
The Montgomery and Joye Powering Ladders are Dual

Colin D. Walter

Information Security Group,
Royal Holloway University of London,

Egham, Surrey, TW20 0EX, United Kingdom.

email CDW.iacr@gmail.com

Abstract

Hitherto the duality between left-to-right and right-to-left exponentiation algorithms has
been a loosely defined concept. Recently, the author made the definition precise by adding
requirements on space usage and operation types. Here it is shown that the Montgomery
and Joye powering ladders are dual in this sense. Several versions of these algorithms are
derived naturally with a cost-free, natural, built-in blinding mechanism as a side channel
counter-measure.

Key Words: Algorithm Theory, Exponentiation, Cryptography, Elliptic Curve Crypto-
graphy, Public Key Cryptography, Scalar Multiplication.

1 Introduction

Cryptography in resource-constrained devices such as smart cards requires computation
which is ideally space efficient, time efficient, leak resistant and fault resistant. This
has stimulated the development of exponentiation (or scalar multiplication) algorithms as
these are vital for most public key cryptosystems.

In [13], the author defined a duality between left-to-right and right-to-left methods
which is a tighter version of the transposition method [8, 3]. For the first time this
enables both space and time properties to be transferred systematically when switching
the direction of processing exponent digits. [13] shows that the m-ary algorithms of Brauer
and Yao [4, 14] are dual in this stronger sense. Their base-2 cases are the widely used
left-to-right and right-to-left binary square-and-multiply methods. Here we contribute
to the understanding of exponentiation by studying the important powering ladders of
Montgomery [5, 9, 10] and Joye [6, 7], showing that they too are dual.

2 Space Duality

There are two key ingredients to the duality. The first is to restrict the allowable oper-
ations. A location-aware addition chain is a finite sequence of the following operations
([13], Defn. 2):

i) Copying from one named register to another.

ii) Copying from one named register to another combined with initialising the source
register to the group identity.

1

mailto:CDW.IACR@gmail.com

iii) Multiplying the contents of two distinct named registers and writing the result into
one of those registers.

iv) Multiplying the contents of two distinct named registers, writing the product into
one of those registers and initialising the other register to the group identity.

v) Raising the contents of a register to the power s for some s ∈ Z.

vi) Swapping the contents of two named registers.

(For most cryptographic applications the group identity is either 1 ∈ N for integer-based
cryptosystems or the point O at infinity on an elliptic curve.)

The other key ingredient is to write the algorithm following several rules which are
natural for efficiency and good housekeeping. A location-aware chain is normalised if it
satisfies the following (cf [13], Defn. 6):

i) There is a prescribed subset of registers used for I/O. Each such register reads in an
external value and writes a value to output. No other registers make use of external
communication.

ii) All initial values in non-I/O registers are assumed to be undefined, and all initial
values in I/O registers must be well-defined and used by some operation.

iii) All final values in non-I/O registers must be explicitly set to the group identity
element by an operation with initialisation, unless the register has not been used
at all. No I/O register must have a final value which has been explicitly set to the
identity element.

iv) The inputs of every operation must be well-defined and not include a value that
has been set to the identity element by an operation with initialisation. The initial
values of I/O registers and the non-initialised outputs of operations must be used
by a subsequent operation or be the final value of an I/O register.

Generally, any exponentiation algorithm can be expressed easily in the above way although
sometimes composite operations (e.g. x, y 7→ x2y) may need to be artificially broken into
parts that would not be implemented separately. Moreover, an implementation might
often skip some processes such as setting some final register values to the identity.

The dual of a normalised location-aware chain is the normalised location-aware chain
given by applying the transpose operation. If each of its operations is described using a
matrix which is applied to the vector of register values, then the dual is given by matrix
transposition. The transpose of any of the above chain operations also represents an
allowable chain operation. Although some copying operations become multiplications
and vice versa as a result of this process, the numbers of multiplications and copyings are
unchanged when taking the dual. However, the swap and powering operations remain as
swap and powering operations under transposition.

3 Two Montgomery Ladders

The original Montgomery Powering Ladder [10] is a left-to-right exponentiation algorithm.
A slightly modified version for a multiplicative group G is given in Fig. 1. The algorithm
uses two registers for calculations and so really computes two exponentiations. This
provides the opportunity to introduce a blinding parameter g0 and to output a second
value. Taking g0 = 1G to be the group identity yields the usually required output g1

D,
but otherwise there are standard ways of dealing with the blinding factor g0

D such as
computing it once, and thereafter squaring both g0 and g0

D after every exponentiation.
The outputs differing by the constant factor g0g

−1
1 provides an easy check on whether an

attacker has induced a fault in an attempt to recover the secret exponent D. The last

2

aspect of generalisation is to drop the requirement for the leading bit of D being 1. The
correctness proof is by induction on i = n−1, ..., 1, 0 using Di =

∑n−1
j=i dj2

j−i, Di−1 =

2Di+di−1 and Di
′ = 2n−i−Di with the additional loop invariant T [0]/T [1] = g0g

−1
1 .

Inputs: g0, g1 ∈ G, D =
∑n−1

i=0 di2
i with di ∈ {0, 1} for 0 ≤ i < n.

Output: g0
Dg1

D, g0
D+1g1

D+1 where D +D = 2n.

T [0]← g0
T [1]← g1
[C ← T [0]/T [1]] // optional – see §4
for i← n−1 down to 0 do {

T [1−di]← T [0]×T [1]
T [di] ← T [di]

2 }
return T [0], T [1]

Figure 1: A Left-to-Right Montgomery Powering Ladder with Blinding

Inputs: g0, g1 ∈ G, D =
∑n−1

i=0 di2
i with di ∈ {0, 1} for 0 ≤ i < n.

Output: g0
Dg1

D+1, g0
Dg1

D+1 where D +D = 2n.

T [0]← g0
T [1]← g1
for i← 0 to n−1 do {

T [di]← T [di]
2

T [di]← T [0]×T [1] }
return T [0], T [1]

Figure 2: The Dual Right-to-Left Powering Algorithm with Blinding

Taking the transpose of each multiplicative operation and reversing their order yields
the dual right-to-left algorithm given in Fig. 2. It clearly has the same number of squarings
and multiplications as the left-to-right version. However, it has different outputs. The
transformation achieved by the left-to-right ladder can be described via the matrix[

D D

D+1 D+1

]
and so the dual computes values corresponding to the transpose of this. Then the ex-
ponent D appears in the output value of T [1] rather than T [0], and g0 becomes the
parameter which is raised to the power D, with g1 now providing the blinding. The spe-
cial case g1 = 1G reduces the algorithm to Joye’s Algorithm 3 in [6] (with the registers
interchanged). Thus Joye’s right-to-left algorithm has a very natural derivation as the
dual of Montgomery’s left-to-right powering ladder.

A striking difference between the algorithms is that the left-to-right version could
perform the two operations of a loop iteration in parallel, whereas those of the dual
algorithm must be performed sequentially.

3

4 A Revised Right-to-Left Algorithm

Both the algorithms above take n squarings and n multiplications to complete the compu-
tation, thereby adding about one third to the number of multiplicative operations when
compared with standard binary exponentiation. However, because both multiplications
in a loop iteration share a common multiplicand in the left-to-right version, there are con-
siderable savings to be made in that case (see [5], §3.3). Alternatively, in the Weierstraß
elliptic curve context, the main loop of the left-to-right version can be executed entirely
in terms of the x-coordinate, from which the y-coordinate of the final output is easily
computed [1, 9]. This efficiency gain makes the Montgomery ladder competitive with the
normal square-and-multiply algorithm. Specifically, (using additive notation for G), if the
x-coordinates of P 6= O, Q 6= ±P and P−Q are known, then there are straightforward,
explicit formulae for the coordinates of 2P and P+Q in terms of them [10]. Also, when
Q 6= O there is an explicit formula for the y-coordinate of P in terms of those three
x-coordinates [1, 9, 11, 12, 2]. So, in the main loop, if the x-coordinates of points T [0],
T [1] and T [0]−T [1] are known at the start of an iteration, then the x-coordinates for T [0]
and T [1] at the end of the iteration can be computed. And, since C = T [0]−T [1] is a loop
invariant, its x-coordinate is also known after computing it once at initialisation. Finally,
the formulae for the y-coordinate can be used at the end of the loop for determining in
full each of the desired final output points.

At first sight, a similar efficiency gain seems impossible for the right-to-left direction
since the correct analogue of T [0]−T [1], namely T [1]+T [0], is, unfortunately, not a loop
invariant. However, suppose the loop iteration starts with known x-coordinates for P , Q
and P+Q, where P is the point associated with T [di] and Q with T [1−di]. It is required
to compute the x-coordinates for 2P+Q (the new value for T [di]) and 2P+2Q (the new
value for T [0]+T [1]), but not that of 2P which is just the temporary value of T [di] in the
middle of the iteration. The doubling of P+Q is easy using the given formula, and 2P+Q
simply requires using the three x-coordinates of P, P+Q,Q = (P+Q)−P to determine
the x-coordinate for P+(P+Q). The third x-coordinate required for the start of the next
iteration is that of Q, which is already known. So the three x-coordinates are ready for
the following iteration or for computing the y-coordinate at the end. The version of Fig. 2
modified in this way to include P+Q in a new variable C is given in Fig. 3 (cf Joye [7]
Alg. 7).

Inputs: g0, g1 ∈ G, D =
∑n−1

i=0 di2
i with di ∈ {0, 1} for 0 ≤ i < n.

Output: g0
Dg1

D+1, g0
Dg1

D+1 where D +D = 2n.

T [0]← g0
T [1]← g1
C ← T [0]×T [1]
for i← 0 to n−1 do {

T [di]← T [di]×C
if i 6= n−1 then C ← C2 }

return T [0], T [1]

Figure 3: Revised Right-to-Left Exponentiation Algorithm

As in the left-to-right version of Fig. 1, there is one application of each x-coordinate

4

formula per iteration – one for the addition and one for the doubling. So, with both using
C, the speed and space usage should be similar for both directions of the Montgomery
Ladder. The two loop multiplications can again be done in parallel as Fig. 1 and their
common multiplicand could lead to savings in other contexts, as noted above.

If one entirely omits the updating of T [0] within the loop and considers just the
updating and output for T [1], then Fig. 3 is reduced almost to just the normal right-to-
left binary (square-and-multiply) algorithm.

5 The Dual Left-to-Right Algorithm

Taking the dual of Fig. 3 yields another derivative of the left-to-right Montgomery Ladder,
using three registers rather than two. This is given in Fig. 4 (cf Joye [7] Alg. 6). Its
disadvantages include the loss of processing using only x-coordinates in elliptic curve
applications, and the loss of parallel processing in the loop. Its main advantage, shared
with Fig. 3, is the ease of generalising it to an m-ary algorithm, as in Joye’s Algorithms 4
and 5 [7]. The odd-looking final two multiplications are the result of the dualising process.

Inputs: g0, g1 ∈ G, D =
∑n−1

i=0 di2
i with di ∈ {0, 1} for 0 ≤ i < n.

Output: g0
Dg1

D, g0
D+1g1

D+1 where D +D = 2n.

T [0]← g0
T [1]← g1
C ← 1G
for i← n−1 down to 0 do {

if i 6= n−1 then C ← C2

C ← T [di]×C }
T [0]← T [0]×C
T [1]← T [1]×C
return T [0], T [1]

Figure 4: Another Left-to-Right Binary Exponentiation with Blinding

For g0 = 1G, T [0] = 1G always and so the loop multiplication of Fig. 4 does nothing
when processing a zero bit. Then the algorithm is essentially just the usual left-to-right
binary square-and-multiply algorithm, derived naturally from Mongomery’s Powering
Ladder.

6 Final Remarks

All four of the algorithms presented have properties which are useful against side channel
and fault attacks. They can be classified as “square and multiply always” and are “highly
regular” in the sense of Joye [6], i.e. the same sequence of operations is always executed
independently of the data. Moreover, if both outputs are taken, they have no dummy
operations.

5

The main loops have been the primary concern here. Inputs, outputs, and assignments
outside the main loops have been stripped almost to a minimum, but can be easily adapted
to particular applications.

7 Conclusion

The power of duality between exponentiation algorithms has been illustrated, providing
deeper insight into powering ladder algorithms, and how they are related to each other
and to standard binary exponentiation algorithms. Duality has led to generalisations of
them which provide base point blinding. Thus, duality is a valuable tool for developing
and investigating existing and new exponentiation algorithms.

References

[1] Agnew, G. B., Mullin, R. C., and Vanstone, S. A., An Implementation of Elliptic
Curve Cryptosystems Over F(2155), IEEE Journal on Selected Areas in Communica-
tions, June 1993, 11 (5), pp. 804–813.

[2] Brier, E. and Joye, M., Weierstraß Elliptic Curves and Side-Channel Attacks, PKC
2002, LNCS 2274, Springer-Verlag, 2002, pp. 335–345.

[3] Bernstein, D. J., Pippenger’s Exponentiation Algorithm,
http://cr.yp.to/papers/pippenger.pdf, 2002.

[4] Brauer, A.: On Addition Chains, Bull. Amer. Math. Soc., 1939, 45 (10), pp. 736–739.

[5] Joye, M., and Yen, S.-M., The Montgomery Powering Ladder , CHES 2002, LNCS
2523, Springer-Verlag, 2003, pp. 291–302.

[6] Joye, M., Highly Regular Right-to-Left Algorithms for Scalar Multiplication, CHES
2007, LNCS 4727, Springer-Verlag, 2007, pp. 135–147.

[7] Joye, M., Highly Regular m-Ary Powering Ladders, Selected Areas in Cryptography,
LNCS 5867, Springer-Verlag, 2009, pp. 350–363.

[8] Knuth, D. E., The Art of Computer Programming, vol. 2, “Seminumerical Algo-
rithms”, §4.6.3, 3rd Edition, Addison-Wesley, 1998, pp. 465–485.

[9] López, J., and Dahab, R., Fast Multiplication on Elliptic Curves over GF(2m) without
Precomputation, CHES 1999, LNCS 1717, Springer-Verlag, 2000, pp. 316–327.

[10] Montgomery, P. L., Speeding the Pollard and Elliptic Curve Methods of Factorization,
Maths. of Computation, Jan. 1987, 48 (177), pp. 243–264.

[11] Okeya, K., Kurumatani, H., and Sakurai K., Elliptic Curves with the Montgomery
Form and their Cryptographic Applications, Public Key Cryptography, LNCS 1751,
Springer-Verlag, 2000, pp. 238–257.

[12] Okeya, K., and Sakurai, K., Efficient Elliptic Curve Cryptosystems from a Scalar
Multiplication Algorithm with Recovery of the y-Coordinate on a Montgomery Form
Elliptic Curve, CHES 2001, LNCS 2162, Springer-Verlag, 2001, pp. 126–141.

[13] Walter, C. D., A Duality in Space Usage between Left-to-Right and Right-to-Left
Exponentiation, CT-RSA 2012, LNCS 7178, Springer-Verlag, 2012, pp. 84–97.

[14] Yao, A. C.-C., On the Evaluation of Powers, SIAM J. Comput., 1976, 5 (1), pp. 100–
103.

6

http://dx.doi.org/10.1109/49.223883
http://dx.doi.org/10.1109/49.223883
http://dx.doi.org/10.1007/3-540-45664-3_24
http://cr.yp.to/papers/pippenger.pdf
http://www.ams.org/journals/bull/1939-45-10/S0002-9904-1939-07068-7/
http://link.springer.com/chapter/10.1007%2F3-540-36400-5_22
http://dx.doi.org/10.1007/978-3-540-74735-2_10
http://dx.doi.org/10.1007/978-3-642-05445-7_22
http://dx.doi.org/10.1007/3-540-48059-5_27
http://dx.doi.org/10.1007/3-540-48059-5_27
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/
http://link.springer.com/chapter/10.1007%2F978-3-540-46588-1_17
http://link.springer.com/chapter/10.1007%2F978-3-540-46588-1_17
http://link.springer.com/chapter/10.1007%2F3-540-44709-1_12
http://link.springer.com/chapter/10.1007%2F3-540-44709-1_12
http://link.springer.com/chapter/10.1007%2F3-540-44709-1_12
http://link.springer.com/chapter/10.1007%2F978-3-642-27954-6_6
http://link.springer.com/chapter/10.1007%2F978-3-642-27954-6_6
https://www.ii.uni.wroc.pl/~aje/WordEq2015/papers/addition_chains_Yao.pdf

	Introduction
	Space Duality
	Two Montgomery Ladders
	A Revised Right-to-Left Algorithm
	The Dual Left-to-Right Algorithm
	Final Remarks
	Conclusion

