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Abstract. The advent of Bitcoin paved the way for a plethora of block-
chain systems supporting diverse applications beyond cryptocurrencies.
Although in-depth studies of the protocols, security, and privacy of block-
chains are available, there is no formal model of the transaction semantics
that a blockchain is supposed to guarantee.
In this work, we fill this gap, motivated by the observation that the
semantics of transactions in blockchain systems can be captured by a di-
rected acyclic graph. Such a transaction graph, or TDAG, generally con-
sists of the states and the transactions as transitions between the states,
together with conditions for the consistency and validity of transactions.
We instantiate the TDAG model for three prominent blockchain sys-
tems: Bitcoin, Ethereum, and Hyperledger Fabric. We specify the states
and transactions as well as the validity conditions of the TDAG for each
one. This demonstrates the applicability of the model and formalizes the
transaction-level semantics that these systems aim for.

1 Introduction

The success of Bitcoin [16] has sparked the development of many other block-
chains. Whereas the first blockchains after Bitcoin were so-called alt-coins that
resembled the cryptocurrency functionality offered by Bitcoin and mostly dif-
fered in the choice of certain parameters, Ethereum [9] was the pioneer of so-
called smart contract systems that support arbitrary (deterministic) computa-
tion on the blockchain. Platforms for running smart contracts are seen to be
of wide-spread interest for replacing trusted parties, whether in public block-
chains where participation is open to anyone or in private blockchains inside a
consortium.

Many recent blockchain platforms run generic computations, model specific
asset classes, or add cryptographic privacy guarantees; prominent systems today
include Hyperledger Fabric [6], R3 Corda [13], Tendermint/Cosmos [14], and
Chain Core [8].

Blockchain systems have attracted attention not only from industry but also
from academia. Many works have analyzed blockchains from different perspec-
tives, for example, focusing on the underlying consensus protocols [7, 10, 11],
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their privacy guarantees [4, 15, 18], and many more aspects. This collection is
necessarily partial; excellent surveys exist in the literature [3, 5, 17,19].

What is, surprisingly, missing to date is a formal model of the semantics of a
blockchain, addressing the transaction-level consistency guarantees that it aims
to achieve. These guarantees are intuitive and easy to grasp in the context of Bit-
coin: given a proper modeling of the mining of new coins, the overall amount of
bitcoins must remain invariant. For the newer, generic, and more complex block-
chains, such as Ethereum or Hyperledger Fabric, a proper model of the guar-
antees they provide appear necessary. For instance, such a model should allow
for reasoning whether the intuitively expected guarantees are indeed achieved.
It should also capture the operation of a blockchain at an appropriate level,
such that the properties of a system can be captured concisely and differences
across platforms become visible. In particular, since the validation of transac-
tions through consensus plays an important role for blockchains, the validity
checks on transactions that manipulate state should be expressed in the model.

This state of affairs motivates our work. We introduce a formal model, called
the transaction graph or TDAG for short, a directed acyclic graph that models
the transactions occurring on a blockchain and how they interact through states.
In a nutshell, a TDAG is a graph consisting of transactions that link states to
each other. Each transaction may consume, observe, or produce states, and oc-
curs only with respect to an external input that triggers the transaction. The
model abstracts the transaction validation into a predicate that can be evalu-
ated locally in the graph, in the sense that validation only considers the relevant
states; this corresponds to how many blockchains work, during the process of
transaction validation and consensus, which must be efficient and based on lo-
cal state. The TDAG is a generic model to encode properties expected from
every blockchain system, such as notions of validity and consistency, and for
characterizing the invariants that must be enforced in a blockchain.

We instantiate the TDAG model for three different prominent blockchains:
Bitcoin, Ethereum, and Hyperledger Fabric. For each system, we formally define
the states and transactions of the TDAG, specify the notion of consistency, and
describe the validity of transactions. This shows the broad applicability of our
model, and results in an abstract description of these real-world systems.

2 Transaction graphs

This section introduces the transaction directed acyclic graph, abbreviated trans-
action graph or TDAG for representing the semantics of a blockchain. It models
the context held by the blockchain and its evolution through transactions that
obey validation rules.

We start by introducing some notation. Let E ⊆ X ×Y be a relation between
sets X and Y. For the predicate (x, y) ∈ E , we also write xEy. Furthermore, we
denote the set {y : xEy} by xE? and its size by |xE?|.



2.1 Definition

A transaction graph or TDAG is a directed acyclic graph G = (V, E). The ver-
tices V can be partitioned into states S and witnesses W, that is, V = S ∪̇W. At
a high level the edges E represent transitions between states. More precisely, an
edge e ∈ E represents the relation between a state and a witness in the context
of a transaction, and an edge may connect a state to a witness or vice versa.
The edges can be partitioned into consuming, observing, and producing edges,
denoted EC , EO, and EP , respectively, such that E = EC ∪̇ EO ∪̇ EP . We now
introduce the elements of G informally.

States ©: The first type of vertex, s ∈ S, denotes an atomic state represented
by the blockchain and is depicted by a circle ©. It models an individual
asset, a digital coin, some coins controlled by a particular cryptographic key,
a variable of a smart contract at a moment in time, and so on. The complete
context of the blockchain consists of all states that exist at a particular time.
A state results from a transaction on the blockchain and can transition to
other states through a transaction.
There is a special genesis state sg ∈ S, which represents the initial state
of the blockchain. There is a single genesis state by intention because the
blockchain system can be initialized exactly once.

Witnesses �: The second kind of vertex, w ∈ W, denotes a witness in the
context of a transaction and is depicted by a rectangle �. It represents any
data included in a transaction that is required for the transaction to be valid
according to the validation rules of the blockchain system. Every transaction
of the blockchain system contains exactly one witness.

Consuming edges © −−−−→ �: A consuming edge e ∈ EC connects a state to
a witness and models that the state © is consumed by the transaction that
involves witness �, i.e., the unique transaction that corresonds to �. A state
can be consumed exactly once, i.e., it is not available for being consumed by
another transaction once it has been consumed. Consuming a state means
that the state is “updated” or “overwritten” by the transaction.

Observing edges © −−→ �: An observing edge e ∈ EO also connects a state
to a witness; it models that the state enters into the transaction represented
by the witness, but that it remains available for consumption by another
transaction. A state can be observed by many transactions, independently
of whether it is also consumed or not. Intuitively a transaction that observes
a state “reads” it.

Producing edges � −−−−→©: A producing edge e ∈ EP connects a witness to
a state, and denotes that the state is created or produced by the transaction
corresponding to the witness. Every state apart from the genesis state is
produced exactly once.

With these notions, a transaction represents a transition from one state, or
from some set of states, in a TDAG to another set of states according to the
blockchain system. The transaction is linked to a unique witness, which makes
it “valid” as described later. We say that a transaction has input states that are



consumed or observed by the transaction and output states that are produced by
the transaction. More formally, a transaction is also a weakly connected DAG,
i.e., a DAG that is connected as a graph.

Definition 1 (Transaction). A weakly connected DAG T = (V, E) with a set
of input states SI , a set of output states SO, and a witness w is called a
transaction whenever

– Every input state in SI is a source (has indegree zero);
– Every output state in SO is a sink (has outdegree zero);
– V = SI ∪̇ SO ∪̇ {w};
– Every edge in E is either a consuming edge or an observing edge and links

some input state si ∈ SI to w, or it is a producing edge and links w to some
output state so ∈ SO.

As the name implies, a transaction graph consists of many transactions.

Definition 2 (TDAG). A transaction graph (TDAG) is a directed unweighted
graph G = (V, E), where V = S ∪̇W are the vertices and E = EC ∪̇EO ∪̇EP are the
edges. The set S denotes the states and contains a special state sg called genesis.
The set W denotes the witnesses. Edges are partitioned into three subsets, where
EC ⊆ S ×W denotes consuming edges, EO ⊆ S ×W denotes observing edges,
and EP ⊆ W × S denotes the producing edges.

It satisfies the following conditions:

1. sg does not have any producing or observing edges and it has a single con-
suming edge, i.e., |?EP sg| = 0 ∧ |sgEO?| = 0 ∧ ∃!w ∈ W : sgECw.

2. Every state except for the genesis state has exactly one producing edge, i.e.,
∀s ∈ S \ {sg} ∃!w ∈ W : wEP s.

3. Every state except for the genesis state may have multiple successors, but at
most one among them is connected with a consuming edge, i.e., ∀s ∈ S :
|sEC?| ≤ 1.

4. G is weakly connected.
5. G has no cycles.

The consuming and observing edges incident to a state are also called the
outgoing edges of that state. Similarly, the consuming and observing edges in-
cident to a witness are called incoming edges of that witness. The producing
edges of a witness are outgoing edges of the witness. There is no order among
the edges incident to a vertex in a TDAG. The set of all unconsumed states in
a TDAG are the states without an incident consuming edge.

In the context of a TDAG every witness w corresponds to a unique transac-
tion t(w). The next definition follows naturally and is easily seen to be equivalent
to Definition 1.

Definition 3 (Transaction in a TDAG). Given a TDAG G = (S ∪̇ W, E)
and a witness w ∈ W, the transaction with witness w is the unique subgraph
t = (S ′ ∪̇ {w}, E ′) ⊆ G, where



– w ∈ W is the witness of the transaction;
– S ′ is the set of states connected to w, i.e., S ′ = {s ∈ S : sECw ∨ sEOw ∨

wEP s}; and
– E ′ are the edges with both endpoints in S ′ ∪̇ {w}.

The input states of t(w) are the states being observed or consumed by t(w),
and the output states of t(w) are the states being produced by t(w). With this
terminology a transaction t ⊆ G can have one of the following five types, which
depends mostly on the number of input and output states:

INIT: A unique initialization transaction exists in every non-empty TDAG,
consisting of a consuming edge that links the genesis state to a witness w
and a set of producing edges that link w to a set of states.

SISO: A single-input, single-output transaction consists of one consuming edge
that links one input state to a witness w and one producing edge that links
w to an output state.

SIMO: A single-input, multi-output transaction consists of one consuming edge
that links an input state s to a witness w, and a set of producing edges that
link w to a set of output states.

MISO: A multi-input, single-output transaction contains a set of multiple con-
suming and observing edges that link distinct input states to a witness w
and one producing edge that links w to an output state.

MIMO: A multi-input, multi-output transaction contains a set of multiple con-
suming and observing edges that link distinct input states to a witness w,
and a set of producing edges that link w to a set of output states.

Figure 1 shows the possible transaction types in a TDAG. The initializa-
tion transaction plays a special role; it represents the creation of the blockchain,
which typically creates all assets represented by the states. Modeling initializa-
tion through a specific transaction is a deliberate design choice that will become
clear later, in the context of transaction validation. The other types represent
“ordinary” transactions that consume (and possibly observe) one or more states
and produce one or more states. We note that observing edges are not consider
for SISO and SIMO transactions as they have a single input state. This models

. . .

(a) INIT (b) SISO

. . .

(c) SIMO

. . .

(d) MISO

. . .

. . .

(e) MIMO

Fig. 1: Graphical representation of transactions. States are represented by circles
and witnesses are represented by boxes. Two concentric circles represent the
genesis state. Observing edges are represented with a dashed arrow whereas
producing edges and consuming edges are represented with solid arrows.
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Fig. 2: Illustrative example of a TDAG. Here, we use the same notation as in Fig-
ure 1. Graphically, each transaction ti(wi) is the subgraph where vertices are the
set composed of wi along with the set of states sharing an edge with wi; and
edges are the set of incoming edges and outgoing edges for wi.

that a transaction must update or overwrite at least one state to make it into the
blockchain as simple read queries can be handled by inspecting the blockchain.

For the moment, it suffices to say that the initialization transaction typically
creates all “assets” modeled by the blockchain or the “states” that it holds,
setting them to a predefined value. This allows a subsequent transaction to be
linked only with the state to which it refers and that it consumes. Otherwise, all
transactions that modify any state would be linked from the genesis state (with
a consuming edge), contradicting that every state has at most one consuming
edge. We consider this an important property of the TDAG model. A further
argument for modeling only one initialization transaction goes as follows. If there
were multiple INIT transactions, then it would not be easily possible to assess
whether one INIT transaction is “valid” without looking also at the other ones.
For instance, an INIT transaction that creates a new asset is only valid if no
other INIT transaction has created the same asset beforehand.

Therefore, we purposely restrict the model so that it has a single initial-
ization transaction for simplicity, but without loss of generality as this unique
initialization transaction can create as many states as required in the blockchain.

Figure 2 shows an illustrative example of a TDAG modeling a Bitcoin execu-
tion with four transactions. First, t0(w0) represents the creation of the Bitcoin
blockchain by minting the all available bitcoins into a Bitcoin address containing
unmined bitcoins (s0). Here, w0 represents the Bitcoin creation rules. Second,
t1(w1) represents a transaction that transfers some unmined bitcoins (s0) to the
Bitcoin address of a user u that successfully mined the first Bitcoin block (s2);
t1(w1) saves the remaining unmined bitcoins (s1) for subsequent block creations.



Here, w1 represents proof-of-work in the block mined by u. Third, t2(w2) repre-
sents a transaction where u transfers some of her bitcoins (s2) to another Bitcoin
address (s4). The associated transaction fee is modeled as another address (s3).
Here, w2 represents the authorization of the transaction in the form of a digital
signature by u. Finally, t3(w3) represents a transaction that rewards a user for
creating a Bitcoin block containing t2(w2). In that sense, t3(w3) is similar to
t1(w1), with the difference that t3(w3) also captures the fact that the user also
receives the fees associated to t2(w2).

We note that this example does not contain any observing edge. This results
from the fact that read-only operations are not supported in Bitcoin.

2.2 Conflicts and validity

A central goal of blockchain systems is to prevent conflicts among transactions
and to ensure validity for all transactions, as a result of a consensus process
executed among the participating entities. The TDAG model permits to have
a closer look at the semantics of conflicts and validity; modeling consensus is
outside the scope of this work.

Intuitively, a conflict in a blockchain underlying a cryptocurrency such as
Bitcoin occurs in an attempt to “double-spend” money. According to the exam-
ple describing Bitcoin from before (and expanded in Section 3), assume that a
state s in a TDAG corresponds to bitcoins held by a particular Bitcoin address.
Two transactions that double-spend such bitcoins map to two transactions that
both consume s. But every state in a TDAG can be consumed at most once,
hence, the TDAG model already prevents this form of conflict.

In blockchains for arbitrary smart contracts, a conflict corresponds to a sit-
uation where generic validation rules for transactions are violated. Such rules
may refer to coins (such as an amount of ether in Ethereum) or to other assets
modeled in the blockchain. The TDAG model for these blockchains also imposes
that every state can be consumed at most once.

When one considers an arbitrary set of transactions (not arising from the
same transaction graph), such as transactions that have merely been proposed
and are not executed on the blockchain yet, then conflicts among them could
exist. This is the case in a cryptocurrency like Bitcoin when a miner searches for
the next block, for example, and two transactions might be floating around in the
network that both attempt to consume the same state s. Similarly, conflicting
transactions exist in smart-contract platforms during the process of reaching
consensus on a valid blockchain execution.

We now consider a set of transactions (in the form of a graph) and define
what it means that they are free of conflicts among each other.

Definition 4 (Conflict-freedom). Consider a DAG T = (ST ∪̇ WT , ET ) with
states ST , witnessesWT , producing edges EP ⊆ ET and consuming edges EC ⊆ ET
that contains a transaction for every witness w ∈ WT . We say that T has no
conflicts if every state has at most one producing edge and one consuming edge,
i.e., ∀s ∈ ST : |?EP s| ≤ 1 ∧ |sEC?| ≤ 1.



A conflict-free set of transactions can be added to a TDAG. To ensure that
its addition does not cause any conflicts with the TDAG only simple and local
conditions have to be verified.

Definition 5 (Adding transactions to a TDAG). Consider a TDAG G =
(S ∪̇ W, E) and a DAG T = (ST ∪̇ WT , ET ) containing a conflict-free set of
transactions such that

1. No witness of T is in G, i.e., W ∩WT = ∅;
2. Every input state of T is an unconsumed state of G, i.e., {s ∈ ST : |?ET s| =

0} ⊆ {s ∈ S : |sEC ? | = 0};
3. The output states of T do not exist in G, i.e., {s ∈ ST : |sEC ? | = 0}∩S = ∅.

Then the result of adding T to G is the DAG Ḡ = (S̄ ∪̇ W̄, Ē), with S̄ = S ∪ST ,
W̄ =W ∪̇WT , and Ē = E ∪̇ ET .

Theorem 1. When a conflict-free set of transactions T = (ST ∪̇ WT , ET ) is
added to a TDAG G = (S ∪̇ W, E), then the resulting graph Ḡ = (S̄ ∪̇ W̄, Ē) is
also a TDAG.

Proof. Here we show that Ḡ satisfies the conditions to be a TDAG.

1. The genesis state must not have producing or observing edges and it must
have a single consuming edge. This condition is fulfilled since G is a TDAG
and T does not contain the genesis state if it is already consumed in G.

2. Every state, other than genesis, must have a single producing edge. This
condition is fulfilled in G and in T by definition. Now, the addition of t to G
does not create new edges. Therefore, this condition holds also in Ḡ.

3. Every state, other than the genesis, can have multiple successors, but at
most one among them is connected with a consuming edge. It is easy to see
that Ḡ fulfills this condition following an argument similar as before.

4. The graph must be weakly connected. Note that by the definition of TDAG,
each vertex v ∈ S ∪̇ W is weakly connected to every unconsumed state in
G. Moreover, every vertex v′ in ST ∪̇ WT is weakly connected to at least
one input state of T . Now, as the set of input states in T is a subset of the
unconsumed states in G, it follows that Ḡ is weakly connected.

5. The graph must not have cycles. According to the assumptions on T and
because G is a DAG, and through the way in which Ḡ is constructed, it is
easy to see that Ḡ has no cycles.

ut

We now introduce the notion of validity for transactions in a TDAG, which
models the fact that on a blockchain only “valid” transactions are executed. As
an important design choice of the model, the validity of a transaction in a TDAG
must be decidable locally, that is, from the transaction alone, considering only
its input states, the witness, and the output states. To capture this, we assume
that the blockchain context defines a boolean validation predicate P(·) on the
space of all transactions.



Definition 6 (Validity). Let t be a transaction in a TDAG G. Then t is valid
whenever P(t) = True. Furthermore, G is a valid transaction graph if all trans-
actions in G are valid.

Combined with the locally checkable conditions for adding transactions to a
TDAG, the fact that the validity of a transaction is locally decidable defines, in
an influential way, how many blockchain systems work during consensus, vali-
dation, and execution of new transactions. The only steps needed for validation
are to ensure the validity predicate of a candidate transaction plus the checks
according to Definition 5 involving the states to which the transaction refers.

Transaction validation also relies on the property that all states in the TDAG
are distinct. In a typical blockchain, the validation function relies on a crypto-
graphic hash of the states to which it refers; this directly ensures uniqueness.
For example, consider an execution of a smart contract that holds state on the
blockchain in the form of a local variable var. The contract may update var
multiple times, and it may write the same value to var more than once. To
make the resulting states in the TDAG different, the model will usually include
a version number in the state that makes each assignment unique.

At this point, let us review our design choice of a single INIT transaction.
Using a single transaction to create all assets represented by the states enables to
locally check the validity of the initialization of the blockchain as well as preserve
the locally checkable conditions for further transactions consuming those states.

2.3 Composition of transaction graphs

In the following, we describe the composition of transaction graphs, which states
the conditions under which two TDAGs can be merged into a single one. One
may then reason about their consistency and validity in a unified manner.

Definition 7 (TDAG composition). Consider two TDAGs G := (S ∪̇ W, E)
and G′ := (S ′ ∪̇ W ′, E ′). Assume that t(w) denotes the INIT transaction in G
and t′(w′) denotes the INIT transaction in G′. Further assume that t̂(ŵ) denotes
a INIT transaction where ŵ = (w,w′) and the output states are the union of
output states from t(w) and t′(w′). Then, the composition of G and G′ is the

TDAG Ĝ = TG \ {t(w)} ∪ TG′ \ {t′(w′)} ∪ t̂(ŵ).

Theorem 2 (Composition of two TDAGs into one TDAG). The compo-

sition of two TDAGs G and G′ results in a graph Ĝ, which is also a TDAG.

Proof. Here we show that Ĝ satisfies the conditions to be a TDAG.

1. The genesis state must not have producing or observing edges and it must
have a single consuming edge. This condition is fulfilled by our definition of
the INIT transaction t̂(ŵ).

2. Every state, other than genesis, must have a single producing edge. As G
and G′ are two TDAGs, it is easy to see that each state in TG \ {t(w)} and
TG′ \ {t′(w′)} has a single producing edge. Moreover, by definition of INIT
transaction, each output state in t̂(ŵ) has a single producing edge.



3. Every state, other than the genesis, can have multiple successors, but at
most one among them is connected with a consuming edge. It is easy to see
that Ĝ fulfills this condition along the lines of previous argument.

4. The graph must be weakly connected. TG \ {t(w)} and TG′ \ {t′(w′)} are
connected by definition, as G and G′ are two TDAGs. Moreover, the defini-
tion of the INIT transaction t̂(ŵ) ensures that any vertex in TG \ {t(w)} is
connected to any vertex in TG′ \ {t′(w′)} through ŵ.

5. The graph must not have cycles. TG \ {t(w)} and TG′ \ {t′(w′)} are acyclic
by definition, as G and G′ are two TDAGs. Moreover, the addition of t̂(ŵ)
clearly does not introduce any cycle.

ut

3 Applications

In this section, we describe how executions of different blockchain systems are
modeled by transaction graphs. We cover three prominent blockchains: Bitcoin,
Ethereum, and Hyperledger Fabric (HLF). They differ in how they store assets in
their state. Bitcoin, for example, does not have state “variables” but maintains
an asset only in the context of the transaction that created it. Ethereum, on
the other hand, uses variables and accounts for its state. The data model in
HLF is a key-value store (KVS), which can be mapped to local database on each
node. Due to lack of space, this section only gives a short overview and more
details appear in the appendix. In particular, we describe the transaction graph
instance for Bitcoin in Appendix A and the transaction graph instance for HLF
in Appendix B.

Throughout this section, we denote by y ← H(x) a cryptographic, collision-
free hash function that takes as input a bit-string x ∈ {0, 1}∗ of arbitrary length
and returns a fixed-length string y ∈ {0, 1}l.

3.1 Bitcoin

Since Bitcoin (bitcoin.org) is the prototype of all blockchain systems, there are
many publicly available descriptions [2, 16] and we keep the background short.
Likewise, the discussion here applies to all altcoins patterned after Bitcoin.

Bitcoin combines transaction validation, coin mining, and agreement on the
ledger with the “Nakamoto protocol” that uses proof-of-work and ensures con-
sensus. A block in Bitcoin can hold two types of transactions:

– A coinbase transaction that transfers yet unmined bitcoins to a Bitcoin ad-
dress as chosen by the miner of the corresponding block, as a reward for
creating the block. This transaction is valid if (i) it transfers a number of
bitcoins according to the height of the block to a Bitcoin address, and (ii)
is accompanied by the solution to the proof-of-work puzzle for successful
mining of the block.



– A regular transaction transfers bitcoins from a set of Bitcoin (input) ad-
dresses to another set of Bitcoin (output) addresses. It also incurs a fee,
defined as the difference between the bitcoin amounts in the input and out-
put, which is assigned to the miner of the block in which the transaction
appears. A regular transaction is valid if it includes a confirmation for each
input for the amount and output and if it does not create new bitcoins.

Bitcoin value exists in the blockchain in the form of unspent transaction
output, often abbreviated UTXO, which has been assigned to an address, repre-
senting a digital-signature public key. This value is controlled by the holder of
the corresponding private key. It can be spent and transferred to another address
by signing a transaction with the private key.

In the TDAG modeling Bitcoin, we let every state be a tuple of the form

(addr, val, hash, height) ,

where addr denotes an address, val denotes the amount of bitcoins held in this
state, hash is the cryptographic hash of other states (whose UTXO is transferred
by the transaction), and height denotes the index of the block in which the state
was produced.

In contrast to the Bitcoin code, we model transaction fees and unmined bit-
coins as held by or associated to an (imaginary) address. This allows a coherent
model for the TDAG. Thus, the state resulting from the special INIT transaction
contains (addr0, 21M, . . . ), representing all 21M bitcoins that ever exist.

The form of a witness depends on the transaction type: The witness for a
coinbase transaction is the solution for the proof-of-work to assign the bitcoins
to the address designated by the miner. For a regular transaction, the witness
consists of a set of confirmations for the transfer of bitcoin, in the form of a
digital signature for each UTXO, over the input and output addresses of the
transfer. Finally, the INIT transaction does not require any witness.

The TDAG for Bitcoin contains producing and consuming edges but no ob-
serving edges. For a coinbase transaction, the input states are the unconsumed
state of unmined bitcoins and the fee states for the transactions included in the
mined block. One producing edge leads to a state for collecting the fees and the
mining reward, another one to a state containing the remaining unmined bit-
coins. Its witness is the mining proof. For a regular transaction, the input states
are the unconsumed states representing the transaction inputs and the produced
output states correspond to the transactions output addresses. The witness holds
a set of confirmations (digital signatures), confirming for each input state the
transfer of some bitcoins to the corresponding output addresses.

The transaction predicate incorporates the validation rules of Bitcoin, as
expressed in the states, witnesses, and transactions of the TDAG.

With these definitions, one can then show the intuitive result that except
with negligible probability, every (legal) execution of Bitcoin, considering only
bitcoin transactions that are “deep enough” in the blockchain (e.g., six blocks
deep) [11] gives rise to a TDAG constructed like this. The formal analysis of this



result exploits that the DAG formed by the hash-function applications among
states has no cycles, and therefore satisfies the properties of a TDAG.

3.2 Ethereum

Ethereum [9] is the most prominent public blockchain and cryptocurrency sup-
porting generic smart contracts today (ethereum.org). In Ethereum there exist
two types of accounts, called externally owned accounts and contract accounts.
Externally owned accounts largely resemble the accounts of other cryptocurren-
cies such as Bitcoin, in which users maintain their currency balance in Ether,
owned by them. But the main innovation of Ethereum lies in contract accounts,
which represent a smart contract (an arbitrary piece of code in the platform-
specific language) and that executes a set of instructions upon receiving suitable
input. A contract account also holds and controls its own Ether balance and
specifies a gas price, which determines the cost of executing its code for anyone
that invokes the contract.

Ethereum supports several types of transactions. First, a transaction in Ethe-
reum can be used to transfer Ether between two externally owned accounts. This
type of transaction is like the exchange of coins in other cryptocurrencies. Sec-
ond, a transaction can be used to create a contract with the code of the contract
and an externally owned account as inputs. It outputs a contract account with
the information required to initialize the implemented code (e.g., the inputs
for the init function). Finally, a transaction can be used to invoke an existing
contract on the blockchain.

An Ethereum transaction includes as input the sender’s address (an exter-
nally owned account), a recipient address (another account), a transaction value
to be transferred from the sender’s address to the recipient, some arguments
with parameters for the contract, and a gas limit, specifying a maximum price
for the execution. A contract may also call functions of other contracts; however,
this will not give rise to new transactions, as these calls take place in the context
of the original transaction.

To model an Ethereum execution as a TDAG, we let each state consist of a
tuple

(addr, account-type, code, local-state, gas-price, val) .

Here, addr denotes the account address that produced the state, account-type
determines whether this is a state of an external account or a contract account,
code is a hash of the smart contract’s code, local-state denotes collectively all
variables held by the contract, gas-price is the price for executing transactions
with this contract, and val is the Ether balance held by the account after the
execution that produced the state. If account-type specifies an externally owned
account, then the smart contract is the fixed logic to validate payments from
such accounts.

There is also a genesis state that models the creation of an Ethereum block-
chain. In contrast to Bitcoin, there is currently no bound on the amount of Ether



that will exist in the public Ethereum blockchain; the creation of new Ether is
therefore subsumed into the mining operation and its validation.

A transaction in the TDAG is determined by the witness. It corresponds to
an invocation of a smart contract and contains a gas limit and regular input
arguments that validate the transaction. For instance, these arguments must
contain a digital signature valid under the public key associated to the invoking
external account that runs the transaction.

The transaction contains the state of the invoking account and the state
of the contract as input states, with consuming edges to the witness. It also
produces two states, an updated state of the invoking account and an updated
state of the contract, as resulting from running the contract with the given gas
limit and input arguments. If the contract calls functions of other contracts and
they modify their state, then the states representing these contracts are also
part of the transaction in the TDAG (as input states and output states). The
validation predicate simply executes the code.

For mining new Ether, running transactions, and collecting the correspond-
ing fees, similar states and validation logic as in the TDAG model of Bitcoin are
added. Given these notions one can show that every (legal) execution of Ethe-
reum, considering as in Bitcoin only those transactions that are deep enough in
the blockchain, produces a valid TDAG.

3.3 Hyperledger Fabric

Hyperledger Fabric (www.hyperledger.org/projects/fabric), or HLF for short,
is a permissioned blockchain framework, designed to support modular implemen-
tations of different components, including its consensus protocol, membership
provider, and cryptography library [6]. The nodes executing the HLF blockchain
are called peers.

An instance of HLF may contain multiple channels that may run on different
sets of peers, where each channel operates like a blockchain system independent
of the others, apart from using some of the same code infrastructure, ordering
protocol, and other components. We therefore consider only one channel here,
modeling one blockchain.

On a channel, a configuration transaction (configtx ) sets the initial values
used for transaction processing, such as the credentials of the peers or organi-
zations controlling the channel, the implementation of its ordering service, and
so on. Once a channel has been prepared like this, it is ready to execute opera-
tions on its peers. Transactions in HLF are executed by smart contracts called
chaincode. We remark that several chaincodes might coexist in a channel and
their transactions are differentiated by the corresponding chaincode’s identifier.
Nevertheless, for ease of exposition we assume in the following that there exists
a single chaincode per channel.

Chaincode is first installed on the peer and may later be upgraded ; it must
be instantiated for a specific channel before it can process transactions. Once
instantiated on the channel, a chaincode supports two types of transactions: init
and invoke. An init transaction is executed once after the chaincode has been



installed or upgraded; it specifies an endorsement policy that determines how
any subsequent transaction of this chaincode should be authorized. A chaincode
determines through the endorsement policy on which peers it executes: whether
all peers in the channel execute it, or only some, and which peers or which set
of peers are sufficient to authorize the execution of the transaction.

An invoke transaction is used to execute a computation that may read and
modify the state of the chaincode, which is a set of key-value pairs. The opera-
tions to access the state are GetState(k) → v (given a key k, return the last
value v written to it) and PutState(k, v) (write the value v to storage under
the key k).

The processing of a transaction on HLF proceeds like this [1]:

1. A client creates and signs a transaction proposal for a particular chaincode
and sends it to the respective endorsing peers.

2. The endorsing peers simulate the transaction on their current current copy
of the key-value store (KVS), verifying that the client is authorized to exe-
cute it. If successful, each endorsing peer returns the result of the executed
simulation to the client. This is also called an endorsement. It comes in the
form of a proposal response containing a signed readset and writeset (with
the key-value pairs accessed during simulation, including a version for every
value in the readset, determined by the logical time when this value was
written). The endorsement serves as a static representation of the chaincode
execution simulation.

3. When the client has assembled enough endorsements that produce the same
KVS changes and that satisfy the endorsement policy, it combines them to
a transaction. Then the client broadcasts this transaction proposal to the
ordering service, which simply orders transactions without considering their
semantics. Currently an ordering service based on Apache Kafka (kafka.
apache.org) running in a cluster is supported and an ordering service using
BFT consensus is under development [7, 20].

4. The ordering service disseminates an ordered stream of transactions (grouped
into blocks) to the peers on the channel. Each peer on its own then validates
each transaction, by verifying that the endorsement policy is satisfied and
that there were no changes to the key-value pairs contained in the readset
(since transaction simulation).

5. If successful, the peer appends the block to the blockchain (of the channel)
and performs the updates from the writeset to its local copy of the KVS.
This assigns a version to the modified key-value pairs. Since the validation
is deterministic, the states and versions are the same for all correct peers.

In the TDAG for HLF, the states correspond to the entries in the KVS. Every
state is a tuple containing at least

(key, version) .

It is assumed that an init transaction implicitly initializes every key used by the
chaincode later with a default value (−). The init transaction is always valid.



Furthermore, every invoke transaction that reads or writes a set of keys K,
contains an observing edge for every k ∈ K accessed by an operation GetState(k)
but not by an operation PutState(k, ?), and a consuming edge for every k that
is written using an operation PutState(k, ?). In other words, every key is im-
plicitly read before it is written and, thus, a transaction in the TDAG modeling
an HLF execution has the same number of consuming edges as the number of
producing edges.

A witness in the TDAG corresponds to a valid endorsement, in the form
of signatures from the endorsers issued on the same readset/writeset pair from
the transaction proposal. The validation predicate P(·) contains the steps that
each peer takes to validate a transaction coming from the ordering service, with
respect to its local KVS. Notice that this validation only accesses the versions
in the readset, but no other state entry in the KVS. Since these states are also
contained in the transaction in the TDAG, the evaluation of P(·) in the graph
is local.

Given that the ordering service of HLF outputs the same stream of blocks
with transactions to every connected peer, it is easy to verify that the graph
resulting from any execution of HLF is a TDAG.

4 Conclusion

Blockchains and distributed ledger platforms are of great interest for the financial
industry today, due to their role as trustless intermediaries gained from their
resilience to attacks and subversion. For gaining confidence in a new technology,
it is paramount to study its security with formal models.

This work has proposed transaction graphs or TDAGs as a discrete model for
the semantics of the interactions in a blockchain system. In contrast to existing
event-based models for generic distributed and concurrent systems, it explicitly
takes into account the validation of transactions, which is an important aspect
of blockchains. For instance, the TDAG model allows to model assets and their
transfer among different entities. It also facilitates comparisons among different
technologies available today.

We envision that richer semantics can be expressed by refining the TDAG
model. For instance, one may argue about further invariants of the blockchain
system as properties of the TDAG, similar to modeling Bitcoin’s fixed coin sup-
ply. One might also use a TDAG to formally model the provenance for generic
assets that are handled by smart contracts, building on the paths through which
the asset was transferred in the TDAG.
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Appendix

A Transaction graph for Bitcoin

A.1 Detailed description

We start with the description of an execution of the Bitcoin system as represented
by the corresponding blockchain. A Bitcoin blockchain is composed of blocks,
where each block is created as a result of successfully executing the Bitcoin
mining process [16]. The miner of such block (i.e., user showing a valid proof of
successful mining) chooses a set of regular transactions to be added in the block
along with a single coinbase transaction. There exists a special block, denoted
as genesis block, that represents the initialization of the blockchain.

A coinbase transaction transfers unmined bitcoins to a (set of) Bitcoin ad-
dress, chosen by the corresponding miner, as a reward for creating the block.
A coinbase transaction is valid if it transfers only the number of bitcoins set
as reward according to the height of the mined blocked. A regular transaction
transfers bitcoins from a set of Bitcoin addresses (i.e., input addresses) to an-
other set of Bitcoin addresses (i.e., output addresses). A regular transaction is
valid if: (i) it includes a confirmation for each input address; (ii) it does not
create new bitcoins. Finally, a regular transaction has an associated fee (i.e.,
between the bitcoins held at input and output addresses).

Definition 8 (Bitcoin execution). A Bitcoin execution LBTC is a set of blocks
B := {bg,b1, . . . ,bn}, where bg denotes the genesis block and contains a single
initialization transaction. Each other block bi := (mp, {cbtx, rtx1, . . . ,rtxn})
is a tuple composed of a proof of successful mining mp, and a set of transac-
tions containing a coinbase transaction cbtx and regular transactions rtxi. A
cbtx contains a Bitcoin address addr. A rtx is a tuple (addrin, F , addrout),
where addrin and addrout are two sets of Bitcoin addresses and F is a set of
confirmations cf.

We now describe our modeling of a given execution of Bitcoin as a TDAG. A
state represents a Bitcoin address that holds a group of bitcoins, a transaction
fee or the yet unmined bitcoins. We note that fees and unmined Bitcoins are not
associated to an address in the real Bitcoin, but we model them as held by an
address to have a coherent transaction graph model. The genesis state represents
a Bitcoin address holding the 21M bitcoins ever existing in the Bitcoin system.
Each witness represents either a proof of successful mining for a block or the (set
of) confirmations required in a regular transaction. Finally, we consider two types
of edges: producing and consuming edges. A producing edge links unconsumed
addresses for unmined bitcoins and transaction fees to the mining proof for the
corresponding coinbase transaction; or an input address to the corresponding
confirmation in a regular transaction. A consuming edge links a mining proof
to the Bitcoin addresses getting the reward, or a set of confirmations to the
corresponding output addresses receiving (part of) the transferred bitcoins.



Definition 9 (Transaction graph). We model an execution of Bitcoin system
as a graph GBTC := (SBTC ∪̇ WBTC, EBTC) defined as follows:

State: Each state s ∈ SBTC is defined as a tuple (addr, val, hash, height), where
addr denotes a Bitcoin address, val denotes the amount of Bitcoins held at
addr, hash denotes the result of applying H to a set of vertices S ′BTC ∪̇ {w}
with S ′BTC ⊂ SBTC, and height denotes a block index. The genesis state sg is
defined as the fixed tuple (addr0, 21M,H(∅), 0).

Witness: Each witness w ∈ WBTC is defined by a tuple (txtype, F), where txtype
denotes the type of the transaction and determines the content of F . In par-
ticular, (tinitx, ∅) is the witness for the initialization transaction; (tcbtx,
mp) denotes a witness for a coinbase transaction and (trtx, {cfi}) denotes
the witness for a regular transaction.

Edge: Each edge e ∈ E is defined either as consuming edge or producing edge.

The transaction graph presented here determines the modeling of the possible
transactions in a Bitcoin execution. The next definition maps transaction in a
Bitcoin execution to transaction types supported in a TDAG. For simplicity and
consistency the state resulting from the INIT transaction again contains all 21M
unmined bitcoins.

Definition 10 (Transaction types). A coinbase transaction is modeled as a
SIMO transaction. A regular transaction is modeled as a SISO, SIMO, MISO
or MIMO transaction depending on |addrin| and |addrout|. For instance, SISO
models a regular transaction where |addrin| = 1∧|addrout| = 1. The rest are de-
rived accordingly. Finally, we define the initialization transaction included in the
genesis block as an INIT transaction of the form t := ({sg, s, w}, {(sg, w), (w, s)}),
where (sg, w) ∈ EC , (w, s) ∈ EP and s := (addrm, 21M,H({sg, w}), 0), where
addrm denotes a Bitcoin address that contains unmined bitcoins. sg and w are
as defined in Definition 9.

Finally, we complete our description of the Bitcoin context with the corre-
sponding transaction predicate P. For that, we use VerifyContract (addr, cf) as
a function that on input a Bitcoin address addr and a confirmation cf, returns
True if cf encodes a valid confirmation to spend the bitcoins held at addr.
Otherwise, it returns False. Additionally, we use VerifyWork (mp) as a function
that on input a mining proof mp, returns True if mp is a valid proof-of-work
for the corresponding block, or False otherwise. We thereby abstract away the
implementation details for validation of Bitcoin scripts and mining proofs.

Definition 11 (Transaction predicate). Consider a transaction t := (S ∪̇
{w}, E). Then, P(t) returns True if the following conditions hold and False
otherwise.

1. If t is a regular transaction (w.txtype = trtx), the witness holds a valid con-
firmation for each input state i.e., ∀s ∈ ?Ew,∃cf ∈ w.F : VerifyContract(s.addr,
cf).



2. If t is a coinbase transaction (w.txtype = tcbtx), the witness contains a
valid mining proof, i.e., w.F := {mp} ∧ VerifyWork(mp).

3. Each output state represents a positive number of bitcoins, i.e., ∀s ∈ wE? :
s.val > 0.

4. The sum of bitcoins held at the input states must be equal to the sum of
bitcoins held at the output states, i.e.,

∑
s∈?Ew s.val =

∑
s′∈wE? s

′.val
5. Each output state contains the evaluation of the hash function over input

states and the witness, i.e., ∀s ∈ wE? : s.hash = H(?Ew ∪̇ {w}).

A.2 Model analysis

We star this section by analyzing the definition of transaction graph presented in
the previous section. We start by showing that it is a TDAG. Here, we consider
legal, a Bitcoin execution that contains only transactions that are “deep enough”
in the blockchain (e.g., six blocks deep). We thereby enable the study of any
Bitcoin execution in terms of the properties of a TDAG such as conflict-freedom
or validity.

Theorem 3. Assume H is a collision-resistant hash function [12] and assume
that LBTC is a legal Bitcoin execution. Then, the graph GBTC resulting from mod-
eling LBTC is a TDAG.

Proof. Here, we show that GBTC = (SBTC ∪̇WBTC, EBTC) fulfills the conditions to
be a TDAG.

1. The genesis state must not have producing or observing edges and it must
have a single producing edge. Our designed INIT transaction ensures this.

2. Every state, other than the genesis, must have a single producing edge.
Assume by contradiction that it is not fulfilled. Then, there is a state s ∈
SBTC with at least two producing edges and that implies that there exists
two different sets V := S ∪̇ {w} and V ′ := S ′ ∪̇ {w′} such that H(V) = H(V ′).
However, V and V ′ contradict the assumption that H is collision resistant.

3. Every state other than the genesis can have multiple successors, but at most
one among them is connected with a consuming edge. Each Bitcoin address
is consumed only once in a legal Bitcoin execution. Therefore, this condition
is fulfilled.

4. The graph must be weakly connected. Each new transaction consumes a pre-
viously unconsumed state in the graph , i.e., either a unspent Bitcoin address
or mines yet unmined bitcoins and consumes unclaimed fees. Therefore, the
overall graph is weakly connected.

5. The graph must not have cycles. Assume by contradiction that there is a
cycle in GBTC. This, however, implies that there are two different transactions
t and t′ that produce the same state. However, as we have seen before, this
contradicts the fact that H is collision resistant.

Remember from Definition 6 that a TDAG is valid if each transaction in-
dividually is valid according to a transaction predicate P. Next, we show that
validating Bitcoin transactions individually in our model, suffices to safely con-
sider that unconsumed states represent all bitcoins in the system.



Definition 12 (Unspent bitcoins). Consider GBTC a TDAG modeling a Bit-
coin execution. Then, the unspent bitcoins in GBTC are the sum of bitcoins held
at unconsumed states of GBTC.

Theorem 4 (Unspent bitcoins are all bitcoins in the system). Consider
GBTC a valid TDAG that models a Bitcoin execution. Then, the amount of un-
spent bitcoins in GBTC is equal to all bitcoins ever existing in the system. More
formally, let S ′ be the set of unconsumed states in GBTC, then

∑
s∈S s.val =

sg.val.

Proof. Assume by contradiction that Theorem 4 does not hold. Then, there
must exist a transaction t := (S ∪̇ {w}, E) in TGBTC such that

∑
s∈?Ew s.val 6=∑

s′∈wE? s
′.val. This, however, clearly implies that P(t) returns False, which

contradicts the assumption that GBTC is a valid TDAG.

A.3 Modeling an example of bitcoin execution

Here, we describe our modeling for an illustrative example of Bitcoin execution.
We assume for simplicity that the block reward is fixed to a value of 50 bitcoins
as it was the first reward set in the Bitcoin system. Additionally, we assume
that the transaction fee is fixed to 1 bitcoin. We stress, however, that the TDAG
model is expressive enough to relax these assumptions.

We focus in the illustrative example depicted in Figure 3. In particular, Fig-
ure 3a shows a possible Bitcoin execution LBTC := {bg,b1,b2}, where bg :=
(∅, {t0}),b1 := (mp, {t1}) and b2 := (mp′, {t2, t3, t4}). We note that this ex-
ample is similar to that in Figure 2 and due to lack of space we do not de-
scribe it here again. However, we remark that it is expanded here with an extra
MIMO transaction (i.e., t3(w3)) to show how we model transactions that in-
volve multiple payers and multiple payees. Instead, we focus on the description
of GBTC := (S ∪̇ W, EP ∪̇ EC), a transaction graph modeling the aforementioned
Bitcoin execution as depicted in Figure 3b.

– t0 := ({sg, s0, w}, {(sg, w), (w, s0)}), where (sg, w) ∈ EC and (w, s0) ∈ EP .
This represents the initialization transaction where sg := (addr0, 21M,
H(∅), 0), w0 := (tinitx, ∅) and s0 := (addrm, 21M,H({sg, w0}), 0).

– t1 := ({s0, s1, s2, w1}, {(s0, w1), (w1, s1), (w1, s2)}), where (s0, w1) ∈ EC and
{(w1, s1), (w1, s2)} ⊆ EP . A SIMO transaction that issues bitcoins to Al-
ice after she has successfully mined a block. In a bit more detail, w1 :=
(tcbtx,mp), s1 := (addrm, (21M−50),H({s0, w1}), 1) and s2 := (addrAlice,
50, H({s0, w1}), 1), where addrAlice denotes a Bitcoin address owned by Al-
ice. We follow this notion in the rest of the example for the addresses owned
by the example users. s0 is defined as in t0.

– t2 := ({s2, s3, s4, s5, w2}, {(s2, w2), (w2, s3), (w2, s4), (w2, s5)}), where (s2, w2) ∈
EC and {(w2, s3), (w2, s4), (w2, s5)} ⊆ EP . A SIMO transaction that pays 2
bitcoins to Bob and the remaining bitcoins are sent back to Alice. In a
bit more detail, w2 := (trtx, {cfAlice}), s3 := (addr′m, 1,H({s2, w2}), 2),
s4 := (addrBob, 2, H({s2, w2}), 2) and s5 := (addr′Alice, 47,H({s2, w2}), 2).
The rest of states are defined as in previous transactions.



(a) Example of Bitcoin execution LBTC :=
{bg,b1,b2}. Only involved blocks and
graphical description of transactions t1 – t4
have been shown. Here, t0 represents the ini-
tialization transaction.
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(b) Example of a GBTC instance.

Fig. 3: Illustrative example of our modeling of an execution of the Bitcoin system.

– t3 := ({s4, s5, s6, s7, s8, s9, w3}, {(s4, w3), (s5, w3), (w3, s6), (w3, s7), (w3, s8),
(w3, s9)}), where {(s4, w3), (s5, w3)} ⊆ EC and {(w3, s6), (w3, s7), (w3, s8),
(w3, s9)} ⊆ EP . A MIMO transaction that pays 3 bitcoins to Charles, jointly
by Alice and Bob. In a bit more detail, w3 := (trtx, {cf′Alice,cfBob}), s6 :=
(addr′′m, 1,H({s4, s5, w3}), 2), s7 := (addr′Bob, 1,H({s4, s5, w3}), 2), s8 :=
(addr′′Alice, 44,H({s4, s5, w3}), 2), and s9 := (addrCharles, 3,H({s4, s5, w3}),
2). The rest of states are defined as previous transactions.

– t4 := ({s1, s3, s6, s10, s11, w4}, {(s1, w4), (s3, w4), (s6, w4), (w4, s10), (w4, s11}),
where {(s1, w4), (s3, w4), (s6, w4)} ∈ EC and {(w4, s10), (w4, s11} ⊆ EP . A
MIMO transaction that issues bitcoins to Diana after she has successfully
mined a block. Additionally, Diana claims the transaction fees for transac-
tions t2 and t3. In a bit more detail, w4 := (tcbtx,mp), s10 := (addr′′′m,
(21M− 100),H({s0, w4}), 2), and s11 := (addrDiana, 52,H({s0, w4}), 2).



B Transaction graph for Hyperledger Fabric

B.1 Detailed description

In this section, we study the Hyperledger Fabric (HLF) [6] blockchain-based sys-
tem. We start by the description of a execution of HLF. An execution of HLF
is represented as a set of blockchains, one per channel. However, as each single
blockchain evolves independently from each other, we restrict our description
here to a single blockchain. This description, however, can be easily extended to
model a HLF execution with multiple channels.

A blockchain is composed of blocks. We denote the first block as genesis
block and each subsequent block is created by the ordering service. Such order-
ing service chooses the sorted set of transactions to be included in each block.
HLF supports two types of transactions: Init and Invoke. An init transaction
is included in the genesis block and it is used to initialize every key used in
the blockchain to a default value − and includes an endorsement policy, that
determines how any subsequent transaction should be authorized. We consider
that an initialization transaction is always valid.

An invoke transaction is used to carry out updates in a set of key-value
pairs for the local current key-value store (KVS) through two operations: (i)
GetState(k) → v, that given a key k provides the most current value v asso-
ciated to it; and (ii) PutState(k, v), that updates value associated to a given
key k to the newly provided value v. An invoke transaction is valid if it contains
enough endorsements from the set of endorsers specified in the endorsement
policy.

Definition 13 (HLF execution). A HLF execution LHLF is a set of blocks
B := {bg,b1, . . . ,bn}, where bg denotes the genesis block that contains a single
init transaction, denoted by initx. Each block bi := {invtx1, . . . , invtxn} is
a set of invoke transactions invtxi. An initx contains a single endorsement
policy ep. Each transaction invtxi is defined as a tuple (F , U), where F de-
notes the set of endorsements ({end1, . . . ,endn}), and U denotes the set of
{GetState(?),PutState(?, ?)} operations to update key-value pairs.

We continue by describing the modeling of a HLF execution. Informally,
each state in our model represents a key-value pair. Each witness represents
the set of endorsements required for a transaction to be valid. Finally, here we
consider three type of edges: observing, consuming and producing edges. An
observing edge links a key k to the endorsement specified in a transaction that
reads k but does not modify it (e.g., an invoke transaction that contains only a
GetState(k) operation). If the key k is modified (e.g., an invoke transaction
that contains PutState(k, ?) operation), a consuming edge links then the key
k with the endorsements for such transaction. Finally, a producing edge links
the endorsements to a key k a transaction has modified it (e.g., by means of a
PutState(k, ?) operation).

Definition 14 (Transaction graph). We model a HLF execution LHLF as a
graph GHLF := (SHLF ∪̇ WHLF, EHLF) defined as follows:



States: Each state s ∈ SHLF is defined as a tuple (key, version), where key
denotes the key part of a key-value pair and version denotes the current
version number of the key-value pair. The genesis state is defined as sg :=
(params, 0) and denotes a special key-value pair that holds the configuration
parameters for a channel as indicated in channel initialization.

Witness: Each witness w ∈ WHLF is defined as a tuple (txtype, F), where txtype
set to tinitx indicates an init transaction and set to tinvtx indicates an in-
voke transaction. F denotes an endorsement policy ep if txtype = tinitx or
a set of endorsements {endi} if txtype = tinvtx. For simplicity, we assume
that an endorsement end also contains the corresponding set of operations
GetState(?) and PutState(?, ?).

Edges: Each edge e ∈ EHLF is defined as either observing, consuming or produc-
ing edge.

Definition 15 (Transaction types). An invoke transaction is modeled as a
SISO, MISO or MIMO transaction depending on the set of operations GetState(?)
and PutState(?, ?) that it uses. For instance, a SISO transaction models a
transaction that uses a single PutState(k, ?) operation for a key k. A MISO
transaction models a transaction that updates a single key k and reads at least one
additional key k′ (e.g., {GetState(k),PutState(k′, v)}). Finally, a MIMO
transaction models a transaction that updates several keys and possibly reads
other additional keys (e.g., {GetState(k),PutState(k′, v),PutState(k′′, v′)}).
An init transaction is of type INIT and is defined as t := ({sg, w}∪̇{si}, {(sg, w)}∪̇
{(w, s1), . . . , (w, sn)}), where (sg, w) ∈ EC , {(w, s1), . . . , (w, sn)} ⊆ EP , w :=
(tinitx,ep), and each si := (ki,−). The genesis state sg is defined in Defini-
tion 14.

We make two observations in the definition of the transaction types. First,
MISO and MIMO types are restricted in the sense that they must have the same
number of consuming and producing edges. This is due to the fact that we model
each PutState(?, ?) operation as a consuming edge from the state of the key
being updated and a producing edge to the state corresponding to the updated
key-value pair. We note, however, that this is a characteristic inherent to all
systems based on key-value stores and not a particular limitation of HLF.

Second, as any system based in a key-value store, each key must exist only
once. For that, we model our initialization transaction such that all the keys
used in the given HLF’s execution are created and initialized to a fixed initial
value (−).

Now, we finalize the description of our model by defining the transaction
predicate for HLF. Here, we denote by VerifyEndorsement({endi}) a boolean
function that takes a set of endorsements {endi} and returns True if {endi}
represents a valid set of endorsements according to the endorsement policy ep,
and False otherwise. Here, we assume that ep is obtained from the initialization
transaction included in the corresponding HLF execution.

Definition 16 (Transaction predicate). Consider a transaction t := (S ∪̇
{w}, EO ∪̇ EP ∪̇ EC). Then, P(t) returns True if the following conditions hold
and False otherwise.



1. If t is an invoke transaction, the witness must contain a set of valid endorse-
ments, i.e., w.txtype = tinvtx⇒ VerifyEndorsement(w.F).

2. If t is an invoke transaction, each output state must represent an update of
a key included in a input state. Moreover, the version number for the output
state must be bigger than the version number for the input state representing
the same key, i.e., w.txtype = tinvtx ⇒ ∀s′ ∈ wEP ?,∃s ∈ ?ECw : s′.key =
s.key ∧ s′.version > s.version.

B.2 Model Analysis

In this section we analyze our model for the execution of the HLF system. We
start by showing that any legal HLF execution modeled as aforementioned results
in a TDAG. Here, we consider as legal a HLF execution that contains only blocks
included in the blockchain that have been produced by the ordering service.

Theorem 5. Assume that LHLF is a legal HLF execution. Then, the GHLF in-
stance modeling LHLF is a TDAG.

Proof. Here, we show that GHLF fulfills all the conditions required in Definition 2.

1. The genesis state must not have any producing or observing edges and it
must have a single producing edge. This condition is ensured by our definition
of initialization transaction.

2. Every state, other than the genesis, must have a single producing edge. As-
sume by contradiction that ∃s ∈ SHLF \ {sg} : |?EP s| > 1.3 This implies that
there are at least two transactions t and t′ in GHLF that update the same key-
value pair simultaneously. This, however, contradicts the assumption that a
valid execution contains only transactions sorted by an ordering service.

3. Every state other than the genesis can have multiple successors, but at most
one among them is connected with a consuming edge. The proof for this
condition holds along the same lines as for the previous condition.

4. The graph must be weakly connected. Each new transaction reads our up-
dates a key represented by an unconsumed state in the graph. Therefore, the
overall graph is weakly connected.

5. The graph must not have cycles. Assume by contradiction that there is a
cycle in GHLF. This necessarily implies that there are two transactions that
produce the same state. However, as we argued before, this contradicts the
fact that the ordering service establishes a total order among the transac-
tions.

As we did with the Bitcoin model, here we show that validating HLF trans-
actions individually suffices to reason about properties of the complete HLF
execution. In particular, we show that if GHLF is a valid TDAG, then the highest
version number (i.e., most recent) for any given key is represented in a uncon-
sumed state of GHLF.

3 We rule out the case |?EP s| = 0 because a state only exists in GHLF if it has been
produced by a transaction.



Definition 17 (Most recent key-value pairs). Consider that GHLF is a TDAG
modeling a HLF execution. Then, we define the states representing the most re-
cent key-value pairs as the set of states with the highest version number for each
key, i.e., {s ∈ SHLF : s′ ∈ SHLF ∧ s.key = s′.key⇒ s.version > s′.version}.

Theorem 6 (Unconsumed states represent most recent key-value pairs).
Assume that GHLF is a valid TDAG and models a legal HLF execution LHLF.
Then, the unconsumed states of GHLF represent the most recent key-value pairs.

Proof. Assume by contradiction that Theorem 6 does not hold. Then, there
must exist at least a transaction where the version field in the output state for
a key is smaller than the version field in the input state for the same key, i.e.,
∃t := (S ∪̇ {w}, E) ∈ TGHLF

,∃s, s′ ∈ S : (s, w) ∈ E ∧ (w, s′) ∈ E ∧ s.key = s′.key ∧
s.version < s′.version. However, P(t) would return False, which contradicts the
fact that GHLF is a valid TDAG.

B.3 Modeling an Example of Execution for HLF

Here we describe how we model an illustrative example of HLF execution. We
assume for simplicity that the endorsement policy requires a single endorsement
for each transaction.

Throughout our description, we focus in the illustrative example depicted
in Figure 4. In particular, Figure 4b shows the HLF execution LHLF := {bg,b1,b2},
where bg := {t0 := ep}, b1 := {t1 := (end, f1)} and b2 := {t2 := (end′, f2)}.
In a bit more detail, t0 represents the initialization transaction that initializes
the key-value pairs used later in the execution and it is included in the genesis
block. Moreover, t1 represents an invoke transaction that calls the function f1
and t2 represents another invoke transaction that calls f2 in this case.

Now, we describe how we model such HLF execution as an instance of GHLF
as shown in Figure 4c:

– t0 := ({sg, s0, s1, s2, w0}, {(sg, w0), (w0, s0), (w0, s1), (w0, s2)}), where (sg, w0) ∈
EC and {(w0, s0), (w0, s1), (w0, s2)} ⊆ EP . It represents the initialization
transaction as described above. In more detail, sg := (params, 0), w0 :=
(tinitx,ep), s0 := (a, 1), s1 := (b, 1) and s2 := (c, 1).

– t1 := ({s0, s1, s2, s3, s4, s5w1}, {(s0, w1), (s1, w1), (s2, w1), (w1, s3), (w1, s4),
(w1, s5)}), where {(s0, w1), (s1, w1), (s2, w1)} ⊆ EC and {(w1, s3), (w1, s4),
(w1, s5)} ⊆ EP . A MIMO transaction that updates the values associates
to keys a, b, c. In a bit more detail, w1 := (tinvtx,end), s3 := (a, 2),
s4 := (b, 2) and s5 := (c, 2). The rest of states are defined as described for
t0.

– t2 := ({s3, s4, s5, s6, w2}, {(s3, w2), (s4, w2), (s5, w2), (w2, s6)}), where (s3, w2) ∈
EC , {(s4, w2), (s5, w2)} ⊆ EO and (w2, s6) ∈ EP . A MISO transaction that
reads the values associates to keys a, b, c, and updates the value associated
to key a. In a bit more detail, w2 := (tinvtx,end′) and s6 := (a, 3). The
rest of states are defines as described for t1.



Algorithm 1: Function f1

1 PutState (“a”, 0);
2 PutState (“b”, 5);
3 PutState (“c”, 3);

Algorithm 2: Function f2

1 a← GetState (“a”);
2 b← GetState (“b”);
3 c← GetState (“c”);
4 PutState (“a”, a + b + c);

(a) Set of GetState and PutState
operations for each function defined
in this example.

(b) Example
HLF execution
LHLF := {bg,b1,b2}.
Here, t1 invokes f1 and
t2 invokes f2.

w0

s0 s1 s2

w1

s3 s4 s5

w2

s6

(c) Example of
GHLF instance.

Fig. 4: Illustrative example of the modeling of an execution of HLF. We model
an execution that contains the setup transaction (t0), followed by an invocation
to f1 (modeled in t1) and finally an invocation to f2 (modeled in t2).


