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Abstract

We propose Bulletproofs, a new non-interactive zero-knowledge proof
protocol with very short proofs and without a trusted setup; the proof
size is only logarithmic in the witness size. Bulletproofs are especially
well suited for efficient range proofs on committed values: they enable
proving that a committed value is in a range using only 2 log2pnq ` 9
group and field elements, where n is the bit length of the range. Proof
generation and verification times are linear in n.

Bulletproofs greatly improve on the linear (in n) sized range proofs
currently used to implement Confidential Transactions (CT) in Bitcoin
and other cryptocurrencies. Moreover, Bulletproofs supports aggregation
of range proofs, so that a party can prove that m commitments lie within a
given range by providing only an additive Oplogpmqq group elements over
the length of a single proof. To aggregate proofs from multiple parties,
we enable the parties to generate a single proof without revealing their
inputs to each other via a simple multi-party computation (MPC) protocol
for constructing Bulletproofs. This MPC protocol uses either a constant
number of rounds and linear communication, or a logarithmic number of
rounds and logarithmic communication.

Bulletproofs build on the techniques of Bootle et al. (EUROCRYPT
2016). Beyond range proofs, Bulletproofs provide short zero-knowledge
proofs for general arithmetic circuits while only relying on the discrete
logarithm assumption and without requiring a trusted setup. We discuss
many applications that would benefit from Bulletproofs, primarily in the
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area of cryptocurrencies. The efficiency of Bulletproofs is particularly well
suited for the distributed and trustless nature of blockchains.

1 Introduction

Blockchain-based cryptocurrencies enable peer-to-peer electronic transfer of value
by maintaining a global distributed but synchronized ledger, the blockchain.
Any independent observer can verify both the current state of the blockchain as
well as the validity of all transactions on the ledger. In Bitcoin, this innovation
requires that all details of a transaction are public: the sender, the receiver,
and the amount transferred. In general, we separate privacy for payments into
two properties: (1) anonymity, hiding the identities of sender and receiver in
a transaction and (2) confidentiality, hiding the amount transferred. While
Bitcoin provides some weak anonymity through the unlinkability of Bitcoin ad-
dresses to real world identities, it lacks any confidentiality. This is a serious
limitation for Bitcoin and could be prohibitive for many use cases. Would em-
ployees want to receive their salaries in bitcoin if it meant that their salaries
were publicly visible?

To address the confidentiality of transaction amounts, Maxwell [Max16] in-
troduced confidential transactions (CT), in which every transaction amount
involved is hidden from public view using a commitment to the amount. This
approach seems to prevent public validation of the blockchain; an observer can
no longer check that the sum of transaction inputs is greater than the sum of
transaction outputs, and that all transaction values are positive. This can be
addressed by including a zero-knowledge proof of the validity of each confidential
transaction.

Current proposals for CT zero-knowledge proofs [PBF`] have either been
prohibitively large or required a trusted setup. Neither is desirable. While
one could use succinct zero-knowledge proofs (SNARKs) [BSCG`13], they all
require a trusted setup, which means that everyone needs to trust that the setup
was performed correctly.

Short non-interactive zero-knowledge proofs without a trusted setup, as de-
scribed in this paper, have many applications in the realm of cryptocurrencies.
In any distributed system where proofs are transmitted over a network or stored
for a long time, short proofs reduce overall cost.

1.1 Our Contributions

We present Bulletproofs, a new zero-knowledge argument of knowledge1 system,
to prove that a secret committed value lies in a given interval. Bulletproofs do
not require a trusted setup. They rely only on the discrete logarithm assumption
and are made non-interactive using the Fiat-Shamir heuristic.

1Proof systems with computational soundness like Bulletproofs are sometimes called argu-
ment systems. We will use the terms proof and argument interchangeably.
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Bulletproofs builds on the techniques of Bootle et al. [BCC`16], which yield
communication-efficient zero-knowledge proofs. We present a replacement for
their inner-product argument that reduces overall communication by a factor
of 3. We make Bulletproofs suitable for proving statements on committed val-
ues. Examples include a range proof, a verifiable shuffle, and other applications
discussed below. We note that a range proof using the protocol of [BCC`16]
would have required implementing the commitment opening algorithm as part
of the verification circuit.

Further, we give a simple and efficient multi-party computation (MPC) pro-
tocol that allows multiple parties with secret committed values to generate a
single small range proof for all their values. One version of our MPC protocol is
constant-round but with linear communication. Another variant requires only
logarithmic communication, but uses a logarithmic number of rounds. This
MPC protocol can be used to aggregate the proofs needed for a confidential
transaction constructed by multiple parties, into a single short proof.

While we focus on confidential transactions, where our work translates to
significant practical savings, we stress that the improvements are not limited
to CT. We present Bulletproofs for general NP languages. The proof size is
logarithmic in the number of multiplication gates in the arithmetic circuit for
verifying a witness. The proofs are much shorter than [BCC`16] and allow
inputs to be Pedersen commitments to elements of the witness.

Finally, we provide a complete implementation of Bulletproofs. In Section 6
we provide efficiency comparisons with the range proofs currently used for confi-
dential transactions [Max16,Poe] and with other systems. Our implementation
includes a general tool for constructing Bulletproofs for any NP language. The
tool reads in arithmetic circuits in the Pinocchio [PHGR13] format which lets
users use their toolchain. This toolchain includes a compiler from C to the cir-
cuit format. We expect this to be of great use to implementers who want to use
Bulletproofs.

1.2 Applications

We first discuss several applications for Bulletproofs along with related work
specific to these applications. Additional related work is discussed in Section 1.3.

1.2.1 Confidential Transactions and Mimblewimble

Bitcoin and other similar cryptocurrencies use a transaction-output-based sys-
tem where each transaction fully spends the outputs of one or more previously
unspent transactions. These unspent transaction outputs are called UTXOs.
Bitcoin allows a single UTXO to be spent to many distinct outputs, each as-
sociated with a different address. To spend a UTXO a user must provide a
signature, or more precisely a scriptSig, that enables the transaction SCRIPT
to evaluate to true [BMC`15]. Apart from the validity of the scriptSig, miners
verify that the transaction spends previously unspent outputs, and that the sum
of the inputs is greater than the sum of the outputs.
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Maxwell [Max16] introduced the notion of a confidential transaction, where
the input and output amounts in a transaction are hidden in a Pedersen com-
mitment [P`91]. To enable public validation, the transaction contains a zero-
knowledge proof that the sum of the committed inputs is greater than the sum
of the committed outputs, and that all the outputs are positive, namely they lie
in the interval r0, 2ns, where 2n is much smaller than the group size. All current
implementations of confidential transactions [Max16,MP15,PBF`,NM`16] use
range proofs over committed values, where the proof size is linear in n. These
range proofs are the main contributor to the size of a confidential transaction.
In current implementations, a confidential transaction with only two outputs
and 32 bits of precision is 5.5kB bytes, of which 5.3kB are allocated to the
range proof.

We show in Section 6 that Bulletproofs greatly improve on this, even for a
single range proof. The logarithmic proof size additionally enables the prover
to aggregate multiple range proofs, e.g. for multiple outputs, into a single short
proof. With Bulletproofs, m range proofs are merely Oplogpmqq additional
group elements over a single range proof. This is already useful for confidential
transactions in their current form as most Bitcoin transactions have two or more
outputs. It also presents an intriguing opportunity to aggregate multiple range
proofs from different parties into one proof, as would be needed, for example,
in a CoinJoin transaction [Max13]. To do so, we present an MPC protocol that
lets parties efficiently combine proofs without compromising confidentiality.

Confidential transaction implementations are available in side-chains [PBF`],
private blockchains [And17], and in the popular privacy-focused cryptocurrency
Monero [NM`16]. All these implementations would benefit from Bulletproofs.

At the time of writing, Bitcoin has roughly 50 million UTXOs from 22 million
transactions (see statoshi.info). Using a 52-bit representation of bitcoin that
can cover all values from 1 satoshi up to 21 million bitcoins, this results in
roughly 160GB of range proof data using the current systems. Using aggregated
Bulletproofs, the range proofs for all UTXOs would take less than 17GB, about
a factor 10 reduction in size.

Mimblewimble. Recently an improvement to confidential transactions, called
Mimblewimble [Jed16,Poe], provides further savings.

Jedusor [Jed16] realized that a Pedersen commitment to 0 can be viewed
as a public key and that for a valid confidential transaction the difference be-
tween outputs, inputs and transaction fees must be 0. A prover constructing
a confidential transaction can therefore sign the transaction with the differ-
ence of the outputs and inputs as the public key. This small change removes
the need for a scriptSig which greatly simplifies the structure of confidential
transactions. Poelstra [Poe] further refined and improved Mimblewimble and
showed that these improvements enable a greatly simplified blockchain in which
all spent transactions can be pruned and new nodes can efficiently validate the
entire blockchain without downloading any old and spent transactions. Using
aggregatable signatures, the blockchain can be compressed to a small subset
of the block-headers as well as the remaining unspent transaction outputs and
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the accompanying range proofs. Mimblewimble also allows transactions to be
aggregated before sending them to the blockchain.

A Mimblewimble blockchain only grows with the size of the UTXO set.
Using Bulletproofs, it would only grow with the number of transactions that
have unspent outputs. Overall, Bulletproofs can not only act as a drop-in
replacement for the range proofs in confidential transactions, but it can also help
make Mimblewimble a practical scheme with a blockchain that is significantly
smaller than the current Bitcoin blockchain.

1.2.2 Provisions

Dagher et al. [DBB`15] introduced the Provisions protocol which allows Bitcoin
exchanges to prove that they are solvent without revealing any additional in-
formation. The protocol crucially relies on range proofs to prevent an exchange
from inserting fake accounts with negative balances. These range proofs, which
take up over 13GB, are the main contributors to the proof sizes of almost 18GB
for a large exchange with 2 million customers. The proof size is in fact linear
in the number of customers. Since in this protocol, one party (the exchange)
has to construct many range proofs at once, the general Bulletproofs protocol
from Section 4.3 is a natural replacement for the NIZK proof used in Provisions.
With the proof size listed in Section 6, we obtain that the range proofs would
take up less than 2kB with our protocol. Additionally, the other parts of the
proof could be similarly compressed using the protocol from Section 5. The
proof would then be dominated by one commitment per customer, with size 62
MB. This is roughly 300 times smaller then the current implementation.

1.2.3 Verifiable shuffles

Consider two lists of committed values x1, . . . , xn and y1, . . . , yn. The goal is
to prove that the second list is a permutation of the first. This problem is
called a verifiable shuffle. It has many applications in voting [FS01, Nef01],
mix-nets [Cha82], and solvency proofs [DBB`15]. Neff [Nef01] gave a practical
implementation of a verifiable shuffle and later work improved on it [Gro03,
GI08a]. Currently the most efficient shuffle [BG12] has size

?
n.

Bulletproofs can be used to create a verifiable shuffle of size Oplog nq. The
two lists of commitments are given as inputs to the circuit protocol from Sec-
tion 5. The circuit can implement a shuffle by sorting the two lists and then
checking that they are equal. A sorting circuit can be implemented using
Opn ¨ logpnqq multiplications which means that the proof size will be only
Oplogpnqq. This is much smaller than previously proposed protocols. Given
the concrete efficiency of Bulletproofs, a verifiable shuffle using Bulletproofs
would be very efficient in practice.

1.2.4 NIZK Proofs for Smart Contracts

The Ethereum [Woo14] system uses highly expressive smart contracts to en-
able complex transactions. Smart contracts, like any other blockchain trans-
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action, are public and provide no inherent privacy. To bring privacy to smart
contracts, non-interactive zero-knowledge (NIZK) proofs have been proposed
as a tool to enable complex smart contracts that do not leak the user in-
puts [KMS`16, MSH17]. However, these protocols are limited as the NIZK
proof itself is not suitable for verification by a smart contract. The reason is
that communication over the blockchain with a smart contract is expensive,
and the smart contract’s own computational power is highly limited. SNARKs,
which have succinct proofs and efficient verifiers, seem like a natural choice, but
current practical SNARKs [BSCG`13] require a complex trusted setup. The
resulting common reference strings (CRS) are long, specific to each application,
and possess trapdoors. In Hawk [KMS`16], for instance, a different CRS is
needed for each smart contract, and either a trusted party is needed to generate
it, or an expensive multi-party computation is needed to distribute the trust
among a few parties. On the other hand, for small applications like boardroom
voting, one can use classical sigma protocols [MSH17], but the proof-sizes and
expensive verification costs are prohibitive for more complicated applications.

Bulletproofs improves on this by enabling small proofs which do not need a
trusted setup. The Bulletproofs verifier is still expensive, but there are multiple
ways to work around this. First, a smart contract may act optimistically and
only verify a proof if some party challenges its validity. Incentives can be used
to ensure that rational parties never create an incorrect proof nor challenge
a correct proof. This can be further improved by using an interactive referee
delegation model [CRR11], previously proposed for other blockchain applica-
tions [BGB17, TR]. In this model, the prover provides a proof along with a
succinct commitment to the verifier’s execution trace. A challenger that dis-
agrees with the computation also commits to his computation trace and the
two parties engage in an interactive binary search to find the first point of di-
vergence in the computation. The smart contract can then execute this single
computation step and punish the party which provided a faulty execution trace.
The intriguing property of this protocol is that even when a proof is challenged,
the smart contract only needs to execute a single computation step, i.e. a single
gate of the verification circuit. In combination with small Bulletproofs, this can
enable more complex but privacy preserving smart contracts. Like other appli-
cations these NIZK proofs would benefit from the MPC protocol that we present
in Section 4.5. For example, in an auction contract, where each bidder needs
to prove some properties of their bids, the protocol can be used to combine the
Bulletproofs into a single proof. Furthermore, the proof will hide which bidder
submitted which bid.

1.2.5 Short Non-Interactive Protocols for Arithmetic Circuits with-
out a Trusted Setup

Non-interactive zero-knowledge protocols for general statements are not pos-
sible without using a common reference string, which should be known by
both the prover and the verifier. Many efficient non-interactive zero-knowledge
proofs and arguments for arithmetic circuit satisfiability have been developed
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[Mic94,KP95,GS08,BSCG`13], and highly efficient protocols are known. How-
ever, aside from their performance, these protocols differ in the complexity of
their common reference strings. Some, such as those in [BSCG`13], are highly
structured, and sometimes feature a trapdoor, while some are simply chosen uni-
formly at random. Security proofs assume that the common reference string was
honestly generated. In practice, the common reference string can be generated
by a trusted third party, or using a secure multi-party computation protocol, in
which case, uniformly-random common reference strings are significantly eas-
ier to generate. This helps to alleviate concerns about embedded trapdoors,
as with the trusted setup ceremony used to generate the public parameters
for [BSCG`14].

Zero-knowledge SNARKs have been the subject of extensive research [Gro10,
BCCT12,GGPR13,BCCT13,PHGR16,BSCG`13,Gro16]. They generate constant-
sized proofs for any statement, and have extremely fast verification time. How-
ever, they have highly complex common reference strings which require lengthy
and computationally intensive protocols [BGG17] to generate distributively.
They also rely on strong unfalsifiable assumptions such as the knowledge-of-
exponent assumption.

Examples of non-interactive protocols that do not require a trusted setup
include [Mic94,BCC`16,BCG`17b,BSBC`17].

Ben-Sasson et al. present a proof system [BCG`17a] and implementation
[BSBC`17] called Scalable Computational Integrity (SCI). While SCI has a
simple setup, and relies only on collision-resistant hash functions, the system
is not zero-knowledge and still experiences worse performance than [BSCG`13,
BCC`16]. The proof sizes are roughly 42 MB large in practice. In subsequent
work Ben-Sasson presented STARKs [BSBTHR17], which are zero-knowledge
and more efficient than SCI. However even with these improvements the proof
size is still 1.8MB and constructing a proof is very costly (about 7 minutes and
130 GB of RAM for a circuit of size 216).

In later work, Bootle et al. [BCG`17b] present an argument for arithmetic
circuit satisfiability based on collision-resistant hash functions. The cost for
the prover scales linearly in the circuit size, and the verifier is slightly sub-
linear, meaning that the protocol is asymptotically more efficient than [BCC`16,
BCG`17a]. However, while sub-linear, the proof size is much larger, scaling with
the square root of the circuit size, and furthermore, the computational costs hide
large constants which prevent the argument from being practical.

1.3 Additional Related Work

Much of the research related to electronic payments that predates Bitcoin [Nak08]
focused on efficient anonymous and confidential payments [CHL05, Cha82] .
With the advent of blockchain-based cryptocurrencies, the question of privacy
and confidentiality in transactions has gained a new relevance. While the
original Bitcoin paper [Nak08] claimed that Bitcoin would provide anonymity
through pseudonymous addresses early work on Bitcoin showed that the anonymity
is limited [MPJ`13, AKR`13]. Given these limitations various methods have
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been proposed to help improve the privacy of Bitcoin transactions. Coin-
Join [Max13], proposed by Maxwell, allows users to hide information about
the amounts of transactions by merging two or more transactions. This ensures
that among the participants who join their transactions, it is impossible to tell
which transaction inputs correspond to which transaction outputs. However,
users do require some way of searching for other users, and furthermore, should
be able to do so without relying on a trusted third party. CoinShuffle [RMSK14]
tried to fulfill this requirement by taking developing the ideas of CoinJoin and
proposing a new Bitcoin mixing protocol which is completely decentralized.

Monero [Mon] is a cryptocurrency which employs cryptographic techniques
to achieve strong privacy guarantees. These include stealth addresses, ring-
signatures [vS13], and ring confidential transactions [NM`16]. Range proofs
are proofs that a secret value, which has been encrypted or committed to, lies
in a certain interval. Range proofs do not leak any information about the
secret value, other than the fact that they lie in the interval. Lipmaa [Lip03]
presents a range proof which uses integer commitments, and Lagrange’s four-
square theorem which states that every positive integer y can be expressed as a
sum of four squares. Groth [Gro05] notes that the argument can be optimized
by considering 4y ` 1, since integers of this form only require three squares.
The arguments require only a constant number of commitments. However, each
commitment is large, as the security of the argument relies on the Strong RSA
assumption. Additionally, a trusted setup is required to generate the RSA
modulus or a prohibitively large modulus needs to be used [San99]. Camenisch
et al. [CCS08] use a different approach. The verifier provides signatures on
a small set of digits. The prover commits to the digits of the secret value,
and then proves in zero-knowledge that the value matches the digits, and that
each commitment corresponds to one of the signatures. They show that their
scheme can be instantiated securely using both RSA accumulators [BdM93] and
the weak Boneh-Boyen signature scheme [BB04]. However, these range proofs
require a trusted setup. Approaches based on the n-ary digits of the secret
value are limited to proving that the secret value is in an interval of the form
“

0, nk ´ 1
‰

. One can produce range proofs for more general intervals by using
homomorphic commitments to translate intervals, and by using a combination
of two different range proofs to conduct range proofs for intervals of different
widths. However, [CLS10] presented an alternative digital decomposition which
enables an interval of general width to be handled using a single range proof.

2 Preliminaries

Before we present Bulletproofs, we first review some of the underlying tools.

2.1 Commitments

Definition 1 (Commitment). A non-interactive commitment scheme consists
of a pair of probabilistic polynomial time algorithms pSetup,Comq. The setup
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algorithm pp Ð Setupp1λq generates public parameters pp for the scheme, for
security parameter λ. The commitment algorithm Compp defines a function
Mpp ˆ Rpp Ñ Cpp for message space Mpp, randomness space Rpp and commit-
ment space Cpp determined by pp. For a message x P Mpp, the algorithm draws

r
$
ÐÝ Rpp uniformly at random, and computes commitment com “ Compppx; rq.

Definition 2 (Homomorphic Commitments). A homomorphic commitment scheme
is a non-interactive commitment scheme such that Mpp,Rpp and Cpp are all
abelian groups, and for all x1, x2 P Mpp, r1, r2 P Rpp, we have

Compx1; r1q ` Compx2; r2q “ Compx1 ` x2; r1 ` r2q

Definition 3 (Hiding Commitment). A commitment scheme is said to be hiding
if for all PPT adversaries AHiding,1λ there exists a negligible function µpλq such
that.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P

»

—

—

—

—

–

b “ b1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð Setupp1λq;
px0, x1q P M

2
pp Ð AHiding,1λpppq,

b
$
ÐÝ t0, 1u, r

$
ÐÝ Rpp,

com “ Compxb; rq,
b1 Ð AHiding,1λppp, comq

fi

ffi

ffi

ffi

ffi

fl

´
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď µpλq

where the probability is over b, r,Setup and AHiding,1λ . If µpλq “ 0 then we say
the scheme is perfectly hiding.

Definition 4 (Binding Commitment). A commitment scheme is said to be
binding if for all PPT adversaries AHiding,1λ there exists a negligible function µ
such that.

P

„

Compx0; r0q
“ Compx1; r1q

ˇ

ˇ

ˇ

ˇ

pp Ð Setupp1λq,
x, x1, r, r1 Ð ABinding,1λpppq



ď µpλq

where the probability is over Setup and AHiding,1λ . If µpλq “ 0 then we say the
scheme is perfectly binding.

We will drop the security parameter λ from the notation when it is implicit.
In particular, note that the order p of the groups used is implicitly dependent
on 1λ.

Definition 5 (Pedersen Commitment). Mpp,Rpp “ Zp, Cpp “ G of order p.

Setup : g, h
$
ÐÝ G

Compx; rq “ pgxhrq

Definition 6 (Pedersen Vector Commitment). Mpp “ Znp , Rpp “ Zp, Cpp “ Gn
with G of order p

Setup : g “ pg1, . . . , gnq, h
$
ÐÝ G

Compx; rq “ hrgx “ hr
ś

i g
xi
i

The Pedersen vector commitment is perfectly hiding and computationally
binding under the discrete logarithm assumption.
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2.2 Zero-Knowledge Arguments of Knowledge

In this paper the common reference string will always be a public key ck for the
Pedersen commitment scheme.

We will consider arguments consisting of three interactive algorithms pK,P,Vq,
all running in probabilistic polynomial time. These are the common reference
string generator K, the prover P, and the verifier V. On input 1λ, algorithm K
produces a common reference string σ. The transcript produced by P and V
when interacting on inputs s and t is denoted by tr Ð xPpsq,Vptqy. We write
xPpsq,Vptqy “ b depending on whether the verifier rejects, b “ 0, or accepts,
b “ 1.

Let R Ă t0, 1u˚ ˆ t0, 1u˚ ˆ t0, 1u˚ be a polynomial-time-decidable ternary
relation. Given σ, we call w a witness for a statement u if pσ, u, wq P R, and
define the CRS-dependent language

Lσ “ tx | Dw : pσ, x, wq P Ru

as the set of statements x that have a witness w in the relation R.

Definition 7 (Argument of Knowledge). The triple pK,P,Vq is called an ar-
gument of knowledge for relation R if it satisfies the following definitions.

Definition 8 (Perfect completeness). pP,Vq has perfect completeness if for all
non-uniform polynomial time adversaries A

P

„

pσ, u, wq R R or
xPpσ, u, wq,Vpσ, uqy “ 1

ˇ

ˇ

ˇ

ˇ

σ Ð Kp1λq
pu,wq Ð Apσq



“ 1

Definition 9 (Computational Witness-Extended Emulation). pP,Vq has com-
putational witness-extended emulation if for all deterministic polynomial time
P˚ there exists an expected polynomial time emulator E such that for all inter-
active adversaries A

P

„

Aptrq “ 1

ˇ

ˇ

ˇ

ˇ

σ Ð K, pu, sq Ð Apσq,
tr Ð xP˚pσ, u, sq,Vpσ, uqy



« P

»

–

Aptrq “ 1
^ptr is accepting
ùñ pσ, u, wq P Rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σ Ð K, pu, sq Ð Apσq,
ptr, wq Ð EOpσ, uq

fi

fl

where the oracle is given by O “ xP˚pσ, u, sq,Vpσ, uqy, and permits rewinding
to a specific point and resuming with fresh randomness for the verifier from this
point onwards. We can also define computational witness-extended emulation
by restricting to non-uniform polynomial time adversaries A.

We use witness-extended emulation to define knowledge-soundness as used
for example in [BCC`16] and defined in [GI08b,Lin03]. Informally, whenever an
adversary produces an argument which satisfies the verifier with some probabil-
ity, then there exists an emulator producing an identically distributed argument
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with the same probability, but also a witness. The value s can be considered to
be the internal state of P˚, including randomness. The emulator is permitted to
rewind the interaction between the prover and verifier to any move, and resume
with the same internal state for the prover, but with fresh randomness for the
verifier. Whenever P˚ makes a convincing argument when in state s, E can
extract a witness, and therefore, we have an argument of knowledge of w such
that pσ, u, wq P R.

Definition 10 (Public Coin). An argument pP,Vq is called public coin if all
messages sent from the verifier to the prover are chosen uniformly at random
and independently of the prover’s messages, i.e., the challenges correspond to
the verifier’s randomness ρ.

An argument is zero knowledge if it does not leak information about w apart
from what can be deduced from the fact that pσ, x, wq P R. We will present
arguments that have special honest-verifier zero-knowledge. This means that
given the verifier’s challenge values, it is possible to efficiently simulate the
entire argument without knowing the witness.

Definition 11 (Perfect Special Honest-Verifier Zero-Knowledge). A public coin
argument pP,Vq is a perfect special honest verifier zero knowledge (SHVZK)
argument for R if there exists a probabilistic polynomial time simulator S such
that for all interactive non-uniform polynomial time adversaries A

Pr

„

pσ, u, wq P R
and Aptrq “ 1

ˇ

ˇ

ˇ

ˇ

σ Ð Kp1λq, pu,w, ρq Ð Apσq,
tr Ð xPpσ, u, wq,Vpσ, u; ρqy



“ Pr

„

pσ, u, wq P R
and Aptrq “ 1

ˇ

ˇ

ˇ

ˇ

σ Ð Kp1λq, pu,w, ρq Ð Apσq,
tr Ð Spu, ρq



where ρ is the public coin randomness used by the verifier.

2.2.1 A General Forking Lemma.

We briefly describe the forking lemma of [BCC`16].
Suppose that we have a p2µ ` 1q-move public-coin argument with µ chal-

lenges, x1, . . . , xµ in sequence. Let ni ě 1 for 1 ď i ď µ. Consider
śµ
i“1 ni

accepting transcripts with challenges in the following tree format. The tree has
depth µ and

śµ
i“1 ni leaves. The root of the tree is labeled with the statement.

Each node of depth i ă µ has exactly ni children, each labeled with a distinct
value of the ith challenge xi.

This can be referred to as an pn1, . . . , nµq-tree of accepting transcripts. Given
a suitable tree of accepting transcripts, one can compute a valid witness for
our inner-product argument, range proof, and argument for arithmetic circuit
satisfiability. This is a natural generalization of special-soundness for Sigma-
protocols, where µ “ 1 and n “ 2. Combined with Theorem 1, this shows that
the protocols have witness-extended emulation, and hence, the prover cannot
produce an accepting transcript unless they know a witness. For simplicity in
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the following lemma, we assume that the challenges are chosen uniformly from
Zp where |p| “ λ, but any sufficiently large challenge space would suffice.

Theorem 1 (Forking Lemma, [BCC`16]). Let pK,P,Vq be a p2µ ` 1q-move,
public coin interactive protocol. Let χ be a witness extraction algorithm that
always succeeds in extracting a witness from an pn1, . . . , nµq-tree of accepting
transcripts in probabilistic polynomial time. Assume that

śµ
i“1 ni is bounded

above by a polynomial in the security parameter λ. Then pK,P,Vq has witness-
extended emulation.

We now define range proofs, which are proofs that the prover knows an
opening to a commitment, such that the committed value is in a certain range.
Range proofs can, for instance, be used to show that an integer commitment is
to a positive number or that two homomorphic commitments to elements in a
field of prime order will not overflow modulo the prime when they are added
together.

Definition 12 (Zero-Knowledge Range Proof). Given a commitment scheme
pSetup,Comq over a message space Mpp which is a set with a total order-
ing, a Zero-Knowledge Range Proof is a protocol for the following relation:
tp1λ,pp, com P Cpp, l, r P Mpp; pp “ Setupp1λq ^ com “ Compx; rq ^ x ě
l ^ x ď ru

2.3 Notation

Let G denote a cyclic group of prime order p, and let Zp denote the ring of
integers modulo p. Let Gn and Znp be vector spaces of dimension n over G
and Zp respectively. Let Z‹p denote Zpzt0u. Generators of G are denoted by
g, h, v, u P G. Group elements which represent commitments are capitalized
and blinding factors are denoted by Greek letters, i.e. C “ gahα P G is a
Pedersen commitment to a. If not otherwise clear from context x, y, z P Z‹p are
uniformly distributed challenges. Throughout the paper, we will also be using
vector notations defined as follows. Bold font denotes vectors, i.e. a P Fn is
a vector with elements a1, . . . , an P F. Capitalized bold font denotes matrices,
i.e. A P Fnˆm is a matrix with n rows and m columns. Such that ai,j is the
element of A in the ith row and jth column. For a scalar c P Zp and a vector
a P Znp , we denote by b “ c ¨ a P Znp the vector where bi “ c ¨ ai. Furthermore,
let xa,by “

řn
i“1 ai ¨ bi denote the inner product between two vectors a,b P Fn,

and a˝b “ pa1 ¨ b1, . . . , an ¨ bnq P Fn the Hadamard product or entry wise multi-
plication of two vectors. The matrix product between a matrix A P Znˆmp and
a vector b P Zmp is denoted as A ¨b “ c P Znp with ci “

řm
j“1 ai,j ¨ bj P Zp. Note

that the product is not commutative, i.e. for c P Znp and d P Zmp : c¨A “ d P Zmp
such that dj “

řn
i“1 ci ¨ ai,j P Zp.

Further we extend the vector notation to Pedersen vector commitments. Specifi-
cally let g “ pg1, . . . , gnq P Gn be a vector of generators then C “ ga “

śn
i“1 g

ai
i

is a commitment to vector a P Znp . Given such a commitment C and a vector
b P Znp with non-zero entries, it is possible to view C as a new commitment to
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a˝b. This is done by defining g1i “ g
b´1
i
i such that C “

śn
i“1 g

1
i
ai¨bi . The binding

property of this new commitment holds if the old commitment was binding.
Let a||b denote the concatenation of two vectors, i.e. for a P Znp and b P Zmp
c “ a||b P Zn`mp . We also define subsets of vectors using a pythonic no-

tation, i.e. ar:ks “ pa1, . . . , akq P Fk or ark:s “ pak`1, . . . , anq P Fn´k. We
use kn to denote the vector containing the first n powers of k P Z‹p, i.e.
kn “ p1, k, k2, . . . , kn´1q P Z‹pn or 2n “ p1, 2, 4, . . . , 2n´1q. Equivalently k´n “

pk´1q
n
“ p1, k´1, . . . , k´n`1q.

We define zero knowledge proofs for relations using the following notation
tpPublic Input; Witnessq : Relationu

3 Improved Inner-Product Argument

Bootle et al. [BCC`16] introduced an efficient inner-product argument and show
how it can be leveraged to construct zero-knowledge proofs for arithmetic circuit
satisfiability with low communication complexity. The argument is an argument
of knowledge of openings to two Pedersen vector commitments satisfying an
inner product relation. We demonstrate how the communication complexity
of the argument can be further reduced from 6 log2pnq in [BCC`16] to only
2 log2pnq where n is the size of the two vectors. To achieve this improvement,
we modify the relation that is proved. We then explain how this protocol can
be used to construct an efficient range proof and a proof system for arbitrary
arithmetic circuits in Sections 4 and 5.

The protocol takes as input a Pedersen vector commitment (see Definition
6) to the two vectors a and b as well as c and proves that c “ xa,by. The
logarithmic complexity is achieved by halving the size of the vector base for
the commitment in every iteration. Consider the following observation: For
independent generators g1, g2, P “ ga1g

b
2 is a binding commitment to a, b. If a

verifier, using a random challenge x, could construct P 1 “ g1
a¨x`b¨x´1

from P
then P 1 would still be a commitment to a, b but now the prover can demonstrate
knowledge of a, b by producing a ¨x` b ¨x´1 which is half the size in Zp. So how

can a verifier produce P 1 from P? Let us first set g1 “ gx
´1

1 gx2 then we get that

P 1 “ g1
a¨x`b¨x´1

“ ga`b¨x
´2

1 gb`a¨x
2

2 “ P ¨ pgb1q
x´2

pga2 q
x2

. So, if the prover along

with P also sends R “ gb1 and L “ ga2 then we get P 1 “ Lx
2

¨P ¨Rx
´2

. Interest-
ingly the technique works if P is a commitment to a much larger vector but the
commitments L,R and P are always just a single group element. Additionally,
we show in Protocol 1 that this can also be done for two vectors in parallel such
that the inner product of the two vectors does only changes by a correction
factor which the verifier again can compute himself from the challenge.
More formally, the input to the inner product argument are independent genera-
tors g,h P Gn a scalar c P Zp and the commitment P such that P “ gahb. The
argument demonstrates that xa,by “ c given pairwise hardness of computing
discrete logarithm relations between each pair of two distinct group elements
from g,h. We assume w.l.o.g. that n is a power of 2, since this can always be
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achieved by padding g,h,a, and b. Protocol 2 is, therefore, an efficient proof
system for the following relation.

tpg,h P Gn, u, P P G, c P Zp; a,b P Znp q :
P “ gahb ^ c “ xa,byu

(1)

The protocol requires the communication of 2 ¨ rlog2pnqs elements in G as well
as 2 elements in Zp. The prover’s work is dominated by 4 ¨ n group exponen-
tiations. The verifier’s work by 2 ¨ n exponentiations. For more details on our
implementation see Section 6. We split the protocol into two parts. First we
show a proof system for the following relation in Protocol 1:

tpg,h P Gn, u, P P G; a,b P Znp q : P “ gahbuxa,byu (2)

Then we show that we can use our proof system for Relation (2) to build a new
proof system for Relation (1) using Protocol 2.

Theorem 2 (Inner-Product Argument). The argument presented in Protocol
1 and 2 has perfect completeness and statistical witness-extended-emulation for
either extracting a non-trivial discrete logarithm relation or a valid witness.

The proof for Theorem 2 is in Appendix A.

4 Range Proof Protocol with Logarithmic Size

We now present a novel protocol for conducting short and aggregatable range
proofs. The protocol makes uses of an improved version of the inner product
argument from Protocol 2. First, in Section 4.1, we describe how to construct
a range proof that requires the verifier to check an inner product between two
vectors. Then, in Section 4.2, we show that this check can be replaced with
an efficient inner-product argument. In Section 4.3, we show how to efficiently
prove knowledge of m numbers that are all within a given range.
In Section 4.4, we discuss how interactive public coin protocols can be made
non-interactive by using the Fiat-Shamir heuristic, in the random oracle model.
In Section 4.5 we present an efficient MPC protocol that allows multiple parties
to construct a single aggregate range proof. Finally, in Section 4.6, we discuss
an extension that enables a switch to quantum-secure range proofs in the future.

4.1 Inner-Product Range Proof

We present a protocol which uses the improved inner-product argument to con-
struct a range proof. The proof convinces the verifier that a commitment V
contains a number v that is in a certain range, without revealing v. Bootle et
al. [BCC`16] presents a proof system for arbitrary arithmetic circuits, and in
Section 5, we demonstrate that our improvements to the inner product argu-
ment also transfer to this proof system. It is of course possible to prove that
a commitment is in a given range using an arithmetic circuit and asymptoti-
cally [BCC`16] could be used to construct logarithmically (in the length of v)
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Input: pg,h P Gn, u, P P G; a,b P Znp q (3)

PIP’s input: pg,h, u, P,a,bq (4)

VIP’s input: pg,h, u, P q (5)

Output:tVIP accepts or VIP rejectsu (6)

if n “ 1 : (7)

PIP Ñ VIP : a, b (8)

c “ a ¨ b (9)

VIP checks if P “ gahbuc : (10)

if yes, VIP accepts (11)

otherwise, VIP rejects (12)

else: pn ą 1q (13)

PIP computes: (14)

n1 “
n

2
(15)

cL “ xar:n1s,brn1:sy P Zp (16)

cR “ xarn1:s,br:n1sy P Zp (17)

L “ g
ar:n1s
rn1:s h

brn1:s
r:n1s u

cL (18)

R “ g
arn1:s
r:n1s h

br:n1s
rn1:s u

cR (19)

PIP Ñ VIP : L,R (20)

VIP : x
$
ÐÝ Z‹p (21)

VIP Ñ PIP : x (22)

PIP and VIP compute: (23)

g1 “ gx
´1

r:n1s ˝ gxrn1:s (24)

h1 “ hxr:n1s ˝ hx
´1

rn1:s (25)

P 1 “ Lx
2

PRx
´2

(26)

PIP computes: (27)

a1 “ ar:n1s ¨ x` arn1:s ¨ x
´1 P Zn

1

p (28)

b1 “ br:n1s ¨ x
´1 ` brn1:s ¨ x P Zn

1

p (29)

recursively run Protocol 1 on input (30)

pg1,h1, u, P 1; a1,b1q (31)

Protocol 1: Improved Inner-Product Argument
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VIP : x
$
ÐÝ Z‹p (32)

VIP Ñ PIP : x (33)

P 1 “ P ¨ ux¨c (34)

Run Protocol 1 on Input pg,h, ux, P 1; a,bq (35)

Protocol 2: Proof system for Relation (1) using Protocol 1.

sized range proofs.
However, the circuit would need to implement the commitment function, e.g. a
multi-exponentiation for Pedersen commitments, leading to a large and complex
circuit.
We, therefore, demonstrate that we can construct a range proof more directly.
The range proof takes advantage of the fact that if V is a Pedersen commit-
ment, then it is an element in the same group that is used to perform the inner
product argument. We extend this idea in Section 5 to show that our circuit
can take an arbitrary number of commitments as input.
The proof system uses the homomorphic property of Vector Pedersen Com-
mitments to construct commitments to two polynomials lpXq and rpXq in
Znp rXs, i.e. the coefficients of lpXq and rpXq are vectors in Znp . Using these
vector-polynomial commitments, the prover and verifier engage in an inner
product argument to verifiably compute the inner product of lpXq and rpXq.
These polynomials are carefully constructed such that the zero-coefficient of
xlpXq, rpXqy P ZprXs has a special form if and only if v is in the range. This
can be viewed as encoding the range proof circuit in the zero-coefficient of
xlpxq, rpxqy. For simplicity, we describe the product as an interactive protocol
where all the verifiers messages are random elements in Zp. As discussed in
Section 4.4, this protocol can be turned into a non-interactive range proof using
the Fiat-Shamir heuristic. In Section 4.2 we show how to use the inner product
argument to turn the range proof into a highly efficient proof whose size only
grows logarithmically in the bits of the range proven.
Formally, let v be a number in r0, 2n ´ 1s with n “ Opλq, and V be a commit-
ment to v using randomness γ. Let a “ pa1, . . . , anq be the vector containing
the bits of v, so that xa,2ny “ v. The prover P commits to a as well as blind-
ing vectors sL, sR using constant sized vector commitments. P then constructs
the polynomial tpXq P ZprXs as a function of a, sL, sR whose zero coefficient is
independent of a if and only if a indeed contains only bits. tpXq is exactly the
inner product of lpXq, rpXq P Znp rXs. lpXq and rpXq are such that the Verifier
V can himself construct a commitment to them.
Concretely the proof system proves the following relation which is equivalent to
a range proof relation by Definition 12 using a Pedersen commitment scheme
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and range r0, 2n ´ 1s:

tpV, g, h P G,g,h P Gn; v, γ P Zpq :
V “ hγgv ^ v P r0, 2n ´ 1su

To prove the statement, P and V engage in the following zero knowledge pro-
tocol.

aL P t0, 1u
n s.t. xaL,2

ny “ v (36)

aR “ aL ´ 1n P Znp (37)

α
$
ÐÝ Zp (38)

A “ hαgaLhaR P G (39)

sL, sR
$
ÐÝ Znp (40)

ρ
$
ÐÝ Zp (41)

S “ hρgsLhsR P G (42)

P Ñ V : A,S (43)

V : y, z
$
ÐÝ Z‹p (44)

V Ñ P : y, z (45)

The prover now constructs the two degree 1 polynomials lpXq and rpXq in
Znp rXs and computes

tpXq “ xlpXq, rpXqy P ZprXs

V can construct commitments to lpXq, rpXq from V,A, and S, as well as y and
z.

lpXq “ aL ´ z ¨ 1
n ` sL ¨X P ZprXs

rpXq “ yn ˝ paR ` z ¨ 1
n ` sR ¨Xq ` z

2 ¨ 2n P ZprXs

tpXq “ xlpXq, rpXqy “
2
ÿ

i“0

ti ¨X
i P ZprXs

t0 “ xaL,aR ˝ yny ` z ¨ xaL ´ aR,y
ny

` z2 ¨ x2n,aLy ` kpy, zq P Zp
kpy, zq “ ´z2 ¨ x1n,yny ´ z3 ¨ x1n,2ny P Zp

Note that if
aL “ aR ´ 1n ^ aL ˝ aR “ 0n ^ xaL,2

ny “ v (46)

then

t0 “ z ¨ x1n,yny ` z2 ¨ xaL,2
ny ` kpy, zq

“ z ¨ x1n,yny ` z2 ¨ v ` kpy, zq
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i.e. t0 is a function of y, z and v. Furthermore, a commitment to t0 can
be constructed from y, z, and a homomorphic commitment to v. The proof
of Theorem 1 shows if t0 has this form, then (46) must hold. The prover
therefore commits to t1, t2 using Pedersen commitments, and P and V engage
in a polynomial identity testing protocol to show that tpXq “ xlpXq, rpXqy.

τ1, τ2
$
ÐÝ Zp (47)

Ti “ gtihτi i “ t1, 2u P G (48)

P Ñ V : T1, T2 (49)

V : x
$
ÐÝ Z‹p (50)

V Ñ P : x (51)

τx “ τ1 ¨ x` τ2 ¨ x
2 ` z2 ¨ γ P Zp (52)

µ “ α` ρ ¨ x P Zp (53)

t “ xl, ry P Zp (54)

l “ lpxq “ aL ´ z ¨ 1
n ` sL ¨ x P Znp (55)

r “ rpxq “ yn ˝ paR ` z ¨ 1
n ` sR ¨ xq (56)

` z2 ¨ 2n P Znp (57)

P Ñ V : τx, µ, t, l, r (58)

The verifier checks that l and r are in fact lpxq and rpxq and checks that tpxq “
xl, ry:

h1i “ hy
´i`1

i @i P r1, ns P G (59)

t
?
“ xl, ry P Zp (60)

gthτx
?
“ gkpy,zq`z¨x1

n,yny ¨ V z
2

¨ T x1 ¨ T
x2

2 (61)

P “ ASx ¨ g´z ¨ h1
z¨yn`z2¨2n

P G (62)

P
?
“ hµglh1

r
(63)

Corollary 1 (Range Proof). The range proof presented in Section 4.1 has per-
fect completeness, perfect honest verifier zero-knowledge and computational spe-
cial soundness.

Proof. The range proof is a special case of the aggregated range proof from
section 4.3 with m “ 1. This is therefore a direct corollary of Theorem 3.

4.2 Logarithmic Range Proof

Finally, we can describe the efficient range proof that uses the improved inner
product argument. In the range proof protocol from Section 4.1, P transmits
l and r, which are already linear in n. We can omit this transfer by using the
inner-product argument from Section 3. Note that verifying both (63) and (60)
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is exactly equivalent to verifying that the witness l, r satisfies the inner product
relation (1) on public input pg,h1, g, P ¨ h´µ, tq. We can therefore replace (58)
with a transfer of τx, µ, t and an execution of an inner product argument. Instead
of transmitting l and r, which has a communication cost of 2 ¨ n elements, the
inner-product argument requires transmission of just 2 ¨ rlog2pnqs` 2 elements.
In total the prover sends 2 ¨ rlog2pnqs` 4 group elements and 5 elements in Zp.

4.3 Aggregating Logarithmic Proofs

In many of the range proof applications described in Section 1.2, a single prover
needs to perform multiple range proofs at the same time.
For example, a confidential transaction often contains multiple outputs, and in
fact, most transactions require a so-called change output to send any unspent
funds back to the sender. In Provisions [DBB`15] the proof of solvency requires
the exchange to conduct a range proof for every single account. Given the
logarithmic size of the range proof presented in Section 4.2, there is some hope
that we can perform a proof for m values which is more efficient than conducting
m individual range proofs. In this section, we show that this can be achieved
with a slight modification to the proof system from Section 4.1.
Concretely, we present a proof system for the following relation:

tpg, h P G,g,h P Gm¨n,V P Gm; v,γ P Zmp q :

Vj “ hγj g
vj ^ vj P r0, 2

n ´ 1s@j P r1,msu (64)

The prover is very similar to the prover for a simple range proof with n ¨m bits,
with the following slight modifications.
In line (36), the prover should compute aL P Zn¨mp such that xaL,rpj´1q¨m:j¨ms,2

ny “

vj for all j in r1,ms, i.e. aL is the concatenation of all of the bits for each vj .
We adjust rpXq accordingly so that

rpXq “ yn¨m ˝ paR ` z ¨ 1
n¨m ` sR ¨Xq

`
řm
j“1 z

1`j ¨ 0pj´1q¨n||2n||0pm´jq¨n
(65)

In the computation of τx, we need to adjust for the randomness of each com-
mitment Vj , so that τx “ τ1 ¨ x ` τ2 ¨ x

2 `
řm
j“1 z

1`j ¨ γj . Further, kpy, zq is
updated to incorporate more cross terms.

kpy, zq “ ´z2 ¨ x1n¨m,yn¨my ´
m
ÿ

j“1

zj`2 ¨ x1n,2ny

The verification check (61) needs to be updated to include all the Vj commit-
ments.

gthτx
?
“ gkpy,zq`z¨x1

n¨m,yn¨my ¨Vz2¨zm ¨ T x1 ¨ T
x2

2

Finally, we change the definition of P (62) such that it is a commitment to the
new r.

P “ ASx ¨ g´z ¨ h1
z¨yn¨m

m
ź

j“1

h1
zj`1

¨2n

rpj´1q¨m:j¨ms
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The aggregated range proof which makes use of the inner product argument uses
2 ¨rlog2pn ¨mqs`4 group elements and 5 elements in Zp. Note that the proof size
only grows by an additive term of 2 ¨ log2pmq when conducting multiple range
proofs as opposed to a multiplicative factor of m when creating m independent
range proofs.

Theorem 3. The aggregate range proof presented in Section 4.3 has perfect
completeness, perfect honest verifier zero-knowledge and computational special
soundness.

The proof for Theorem 3 is presented in Appendix B. It is analogous to the
proof of Theorem 4 which is described in greater detail in Appendix C.

4.4 Non-Interactive Proof through Fiat-Shamir

For the purpose of a simpler analysis, the proof was presented as an interactive
protocol with a logarithmic number of rounds. The verifier is a public coin
verifier, as all the honest verifier’s messages are simply random elements from
Z‹p. It is therefore possible to turn the protocol into a non-interactive protocol
that is secure and full zero-knowledge in the random oracle model using the
Fiat-Shamir heuristic [BR93]. All random challenges are replaced by hashes of
the transcript up to that point. For instance y “ HpA,Sq and z “ HpA,S, yq
To avoid a trusted setup we can use such a hash function to generate g,h, g, h,
i.e. the public parameters from a common random string. The hash functions
needs to map from t0, 1u˚ to Gz12. This also makes it possible to provide a
random access into the public parameters.

4.5 A Simple MPC Protocol for Bulletproofs

In several of the applications described in Section 1.2, the prover could poten-
tially consist of multiple parties who each want to do a single range proof. For
instance, multiple parties may want to create a single joined confidential trans-
action, where each party knows some of the inputs and outputs and needs to
create range proofs for their known outputs. The joint transaction would not
only be smaller than the sum of multiple transactions. It would also hide which
inputs correspond to which outputs and provide some level of anonymity. These
kinds of transactions are called CoinJoin transactions [Max13]. In Provisions,
an exchange may distribute the private keys to multiple servers and split the
customer database into separate chunks, but it still needs to produce a single
short proof of solvency. Can these parties generate one Bulletproof without
sharing the entire witness with each other? The parties could certainly use
generic multi-party computation techniques to generate a single proof, but this
might be too expensive and incur significant communication costs. This moti-
vates the search for a simple MPC protocol specifically designed for Bulletproofs
which requires little modification to the prover and is still efficient.

2See [BLS01] for a concrete construction of hash function into an elliptic curve
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Note that for aggregate range proofs, the inputs of one range proof do not
affect the output of another range proof. Given the composable structure of
Bulletproofs, it turns out that m parties each having a Pedersen commitment
pVkq

m
k“1 can generate a single Bulletproof that each Vk commits to a number in

some range fixed range. The protocol either uses a constant number of rounds
but communication that is linear in both m and the binary encoding of the
range, or it uses a logarithmic number of rounds and communication that is
only linear in m. We assume for simplicity that m is a power of 2, but the
protocol could be easily adapted for other m. We use the same notation as in
the aggregate range proof protocol, but use k as an index to denote the kth
party’s message. That is Apkq is generated just like A but using only the inputs
of party k. The MPC protocol works as follows, we assign a set of distinct
generators pgpkq,hpkqqmk“1 to each party and define g as the interleaved con-

catenation of all ~gpkq such that gi “ g
ppi´1q mod m`1q

r im s
. Define ~h and ~hpkq in

an analogous way. We first describe the protocol with linear communication.
In each of the 3 rounds of the protocol, which correspond to the rounds of
the range proof protocol, each party simply generates its part of the proof, i.e.

the Apkq, Spkq;T
pkq
1 , T

pkq
2 ; τ

pkq
x , µpkq, tpkq, lpkq, rpkq using its inputs and generators.

These shares are then sent to a dealer (which could be one of the parties), who
simply adds them homomorphically to generate the respective proof component,

e.g. A “
śl
k“1A

pkq and τx “
řl
k“1 τ

pkq
x . In each round, the dealer generates the

challenges using the Fiat-Shamir heuristic and the combined proof components
and sends them to each party. Finally, each party sends lpkq, rpkq to the dealer
who computes l, r as the interleaved concatenation of the shares. The dealer
runs the inner product argument and generates the final proof. The protocol
is complete as each proof component is simply the (homomorphic) sum of each
parties’ proof components, and the challenges are generated as in the original
protocol. It is also secure against honest but curious adversaries as each share
constitutes part of a separate zero-knowledge proof. The communication can
be reduced by running a second MPC protocol for the inner product argument.
The generators were selected in such a way that up to the last log2plq rounds
each parties’ witnesses are independent and the overall witness is simply the
interleaved concatenation of the parties’ witnesses. Therefore, parties simply
compute Lpkq, Rpkq in each round and a dealer computes L,R as the homomor-
phic sum of the shares. The dealer then again generates the challenge and sends
it to each party. In the final round the parties send their witness to the dealer
who finishes the protocol and constructs the final proof.
A similar protocol can be used for arithmetic circuits if the circuit is decom-
posable into separate independent circuits. Whether an efficient custom MPC
protocol can be constructed for more complicated circuits remains an open prob-
lem.
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4.6 Perfectly Binding Commitments and Proofs

Bulletproofs, like the range proofs currently used in confidential transactions,
are computationally binding. An adversary that could break the discrete loga-
rithm assumption could generate acceptable range proofs for a value outside the
correct range. On the other hand, the commitments are perfectly hiding and
Bulletproofs are perfect zero-knowledge, so that even an all powerful adversary
cannot learn which value was committed to. Commitment schemes which are
simultaneously perfectly-binding and perfectly-hiding commitments are impos-
sible, so when designing commitment schemes and proof systems, we need to
decide which properties are more important. For cryptocurrencies, the binding
property is more important than the hiding property [RM]. An adversary that
can break the binding property of the commitment scheme or the soundness of
the proof system can generate coins out of thin air and thus create uncontrolled
but undetectable inflation rendering the currency useless. Giving up the pri-
vacy of a transaction is much less harmful as the sender of the transaction or
the owner of an account is harmed at worst. Unfortunately, it seems difficult
to create Bulletproofs from binding commitments. The efficiency of the system
relies on vector commitments which allow the commitment to a long vector in a
single group element. By definition, for perfectly binding commitment schemes,
the size of the commitment must be at least the size of the message and com-
pression is thus impossible. The works [GH98, GVW02] show that in general,
interactive proofs cannot have communication costs smaller than the witness
size, unless some very surprising results in complexity theory hold.
While the discrete logarithm assumption is believed to hold for classical comput-
ers, it does not hold against a quantum adversary. It is especially problematic
that an adversary can create a perfectly hiding UTXO at any time, planning
to open to an arbitrary value later when quantum computers are available. To
defend against this, we can use the technique from Ruffing and Malatova [RM]
to ensure that even though the proof is only computationally binding, it is later
possible to switch to a proof system that is perfectly binding and secure against
quantum adversaries. In order to do this, the prover simply publishes gγ , which
turns the Pedersen commitment to v into an ElGamal commitment. Ruffing
and Matalova also show that given a small message space, e.g. numbers in the
range r0, 2ns, it is impossible for a computationally bounded prover to construct
a commitment that an unbounded adversary could open to a different message
in the small message space.
Note that the commitment is now only computationally hiding, but that switch-
ing to quantum-secure range proofs is possible. Succinct quantum-secure range
proofs remain an open problem, but with a slight modification, the scheme from
Poelstra et al. [PBF`] can achieve statistical soundness. Instead of using Ped-
ersen commitments, we propose using ElGamal commitments in every step of
the protocol. An ElGamal commitment is a Pedersen commitment with an ad-
ditional commitment gr to the randomness used. The scheme can be improved
slightly if the same gr is used in multiple range proofs. In order to retain the
hiding property, a different h must be used for every proof.
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5 Zero-Knowledge Proof for Arithmetic Circuits

Bootle et al. [BCC`16] present an efficient zero-knowledge argument for arbi-
trary arithmetic circuits using 6 log2pnq ` 13 elements, where n is the multi-
plicative complexity of the circuit. We can use our improved inner product
argument to get a proof of size 2 log2pnq ` 13 elements, while simultaneously
generalizing to include committed values as inputs to the arithmetic circuit.
Including committed input wires is important for many applications (notably
range proofs) as otherwise the circuit would need to implement a commitment
algorithm. Concretely a statement about Pedersen commitments would need to
implement the group exponentiation for the group that the commitment is an
element of.

Following [BCC`16], we present a proof for a Hadamard-product relation.
We think of a multiplication gate of fan-in 2 as having three wires; ‘left’ and
‘right’ for the input wires, and ‘output’ for the output wire. In the relation,
aL is the vector of left inputs for each multiplication gate. Similarly, aR is the
vector of right inputs, and aO “ aL ˝ aR is the vector of outputs.

[BCC`16] shows how to convert an arbitrary arithmetic circuit with n
multiplication gates into a relation containing a Hadamard-product as above,
with an additional Q ď 2 ¨ n linear constraints of the form

xwL,q,aLy ` xwR,q,aRy ` xwO,q,aOy “ cq

for 1 ď q ď Q, with wL,q,wR,q,wO,q P Znp and cq P Zp.
We include additional commitments Vi as part of our statement, and give

a protocol for a more general relation, where the linear consistency constraints
include the openings vj of the commitments Vj .

5.1 Inner-Product Proof for Arithmetic Circuits

As with the range proof we first present a linear proof system where the prover
sends two vectors that have to satisfy some inner product relation. In Section
5.2 we show that the inner product relation can be replaced with an efficient
inner product argument which yields short proofs for arbitrary circuits where
input wires can come from Pedersen commitments. Formally we present a proof
system for the following relation.

tpg, h P G,g,h P Gn,V P Gm,WL,WR,WO P ZQˆnp ,
WV P ZQˆmp , c P ZQp ;aL,aR,aO P Znp ,v,γ P Zmp q :
Vj “ gvjhγj @j P r1,ms ^ aL ˝ aR “ aO
^WL ¨ aL `WR ¨ aR `WO ¨ aO “WV ¨ v ` cu

(66)

Let WV P ZQˆmp be the weights for a commitment Vj . The presented proof
system only works for relations where WV is of rank m, i.e. the columns of the
matrix are all linearly independent. This restriction is minor as we can construct
commitments that fulfill these linearly dependent constraints as a homomorphic
combination of other commitments. Consider a vector w1V “ a ¨WV P Zmp for a
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vector of scalars a P ZQp then we can construct commitment V 1 “ va¨WV . Note
that if the relation holds then we can conclude that xwL,j ,aLy ` xwR,j ,aRy `
xwO,j ,aOy “ xw

1
V ,vy`c. The protocol is presented in Protocol 3. It is split into

two parts. In the first part P commits to lpXq, rpXq, tpXq in the second part P
convinces V that the polynomials are well formed and that xlpXq, rpXqy “ tpXq.

Theorem 4. The proof system presented in Protocol 3 has perfect completeness,
perfect honest verifier zero-knowledge and computational special soundness.

5.2 Logarithmic-Sized Protocol

As for the range proof, we can reduce the communication cost of the protocol
by using the inner product argument. Concretely transfer (75) is altered to sim-
ply τx, µ, t and additionally P and V engage in an inner product argument on
public input pg,h1, g, P ¨ h´µ, tq. Note that the statement proven is equivalent
to the verification equations (84) and (81). The inner product argument has
only logarithmic communication complexity and is thus highly efficient. Note
that instead of transmitting l, r the inner product argument only requires com-
munication of 2 ¨ rlog2p2 ¨ nqs elements instead of 2 ¨ n. In total the prover sends
2 ¨ rlog2pnqs ` 9 group elements and 6 elements in Zp. Using the Fiat-Shamir
heuristic as in 4.4 the protocol can be turned into an efficient non interactive
proof. We report implementation details and evaluations in Section 6.

Theorem 5. The arithmetic circuit protocol using the improved inner product
argument (Protocol 1) has perfect completeness, statistical zero-knowledge and
computational soundness under the discrete logarithm assumption.

Proof. Completeness follows from the completeness of the underlying protocols.
Zero-knowledge follows from the fact that l and r can be efficiently simulated,
and because the simulator can simply run Protocol 1 given the simulated wit-
ness pl, rq. The protocol also has a knowledge-extractor, as the extractor of
the range proof can be extended to extract l and r by calling the extractor of
Protocol 1. The extractor uses Opn3q valid transcripts in total, which is poly-
nomial in λ if n “ Opλq. The extractor is thus efficient and either extracts
a discrete logarithm relation or a valid witness. However, if the generators
g,h, g, h are independently generated, then finding a discrete logarithm relation
between them is as hard as breaking the discrete log problem. If the discrete
log assumption holds in G then a computationally bounded P cannot produce
discrete-logarithm relations between independent generators. The proof system
is therefore computationally sound.

6 Performance

In Table 1 we give analytical measurements for the proof size of different range
proof protocols. We compare both the proof sizes for a single proof and for m
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Input: pg, h P G,g,h P Gn,WL,WR,WO P ZQˆnp ,

WV P ZQˆmp , c P ZQp ;aL,aR,aO P Znp ,γ P Zmp q
P’s input: pg, h,g,h,WL,WR,WO,WV , c;aL,aR,aO,γq

V’s input: pg, h,g,h,WL,WR,WO,WV , cq

Output: {V accepts,V rejects }
P computes:

α, β, ρ
$
ÐÝ Zp

AI “ hαgaLhaR P G

AO “ hβgaO P G

sL, sR
$
ÐÝ Znp

S “ hρgsLhsR P G
P Ñ V : AI , AO, S

V : y, z
$
ÐÝ Z‹p

V Ñ P : y, z

P and V compute:

zQ`1
r1:s “ pz, . . . , z

Q
q P ZQp

kpy, zq “ xy´n ˝ pzQ`1
r1:s ¨WRq, z

Q`1
r1:s ¨WLy

P computes:

lpXq “ aL ¨X ` aO ¨X
2
` y´n ˝ pzQ`1

r1:s ¨WRq ¨X

` sL ¨X
3
P Znp rXs

rpXq “ yn ˝ aR ¨X ´ yn ` zQ`1
r1:s ¨ pWL ¨X `WOq

` yn ˝ sR ¨X
3
P Znp rXs

tpXq “ xlpXq, rpXqy “
6
ÿ

i“1

ti ¨X
i
P ZprXs

w “WL ¨ aL `WR ¨ aR `WO ¨ aO

t2 “ xaL,aR ˝ y
n
y ´ xaO,y

n
y ` xzQ`1

r1:s ,wy ` kpy, zq P Zp

τi
$
ÐÝ Zp @i P r1, 3, 4, 5, 6s

Ti “ gtihτi @i P r1, 3, 4, 5, 6s

P Ñ V : T1, T3, T4, T5, T6

Protocol 3: Part 1: Computing commitments to lpXq, rpXq and tpXq
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V : x
$
ÐÝ Z‹p (67)

V Ñ P : x (68)

P computes: (69)

l “ lpxq P Znp (70)

r “ rpxq P Znp (71)

t “ xl, ry P Zp (72)

τx “
6
ÿ

i“1,i‰2

τi ¨ x
i
` x2 ¨ xzQ`1

r1:s ,WV ¨ γy P Zp (73)

µ “ α ¨ x` β ¨ x2 ` ρ ¨ x3 P Zp (74)

P Ñ V : τx, µ, t, l, r (75)

V computes and checks: (76)

h1i “ hy
´i`1

i @i P r1, ns (77)

WL “ h1
z
Q`1
r1:s

¨WL (78)

WR “ g
y´n˝pz

Q`1
r1:s

¨WRq (79)

WO “ h1
z
Q`1
r1:s

¨WO (80)

t
?
“ xl, ry (81)

gthτx
?
“ g

x2¨pkpy,zq`xz
Q`1
r1:s

,cyq
¨V

x2¨pz
Q`1
r1:s

¨WV q ¨ T x1 ¨
6
ź

i“3

T
pxiq
i (82)

P “ AxI ¨A
px2q
O ¨ h1

´yn

¨W x
L ¨W

x
R ¨WO ¨ S

px3q (83)

P
?
“ hµ ¨ gl

¨ h1
r

(84)

if all checks succeed: V accepts (85)

else: V rejects (86)

Protocol 3: Part 2: Polynomial identity check for xlpxq, rpxqy “ tpxq
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proofs for the range r0, 2n ´ 1s. We compare Bulletproofs against [PBF`] and
a Σ-protocol range proof where the proof commits to each bit and then shows
that the commitment is to 0 or 1.

Table 1: Range proof size for m proofs. m “ 1 is the special case of a single
range proof

m range proofs for range r0, 2n ´ 1s

# G elements # Zp elements

Σ Protocol [CD98] mn 3mn` 1
Poelstra et al. [PBF`] log3p2qmn 2 log3p2qmn` 1
Bulletproofs 2

`

log2pnq ` log2pmq
˘

5

The table shows that Bulletproofs have a significant advantage when pro-
viding multiple range proofs at once. The proof size for the protocol presented
in Section 4.3 only grows by an additive logarithmic factor when conducting m
range-proofs, while all other solutions grow mulltiplicately in m.

To evaluate the performance of Bulletproofs in practice we give a refer-
ence implementation in Java 8. For the group G we use the elliptic curve
SECP256K13 which has 128 bit security. In their compressed form, elliptic
curve points can be stored as 32 bytes. All cryptographic operations are imple-
mented using Bouncy Castle 1.5.74. Performance could be further increased by
implementing multi-exponentiation algorithms as described in [Möl01].

Table 2 shows that Bulletproofs brings a significant improvement over [PBF`],
even for a single range proof, and that the proof size hardly grows when multiple
range proofs are constructed. We do not directly compare against the arithmetic
circuit protocol by Bootle et al. [BCC`16] because their scheme would require
implementing the commitment function in the circuit, i.e. elliptic curve multi-
plication. This would not only blow up the prover and verifier time but even at
an optimistic estimate of ten thousand gates5 for such a circuit, a 52 bit range
proof would exceed 3KB. To aid future use of Bulletproofs we also implemented
Protocol 3 for arithmetic circuits and provide a parser for circuits in the Pinoc-
chio [PHGR13] format. This hooks Bulletproofs up to the Pinocchio toolchain
which contains a compiler from a subset of C to the circuit format. We intent
to release an open source version.

3http://www.secg.org/SEC2-Ver-1.0.pdf
4https://www.bouncycastle.org
5An EC multiplication takes approximately 20λ arithmetic operations using projective

coordinates.
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Table 2: Proof size for proving that m committed values are in r0, 264 ´ 1s

m “ 1 m “ 2 m “ 16

Σ Protocol [CD98] 8KB 16KB 128KB
Poelstra et al. [PBF`] 4KB 8KB 61KB
Bulletproofs 672 bytes 736 bytes 928 bytes
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A Proof of Theorem 2

Proof. Perfect completeness follows directly because Protocol 2 converts the
relation into a relation for Protocol 1. For witness extended emulation we
show that there exists an efficient extractor E . First we show how to construct
an extractor E1 for Protocol 1 which on input pg,h, u, P q, either extracts a
witness a,b, c such that the relation holds, or discovers a non-trivial discrete
logarithm relation between g,h, u. First note that the hardness of computing
a discrete log relation between g1,h1, u implies the hardness of computing one
between g,h, u as defined in Protocol 1. We will, therefore, use a recursive
argument showing that in each step we either extract a witness or a discrete log
relation. If n “ |g| “ 1, then the prover reveals the witness and the relation
can simply be checked directly. Now, we show for each recursive step that
on input pg,h, u, P q, we can efficiently extract a witness a,b or a non-trivial
discrete logarithm relation between g,h, u. The extractor runs the prover to
get L and R. Then, using 3 different challenges x1, x2, x3, the extractor obtains
ap1q,bp1q, . . . ,ap3q,bp3q, such that

Lx
2
iPRx

´2
i “ gapiqhbpiquxapiq,bpiqy @i P r1, 3s (87)

Using the same 3 challenge values for x, we compute η1, η2, η3 such that

3
ÿ

i“1

ηi ¨ x
2 “ 1^

3
ÿ

i“1

ηi “ 0^
3
ÿ

i“1

ηi ¨ x
´2
i “ 0
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and using these η to construct linear combinations of (87) we can compute
aL,bL and cL such that L “ gaLhbLucL . Repeating this process with different
combinations, we can also compute aP ,aR,bP ,bR, cP and cR such that

R “ gaRhbRucR

P “ gaPhbP ucP

Given the previously extracted witness pa1,b1, c1q, and the computed represen-
tations of L,P and R for each challenge x, we get

Lx
2

PRx
´2

“ gaL¨x
2
`aP`aR¨x

´2

¨ hbL¨x
2
`bP`bR¨x

´2

¨ ucL¨x
2
`cP`cR¨x

´2

“ pgx
´1

r:n1s ˝ gxrn1:sq
a1 ¨ phxr:n1s ˝ hx

´1

rn1:sq
b1 ¨ uc

1

“ ga1¨x´1

r:n1s ga1¨x
rn1:sh

b1¨x
r:n1sg

b1¨x´1

rn1:s uc
1

ùñ a1 ¨ x´1 “ aL,r:n1s ¨ x
2 ` aP,r:n1s ` aR,r:n1s ¨ x

´2

^ a1 ¨ x “ aL,rn1:s ¨ x
2 ` aP,rn1:s ` aR,rn1:s ¨ x

´2

^ b1 ¨ x “ bL,r:n1s ¨ x
2 ` bP,r:n1s ` bR,r:n1s ¨ x

´2

^ b1 ¨ x´1 “ bL,rn1:s ¨ x
2 ` bP,rn1:s ` bR,rn1:s ¨ x

´2

^ c1 “ cL ¨ x
2 ` cP ` cR ¨ x

´2

If the implications do not hold, we directly obtain a non-trivial discrete loga-
rithm relation between the generators pg1, . . . , gn, h1, . . . , hn, uq. If the implica-
tions do hold, we can deduce that the following two equalities hold.

aL,r:n1s ¨ x
3 ` paP,r:n1s ´ aL,rn1:sq ¨ x

`paR,r:n1s ´ aP,rn1:sq ¨ x
´1 ´ aR,rn1:s ¨ x

´3 “ 0
(88)

bL,rn1:s ¨ x
3 ` pbP,rn1:s ´ bL,r:n1sq ¨ x

`pbR,rn1:s ´ bP,r:n1sq ¨ x
´1 ´ bR,r:n1s ¨ x

3 “ 0
(89)

The equalities (88) and (89) hold for all 3 challenges x1, x2, x3. They would
hold for all challenges x if and only if

aL,r:n1s “ aR,rn1:s “ bR,r:n1s “ bL,rn1:s “ 0 (90)

^ aL,rn1:s “ aP,r:n1s ^ aR,r:n1s “ aP,rn1:s (91)

^ bL,r:n1s “ bP,rn1:s ^ bR,rn1:s “ bP,r:n1s (92)

If, however, we find a value of aL,aP ,aR,bL,bP , or bR which is not of this
form, we can directly compute one of the given form, using two of the three
challenges and the equations (88) and (89). This however, directly results in
two distinct representations of L,P or R, which yields a non-trivial discrete
logarithm relation.

34



Finally, using the fact that a1 “ aP,r:n1s ¨x`aP,rn1:s ¨x
´1 and b1 “ bP,r:n1s ¨x

´1`

bP,rn1:s ¨ x we see for all 3 challenges that:

xa1,b1y “ c1

“ cL ¨ x
2 ` c` cR ¨ x

´2

“ xaP,r:n1s ¨ x` aP,rn1:s ¨ x
´1,bP,r:n1s ¨ x

´1 ` bP,rn1:s ¨ xy

“ xaP,r:n1s,bP,rn1:sy ¨ x
2 ` xaP,r:n1s,bP,r:n1sy

` xaP,rn1:s,bP,r:n1sy ¨ x
´2

These equalities only hold for three distinct challenges if xaP ,bP y “ c.
Therefore, the extractor either extracts discrete logarithm relations between
the generators or the witness paC ,bCq. Using the generalized forking lemma
from [BCC`16] (see Theorem 1) we can see that the extractor uses 3rlog2pnqs ď n2

challenges in total and thus runs in expected polynomial time in n and λ.
We now show that using Protocol 2 we can construct an extractor E that ex-
tracts a valid witness for relation (2). The extractor uses the extractor E1 of
Protocol 1. On input pg,h, u, P, cq E runs the prover with on a challenge x and
uses the extractor E1 to get witness a,b such that: P ¨ ux¨c “ gahbux¨xa,by.
Forking the P, supplying him with a challenge x1 and rerunning the extractor
E1 yields a second witness pa1,b1q. Again the soundness of Protocol 1 implies
that P ¨ ux

1
¨c “ ga1hb1ux

1
¨xa1,b1y. From the two witnesses, we can compute:

upx´x
1
q¨c “ ga´a1hb´b1ux¨xa,by´x

1
¨xa1,b1y

Unless a “ a1 and b “ b1 we get a not trivial discrete log relation between g,h
and u. Otherwise we get upx´x

1
q¨c “ upx´x

1
q¨xa,by ùñ c “ xa,by. Thus, pa,bq

is a valid witness for relation (2). Since E forks the prover once, and uses the
efficient extractor E1 twice, it is also efficient. This shows that the protocol has
witness extended emulation.

B Proof of Theorem 3

Proof. Perfect completeness follows from the fact that t0 “ kpy, zq`z ¨x1n,yny`
z2¨xzm,vy for all valid witnesses. To prove perfect honest-verifier zero-knowledge
we construct a simulator that produces a distribution of proofs for a given state-
ment pg, h P G,g,h P Gn¨m,V P Gmq that is indistinguishable from valid proofs
produced by an honest prover interacting with an honest verifier. The simula-
tor chooses all proof elements and challenges uniformly at random from their
respective domains or computes them directly as described in the protocol. S
and T1 are computed according to the verification equations, i.e.:

S “ ph´µ ¨A ¨ g´z´l ¨ h1
z¨yn¨m´r

m
ź

j“1

h1
zj`1

¨2n

rpj´1q¨m:j¨msq
´x´1

T1 “ ph
´τxgkpy,zq`z¨x1

n¨m,yn¨my´t ¨Vz2¨zm ¨ T x
2

2 q
x´1
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Finally, the simulator runs the inner-product argument with the simulated wit-
ness pl, rq. All elements in the proof are either independently randomly dis-
tributed or their relationship is fully defined by the verification equations. The
inner product argument remains zero knowledge as we can successfully simulate
the witness, thus revealing the witness or leaking information about it does not
change the zero-knowledge property of the overall protocol. The simulator runs
in time OpV ` PInnerProductq and is thus efficient.
In order to prove special soundness, we construct an extractor E as follows. The
extractor E runs the prover with n different values of y, pQ` 1q different values
of z, and 7 different values of the challenge x. This results in 14 ¨ pQ`1q ¨n valid
proof transcripts. The extractor E first runs the extractor EInnerProduct for the
inner-product argument to extract a witness l, r to the inner product argument
such that glhr “ P ^ xl, ry “ t. Using this witness and 3 valid transcripts with
different x challenges, E can compute linear combinations of (63) in order to
extract α, ρ,aL,aR, sL, sR such that A “ hαgaLhaR , as well as S “ hρgsLhsR .
If for any other set of challenges px, y, zq the extractor can compute a differ-
ent representation of A or S, then this yields a non-trivial discrete logarithm
relation between independent generators h,g,h which contradicts the discrete
logarithm assumption.
Using these representations of A and S, as well as l and r, we then find that for
all challenges x, y and z

l “ aL ´ z ¨ 1
n¨mr ` sL ¨ x

r “ yn¨m ˝ paR ` z ¨ 1
n¨m ` sR ¨ xq

`

m
ÿ

j“1

z1`j ¨ 0pj´1q¨n||2n||0pm´jq¨n

If these equalities do not hold for all challenges and l, r from the transcript,
then we have two distinct representations of the same group element using a
set of independent generators. This would be a non-trivial discrete logarithm
relation.
For given values of y and z, the extractor E now takes 3 transcripts with different
x’s and uses linear combinations of equation (61) to compute τ1, τ2, t1, t2, v, γ
such that

T1 “ gt1hτ1 ^ T2 “ gt1hτ2 ^ gvhγ “
m
ź

j“1

h1
zj`1

¨2n

rpj´1q¨m:j¨ms

Repeating this for m different z challenges, we can compute pvj , γjq
m
j“1 such

that gvjhγj “ Vj @j P r1,ms. If for any transcript kpy, zq ` z ¨ x1n¨m,yn¨my `
řm
j“1 z

j`2 ¨ xvj ,2
ny` t1 ¨x` t2 ¨x

2 ‰ t then this yields a violation of the binding
property of the Pedersen commitment, i.e. a discrete log relation between g and
h. If not, then for all y, z challenges and 3 distinct challenges X “ xj , j P r1, 3s:

2
ÿ

i“0

ti ¨X ´ ppXq “ 0
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with t0 “ kpy, zq ` z ¨ x1n¨m,yn¨my `
řm
j“1 z

j`2 ¨ xvj ,2
ny and

ppXq “
ř2
i“0 pi ¨X

i “ xlpXq, rpXqy. Since the polynomial tpXq ´ ppXq is of
degree 2, but has at least 3 roots (each challenge xj), it is necessarily the zero
polynomial, i.e. tpXq “ xlpXq, rpXqy.
Since this implies that t0 “ p0, the following holds for all y, z challenges:

z ¨ x1n¨m,yn¨my `
řm
j“1 z

j`2 ¨ xvj ,2
ny ` kpy, zq

“ xaL,y
n¨m ˝ aRy ` z ¨ xaL ´ aR,y

n¨my

`
řm
j“1 z

j`1xaL,rpj´1q¨m:j¨ms,2
ny

`kpy, zq P Zp

Using n ¨m y challenges and m` 2 z challenges we can infer the following.

aL ˝ aR “ 0n¨m P Zn¨mp
aR “ aL ´ 1n¨m P Zn¨mp
vj “ xaL,rpj´1q¨m:j¨ms,2

ny P Zp@j P r1,ms

The first two equations imply that aL P t0, 1u
n¨m. The last equation imply that

vj P r0, 2
n´1s for all j. Since gvhγ “ V we have that pv,γq is valid witness

for relation (64). The extractor rewinds the prover 3 ¨ pm` 1q ¨ n ¨Opn2q times.
Extraction is efficient and polynomial in λ because n,m “ Opλq.

C Proof of Theorem 4

Proof. Perfect completeness follows from the fact that

t2 “ kpy, zq ` xzQ`1
r1:s ,WL ¨ aL `WR ¨ aR `WO ¨ aOy

“ kpy, zq ` xzQ`1
r1:s ,WV ¨ v ` cy (93)

whenever the prover knows a witness to the relation and is honest. To prove
perfect honest-verifier zero-knowledge we construct a simulator that produces a
distribution of proofs for a given statement

ˆ

g, h P G,g,h P Gn,V P Gm,
pwL,q,wR,q,wO,qq

Q
q“1 P Znˆ3

p , pwV,qq
Q
q“1 P Zmp , c P ZQp

˙

that is indistinguishable from valid proofs produced by an honest prover inter-
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acting with an honest verifier. The simulator acts as followZ:

x, y, z, µ, τx
$
ÐÝ Zp (94)

l, r
$
ÐÝ Znp (95)

t “ xl, ry (96)

AI , AO
$
ÐÝ G (97)

S “

ˆ

AxI ¨A
x2

O ¨ g´lh1
´yn´r

¨

xW x
L ¨W

x
R ¨ h

´µ

˙´x´3

(98)

T3, T4, T5, T6
$
ÐÝ G (99)

T1 “

˜

h´τxg
x2¨pkpy,zq`xz

Q`1
r1:s

,cyq´t

¨V
x2¨pz

Q`1
r1:s

¨WV q ¨
ś6
i“3 T

xi

i

¸´x´1

(100)

Output: pAI , AO, S; y, z;T1, pTiq
6
3;x; τx, µ, t, l, rq (101)

The values AI , AO, l, r, µ, τx produced by an honest prover interacting with an
honest verifier are random independent elements, i.e. if s, ρ, α, τ1, pτiq

6
3, ρ as well

as x, y, z are chosen independently and randomly. t is the inner product of l, r
as in any verifying transcript. The simulated S is fully defined by equations
(84). The honestly produced T are perfectly hiding commitments and as such
random group elements. Their internal relation given t and τx is fully defined
by equation (82), which is ensured by computing T1 accordingly. Therefore, the
transcript of the proof is identically distributed to an honestly computed proof
with uniformly selected challenges. The simulator runs in time OpVq and is thus
efficient.
In order to prove special soundness we construct an extractor E as follows.
The E runs the prover with n different y, pQ ` 1q different z and 7 different x
challenges. This results in 14 ¨ pQ` 1q ¨n valid proof transcripts. E takes 3 valid
transcripts for x “ x1, x2, x3 and fixed y and z. From the transmitted l, r, t for
each combination of challenges, E can compute η1, η2, η3 such that

3
ÿ

i“1

ηi ¨ xi “ 1^
3
ÿ

i“1

ηi ¨ x
2 “

3
ÿ

i“1

ηi ¨ x
3
i “ 0

Using these η’s to compute linear combinations of equation (84), E computes
α P Zp,aL,aR P Znp such that hαgaLhaR “ AI . If for any other set of challenges

px, y, zq the extractor can compute a different α1,a1L,a
1
R such that hα

1

ga1Lha1R “

AI “ hαgaLhaR , then this yields a non-trivial discrete log relation between
independent generators h,g,h which contradicts the discrete log assumption.
Similarly, the extractor can use the same challenges and Equation (84) to com-
pute unique β, ρ P Zp,aO,L,aO,R, sL, sR P Znp such that hβgaO,LhaO,R “ AO
and hρgsLhsR “ S.
Using Equation (84), we can replace AI , AO, S with the computed representa-
tions and read l, r, t from the transcripts. We then find that for all challenges
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x, y, z:

l “ aL ¨ x` aO,L ¨ x
2 ` y´n ˝ pzQ`1

r1:s ¨WRq ¨X ` sL ¨ x
3

r “ yn ˝ aR ¨ x´ yn ` zQ`1
r1:s ¨ pWL ¨ x`WOq

` yn ˝ aO,R ¨ x
2 ` yn ˝ sR ¨ x

3

t “ xl, ry

If these equalities do not hold for all challenges and l, r from the transcript, then
we have two distinct representations of the same group element using a set of in-
dependent generators. This would be a non-trivial discrete log relation. We now
show that t2 indeed has the form described in (93). For a given y, z the extractor
takes 7 transcripts with different x’s and uses linear combinations of equation
(82) to compute pτi, tiq, i P r1, 3, . . . , 6s such that Ti “ gtihτi . Note that the lin-

ear combinations have to cancel out the other T x
i

i terms as well as pvzQ`1
r1:s

¨WV qx
2

.

Using these pτi, tiq we can compute v, γ such that gvhγ “ VzQ`1
r1:s

¨WV . Repeat-
ing this for m different z challenges, we can compute pvj , γjq

m
j“1 using linear

combinations of gvhγ “ VzQ`1
r1:s

¨WV such that gvjhγj “ Vj@j P r1,ms. This will
however only succeed if the weight vectors wV,j are linearly independent, i.e if
the matrix WV has rank m. This necessarily implies that Q ě m. If for any
transcript t1 ¨ x `

ř6
i“3 ti ¨ x

i ` x2 ¨ pxzQ`1
r1:s ,WV ¨ v` cy ` kpy, zqq ‰ t then this

yields a violation of the binding property of the Pedersen commitment, i.e. a
discrete log relation between g and h. If not, then for all y, z challenges and 7
distinct challenges x “ xj , j P r1, 7s:

6
ÿ

i“1

ti ¨ x´ ppxq “ 0 (102)

with t2 “ xz
Q`1
r1:s ,WV ¨v`cy`kpy, zq and ppxq “

ř6
i“1 pi¨x

i “ xlpxq, rpxqy . Since

the polynomial tpxq´ppxq is of degree 6, but has at least 7 roots (each challenge
xj), it is necessarily the zero polynomial, i.e. tpxq “ xlpxq, rpxqy. Finally, we
show that this equality implies that we can extract a witness paL,aR,aO P

Znp ,v,γ P Zmp q which satisfies the relation.
The quadratic coefficient of p is:

p2 “ xaL,y
n ˝ aRy ´ xaO,L,y

ny

` xzQ`1
r1:s ,WL ¨ aL `WR,q ¨ aR `WO ¨ aO,Ly

` kpy, zq P Zp
The polynomial equality implies that any challenge y, z, p2 “ t2. Using a fixed y
and pQ`1q different z challenges we can infer that all coefficients of p2pzq´t2pzq
have to be zero. Using n different y challenges, i.e. n ¨ pQ` 1q total transcripts
we can infer the following equalities:

aL ˝ aR ´ aO,L “ 0n P Znp (103)

WL ¨ aL `WR ¨ aR `WO ¨ aO,L “WV ¨ v ` c P ZQp (104)
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From equation (103) we can directly infer that aL ˝ aR “ aO,L. Equations
(104) are exactly the linear constraints on the circuit gates.
Defining aO “ aO,L, we can conclude that paL,aR,aO,v,γq is indeed a valid
witness. The extractor rewinds the prover 14 ¨ pQ ` 1q ¨ n times. Extraction is
efficient and polynomial in λ because n,Q “ Opλq.
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