corresponding superpoly is balanced.

Assumption 2 (Weak Assumption) For a cube CI , there are many values in the constant part
of iv whose corresponding superpoly is not a constant function.

We also propose a method so that different assignment to the non-cube IVs can have corresponding
effect on the MILP model. In this way, the preciseness of the MILP is improved. We are able to
identify the involved keys for specifically assigned non-cube IVs and improve the complexities of
previous attacks as well.

3 Descriptions of Trivium and Kreyviumin MILP Model

In this section, we give a very brief description of stream cipher Trivium and Kreyvium followed
by its MILP model.

3.1 Specification of Trivium

Trivium [CP06] is one of the seven stream ciphers recommended by the eSTREAM [est08] project
after a 5-year international competition. Triviumis an NLFSR-based stream cipher, and the in-
ternal state is represented by 288-bit state (s1, s2, . . . , s288). The algorithm consists of two phases:
Initialization and key stream generation.

In the initialization phase, the algorithm is initialized by loading an 80-bit key and an 80-bit IV
into the 288-bit initial state, and setting all remaining bits to 0, except for s286, s287, and s288. The
key stream generation consists of an iterative process which extracts the values of 15 specific state
bits and uses them both to update 3 bits of the state and to compute 1 bit of key stream zi. The
state bits are then rotated and the process repeats itself until the requested N ≤ 264 bits of key
stream have been generated. The update function of Trivium is depicted in Fig. 1.

zi

Fig. 1. Structure of Trivium

A complete description of Trivium is given by the following simple pseudo-code

(s1, s2, . . . , s93)← (K1, . . . ,K80, 0, . . . , 0)
(s94, s95, . . . , s177)← (IV1, . . . , IV80, 0, . . . , 0)
(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)

for i = 1 to 1152 +N do
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t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288
if i > 1152 then

output zi−1152 ← t1 + t2 + t3
end if
t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

3.2 MILP Model of Trivium Initialization

TriviumEval in Algorithm 2 generates MILP model M as the input of Algorithm 1, and the
model M can evaluate all division trails for Triviumwhose initialization rounds are reduced to
R.TriviumCore in Algorithm 2 generates MILP variables and constraints for each update function
of register.

Algorithm 2 MILP model of division property for Trivium

1: procedure TriviumCore(M, x, i1, i2, i3, i4, i5)
2: M.var ← yi1 , yi2 , yi3 , yi4 , yi5 , z1, z2, z3, z4, a as binary
3: M.con← yij = xij − zj for all j ∈ {1, 2, 3, 4}
4: M.con← a ≥ z3
5: M.con← a ≥ z4
6: M.con← yi5 = xi5 + a + z1 + z2
7: for all i ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do
8: yi = xi

9: end for
10: return (M, y)
11: end procedure
12: procedure TriviumEval(round R)
13: Prepare empty MILP Model M
14: M.var ← s0i for i ∈ {1, 2, . . . , 128}.
15: for r = 1 to R do
16: (M,x)← TriviumCore(M, sr−1, 66, 171, 91, 92, 93)
17: (M,y)← TriviumCore(M,x, 162, 264, 175, 176, 177)
18: (M,z)← TriviumCore(M,y, 243, 69, 286, 287, 288)
19: sr = z ≫ 1
20: end for
21: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
22: M.con← sRi = 0
23: end for
24: M.con← (sr66 + sr93 + sr162 + sr177 + sr243 + sr288 + k∗

R+1) = 1
25: returnM
26: end procedure

We give the detailed MILP description of one of the registers update function TriviumCore as an
example in Fig. 2. Here for simplicity we still denote sri as the division property for the state bit sri

10



Fig. 2. An Example of TriviumCore

in round r, and introduce new binary variable zr−1i (i = 1, 2, 3, 4) for copy operation in round i, and
ai (i = 1, 2, 3) for the and operations of three registers in round r. All detailed MILP descriptions
of the three registers of Trivium are listed in Table 2,

Table 2. MILP Representations of Trivium Operations

copy and xor

sr−1
66 = sr67 + z1

sr94 = sr−1
93 + a1 + z1 + z2

sr−1
171 = sr172 + z2 a1 ≥ z3

sr−1
91 = sr92 + z3 a1 ≥ z4

sr−1
92 = sr93 + z4

sr−1
162 = sr163 + z5

sr178 = sr−1
177 + a2 + z5 + z6

sr−1
264 = sr265 + z6 a1 ≥ z7

sr−1
175 = sr176 + z7 a2 ≥ z8

sr−1
176 = sr177 + z8

sr−1
243 = sr244 + z9

sr1 = sr−1
288 + a3 + z9 + z10

sr−1
69 = sr70 + z10 a3 ≥ z11

sr−1
286 = sr287 + z11 a3 ≥ z12

sr−1
287 = sr288 + z12

sri = sr−1
i−1

i 6= 1,67,70,92,93,94,163,172,176,177,178,244,265,287,288

3.3 Specification of Kreyvium

The design of Kreyvium is motivated by the application in homomorphic friendly encryption. The
main advantage of Kreyvium is that it provides 128-bit security (instead of 80-bit) but with the
same multiplicative depth, which is essential to the homomorphic encryption.

We give a very brief description of Kreyvium and take the same notations as Trivium. Kreyvi-
um consists of 5 registers. Same with the original Trivium, three of them are NFSRs and are
concatenated to make up a 288-bit state. The remaining two are LFSRs denoted as K∗ and IV ∗ re-
spectively. This part of the state aims at making both the filtering and transition functions key- and
IV-dependent. As the same with Trivium in the key initialization, the state is updated 4∗288 = 1152
times without producing an output. After that, one bit key stream is produced by every update func-
tion.
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The update function Kreyvium is described in pseudo-code below, and depicted in Fig. 3.

(s1, s2, . . . , s93)← (K1,K2 . . . ,K93)
(s94, s95, . . . , s177)← (IV1, IV2, . . . , IV84)
(s178, s179, . . . , s288)← (IV85, . . . , IV128, 1, . . . 1, 0)
(K∗128,K

∗
127, . . .K

∗
1 )← (K1,K2 . . . ,K128)

(IV ∗128, IV
∗
127, . . . IV

∗
1 )← (IV1, IV2 . . . , IV128)

for i = 1 to 1152 +N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288 +K∗1
if i > 1152 then

output zi−1152 ← t1 + t2 + t3
end if
t1 ← t1 + s91 · s92 + s171 + IV ∗0
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
t4 ← K∗1
t5 ← IV ∗1
(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)
(K∗128,K

∗
127, . . .K

∗
0 )← (t4,K

∗
128, . . .K

∗
2 )

(IV ∗128, IV
∗
127, . . . IV

∗
1 )← (t5, . . . , IV

∗
127, . . . IV

∗
2 )

end for

zi

Fig. 3. Structure of Kreyvium
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3.4 MILP Description of Kreyvium Initialization

Kreyvium shares the same core function with Trivium and the division property propagation for
the core function is denoted as TriviumCore and is defined in Algorithm 2. Besides TriviumCore,
the LFSRs K∗ and IV ∗ are modeled as LFSR of Algorithm 3. On input the current MILP modelM
and a vector x of 128 binary MILP variables, it output the updated model M, a new 128-variable
vector y describing the division property after one round of update, and an additional variable o
describing the output of LFSR.

Algorithm 3 MILP model of division property for the K∗ and IV ∗

1: procedure LFSR(M,x)
2: (M, a, o)← copy(M, x0)
3: for all i ∈ {0, 1, . . . , 126} do
4: yi = xi+1

5: end for
6: y127 = a
7: return (M,y, o)
8: end procedure

With the definition of TriviumCore and LFSR, the MILP model of R-round Kreyvium can be
described as Algorithm 4.

This algorithm generates MILP model M as the input of Algorithm 1, and the model M can
evaluate all division trails for Kreyvium whose initialization rounds are reduced to R.

4 Lower the Complexity of Superpoly Recovery

In this section, we show how to further lower the complexity of recovery the superpoly in [TIHM17].
First, extensions to Propositions 4 are given, based on which we introduce a method to further

reduce the complexity of recovering the superpoly. We follow the same notations with [TIHM17].

Proposition 5. Let f(x,v) be a polynomial, where x ∈ Fn2 and v ∈ Fm2 denote the secret and public
variables, respectively. For a subset of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}, let CI be a set of

2|I| values where the variables {vi1 , vi2 , . . . , viI} are taking all possible combinations of values. Let
kI be an m-dimensional vector such that vkI = tI = vi1vi2 · · · vi|I| , i.e. ki = 1 if i ∈ I and ki = 0

otherwise. Assuming there is no division trail such that (ej1 ⊕ ej2 ,kI)
f−→ 1 for 1 ≤ j1 < j2 ≤ n,

then xj1xj2 is not involved in the superpoly of the cube CI .

Proof. According to Lemma 1, au = 0 for u � (ej1 ⊕ ej2 ,kI). Therefore, for any usec with the j1-
and j2-th bit 1, i.e. usec � ej1 ⊕ ej2 for 1 ≤ j1 < j2 ≤ n, the coefficient au = 0, this yields

p(x,v) =
⊕

usec�ej1
⊕ej2

,
upub�kI

au(xusecvupub⊕kI ),

which means that xj1xj2 does not appear in the superpoly p(x,v). ut

Similarly, we define a subset of indices J = {j1, j2, . . . , j|J|} ⊂ {1, 2, . . . , n}, and kj = 1 if j ∈ J
and kj = 0 otherwise. kJ is an n-dimensional vector such that xkJ = xj1xj2 · · ·xj|J| .

Corollary 1. If there is no division trail such that (kJ ,kI)
f−→ 1 for 1 ≤ j ≤ n, then the superpoly

of the cube CI contains no multiple of xkJ .
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Algorithm 4 MILP model of division property for Kreyvium

1: procedure KreyviumEval(round R)
2: Prepare empty MILP Model M
3: M.var ← vi for i ∈ {1, 2, . . . , 128}. . Declare Public Modifiable IVs
4: M.var ← xi for i ∈ {1, 2, . . . , 128}. . Declare Secret Keys
5: for i = 1 to 128 do . Initialize K∗

6: if i ≤ 93 then
7: (M, s0i ,K

0
128−i)← copy(M, xi, 2).

8: else
9: K0

128−i = xi.
10: end if
11: end for
12: for i = 1 to 128 do . Initialize IV ∗

13: (M, s093+i, IV
0
128−i)← copy(M, vi, 2).

14: end for
15: for i = 222 to 287 do . Constant 1 bits
16: M.con← s0i = 0
17: end for
18: M.con← s0288 = 0
19: for r = 1 to R do
20: (M,x)← TriviumCore(M, sr−1, 66, 171, 91, 92, 93)
21: (M, IV r, v∗)← LFSR(M, IV r−1)
22: (M, t1)← xor(M, v∗, x93)
23: x93 = t1 . Update the 93rd entry of x
24: (M,y)← TriviumCore(M,x, 162, 264, 175, 176, 177)
25: (M,z)← TriviumCore(M,y, 243, 69, 286, 287, 288)
26: (M,Kr, k∗)← LFSR(M,Kr−1)
27: (M, t3)← xor(M, k∗, y288)
28: z288 = t3 . Update the 288th entry of z
29: sr = z ≫ 1
30: end for
31: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
32: M.con← sRi = 0
33: end for
34: for all i ∈ {1, 2, . . . , 128} do
35: M.con← KR

i = 0
36: M.con← IV R

i = 0
37: end for
38: M.con← (sr66 + sr93 + sr162 + sr177 + sr243 + sr288) = 1
39: returnM
40: end procedure
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4.1 New Upper Bound of the Superpoly Recovery Complexity

We will show that Proposition 5 and Corollary 1 can be used to get more information about the
superpoly. Hence, the complexity of superpoly recovery can be reduced in some cases.

Assume the superpoly p(x,v) of cube CI contains the following secret variables

S1Y = {x1, x2, . . . , x|J|}.

Then all the possible
(|J|

2

)
quadratic terms are S2 = {x1x2, x1x3, . . . , x|J|−1x|J|}. By Proposition 5,

we can determine which quadratic terms are involved in superpoly p(x,v). Denote the set of all the
quadratic terms might be involved in p(x,v) as S2Y , and the set having all the quadratic terms
which are not involved in the superpoly as S2N . We represent them respectively as

S2Y = {xi1xi2 , xi3xi4 , . . . , xik2−1
xik2
} and S2N = {xj1xj2 , xj3xj4 , . . . , xjl2−1

xjl2 },

where S2Y ∪ S2N = S2 and |S2Y |+ |S2N | , |J2|+ |F2| = |S2| =
(|J|

2

)
.

More generally, for the superpoly of cube set CI , denote Si as the set of all the possible
(|J|
i

)
monomials of degree i ≥ 2 involved in superpoly p(x,v), and SiY as a set having all the elements exist
in the superpoly, and all the rest are included in the set SiN . Denote |SiY | = |Ji| and |SiN | = |Fi|,
then |Ji|+ |Fi| =

(|J|
i

)
where |S1Y | = |J1| = |J |.

For a fixed cube CI , with the help of Proposition 4 we can calculate the exact set S1Y . Moreover,
based on Proposition 5 we are able to calculate the exact sets S2Y by solving the corresponding
MILP models. We define d as the smallest integer such that SiY = φ for i > d. Then the time
complexity of superpoly recovery can be reduced from 2|I|+|J| to

2|I| × (1 +
∑

1≤i≤d

|SiY |) = 2|I| × (1 +
∑

1≤i≤d

|Ji|) ,

where (1 +
∑

1≤i≤d |SiY |) is the number of cube sums one needs to do by using Moebius transfor-
mation to recover the superpoly.

Note that this can improve the bound 2|I|+|J| given in [TIHM17] especially when the number
of involved secret variables in the superpoly and the degree of the superpoly d are large. The new
complexity exactly captures the fact that we choose cubes such that the superpoly is quite sparse.
Therefore the size of SiY or SiN (1 ≤ i ≤ d) eventually determines the total complexity of recovering
the superpoly.

We will apply this technique to further improve the complexity to recover the superpoly of
Trivium and Kreyvium in Sect. 5. But before that, we first introduce some properties of sets SiY
and SiN , and then based on them we start to construct sets SiY for i ≥ 2 from set S1Y , S2Y and
S2N . Therefore the calculation of complexity of recovering the superpoly actually is the computation
of set S2Y or S2N . And more important is that in this case, after we obtain S1Y and S2Y , we can
calculate the set SiY for 3 ≤ i ≤ d by a simple algorithm, and all the workload of building the MILP
models and running the solver is not necessary, especially knowing that running the solver is very
time and computation consuming, this will significantly accelerate the recovery of the superpoly.

4.2 Clique Problem

We first introduce the graph clique, and then explain how our construction of the set SiY for 3 ≤ i ≤ d
is exactly to find the maximum i-cliques of a graph representing our superpoly.

Definition 3 (Clique). [BM76] In a graph G = (V,E), where V is the set of vertices and E is the
set of edges, a subset C ⊆ V , such that each pair of vertices in C is connected by an edge is called
a clique. A i-clique is a clique of i vertices. A 2-clique is just an edge, and a 3-clique is called a
triangle.
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The proof that clique is NP-complete is due to Karp [Kar72]. In a graph G = (V,E) where n is
the cardinal of V to find a maximal k-clique by using brute-force algorithm, one can test whether
G contains a k-vertex clique, and find any such clique that it contains. This algorithm checks each
subgraph with k vertices to see whether it forms a clique. The straightforward time complexity
is O(nkk2). Thus, when k is a variable, the time complexity is exponential. There has also been
extensive research on heuristic algorithms for solving maximum clique problems which are not our
focus in this paper.

Our problem of calculating the set SiY (3 ≤ i ≤ d) is equivalent to construct a maximal i-clique
in our superpoly graph G = (S1Y , S2Y ), where vertices correspond to the involved secret key bits
(monomials) in the superpoly (i.e.S1Y ), and edges between any pairs of the vertices are the quadratic
terms involved in the superpoly (i.e.S2Y ). Now our target is to find all i-cliques for 3 ≤ i ≤ d in our
superpoly graph G, and we explain how to achieve this by a very simple algorithm.

Property 1. A monomial exists in SiY iff all its divisors of degree (i− 1) are in Si−1Y .

– example: 820-round Trivium with cube of dimension 62
we have S2Y = {x40x41, x40x42, x51x52}, then the only possible combination of 3 elements from
S2Y is x40x41∨x40x42∨x51x52 , x40x41x42x51x52, the degree of which is 5, and it cannot belong
to S3Y where all elements there should have degree 3. Thus, S3Y = φ.

– example: 591-round Trivium with cube of dimension 8
Denote set S1 = {x23, x24, x25, x66, x67} , {1̄, 2̄, 3̄, 4̄, 5̄}. Then S2Y = {1̄2̄, 1̄4̄, 2̄4̄, 3̄4̄, 4̄5̄}. Take
the union operation among any 3 elements out of S2Y , and the only element with order 3 is 1̄2̄4̄.
Then S3Y = {1̄2̄4̄}.

Based on this property we can construct SiY (i ≥ 3) from S2Y by a very simple algorithm, e.g. for the
construction of S3Y , we take the union operation of all possible combinations of three elements from
S2Y , and only keep the elements of degree 3. Similarly, we construct all SiY from SiY for 3 < i ≤ d.

To find the simplest i-clique is to find triangles in a graph. In a graph with m edges, there are
at most Θ(m3/2) triangles. The worst case for this formula occurs when G is itself a clique. Taking
594-round Trivium with cube of dimension 8 (shown in Table 3) as an example, m3/2 ≈ 3764 while
|S3Y |= 789.

Property 2. If |Si−1Y | < i, then |SiY | = 0.

– example: 833-round Trivium with cube of dimension 73
|S3Y | = 1 < 4, there S4Y = φ, and of course any SiY = φ with i ≥ 4.

Property 3. Any monomial in SiN can be divided by at least one monomial in Si−1N .

This property provides another approach to determine the maximal i-clique, by constructing its
complement SiN from Si−1N and S1Y . Take S3N for example, one can append each element in S1Y

to S2N and remove the repeated elements, then S3N is obtained as well as its complement S3Y . In
a similar way, SiN can be derived from Si−1N .

5 Applications to Trivium and Kreyvium

5.1 Application to Trivium

Now we apply our method to lower the superpoly recovery complexity in this subsection to Trivium.
We follow the same rules in [TIHM17] to choose the cube, i.e. cube indices are chosen as the following
in our experiments: the odd indices 1, 3, . . . , 2|I|−1 are chosen, and the even indices 2, 4, . . . , 2(|I|−
40) are additionally chosen. Our results are summarized in Table 3, where we list the complexities
when the complexity of superpoly recovery in [TIHM17] can be significantly improved.
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Table 3. Our Results of Trivium. The last two columns show the time complexity to recover the superpoly
by [TIHM17] and our new bound.

#Rounds
Cube |J1| |J2| Degree

|Ji|
1 +

∑d
i=1 |Ji| [TIHM17] Ours

Size (3 ≤ i ≤ d)

591 8 5 5 3 1,0 12 ≈ 23.58 213 211.58

592 8 25 68 5 77,37,6 214≈ 27.74 233 215.74

593 8 57 513 14 2359,7069,15190, 140364≈ 217.1 265 225.1

24344,29550,27264,
19040,9945,3801,

1026,185,20,

594 8 47 242 13 789,1723,2735, 16367≈ 214.0 255 222.0

3316,3141,2315,
1293,525,146,25,2

800 44 12 37 4 32,6 88 ≈ 26.46 256 250.46

805 49 15 8 3 1 25≈ 24.64 264 253.64

808 52 12 11 3 2 26≈ 24.7 264 256.7

809 53 25 146 8 399,610,272, 1803≈ 210.82 278 263.82

275,69,6

814 54 7 2 2 0 10≈ 23.32 261 257.32

816 55 19 32 4 16,2 70≈ 26.13 274 261.13

819 61 8 2 2 0 11≈ 23.46 269 264.46

820 62 8 3 2 0 12≈ 23.58 270 265.58

825 65 7 2 2 0 10≈ 23.32 2 2

829 66 10 2 2 0 13≈ 23.7 276 269.7

830 69 7 1 2 0 9≈ 23.17 2

832 72 5 5 3 1 12≈ 23.58 277 275.58

833 73† 7 6 3 1 15≈ 23.91 280 276.91

833 74‡ 1 0 1 0 2 - 275

839 78• 1 0 1 0 2 - 279

†: I = {1, 2, ..., 67, 69, 71, ..., 79}, J = {49, 58, 60, 74, 75, 76}
‡: I = {1, 2, ..., 69, 71, 73, ..., 79}, J = {60}
•: I = {1, ..., 33, 35, ..., 46, 48, ..., 80 } and IV [47] = 1, J = {61}

The best result in [TIHM17] mounts to 832-round Trivium with cube dimension |I| = 72 and
the superpoly involves |J | = 5 key bits. Therefore, the complexity to recover the superpoly is 277 in
[TIHM17]. Using our technique, we further acquire that |J2| = 5, |J3| = 1 and the degree of superpoly
is 3. So the complexity for superpoly recovery is 2|I| ×

∑
1≤i≤3 (|Ji|+ 1) = 272 × (5 + 5 + 1 + 1) =

272+3.58 = 275.58.

We for the first time find a cube of dimension 73 for 833-round Trivium, and |S1Y | = 7. By the
bound given in [TIHM17], the complexity is 280, which is infeasible. Applying our new bound, the
complexity can be reduced to 276.91. In this way, we can attack one more round than [TIHM17]. For
the same number of 833-rounds, we can even find a cube of dimension 74 (remember the indices are
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following the same rule in [TIHM17]) with only one secret key bit involved, therefore, the complexity
is 274+1 = 275.

We further construct a 78-dimensional cube (I = {1, . . . , 80}\{12, 43}) whose superpoly after 836-
rounds of initialization only involves 1 key bit with index J = {61}. So the complexity of the attack
is 279. Since there are only 2 non-cube IVs, we let IV be all 22 possible non-cube IV assignments
and run Algorithm 1. With the 22 = 4 different assignments to non-cube IVs, we know that the key
bit x61 is involved in the superpoly for IV = 0x0, 0x4000, 0x0 or IV = 0x0, 0x4002, 0x0. In other
words, the 47-th IV bit must be assigned to constant 1.

Therefore, the corresponding experimental verification shows that Assumption 1 holds for Triv-
ium in a small example. Therefore, we can expect that theoretically recovered superpolys also fulfill
Assumption 1.

5.2 Applications to Kreyvium

We show our new results of cube attack on Kreyvium in this subsection. First, we use the cube
of dimension 61 in [Liu17] for 849-rounds. We can determine that there are 23 secret variables
involved in the corresponding superpoly. So one can evaluate the complexity of superpoly recovery
as in [TIHM17], and it is bounded by 261+23 = 284. Moreover we choose a cube of dimension 85
for 870-rounds, and can find that there are only 2 secret variables appearing in the superpoly. By
sum over all possible values of the cube variables, we find there are 39 secret variables appearing in
the corresponding superpoly for 872-rounds, and again as in [TIHM17], we calculate the complexity
285+39 = 2124. The indices of the chosen cube and the involved secret variables are listed in Table
4. Note that for 888-rounds, with a cube of dimension 102, there are 36 secret variables involved in
the superpoly, therefore if we estimate the time complexity as in [TIHM17], this will be infeasible.
We will show this cube attack can be achieved with our new bound technique.

Then given the cubes for 849-round, we explore the detailed of the superpoly, and enumerate the
terms in set SiY of degree i (2 ≤ i ≤ 9). Based on this, we provide a better bound for the complexity
of superpoly recovery, which significantly reduces the complexity from 284 to 273.41.

For 872-round, with the constructed cube of dimension 85, we know there are 39 secret variables
in the corresponding superpoly. Since the degree of the superpoly is only 2, |SiY | = 0 for i ≥ 3. Thus,

our new bound for the complexity to recover the superpoly is 1+
∑2
i=1 |SiY |. As defined S2Y is the set

all quadratic terms involved in the superpoly, so |S2Y | is apparently smaller than |S2| =
(
39
2

)
= 741.

Therefore we can upper bound the time complexity by 285 × (1 + 39 +
(
39
2

)
) = 285+9.61 = 294.61.

Similarly we can calculate the complexity for 888-rounds as 2111.38. The details of the calculation of
the reduced complexities are given in Table 5.

6 Conclusions

We further investigate the sparse property of the superpoly of cube attacks against stream ciphers,
and give a better bound of the time complexity of superpoly recovery. This new bound can reduce
the complexity of superpoly recovery of Triviumespecially when the number of secret variables
involved in the superpoly and the degree of superpoly are large, and even enables us to reach more
rounds. We also analyze Kreyvium, and provide the best key recovery attack.

We will continue analyzing more rounds of Trivium and Kreyvium with different cube dimen-
sions, and try applications to more ciphers like Grain128a, ACORN, etc.
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Table 4. Summary of theoretical cube attacks on Kreyvium. The time complexity in this table shows the
time complexity to recover the superpoly.

#Rds |I| Degree Indices of involved secret variables J Time
d complexity

849 61† 9 47, 49, 51, 53, 55, 64, 66, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
89, 90, 91, 92, 93 (|J | = 23)

284

870 85‡ 1 39,98 (|J | = 2) 286.58

872 85‡ 2 5, 6, 20, 21, 22, 30, 31, 37, 39, 40, 41, 49, 53, 54, 56, 57, 58, 63, 64,
65, 66, 67, 74, 75, 76, 89, 91, 92, 93, 96, 98, 99, 100, 108, 122, 123,
124, 125, 126 (|J | = 39)

2124

888 102? 2 7, 8, 9, 17, 18, 22, 32, 33, 41, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57,
58, 68, 76, 77, 78, 79, 80, 81, 83, 84, 85, 91, 100, 114, 115, 116, 117
(|J | = 36)

-

†: I = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 32, 34, 37, 39, 41, 43, 45, 47, 49, 51, 53,
55, 58, 60, 62, 64, 66, 68, 70, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103,
105, 108, 110, 112, 114, 116, 118, 120, 123, 125, 127}

‡: I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36,
38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127}

?: I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72,
74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128}

Table 5. Our New Results of Kreyvium with Reduced Complexity

#Rounds
Cube |J1| |J2|

Degree |Ji|
1 +

∑d
i=1 |Ji|

Time
Size d (3 ≤ i ≤ d) complexity

849 61 23 158 9 555,1162,1518,1235,618,156,26 5452≈ 212.41 273.41

872 85 39 ≤
(
39
2

)
2 0 781≈ 29.61 294.61

888 102 36 ≤
(
36
2

)
2 0 667≈ 29.38 2111.38

References

ADMS09. Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In Orr Dunkelman, editor, FSE, volume 5665 of
LNCS, pages 1–22. Springer, 2009.

BM76. John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with applications,
volume 290. Macmillan London, 1976.

BS01. Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In Birgit Pfitzmann, editor,
EUROCRYPT, volume 2045 of LNCS, pages 394–405. Springer, 2001.

CCF+16. Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Maŕıa Naya-Plasencia,
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