
Lightweight MDS Serial-type Matrices
with Minimal Fixed XOR Count

Dylan Toh1, Jacob Teo1, Khoongming Khoo2, and Siang Meng Sim3,?

1 NUS High School of Math and Science, Singapore
2 DSO National Laboratories, Singapore

kkhoongm@dso.org.sg
3 Nanyang Technological University, Singapore

ssim011@e.ntu.edu.sg

Abstract. Many block ciphers and hash functions require the diffusion
property of Maximum Distance Separable (MDS) matrices. Serial matri-
ces with the MDS property obtain a trade-off between area requirement
and clock cycle performance to meet the needs of lightweight cryptogra-
phy. In this paper, we propose a new class of serial-type matrices called
Diagonal-Serial Invertible (DSI) matrices with the sparse property. These
matrices have a fixed XOR count (contributed by the connecting XORs)
which is half that of existing matrices. We prove that for matrices of
order 4, our construction gives the matrix with the lowest possible fixed
XOR cost. We also introduce the Reversible Implementation (RI) prop-
erty, which allows the inverse matrix to be implemented using the similar
hardware resource as the forward matrix, even when the two matrices
have different finite field entries. This allows us to search for serial-type
matrices which are lightweight in both directions by just focusing on the
forward direction. We obtain MDS matrices which outperform existing
lightweight (involutory) matrices.

Keywords: MDS matrix, Serial matrix, lightweight cryptography, XOR
count

1 Introduction

Diffusion[1] is a key property of a secure cipher which refers to the propagation
of changes in the input to the entire output. In many ciphers, the diffusion
property is brought about by a linear diffusion matrix as part of a round function
component. Effectively, a modification of even a single bit in the input results
in drastic changes in the output, providing stronger defence against differential
and linear cryptanalysis attacks. Hence, matrices known as Maximum Distance
Separable (MDS) matrices are commonly used in ciphers [2–7] to maximise the
diffusion ability of the diffusion layer. They have the property that the diffusion
provided is optimal.

? Supported by the Singapore National Research Foundation Fellowship 2012 (NRF-
NRFF2012-06).

However, the guarantee of strong diffusion power often results in a high hard-
ware computation cost. Thus, it is necessary to find lightweight MDS matrices
that can be incorporated into ciphers while minimising hardware requirements
and maximising efficiency. However, due to the size of the search space it is im-
possible to perform a naive exhaustive search. Thus, various constructions [8–11]
have been studied in order to narrow the search space to obtain lightweight MDS
matrices. Other methods have also been proposed to increase overall efficiency.

One example is so-called serial matrices[5], which utilise a trade-off to reduce
hardware requirement while incurring additional time cost. These matrices have
the property that their k-th power is MDS (k-MDS), thus by applying the matrix
k times in a series of k clock cycles, diffusion ability can still be maximised.
[9] proposed the idea of cyclic matrices (generalisation of circulant matrices)
in a serial-based implementation to simulate serial matrix implementation and
to achieve low hardware cost. In both cases, the trade-off area (XOR count)
with throughput (number of clock cycles) is kind of balance and proportional,
reducing the XOR count by a factor of k while increasing the clock cycle by a
factor of k.

Very often, the search for lightweight diffusion matrix focused on the forward
direction and paid little attention to the implementation cost of the inverse ma-
trix (backward direction). Although there are scenarios like OFB, CFB and
counter mode which only requires the block cipher encryption to be lightweight,
in other cases where both encryption and decryption are required, such matrices
tends to pay a bit more for its inverse matrix. There are other works which at-
tempt to overcome this problem by considering involution (self-inverse) matrices
like in [8, 9, 11]. In this case, both the forward and backward direction will cost
the same. However, it often comes with a higher cost because of the involution
restriction.

In this work, we aim to search for new serial-type matrices which outperform
existing lightweight matrices and also have efficient implementation in both for-
ward and backward direction. This will be useful for constrained devices where
lightweight implementation is required but high throughput is not necessary.

Contributions. We propose a new class of serial-type matrices known as Diagonal-
Serial Invertible (DSI) matrices. This matrix is potentially k-MDS while main-
taining a low original weight, which can increase the probability of finding
lightweight matrices possessing the targeted properties. By introducing the sparse
condition for DSI matrices, we actually made a favourable trade-off between the
area and clock cycle; we reduced the XOR count by almost a factor of 2k at a
cost of k clock cycles.

We introduce the concept of Reversible Implementation (RI) property which
allows us to better understand the implementation of serial-type matrices. We
show that its implementation cost for the backward direction can be as low as the
forward direction, giving us the advantage of having efficient implementation for
both forward and backward directions. Because of this RI property, we can focus
our search on lightweight matrices in the forward direction without worrying its
inverse cost or to limit our search to involution matrices.

Our construction led us to finding new lightweight serial-type matrices, which
are lighter than existing diffusion matrices in serialised implementation.

Lastly, we prove for diffusion matrices of order 4 that our sparse DSI matrices
achieve the lowest possible fixed cost implementation. Meaning that there does
not exist other serial-type matrix construction that would be lighter than our
sparse DSI construction.

Organisation. We give the preliminaries in Section 2, introduce our new serial-
type matrix construction and its properties in Section 3. Next, we introduce
the concept of the RI property and describe how the implementation cost of
a diffusion matrix is evaluated in Section 4, and present our search results in
Section 5. Finally, we prove optimality for our sparse DSI matrix in Section 6
and end with our conclusion and some thoughts about future work in Section 7.

2 Preliminaries

In this section, we give a preliminary overview of concepts and definitions used
in the rest of the paper.

We denote by GF(2n) the finite field with 2n elements. It is isomorphic to
polynomials in GF(2)[X] modulo an irreducible polynomial p(X) of degree n.
The elements of GF(2n) may be written in two ways: in polynomial representa-
tion, bn−1X

n−1 + bn−2X
n−2 + ...+ b2X

2 + b1X+ b0 or in bitwise representation,
bn−1bn−2...b2b1b0, where bi ∈ GF(2). For example, in GF(28), the 8-bit string
11100001 corresponds to the polynomial X7 + X6 + X5 + 1, written 0xe1 in
hexadecimal.

The addition operation on GF(2n) is simply the bitwise XOR on the coeffi-
cients of the polynomial representation of the elements. The multiplication of two
elements is the modulo p(X) reduction of the product of the polynomial represen-
tations of the two elements. For simplicity, we append the irreducible polynomial
in hexadecimal form to the finite field. For instance, suppose p(X) = X4+X1+1
is the modulo reduction of the product of field elements in GF(24), we denote
the finite field as GF(24)/0x13.

Definition 1. [9] The branch number of a matrix M of order k over finite
field GF(2n) is the minimum number of nonzero components of the input vector
v and output vector u = M · v as we range over all nonzero v ∈ [GF(2n)]k.

Using matrices with high branch number for the diffusion layer of block
ciphers protect them against differential and linear cryptanalysis [12] (protecting
against the latter requires the transpose of the diffusion matrix instead to have
a high branch number).

Definition 2. [13] A maximum distance separable (MDS) matrix of order
k is a matrix that attains the optimal branch number k + 1.

Fixing the input vector to have only 1 nonzero element, the output vector will
have at best, all its k entries nonzero; therefore the branch number is bounded
above by k + 1.

Definition 3. A matrix of order k is q-MDS if it is MDS when raised to the
q-th power.

Such matrix is also known as recursive MDS matrix, but since we will be
discussing cases where q 6= k (see Section 6), we chose the notation q-MDS for
clearer indication of the number of iterations.

The following proposition is used to check if a matrix satisfies the MDS
property:

Proposition 1. [14] A matrix is MDS if and only if its square submatrices are
all nonsingular.

Corollary 1. [2] A matrix is MDS if and only if its transpose is also MDS.

This means that an MDS matrix can best defend against both differential
and linear cryptanalysis. We thus restrict our search to MDS matrices.

Proposition 2. [9] For any permutation matrices P and Q, the branch numbers
of these two matrices M and PMQ are the same.

This provides some symmetry in terms of general construction in the later
parts of the paper.

Proposition 3. The branch numbers of M and M−1 are the same for any in-
vertible matrix M .

Proof. There is a one-to-one correspondence between (input vector, output vec-
tor) ordered pairs (u, v) for multiplication with M (where v = Mu) and (input
vector, output vector) ordered pairs (v, u) for multiplication with M−1 (where
v = M−1u); therefore the branch numbers are consequently identical.

2.1 XOR count

The way to perceive and estimate the implementation cost of the diffusion layer
has evolved over time. It was a common belief that finite field elements with low
Hamming weight has lower hardware implementation cost. In 2014, the authors
of [15] proposed estimating the implementation cost by counting the number of
XOR gates (denoted as d-XOR [16]) needed to implement the field element from
its multiplication matrix4. They also showed that, unlike the common belief,
higher Hamming weight elements may also have low implementation cost. Several
work [9, 8, 11, 17] adopted this metric to estimate the implementation cost of
diffusion matrix.

An improved metric s-XOR [16], proposed by authors of [16] was introduced
to better gauge the implementation cost in practice. In this paper, we adopt this
new metric to calculate the implementation cost of the diffusion layer.

4 Note that this is not to be confused with the diffusion matrix.

Definition 4. [16] The s-XOR count of an element α in GF (2n)/p(X) (where
p(X) is the generator polynomial), is the minimum number of XOR operations
in the sequence of instructions for implementing the field element multiplication.

Example 1. [16] Given the finite field GF(23)/0xb, the multiplication of α = 7
seen as (1, 1, 1) ∈ [GF(2)]3 can be computed by:

(1, 1, 1)(b2, b1, b0) = (b2 ⊕ b0, b2 ⊕ b1, b1)⊕ (b1, b2 ⊕ b0, b2)⊕ (b2, b1, b0)

= (b1 ⊕ b0, b0, b2 ⊕ b1 ⊕ b0),

where (b2, b1, b0) is an arbitrary element of GF(23) ∼= (GF(2))3. Expressing the
same computation as a matrix multiplication, it rewrites as0 1 1

0 0 1
1 1 1

b2b1
b0

 =

 b1 ⊕ b0
b0

b2 ⊕ b1 ⊕ b0

 .
From the multiplication matrix, we can see that d-XOR(α) = 3 XOR count.

In practice, one can upward-rotate the input vector components, XOR the second
component to the first, followed by XORing the first component to the third to
obtain the same desired output. Therefore, we get s-XOR(α) = 2 < d-XOR(α).

In [16], the authors denoted it as s-XOR(α) to distinguish it from the metric
proposed in [15] which was denoted as d-XOR(α). Since we are adopting this
new metric (s-XOR), we simply use XOR(α) to be concise in this paper. In this
paper, we focus on the finite fields GF(24)/0x13 and GF(28)/0x1c3, where most
of the lightweight diffusion matrices are found. In Appendix B, we present the
XOR counts of these field elements obtained using methods described in [16].

2.2 Some MDS matrix constructions

There have been various constructions to search for lightweight MDS matrices
of different sizes, where the inverse is also lightweight for some of them. The
authors of [8] considered lightweight Hadamard matrices which have the desirable
property of being involutory (if the row sum is 1). This removes the ambiguity
of the elements of the inverse matrix, and in some implementation designs, save
on implementation cost (as the same circuit for matrix multiplication used in
encryption is reused in decryption). Hadamard matrices are only defined on
matrices with order a power of 2 where lightweight involutory and non-involutory
Hadamard matrices of order 4 and 8 have been found.

Cyclic matrices where each row is a same cyclic permutation of the row above
is used to construct lightweight matrices in [9]. In that paper, the authors con-
sidered the special case of left-circulant matrices where the permutation is a left
cyclic shift. Furthermore, it was proven that involutory left-circulant matrices do
not exist if the order is a power of 2. In [10], the authors constructed lightweight
left-circulant matrices by optimizing the implementation of the finite field mul-
tiplication, where they used the s-XOR metric (described in Section 2.1) and
optimal choice of finite field basis to reduce overall XOR count.

In some applications, cyclic matrices can be implemented in a serialized way
to trade-off throughput (number of clock cycles) with area (XOR count). This
is because the entries in each row is rearrangement of the previous row under
the same permutation. It is still an open problem if Hadamard matrices can be
serialized efficiently like cyclic matrices.

Such serialization implementation is inspired by serial matrices which were
first proposed in [5] as part of the PHOTON hash function. These matrices
of order k are MDS when raised to the k-th power, we denote such property
as k-MDS. This allows the designer to trade-off between lower hardware area
requirement and more clock cycles, where the serial matrix is reused k times,
once per clock cycle. In this paper, we shall explore this concept further and find
ways to construct lighter serial-type matrices.

3 Diagonal-Serial Invertible Matrices

First, let us recall the matrix structure of serial matrices. To distinguish it from
the other serial-type matrices that we studied in this paper, we shall call this
matrix a Linear Feedback Serial (LFS) matrix.

The LFS matrix LFS(z0, z1, ..., zk−1) from [5] is of specific interest in this
study. It’s expression is shown below:

LFS(z0, z1, ..., zk−1) =



0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
z0 z1 z2 z3 . . . zk−2 zk−1


Because LFS(z0, z1, ..., zk−1) corresponds to a Linear Feedback Shift Register
(LFSR) where the feedback taps are given by the last row of the matrix, hence
the name.

Properties of the LFS matrices have been investigated in [18], among which is
the lightweight expression of the inverse, LFS(z0, z1, ..., zk−1)−1. In particular,
the inverse matrix of a LFS matrix has the following form:

LFS(z0, z1, ..., zk−1)−1 =



z1
z0

z2
z0

z3
z0
. . . zk−2

z0

zk−1

z0
1
z0

1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0


From this expression, the authors of [18] concluded that if z0 = 1, then both a
LFS matrix and its inverse has the same finite field entries z1, z2, . . . , zk−1 which
will lead to both matrices requiring the same hardware resource to implement.
We shall show later in the paper a new technique that allows us to implement
LFS matrix and its inverse with the same hardware resources even when z0 6= 1.

3.1 Diagonal-Serial Invertible (DSI) matrix

Definition 5. A Diagonal-Serial Invertible (DSI) matrix A = (Aij)1≤i,j≤k ∈
[GF (2n)]k×k, is determined by 2 vectors, a = (ai)1≤i≤k ∈ [GF (2n)\{0}]k and
b = (bi)1≤i≤k−1 ∈ [GF (2n)]k−1, as follows:

Aij =


a1, i = 1, j = k

ai, i = j + 1

bi, i = j ≤ k − 1

0, otherwise.

Example 2. The general DSI matrix A = DSI(a,b) for k = 6 is the following:

A =


b1 0 0 0 0 a1
a2 b2 0 0 0 0
0 a3 b3 0 0 0
0 0 a4 b4 0 0
0 0 0 a5 b5 0
0 0 0 0 a6 0


The above design is motivated by the LFS(z0, z1, ..., zk−1) matrix construc-

tion. Keeping to the structure of a permutation matrix, the underlying intuition
is that pairwise linear combinations of rows will provide a higher diffusion power.
We will first prove some elementary properties of the DSI matrix:

Theorem 1. Every DSI matrix A = DSI(a,b) is invertible.

Proof. We have det(A) = A1k · det(M1k) = a1 · det(M1k) by cofactor expansion
along the rightmost column (where M1k is the matrix formed by removing the
topmost row and rightmost column); M1k is upper triangular thus its deter-
minant is simply the product of its diagonal entries, det(M1k) = a2a3a4 . . . ak.
Therefore det(A) = a1a2a3 . . . ak 6= 0 (∀i, ai 6= 0) and A is invertible.

To express the k-th power of the general DSI matrix A = DSI(a,b), we view
it as a weighted adjacency matrix to a directed graph with vertices labeled 1 to
k (Aij is the weight of the directed edge from vertex i to vertex j). Then for any
q ∈ N, we have:

(Aq)ij =
∑

length q paths from i to j

(product of all weights along the path)

with the sum taken over all all paths of length q from vertex i to vertex j. In
the above expression, we note that an edge with weight 0 will never contribute
to the sum; therefore edges with weight 0 may be added or removed without
consequence.

For the ease of notation, we denote bk = 0, and
Pi({s1, s2, . . . , s|S|}) =

∑
p1+p2+···+p|S|=i; pj≥0

sp1

1 s
p2

2 . . . s
p|S|
|S| ; then we have, for a

general DSI matrix A:

(Ak)ij =



Pi−j({bt|t ∈ {j, . . . , i}) ·
∏

u∈{j−1,...,i}
au, i > j

bki +
k∏

u=1
au, i = j

Pj−i({bt|t ∈ {1, . . . , i} ∪ {j, . . . , k}) ·
∏

u∈{1,...,i}∪{j+1,...,k}
au, i < j

(1)

The expressions above are obtained by drawing the associated graph, with
vertices 1 to k arranged anticlockwise in a circle; the edge weighted ai points
clockwise from vertex i to vertex i−1 (mod k), while the edge weighted bi points
from vertex i to itself. For i 6= j, a path of length k from vertex i to vertex j must
take the path through the j − i (mod k) clockwise edges i → i − 1 → · · · → j,
while passing through any i − j (mod k) self-pointing edges along the way. A
path of length k from vertex i to itself, on the other hand, may be the one
passing through all clockwise edges i → i − 1 → · · · → i, or the path obtained
by traversing the self-pointing edge i→ i for k times.

The graph also illustrates the symmetry of the matrix; the vertices may
be relabeled 1 through k still in an anticlockwise fashion but starting at an
arbitrary vertex, which will shift the bk = Akk = 0 element to another element
along the main diagonal of the matrix. Note the similarity with Proposition 2,
taking Q−1 = P = (the permutation matrix corresponding to the permutation
of vertices as described).

Example 3. The DSI matrix A = DSI(a,b) of order 4 is expressed below to-
gether with its associated graph, shown in Figure 1, of which it is the weighted
adjacency matrix:

A =


b1 0 0 a1
a2 b2 0 0
0 a3 b3 0
0 0 a4 0


Note that there is no self-pointing edge on vertex 4 because b4 = 0. The

fourth power can thus be expressed as shown below:

A4 =


b41 + a1a4a3a2 P1({b1, b3, b2})a1a4a3 P2({b1, b3})a1a4 P3({b1})a1
P3({b2, b1})a2 b42 + a2a1a4a3 P1({b2, b1, b3})a2a1a4 P2({b2, b1})a2a1

P2({b3, b2, b1})a3a2 P3({b3, b2})a3 b43 + a3a2a1a4 P1({b3, b2, b1})a3a2a1
P1({b3, b2, b1})a4a3a2 P2({b3, b2})a4a3 P3({b3})a4 a4a3a2a1

.

We also reach the following result:

Fig. 1: Weighted adjacency graph associated with DSI matrix of order 4

1

2 3

4a1

a2

a3

a4

b1

b2 b3

Theorem 2. Given DSI matrix A of order k, k is the minimum power of A for
all entries to have a nonzero algebraic expression (and thus possibly MDS).

Proof. The shortest path from vertex k to itself is the clockwise path passing
through all vertices, k → k − 1 → k − 2 → · · · → 1 → k, of length k, therefore
(Ai)kk = 0 for all i < k. The algebraic expression of all coefficients of Ak have
been evaluated above in (1).

3.2 Sparse DSI matrix

However, for the DSI construction, pairwise linear combination of rows would
generate maximum diffusion power with inherent redundancy! We can possibly
further reduce the number of nonzero entries and consequently lower the fixed
cost, as proposed in the following subclass of DSI matrices:

Definition 6. A DSI matrix A = DSI(a,b) of order k is sparse if b satisfies:{
b2 = b4 = b6 = · · · = bk−2 = 0, if k is even

b2 = b4 = b6 = · · · = bk−3 = 0, if k is odd

Example 4. An example of sparse DSI matrix of order 4 and 5, denoted as A4

and A5 respectively.

A4 =


b1 0 0 a1
a2 0 0 0
0 a3 b3 0
0 0 a4 0

 , A5 =


b1 0 0 0 a1
a2 0 0 0 0
0 a3 b3 0 0
0 0 a4 b4 0
0 0 0 a5 0

 .

Although sparse DSI matrices do have lesser nonzero entries, a natural ques-
tion to ask is whether sparse DSI matrices of order k can potentially be k-MDS.
Extending the result from Theorem 2, we have the following corollary.

Corollary 2. Sparse DSI matrices can potentially be k-MDS.

Proof. By Definition 5, all the ai’s are nonzero. For each appearance of Pi(S) in
(1), we want to ensure that there exists nonzero term in the set S. For the case
i > j, S contains at least two consecutive elements bj , bj+1 , of which at least one
term is not set to 0. For the case i < j, S always contains b1 which is nonzero.
Thus each appearance of Pi(S) is a nonzero algebraic expression; therefore the
algebraic expressions of all entries of Ak are still nonzero for a sparse DSI matrix
A.

In fact, if DSI matrix A has 2 consecutive elements bj , bj+1 (with consecutive
indices modulo k) with both equal to 0, it follows from (1) that (Ak)(j+1)j =

Pk−1({bj+1, bj})aj+1 = 0 and Ak cannot possibly be MDS; therefore the sparse
restriction to the general DSI matrix sets the most number of entries in b to 0
while still allowing the possibility of Ak being MDS.

In [19], the authors proposed a new serial-type construction based on Type-II
Generalized Feistel Structure (GFS). Although this matrix type is similar to our
sparse DSI matrix, it is fundamentally different from ours, detailed in Section 6.

4 RI Property and Serial-type Matrices

In this section, we introduce a property called the Reversible Implementation
(RI) which allows us to understand more about the implementation of serial-
type matrices and their inverse. Next, we describe how the implementation cost
of the serial-type matrices and their inverse are computed.

4.1 Reversible Implementation (RI) Property

Definition 7. Given some set of objects S, a function f : Sn → Sn has the Re-
versible Implementation (RI) property if there exists a sequence of trans-
formations whereby each transformation is either a permutation of the n-tuple
components, involution (self-inverse), or the transformation itself has the RI
property. Such sequence of transformations is also called the RI sequence.

Proposition 4. If a function f has a RI sequence, then there exists an imple-
mentation of the inverse function f−1 that has the same implementation cost as
the RI sequence.

Proof. Given a RI sequence, we construct a sequence of transformations to imple-
ment the inverse function with the same implementation cost as the RI sequence.
First, we reverse the entire sequence of transformations, that is starting from the
last transformation of the RI sequence. If a transformation is some permutation
of the n-tuple components, we implement the inverse permutation on the com-
ponents. Since permutation is simply rewiring of the circuit in hardware, it is
basically free. If a transformation is involution, we apply the exact same trans-
formation with the same implementation cost. If a transformation has the RI
property, it has some RI sequence of its own and we can recursively implement
its inverse with the same implementation cost.

Example 5. The field multiplication of 7 ∈ GF(23)/0xb has the RI property as
we can see from Example 1, the sequence of transformation:

1. upward-rotate the input vector components,
2. XOR the second component to the first component,
3. XOR the first component to the third component,

is a RI sequence since it consists of permutation and XOR instructions that
are involutions. The inverse of this field multiplication can be implemented as
follows:

1. XOR the first component to the third component,
2. XOR the second component to the first component,
3. downward-rotate the input vector components,

and it has the same implementation cost of 2 XORs as element 7.

In fact, under the s-XOR metric introduced in [16], we can conveniently
conclude that any nonzero finite field element has the RI property and its inverse
has the same XOR count as itself 5.

It is to note that this RI property is different from a function being involu-
tion. While being involution means the same circuit could be reused for forward
and backward implementation at a cost of some multiplexers, more multiplexers
might be needed to reuse the RI sequence circuit in the reverse order. Instead of
reusing of circuit, our RI property is useful for identifying the implementation
of the inverse requires the similar hardware resources.

4.2 RI Property in Serial-type Matrices

The sparse matrix structure of serial-type matrices allows us to analyse the
sequence of transformations easily. We illustrate the implementation sequence of
the two serial-type matrices of order 4 in Figure 2, which can also be generalised
to any order k. One can observe that both LFS and DSI matrices have the RI
property.

Previous, it was believed that LFS matrix has the same implementation
cost for both forward and backward implementation only when z0 = 1 [18].
However, knowing that field element multiplications have the RI property, the
implementation cost of z0 is actually the same as its inverse z−10 . Therefore,
LFS matrix has the same implementation cost for both forward and backward
direction for any nonzero z0.

Similar argument holds for DSI matrix. One can implement the inverse of
DSI matrix by first updating the last component with field multiplication a−1k ,
which as the same implementation cost as ak. Next, multiply the last component
with bk−1 and XOR it to the second last component. Repeat these process until
the first component. Update the first component with a−11 and finally upward-
rotate the components to obtain the final output vector. The entire process has
the same implementation cost as the forward DSI matrix implementation.

5 This observation has also been pointed out in [10].

(a) Circuit of LFS matrix. (b) Circuit of DSI matrix.

Fig. 2: Circuit of LFS and DSI matrices of order 4.

4.3 Evaluating the implementation cost of Serial-type Matrices

For round-based MDS matrices, a direct consequence of Proposition 1 is that
all entries have to be nonzero. Thus, the conventional way of estimating the
implementation cost of an MDS matrix over GF(2n) is to take the sum of the
implementation cost of all nonzero field multiplications (so-called the variable
cost), and add (k−1) many n-bit XOR count for each row to generate the output
components (so-called the fixed cost).

Things are a bit different for serial-type k-MDS matrices, there can be zero
entries in the matrix, thus the fixed cost for each row is 1 less than the number
of nonzero entries many n-bit XOR count. For the variable cost, we can apply a
small technique to save some implementation cost of the field multiplication for
some special cases.

Take DSI matrix of order 4 as an example, notice that if b1 = a2, we can
rearrange the order of the field multiplication and the XOR operation so that we
only need to compute one field multiplication and not both b1 and a2 separately,
as shown in Figure 3a. Thus, we only count the implementation cost of bi when
it is not equal to ai+1.

Similar strategy can be applied to LFS matrices, when there are multiple
zi’s of the same field element, we can first XOR these branches together before
applying a single field multiplication, then XOR to the last component, Figure 3b
illustrates an example of LFS matrix of order 4. Therefore, we only need to count
the implementation cost of the distinct zi’s in the last row.

Table 1 shows the formula for computing the implementation cost of the
entire matrix for various matrices.

While such trick can be applied to serial-type matrices, it is non-trivial to
apply it to other types of matrices like Hadamard or circulant matrices. Thus, it
remains an open question if similar trick can be applied to other matrices too.

(a) Special case of DSI matrix. (b) Special case of LFS matrix.

Fig. 3: Saving implementation cost for serial-type matrices.

Table 1: Total XOR count of various matrices
matrices of order k (over GF (2n)) XOR count of the entire matrix

Cyclic k ·
∑

XOR(ci) + k · (k − 1) · n
Hadamard k ·

∑
XOR(hi) + k · (k − 1) · n

LFS
∑

zi|∀j<i,zi 6=zj
XOR(zi) + (k − 1) · n

Sparse DSI
∑

XOR(ai) +
∑

bi 6=ai+1
XOR(bi) + dk/2e · n

where ci’s (resp. hi’s) are the entries in a row of cyclic (resp. Hadamard) matrix.

5 Main Results

In this section, we present new serial-type k-MDS matrices which have lower
XOR count than previously known MDS/k-MDS matrices. To obtain lightweight
matrices, we searched through k×k sparse DSI and LFS matrices over the finite
field GF (28) defined by the irreducible polynomial 0x1c3 for 4 ≤ k ≤ 8. To
check if a matrix is k-MDS, we raise the matrix to power of k and recursively
check that each submatrix is non-singular. Once a submatrix is singular, we exit
prematurely and move on to the next candidate. Else, this candidate would be
a k-MDS matrix.Besides searching directly in GF(28), we also use the subfield
construction [15, Section 7.2] where we search over GF(24) defined by the irre-
ducible polynomial 0x13, and interleave two copies to obtain a diffusion matrix
with the same branch number over GF(28). The search can be completed rela-
tively fast on a personal laptop from a few minutes when k = 4 to a few hours
when k = 7. The lightweight sparse DSI and LFS k-MDS matrices, denoted by
Dk,n and Lk,n respectively, found are listed in Appendix A.

We reiterate that we are considering scenario where lightweight implementa-
tion is required but high throughput is not necessary. That is, we do a tradeoff
for lower area at the cost of higher clock cycles. For serial-type matrices, such
tradeoff is natural and the implementation cost is the XOR count of the entire
matrix. For cyclic matrices, for instance circulant/left-circulant matrices, it can
be implemented in a serialized manner by implementing one row of the matrix
and reusing the same row [9]. Although it is non-trivial to implement Hadamard

matrices in a serialized manner, we give the benefit of the doubt and assume
that it can be done too. Therefore, we compare these round-based matrices by
the XOR count for one of its row, see Table 2. Note that we are considering only
the implementation cost of the matrix, the cost of multiplexer is out of the scope
of our discussion.

Table 2: XOR count of various serialized matrices
matrices of order k (over GF (2n)) XOR count

Cyclic
∑

XOR(ci) + (k − 1) · n
Hadamard

∑
XOR(hi) + (k − 1) · n

LFS
∑

zi|∀j<i,zi 6=zj
XOR(zi) + (k − 1) · n

Sparse DSI
∑

XOR(ai) +
∑

bi 6=ai+1
XOR(bi) + dk/2e · n

where ci’s (resp. hi’s) are the entries in a row of cyclic (resp. Hadamard) matrix.

For fair comparison, we recalculated the implementation cost of the existing
matrices under the same metric (s-XOR) as ours when possible. In Table 3
(resp. Table 4), we compare serialized MDS matrices and k-MDS serial-type
matrices of order 4 ≤ k ≤ 8 over GF(24) (resp. GF(28)) in both the forward and
backward direction. In particular, we compare the DSI and LFS matrices that
we found with circulant [11], left-circulant [9, 10], Hadamard [8] and LFS [5, 15]
matrices. One may also consider unrolling DSI/LFS matrices to simulate round-
based matrices for comparison with cyclic/Hadamard matrices in a round-based
implementation scenario. That is to implement k copies of DSI/LFS matrices in
series to achieve the MDS property in one clock cycle. The XOR count of all the
matrices would simply be k times of what the tables have shown.

For the entries of the diffusion matrix, some literature considered invertible
binary matrices rather than the finite field elements, for those cases, we indicate
the entry type as GL(n,GF(2)).

5.1 Comparing Matrices where n = 4

We ran our search on both sparse DSI and LFS k-MDS matrices of order 4 ≤
k ≤ 8 over GF(24)/0x13. The results are summarised in Table 3.

Although we could not find sparse DSI k-MDS matrices of order higher than
4, we would like to point out that this is quite common even for other matrix
types due to the small field size. As we can see in Table 3 that there are lesser
matrices that we can compare as the matrix size increases.

For circulant matrices from [11] and serial-type matrices from [19], the entries
of the matrix are non-singular binary matrices of order n. In [10], the irreducible
polynomial is not defined. Therefore, it is unclear how we can obtain the inverse
of those matrices.

Besides obtaining the same LFS matrix as [5] for k = 5, we found new
lightweight serial-type k-MDS matrices that outperform or match the existing

Table 3: Comparison of MDS/k-MDS matrices for n = 4
k Matrix Type Field/Ring Forward Backward Reference

4 Hadamard GF(24)/0x13 17 19 [8]
4 Involutory Hadamard GF(24)/0x13 17 17 [8]
4 Involutory Circulant GL(4, GF (2)) 17 17 [11]
4 Left-circulant GF(24) 15 − [10]
4 Circulant GL(4, GF (2)) 15 − [11]
4 Left-circulant GF(24)/0x13 15 29 [9]
4 LFS GL(4, GF (2)) 15 - [19]
4 LFS GF(24)/0x13 15 15 [15]
4 GFS GL(4, GF (2)) 10 - [19]
4 Sparse DSI D4,4 GF(24)/0x13 10 10 This Paper

5 IMDS left-circulant GF(24)/0x13 27 27 [9]
5 Left-circulant GF(24) 24 − [10]
5 Left-circulant GF(24)/0x13 20 26 [9]
5 LFS GL(4, GF (2)) 19 - [19]
5 LFS A100 GF(24)/0x13 18 18 [5]
5 LFS L5,4 GF(24)/0x13 18 18 This Paper, A100

6 Left-circulant GF(24)/0x13 30 40 [9]
6 LFS A144 GF(24)/0x13 28 28 [5]
6 LFS GL(4, GF (2)) 25 - [19]
6 LFS L6,4 GF(24)/0x13 25 25 This Paper

7 LFS A196 GF(24)/0x13 31 31 [5]
7 LFS GL(4, GF (2)) 30 - [19]
7 LFS L7,4 GF(24)/0x13 30 30 This Paper

8 Involutory Hadamard GF(24)/0x13 53 53 [8]
8 Hadamard GF(24)/0x13 48 56 [8]
8 LFS A256 GF(24)/0x13 47 47 [5]
8 LFS GF(24)/0x13 41 41 [15]
8 LFS GL(4, GF (2)) 37 - [19]
8 LFS L8,4 GF(24)/0x13 36 36 This Paper

lightweight matrices. Although the improvement margin may seem small, it is
to note that we are comparing with the state-of-the-art lightweight diffusion
matrices and it is non-trivial to outperform any of them. For matrices over
GF(24), the room for improvement is very small due to the small field size, one
can see larger improvements for matrices over GF(28) in the next section.

5.2 Comparing Matrices where n = 8

In addition to running our search on both sparse DSI and LFS k-MDS matrices
of order 4 ≤ k ≤ 8 over GF(28)/0x1c3, we also considered the subfield con-
struction [15, Section 7.2] where we use 2 copies of the serial-type matrices over

GF(24)/0x13, denoted by [·]2, hence doubling the XOR count6. The results are
summarised in Table 4.

Table 4: Comparison of MDS/k-MDS matrices for n = 8
k Matrix Type Field/Ring Forward Backward Reference

4 Hadamard [GF(24)/0x13]2 2× 17 2× 19 [8]
4 Involutory Hadamard [GF(24)/0x13]2 2× 17 2× 17 [8]
4 Involutory Circulant GL(8, GF (2)) 33 33 [11]
4 LFS GF(28)/0x11d 33 33 [15]
4 Left-circulant GF(28)/0x1c3 31 75 [9]
4 Left-circulant GF(28) 30 - [10]
4 Circulant GL(8, GF (2)) 27 - [11]
4 LFS GL(8, GF (2)) 27 - [19]
4 Sparse DSI D4,8 GF(28)/0x1c3 22 22 This Paper
4 Sparse DSI [D4,4]2 [GF(24)/0x13]2 2× 10 2× 10 This Paper
4 GFS GL(8, GF (2)) 18 - [19]

5 IMDS left-circulant GF(28)/0x165 65 65 [9]
5 Left-circulant GF(28)/0x1c3 42 90 [9]
5 Left-circulant GF(28) 40 - [10]
5 LFS GL(8, GF (2)) 35 - [19]
5 Sparse DSI D5,8 GF(28)/0x1c3 31 31 This Paper

6 IMDS left-circulant GF(28)/0x165 77 77 [9]
6 LFS A288 GF(28)/0x11b 57 57 [5]
6 Left-circulant GF(28)/0x1c3 55 115 [9]
6 Left-circulant GF(28) 54 - [10]
6 LFS GL(8, GF (2)) 45 - [19]
6 GFS GF(28) ≥ 42 - [19]
6 Sparse DSI D6,8 GF(28)/0x1c3 31 31 This Paper

7 IMDS left-circulant GF(28)/0x139 107 107 [9]
7 Left-circulant GF(28)/0x1c3 66 120 [9]
7 Left-circulant GF(28) 64 - [10]
7 LFS GL(8, GF (2)) 54 - [19]
7 Sparse DSI D7,8 GF(28)/0x1c3 54 54 This Paper

8 Involutory Hadamard GF(28)/0x1c3 96 96 [8]
8 Hadamard GF(28)/0x1c3 88 179 [8]
8 Left-circulant GF(28) 82 - [10]
8 Left-circulant GF(28)/0x1c3 80 160 [9]
8 LFS [L8,4]2 [GF(24)/0x13]2 2× 36 2× 36 This Paper
8 LFS GL(8, GF (2)) 65 - [19]

Similar to the case n = 4, it is unclear how the inverse of the matrices
from [11, 19, 10] are obtained.

6 We can multiply the XOR counts of all matrices in Table 3 by 2 to get matrices over
GF(28) but we do not include most of them in Table 4 to prevent congestion. But we
can easily see that the best (sparse DSI) matrices we get directly from GF(28)/0x1c3
do outperform 2 copies of the best matrices over GF(24) for 5 ≤ k ≤ 7.

For 5 ≤ k ≤ 7, we found sparse DSI matrices that outperform existing
lightweight matrices in both forward and backward direction. For k = 6, the
authors of [19] pointed out that there exists 6-MDS GFS matrix over finite field
without giving an actual example, assuming that it can be constructed with some
field element with the least XOR count 3, we obtain, at best, an estimation of
XOR count 42.

When k = 8, the search space for sparse DSI and LFS matrices are too large
to cover and we have not found a k-MDS matrix yet. Similar problem was faced
by the authors of [15] when they search for LFS matrices. Nevertheless, we can
construct a competitive candidate matrix from L8,4 using subfield construction.

Although we did not outperform the matrices from [19] for the case k = 4, 8,
it is to note that the choice of matrix entry is different. While it is possible to
search for lightweight DSI matrices over invertible binary matrices, it requires
very different search strategy and it is beyond the scope of our work.

Notice that for non-involution round-based matrices, its inverse could be sig-
nificantly larger. However for serial-type matrices, we do not have such problem
thanks to the RI property. Thus, when the implementation of the backward
direction is required, our matrices are more favourable.

6 Advantage of Sparse DSI Matrix

In this section, we look at the reasons behind why sparse DSI matrices tend
to yield better results than other matrix types like Hadamard, cyclic and LFS
matrices. In addition, we prove that sparse DSI matrix of order 4 has the lowest
possible fixed XOR count. Since diffusion matrix of order 4 is probably the most
common used matrix size for the diffusion layer, sparse DSI matrix is a great
candidate for designing lightweight ciphers.

6.1 Reducing the fixed XOR count

The biggest limitation to MDS matrix was the fixed XOR cost. For matrices like
Hadamard or cyclic matrices, a necessary condition for a matrix to be MDS is
not to have any zero entries. This means that for each row of the matrix, there
are up to k finite field multiplications as variable cost (some may be element 1
which is free), and these k components have to be summed together, incurring
a fixed cost of (k − 1) · n XOR count.

While most of the existing work focused on reducing the variable cost by
considering various type of matrix structure, LFS matrix was introduced as a
trade-off between hardware implementation cost and clock cycle. However, the
fixed cost in the last row of the LFS matrix remains the same as we can see from
the following:

Theorem 3. If matrix LFS(z0, z1, ..., zk−1)k is MDS, then zi 6= 0 for all i.

Proof. Let matrix M = Serial(z0, z1, ..., zk−1) be the weighted adjacency matrix
to directed graph G (with vertices correspondingly labeled 1 to k, and Mij being

the weight of the directed edge i → j). This graph will have edges i → i + 1
of weight 1 for i = 1, 2, 3, ..., k − 1, as well as edges k → i of weight zi−1 for
i = 1, 2, 3, ..., k. Figure 4 shows an example of a LFS matrix of order 4.

Fig. 4: Weighted adjacency graph associated with LFS matrix of order 4

1

2 3

4

1

1

1

z0

z1 z2

z3

Thus for each a = 1, 2, 3, ..., k, the only path of length k from vertex 1 to
vertex a is the path 1→ 2→ 3→ 4→ ...→ k → a. Thus (Mk)1a = 1k−1 ·za−1 =
za−1.

If Mk is MDS, then all its elements are nonzero; it follows directly that zi 6= 0
for all i.

This means that the fixed cost of a LFS k-MDS matrix is necessarily (k −
1) · n, similar to the fixed cost of a row of MDS Hadamard or cyclic matrix.
However, we managed to overcome this limitation by using sparse DSI matrix.
The fundamental reason is that sparse DSI matrix can have lesser connecting
XORs than other existing matrix structures while still be potentially k-MDS.

As we can see from Table 2, the fixed XOR count of a sparse DSI matrix (con-
tributed by the connecting XORs independent of the choice of matrix entries) is
approximately half that of cyclic, Hadamard and LFS matrices. Although there
are more ai and bi entries in a DSI matrix than in a row of the other matrices,
the overall XOR count is greatly compensated by the fact that the fixed XOR
count is halved. This is especially so if we can keep the XOR count of ai and
bi down by choosing them to be 1 or other very lightweight elements. As an
example, the lightest sparse DSI k-MDS matrix we found for n = 8 and k = 6
has a total XOR count of 31, this is already less than the fixed XOR count of
cyclic, Hadamard and LFS matrices which is (6−1) ·8 = 40. Therefore when we
search for lightweight sparse DSI or LFS k-MDS matrices, if we find sparse DSI
k-MDS matrix that has XOR count lesser than the fixed cost of LFS matrices,
we do not have to run our search on LFS matrices in hope for finding lighter
matrices.

In comparison with GFS matrix. While it seems that sparse DSI matrix is
similar to GFS matrix proposed in [19], sparse DSI matrix has two advantages

over GFS matrix. Firstly, GFS matrix only exists for even order while our DSI
matrix exists for all sizes, thus we can achieve improvements on some parame-
ters that was not achievable by GFS matrix. Secondly, the technique mentioned
in Section 4.3 could not be applied to GFS matrix due to the nature of its
construction, thus losing the advantage that LFS and DSI matrices have.

6.2 Optimal Serial-type matrix of order 4

It is natural to wonder if it is possible to achieve even lower fixed cost by con-
sidering other serial-type matrix structure. Here, we prove that it is not possible
for serial-type matrices of order 4. Before that, we state some lemmas that are
useful for our proof.

Lemma 1. If diffusion matrix of order k is MDS, then for every component ui
of the output vector u ∈ [GF(2n)]k, it is some linear combination of all the input
components vi’s.

Proof. Suppose there is an output component uy that is a linear combination

of all input components except vx. I.e. uy =
∑k

i=1 ai · vi, where ai ∈ GF (2n)
and ax = 0. An input vector with all components zero except vx nonzero has an
output vector with at most k − 1 nonzero components (since uy is zero), which
contradicts that the diffusion matrix is MDS.

Using Lemma 1, we can have the following necessary condition for a serial-
type matrices.

1. A necessary condition for serial-type matrices to be MDS when raised to
some power q is that every output components is some linear combination
of all the input components after q iterations.

The following is an special case of Proposition 2 for serial-type matrices.

Lemma 2. For any permutation matrices P , the branch numbers of these two
matrices M and P−1MP are the same when raised to some power q.

Proof. When raised to the power of q, we have Mq and P−1MqP . By Proposi-
tion 2, they have the same branch number.

For sparse DSI matrices of order 4 over GF (2n), there are 2 rows with 2
nonzero components, meaning there is a fixed cost of 2n XOR count. To achieve
lower fixed cost, one has to consider some serial-type matrix structure with only 1
row with 2 nonzero components, denoted as One XOR Serial (OXS) matrices. In
addition, when raised to the power of q ≤ 8, OXS matrices have to be potentially
MDS7.

In a nutshell, we want to prove the following theorem:

7 Given that sparse DSI matrices of order 4 can be 4-MDS, having q > 8 would be a
bad trade-off between area and clock cycle.

Theorem 4. There does not exist OXS matrix of order 4 that is q-MDS, where
q ≤ 8.

Proof. As seen in Section 4.2, serial-type matrices can be described as some bit
permutation followed by an XOR layer. Without loss of generality, we consider
the general circuit structure of OXS matrices as in Figure 5a.
Among the 4! possible bit permutations, there are only two permutations that
satisfy Condition 1 when q ≤ 8, namely (1 2 3 4)8 and (1 2 4 3). Note that they
are related by permutation P = (3 4), as shown in the following:

b 0 0 a
c 0 0 0
0 d 0 0
0 0 e 0

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



∗ 0 ∗ 0
∗ 0 0 0
0 0 0 ∗
0 ∗ 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

where ∗ is nonzero entry.
By Lemma 2, they have the same branch number. Therefore, we only need to
analyse the first permutation, see Figure 5b for the circuit.

(a) General structure of OXS matrix. (b) (1 2 3 4) OXS matrix.

Fig. 5: OXS matrix circuit structure, where P is bit permutation and a, b, c, d,
e are field multiplications.

To show that it is not q-MDS where q ≤ 8, we show that there exists some
nonzero input and output vectors pair which has at most 4 nonzero components.
The vectors are expressed in terms of the nonzero entries of the OXS matrix.
For q ≤ 7, consider the input vector (0, 1, b−1d, 0)T . The resultant vectors after
each iteration are

0
1

b−1d
0

 −−→i=1


0
0
d

b−1de

 −−→i=2


ab−1de

0
0
de

 −−→i=3


0
∗
0
0

 −−→i=4


0
0
∗
0

 −−→i=5


0
0
0
∗

 −−→i=6


∗
0
0
0

 −−→i=7


∗
∗
0
0

.

8 (1 2 3 4) is a cycle permutation expression, where the component in the 1st position
goes to 2nd position, 2nd to 3rd, 3rd to 4th, and finally the component in the last
position goes to the 1st position.

By Definition 1, it is not MDS when raised to the power of up to 7.
For q = 8, consider the input vector

(0, a−2b−1c−1d−2e−2 + a−3b3c−2d−3e−3, a−3b2c−2d−2e−3, 0)T .

The resultant vectors after each iteration are
0

a−2(bc)−1(de)−2 + a−3b3c−2(de)−3

a−3b2(cd)−2e−3

0

 −−→i=1


0
0

a−2(bcd)−1e−2 + a−3b3(cd)−2e−3

a−3b2(cde)−2



−−→
i=2


a−2b2(cde)−2

0
0

a−2(bcde)−1 + a−3b3(cde)−2

 −−→i=3


(abcde)−1

a−2b2c−1(de)−2

0
0

 −−→i=4


(acde)−1

(abde)−1

a−2b2(cd)−1e−2

0



−−→
i=5


a−1b(cde)−1

(ade)−1

(abe)−1

a−2b2(cde)−1

 −−→i=6


0

a−1b(de)−1

(ae)−1

(ab)−1

 −−→i=7


b−1

0
a−1be−1

a−1

 −−→i=8


0

b−1c
0

a−1b


By Definition 1, it is not MDS when raised to the power of 8.

This concludes that our sparse DSI of order 4 has the least fixed XOR count.

7 Conclusion and Future Work

7.1 Conclusion

In this paper, we have proposed a new class of matrices, DSI matrices, and
presented several properties and results of these matrices. We also proposed
a specific form of DSI matrices, in particular sparse DSI matrices, that have a
favourable trade-off of area with throughput (we gain more reduction in hardware
area than the increment in the clock cycle).

Using the newly introduced RI property, we can show that the inverse of
the serial-type matrices can be of the same cost as the forward direction. This is
particularly useful for scenarios where the decryption process is needed as one do
not have to pay more for implementing the backward direction of the diffusion
matrix.

We presented new lightweight sparse DSI and LFS k-MDS matrices that out-
perform existing lightweight matrices. Not only do our matrices perform better
in forward direction, we have an advantage in the backward direction where the
implementation cost of our inverse matrix is equally lightweight.

Lastly, we proved that for diffusion matrices of order 4, our sparse DSI ma-
trices has the least fixed XOR count, thus closing the search for lower fixed XOR
count for matrices of order 4.

7.2 Future work

In the future, we aim to further optimise the search for higher-order sparse DSI
k-MDS matrices. It is still an open problem whether such a matrix exists but if it
does, we think it will be competitive against existing MDS matrix construction
by virtue of having a lower fixed XOR count. Another direction is to search for
DSI matrix with invertible binary matrices as entries, which might yield better
results.

We also aim to find minimal fixed XOR count for serial-type matrix structure
of higher order. We believe that sparse DSI matrices might also be the least fixed
cost serial-type matrices for order larger than 4.

References

1. C. E. Shannon, “Communication theory of secrecy systems,” Bell system technical
journal, vol. 28, no. 4, pp. 656–715, 1949.

2. J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Information Security and Cryptography, Springer, 2002.

3. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita,
“Camellia: A 128-bit block cipher suitable for multiple platforms - design and
analysis,” in Selected Areas in Cryptography, 7th Annual International Workshop,
SAC 2000, Waterloo, Ontario, Canada, August 14-15, 2000, Proceedings, pp. 39–
56, 2000.

4. J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw, “The LED Block Cipher,”
in CHES, pp. 326–341, 2011.

5. J. Guo, T. Peyrin, and A. Poschmann, The PHOTON Family of Lightweight Hash
Functions, pp. 222–239. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

6. P. S. L. M. Barreto and V. Rijmen, “Whirlpool,” in Encyclopedia of Cryptography
and Security (2nd Ed.), pp. 1384–1385, 2011.

7. P. Barreto and V. Rijmen, “The Anubis Block Cipher.” Submission to the NESSIE
Project, 2000.

8. S. M. Sim, K. Khoo, F. Oggier, and T. Peyrin, “Lightweight MDS
involution matrices.” Cryptology ePrint Archive, Report 2015/258, 2015.
http://eprint.iacr.org/2015/258.

9. M. Liu and S. M. Sim, “Lightweight MDS generalized circulant ma-
trices (full version).” Cryptology ePrint Archive, Report 2016/186, 2016.
http://eprint.iacr.org/2016/186.

10. C. Beierle, T. Kranz, and G. Leander, “Lightweight multiplication in GF(2n) with
applications to MDS matrices.” Cryptology ePrint Archive, Report 2016/119, 2016.
http://eprint.iacr.org/2016/119.

11. Y. Li and M. Wang, “On the construction of lightweight circulant involutory MDS
matrices,” in Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers, pp. 121–139, 2016.

12. S. K. Langford and M. E. Hellman, Differential-Linear Cryptanalysis, pp. 17–25.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

13. S. Vaudenay, On the need for multipermutations: Cryptanalysis of MD4 and
SAFER, pp. 286–297. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

14. J. H. F. Mattson, “The theory of error-correcting codes (F. J. MacWilliams and
N. J. A. Sloane),” SIAM Review, vol. 22, no. 4, pp. 513–519, 1980.

15. K. Khoo, T. Peyrin, A. Y. Poschmann, and H. Yap, “FOAM: Searching for
hardware-optimal SPN structures and components with a fair comparison.” Cryp-
tology ePrint Archive, Report 2014/530, 2014. http://eprint.iacr.org/2014/530.

16. J. Jean, T. Peyrin, and S. M. Sim, “Optimizing implementations of
lightweight building blocks.” Cryptology ePrint Archive, Report 2017/101, 2017.
http://eprint.iacr.org/2017/101.

17. S. Sarkar and H. Syed, “Lightweight Diffusion Layer: Importance of Toeplitz Ma-
trices,” IACR Trans. Symmetric Cryptol., vol. 2016, no. 1, pp. 95–113, 2016.

18. K. C. Gupta and I. G. Ray, “On constructions of mds matrices from companion ma-
trices for lightweight cryptography.” Cryptology ePrint Archive, Report 2013/056,
2013. http://eprint.iacr.org/2013/056.

19. S. Wu, M. Wang, and W. Wu, “Recursive diffusion layers for (lightweight) block
ciphers and hash functions,” in Selected Areas in Cryptography, 19th International
Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Se-
lected Papers, pp. 355–371, 2012.

A Matrix Examples

Table 5: Sparse DSI and LFS matrix examples. If the matrix has double digit
hexadecimal entries, it belongs to GF(28)/0x1c3. If it has single digit hexadeci-
mal entries, it belongs to GF(24)/0x13.
Order Sparse DSI LFS

4 D4,4 =


1 0 0 1
1 0 0 0
0 1 0x9 0
0 0 0x2 0

 , D4,8 =


1 0 0 1
1 0 0 0
0 1 0xe1 0
0 0 0x02 0

 -

5 D5,8 =


1 0 0 0 1
1 0 0 0 0
0 1 0x04 0 0
0 0 1 0x02 0
0 0 0 0x02 0

 L5,4 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0x1 0x2 0x9 0x9 0x2



6 D6,8 =


1 0 0 0 0 1
1 0 0 0 0 0
0 1 0x91 0 0 0
0 0 1 0 0 0
0 0 0 1 0x02 0
0 0 0 0 0x02 0

 L6,4 =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0x1 0xd 0x9 0x4 0x9 0xd



7 D7,8 =



0x1c 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0x02 0 0 0 0
0 0 0x02 0 0 0 0
0 0 0 1 0xb5 0 0
0 0 0 0 1 0xe1 0
0 0 0 0 0 0xe1 0


L7,4 =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0x1 0x2 0x7 0x1 0x1 0x7 0x2



8 - L8,4 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0x1 0xe 0x2 0xd 0x9 0xd 0x2 0xe



Table 6: Computation of the XOR count using Table 2.
Matrix Variable XOR Fixed XOR Total XOR

D4,4 1 + 1 2× 4 10

L5,4 1 + 1 4× 4 18

L6,4 2 + 1 + 2 5× 4 25

L7,4 1 + 5 6× 4 30

L8,4 4 + 1 + 2 + 1 7× 4 36

D4,8 3 + 3 2× 8 22

D5,8 4 + 3 3× 8 31

D6,8 3 + 4 3× 8 31

D7,8 9 + 3 + 7 + 3 4× 8 54

B XOR count

Table 7: XOR Count of elements in GF(24)/0x13.
Ele XOR Ele XOR Ele XOR Ele XOR

0x0 0 0x4 2 0x8 3 0xc 4

0x1 0 0x5 4 0x9 1 0xd 2

0x2 1 0x6 5 0xa 4 0xe 4

0x3 4 0x7 5 0xb 4 0xf 3

Table 8: XOR Count of elements in GF(28)/0x1c3. The entries correspond to
the XOR count of the element obtained from XORing the corresponding row
and column hexadecimal value. For instance, XOR(0x71) = 11.⊕

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f

0x00 0 0 3 8 4 10 9 10 5 11 11 15 11 15 10 13

0x10 7 12 11 13 12 13 14 15 12 16 16 14 9 14 14 17

0x20 9 13 12 14 11 13 13 13 12 14 12 13 13 14 15 14

0x30 14 15 15 17 15 11 13 16 9 14 15 12 14 15 16 11

0x40 10 11 14 16 12 15 15 17 11 15 14 17 13 15 13 16

0x50 13 11 15 15 11 16 13 15 12 14 13 15 14 14 12 9

0x60 16 18 16 16 15 16 16 12 15 15 10 11 13 16 16 11

0x70 8 11 15 14 15 17 13 15 15 14 15 16 16 16 11 11

0x80 12 10 13 15 16 11 16 13 14 15 16 16 16 15 16 16

0x90 11 4 16 11 15 12 15 16 13 14 15 14 12 15 16 15

0xa0 14 10 12 12 17 14 16 16 11 5 16 11 13 13 14 14

0xb0 12 9 16 15 12 7 15 14 14 9 13 9 10 8 8 8

0xc0 16 11 16 14 17 14 16 15 15 12 15 16 15 14 11 16

0xd0 15 15 14 15 11 16 11 16 14 14 15 18 16 16 11 16

0xe0 8 3 11 11 15 11 13 16 14 11 15 14 15 16 16 15

0xf0 15 13 14 13 13 13 15 14 18 16 16 12 11 15 11 16

Note: Values that are larger than 13 are sub-optimal s-XOR values as in [16].
Nevertheless, none of our matrices consists those field elements.

