
General purpose integer factoring

Arjen K. Lenstra

EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland

Abstract

This chapter describes the developments since 1970 in general purpose integer
factoring and highlights the contributions of Peter L. Montgomery.

This article appeared as Chapter 5 of the book Topics in Computational Num-
ber Theory inspired by Peter L. Montgomery, edited by Joppe W. Bos and
Arjen K. Lenstra and published by Cambridge University Press. See www.
cambridge.org/9781107109353. There are cross-references to two chap-
ters of the same book: Chapter 6 Polynomial selection for the number field
sieve by Thorsten Kleinjung and Chapter 7 The block Lanczos algorithm by
Emmanuel Thomé.

www.cambridge.org/9781107109353
www.cambridge.org/9781107109353

Contents

5 General purpose integer factoring page 1
5.1 Introduction 1
5.2 General purpose factoring 2

5.2.1 Two-step approach 2
5.2.2 Smoothness and L-notation 4
5.2.3 Generic analysis 5
5.2.4 Smoothness testing 6
5.2.5 Finding dependencies 7
5.2.6 Filtering 8
5.2.7 Overall effort 11

5.3 Pre-sieving general purpose factoring 11
5.3.1 Dixon’s random squares method 11
5.3.2 Continued fraction method 12

5.4 Linear and quadratic sieve 14
5.4.1 Linear sieve 14
5.4.2 Quadratic sieving: plain 17
5.4.3 Quadratic sieving: fancy 18
5.4.4 Multiple polynomial quadratic sieve 19

5.5 Number field sieve 23
5.5.1 Earlier methods to compute discrete logarithms 24
5.5.2 Special number field sieve 30
5.5.3 General number field sieve 37
5.5.4 Coppersmith’s modifications 43

5.6 Provable methods 44

Bibliography 47
Subject index 55

5
General purpose integer factoring

Arjen K. Lenstra

5.1 Introduction

General purpose integer factoring refers to methods for integer factorization
that do not take advantage of size-related properties of the unknown factors of
the composite to be factored. Methods that do are special purpose methods,
such as trial division, John Pollard’s rho and p − 1 methods [70, 69] and vari-
ants [94, 7], and Hendrik Lenstra’s elliptic curve method [59]. Some of these
methods are discussed in other chapters. The subject of this chapter is general
purpose integer factoring.

In 1970 a new general purpose integer factoring record was set with the fac-
torization of the seventh Fermat number F7 = 227

+ 1, a number of 39 decimal
digits [65]. It required about 90 minutes of computing time, accumulated over
a period of seven weeks on an IBM 360/91 computer at the UCLA Campus
Computing Network. In the late 1970s the 78-digit eighth Fermat number was
almost factored by a general purpose method [83]. But its small, 16-digit factor
was discovered in 1980 using Pollard’s rho method [11], with general purpose
factoring achieving 71 digits only in 1984. It leapt to 87 digits in 1987, a de-
velopment that could for a large part be attributed to Peter Montgomery [16],
requiring on the order of two months of computing time contributed by a mod-
est local network in about a week of wall-clock time. It further jumped ahead to
100 digits in the fall of 1988, the first computation that harvested the Internet’s
computational resources [57].

Around that same time it became necessary to distinguish two different
record-categories [54], a distinction that persists until the present day: records
for general composites, such as cryptographic moduli [81], and records for
composites with a special form, such as Fermat or Cunningham numbers [28,
12]. The first category record stands at 232 decimal digits, with the 2009 factor-
ization of a 768-bit cryptographic modulus [44]; Montgomery’s work was used

2

in several steps of this calculation. It required about two thousand core years
of computation, accumulated over a period of almost three years on a wide
variety of computers world-wide. The current record calculation of the second
category is the shared factorization of 2m − 1 for m ∈ {1007, 1009, 1081, 1111,
1129, 1151, 1153, 1159, 1177, 1193, 1199} which required about five thousand
core years over a period of almost five years [22, 45].

In this chapter the various developments are described that contributed to the
progress in general purpose integer factoring since 1970. At first this progress
heavily relied on new algorithms, but this came mostly to a halt around 1992.
Starting in the late 1980s the proliferation of (easily accessible) hardware, the
end of which is still not in sight, played an increasingly important role. For a
different perspective refer to [77].

Throughout this chapter n indicates the composite to be factored. It is as-
sumed that n is odd and not a prime power. An integer k divides an integer m
if m is an integer multiple of k; this is denoted by k|m.

5.2 General purpose factoring

At this point in time all general purpose factoring algorithms and their running
time analyses work in more or less the same way, from a high-level point of
view. The common framework is presented in this section.
General idea. Following Maurice Kraitchik’s variation of Pierre de Fermat’s
method [47, 48], all general purpose factoring methods are congruence of
squares methods. They all construct pairs of integers x, y such that x2 ≡

y2 mod n; from n|x2 − y2 = (x − y)(x + y) it follows that gcd(x − y, n) is a
non-trivial factor of n if x , ±y mod n. Although most congruence of squares
methods are entirely, or to some extent, deterministic, it is reasonable to as-
sume (for some methods this can be proved) that the resulting pairs are more
or less random, under the condition that x2 ≡ y2 mod n. This implies that if n
has r distinct prime factors, then x ≡ ±y mod n with probability 2

2r . Thus, in
practice a few pairs x, y will suffice to factor n.

5.2.1 Two-step approach

In [65] Michael Morrison and John Brillhart proposed a systematic, two-step
approach to construct pairs x, y as above (see also [92]). Let ω ∈ Z>0 be a
small constant indicating the desired oversquareness (cf. below). (Refer to [85,
82] for squfof, an entirely different method to construct pairs x, y as above; it

General purpose integer factoring 3

is based on binary quadratic forms and particularly efficient for small values
of n.)
Step one: relation collection. In the first step a finite set P of integers is
selected depending on n, and a set V of |P| + ω relations is sought, where a
relation is a pair (v, ev) with v ∈ Z and ev = (ev,p)p∈P ∈ Z|P| such that

w =
∏
p∈P

pev,p where w ≡ v2 mod n. (5.1)

The central distinguishing feature between the general purpose factoring al-
gorithms described in this chapter is the method by which relations are ob-
tained. For instance, and most elementary, it may simply involve selecting in-
tegers v and inspecting if w ≡ v2 mod n allows factorization over P. The set
of representatives for the integers w may be explicitly chosen, for instance as
{0, 1, . . . , n − 1} or as {−b n

2 c, . . . ,−1, 0, 1, . . . , b n
2 c}, or may be implicit in the

way w is generated during the search. The set P is commonly referred to as the
factor base.
Step two: linear algebra. Since the oversquareness ω is strictly positive, the
vectors ev resulting from the first step are linearly dependent. In the second
step linear algebra is used to determine dependencies modulo 2 among the
vectors ev, i.e., non-empty subsets S of V such that all entries of the vector∑

v∈S ev = (sp)p∈P are even. Each subset S gives rise to a pair

x =
(∏

v∈S

v
)

mod n, y =
(∏

p∈P

p
sp
2
)

mod n.

With Condition (5.1) it follows that x2 ≡ y2 mod n. At leastω independent sub-
sets S can be determined, which should lead to at least ω independent chances
of at least 50% to factor n.
Selection of P. Morrison and Brillhart chose P as the set consisting of the
element −1 along with the primes up to some bound B. All noteworthy general
purpose factoring methods since then follow the same two-step approach and
essentially make the same choice for P. The choice of B involves a trade-
off: with a small B only a few relations are needed, but they may be hard to
find, whereas for larger B more relations are required that should, however, be
easier to find. The linear algebra effort does not involve a trade-off: it increases
some way or another as B increases. When the overall effort is minimized, the
optimal choice for B may depend on either of the two separate efforts or both.

Morrison and Brillhart relied on experience to decide on a value for B that
would minimize the relation collection effort for the n-value at hand, knowing
from their experiments that the linear algebra step would be relatively easy as
long as enough memory is available. Richard Schroeppel was the first, during

4

the mid 1970s, to analyse the trade-off and to derive an expression for the
optimal asymptotic effort needed for the relation collection step [81, Section
IX.A] – disregarding the linear algebra step as he had the same experience that
it would involve only a relatively minor effort. Schroeppel’s analysis required
insight in the probability to find a relation, for which he relied on the result
presented below, even though back then it had not been fully proved yet. The
first to fully (though still heuristically, cf. Section 5.2.3) analyse the known
general purpose integer factoring algorithms was Carl Pomerance in [74].

5.2.2 Smoothness and L-notation

An integer is called B-smooth if all its prime factors are at most B. Smoothness
probabilities and the resulting asymptotic estimates are commonly expressed
using the generalized L-notation. The L-notation was introduced by Pomerance
in [74, Section 2] to (citing Pomerance) “streamline many arguments and to
have the important magnitudes stand out”, reasons that are still valid today.
Following the generalization from [53, (3.16)], denote by Lx[r, ψ] any function
of x that is

e(ψ+o(1))(log x)r(log log x)1−r
, for x→ ∞,

where r, ψ ∈ R and 0 ≤ r ≤ 1 and where logarithms are natural. For fixed
r, s, ψ, β ∈ R>0 with s < r ≤ 1, it follows from results by Nicolaas De
Bruijn [30] and E. Rodney Canfield, Paul Erdös and Pomerance [15] (and cit-
ing [53]) that a random positive integer at most Lx[r, ψ] is Lx[s, β]-smooth with
probability Lx[r − s,−ψ(r−s)

β
], for x→ ∞.

With ψ > 0, the expression Lx[0, ψ] is polynomial in log x, whereas Lx[1, ψ]
is exponential in log x; for 0 < r < 1, the expression Lx[r, ψ] is called subex-
ponential in log x. To illustrate the quote from Pomerance, if r, s, ψ, β ∈ R are
fixed with 0 ≤ s < r ≤ 1 and ψ > 0, then Lx[r, ψ]Lx[s, β] = Lx[r, ψ]: the
factor Lx[s, β] disappears in the o(1) in Lx[r, ψ]. This includes the case s = 0
where Lx[0, β] = (log x)β+o(1): factors that are fixed rational polynomials in
log x disappear in Lx[r, ψ] if r, ψ > 0. Thus, if B = Lx[r, ψ] for r, ψ > 0, then
the number π(B) of primes at most B equals B. Note also that Lx[r, ψ]Lx[r, β] =

Lx[r, ψ + β] and Lx[r, ψ] + Lx[r, β] = Lx[r,max(ψ, β)].
Below all efforts expressed in terms of Ln are expected and asymptotic for

n → ∞ and, unless noted otherwise, heuristic. In the remainder of this chap-
ter L is used for Ln.

General purpose integer factoring 5

5.2.3 Generic analysis

Let S (x, B) denote the average effort to inspect a random positive integer at
most x for B-smoothness, and let M(m) denote the effort to find dependencies
modulo 2 among the columns of an integer m× (m +ω)-matrix. Let L[s, β] for
s, β ∈ R>0 be the upper bound for the primes in P. For each general purpose
factoring method that has been published, there are r, ψ ∈ R>0 such that the
absolute value of each number that is inspected for smoothness (and that leads
to a relation as in (5.1) on page 3 if it is L[s, β]-smooth) is bounded above by
L[r, ψ]: for the number field sieve r = 2

3 and for all earlier methods r = 1, as
set forth in the sections below. Assuming that these absolute values behave as
random positive integers at most L[r, ψ], the overall factoring effort of almost
all general purpose factoring methods can be expressed as(

π(L[s, β]) + ω
)︸ ︷︷ ︸

number of
relations to
be collected

· L[r − s, ψ(r−s)
β

]︸ ︷︷ ︸
inverse of

smoothness
probability

· S
(
L[r, ψ], L[s, β]

)︸ ︷︷ ︸
average effort to
inspect an integer
for smoothness

+ M
(
π(L[s, β])

)︸ ︷︷ ︸
effort for

linear
algebra

; (5.2)

see Section 5.4.1 on page 14 for the exception. For one of the general purpose
methods presented below it can be proved that the numbers to be tested for
smoothness behave, with respect to smoothness properties, as random posi-
tive integers at most L[r, ψ]. For that method, Expression (5.2) is the expected
asymptotic factoring effort, for n → ∞. For all other methods the smoothness
assumption is a heuristic assumption that has, so far, been supported by em-
pirical evidence. For those methods, Expression (5.2) is the heuristic expected
asymptotic factoring effort, for n→ ∞.

Optimal choices for s, ψ and β depend on the general purpose factoring
method used and on the smoothness testing and linear algebra methods used,
and are derived in the sections below. But a few general observations can be
made that simplify Expression (5.2). It follows from r > 0 and the factor L[r −
s, ψ(r−s)

β
] in the first term of Expression (5.2) that the optimal s must be strictly

positive. With β > 0 this implies that π(L[s, β]) + ω = L[s, β] and, again with
Expression (5.2), that s = r

2 is optimal. As a result, the overall factoring effort
becomes

L[r
2 , β +

ψr
2β] S (L[r, ψ], L[r

2 , β]) + M(L[r
2 , β]). (5.3)

Further optimization depends on the general purpose factoring method under
consideration, but also on the rules of the game that one decides to play: for
both S (x, B) and M(m) either the historically correct methods (i.e., methods
available at the time the general purpose factoring method was developed) or
the current best methods (i.e., as may have been developed later and thus pos-

6

sibly anachronistic) can be used, which may give rise to different outcomes.
This is further discussed below.

5.2.4 Smoothness testing

Trial division consists of testing a non-zero integer w for B-smoothness by
testing if p divides w for all primes p ≤ B, while replacing w by w

p and re-
peating the test for p if indeed p|w. If w = 1 at the end of this process, then
the original w is B-smooth and may lead to a relation as in (5.1) on page 3.
If 1 < w < B2 after trial division, then the original w is B-smooth except for
onelargeprime, i.e., a prime factor larger than B but less than B2; such w-values
may lead to a large prime relation, as further discussed in the sections below.
The trial division effort for w is O(B log w) implying that S (L[r, ψ], L[r

2 , β])
would become L[r

2 , β]. Thus, if trial division is used as smoothness test, the first
term of Expression (5.3) becomes L[r

2 , β+
ψr
2β]L[r

2 , β] = L[r
2 , 2β+

ψr
2β]. Similarly,

using Pollard’s rho method [70] would lead to S (L[r, ψ], L[r
2 , β]) = L[r

2 ,
β
2].

The elliptic curve method of factorization may, heuristically, be expected to
find a factor at most B of a positive integer w at effort O((log w)2LB[1

2 ,
√

2]) [59]
(see also [53, 4.3]). It follows that S (L[r, ψ], L[r

2 , β]) would become L[r
2 , 0].

This implies that, if the elliptic curve method is used as smoothness test, the
first term of Expression (5.3) becomes L[r

2 , β +
ψr
2β]. As shown by Pomer-

ance in [75], the heuristic arguments can be removed from the analysis, re-
sulting in a slightly modified elliptic curve-based smoothness test that works
with high probability (see also Section 5.6 on page 44). Although with elliptic
curve-based smoothness testing the S (L[r, ψ], L[r

2 , β])-contribution to Expres-
sion (5.3) conveniently vanishes in the o(1), in practice its contribution would
be considerable, in particular compared to sieving as discussed in the next para-
graphs – if sieving can be applied.
Sieving amortizes the smoothness testing effort over all values that have to
be tested for smoothness, and achieves the same effect on Expression (5.3) as
elliptic curve-based smoothness testing. In practice, sieving is much preferred
over using elliptic curves, but compared to the latter it has the disadvantage that
it can not be applied in all circumstances: the set of values to be tested must be
the set of values of a polynomial evaluated over sufficiently many integers in
an arithmetic progression (such as a sufficiently large interval of consecutive
integers).

Let I be an interval of consecutive integers such that the length |I| of I is at
least L[r

2 , β] and let d be a small positive integer (d ≤ 2 until Section 5.5 on
page 23). Assume that there exists a degree d polynomial f (X) ∈ Z[X] such
that { f (i) : i ∈ I} is the set of values that has to be tested for L[r

2 , β]-smoothness

General purpose integer factoring 7

(more general arithmetic progressions are treated in a similar fashion). Sieving
exploits the fact that if p divides f (z) for some z ∈ Z, then p divides f (z + kp)
for all k ∈ Z. Thus, once all roots of f modulo p in {0, 1, . . . , p − 1} have
been determined, all roots of f modulo p in I are found at additional effort at
most d|I|

p . The latter roots correspond to the subset of polynomial-values that
are divisible by p. Root finding modulo a prime p takes (probabilistic) effort
(log p)t for some small constant t. Using |I| ≥ L[r

2 , β], the overall effort of
finding all prime divisors at most L[r

2 , β] of the values in { f (i) : i ∈ I} to be
tested for L[r

2 , β]-smoothness is∑
p≤L[r

2 ,β]

(
(log p)t +

d|I|
p
)

= |I| (5.4)

(where it is used that
∑

p≤L[r
2 ,β]

1
p ≈ log log(L[r

2 , β])). In the context of Expres-
sion (5.3) on page 5, the interval length |I| and thus the overall effort over all |I|
values to be tested for smoothness would be L[r

2 , β+
ψr
2β]. As a result, the aver-

age smoothness testing effort S (L[r, ψ], L[r
2 , β]) becomes L[r

2 , 0], namely the
quotient of the number |I| of values to be tested for smoothness and the overall
smoothness testing effort |I|, so that the first term of Expression (5.3) simplifies
to L[r

2 , β +
ψr
2β].

In practice, sieving typically consists of adding a rough approximation of
logb p, for some base b ∈ R>0, to all sieve locations z+kp ∈ I for k ∈ Z, after a
root z of f modulo p has been computed. After doing this for all (prime, root)
pairs, the locations ` ∈ I at which a total value has been accumulated that is
close to a rough estimate of logb f (`), are inspected more closely by attempting
to factor f (`) over P. Large prime relations can also easily be recognized when
more locations (with smaller but still sufficiently large values) are inspected.
The base b is chosen in such a way that a single byte per sieve location suffices
to represent an approximation to logb f (`) for all ` ∈ I. Montgomery proposed
to choose the initial values of the sieve locations so that a final non-negative
value indicates that the location needs to be inspected for actual smoothness,
because a four- or eight-byte mask can then be used to check four or eight sieve
locations at a time for non-negativity. He also proposed to put a non-negative
value right after the last location to be inspected, so that it suffices to check
the termination condition for ` ∈ I only at locations containing non-negative
values.

5.2.5 Finding dependencies

For all general purpose factoring methods the matrices are sparse, i.e., the
number of non-zero entries per column is at most of order log(L[r, ψ]). Regular

8

Gaussian elimination hardly profits from the sparseness: usually, the sparsity-
advantage is no longer noticeable after about a fifth of the pivots have been pro-
cessed. As a result, with regular Gaussian elimination the term M(L[r

2 , β]) in
Expression (5.3) on page 5 becomes L[r

2 , 3β]. If pivots are selected using struc-
tured Gaussian elimination [49, 78], the sparse original m× (m +ω)-matrixM
over Z/2Z can often easily be reduced to a dense m′ × (m′ + ω)-matrix M′

over Z/2Z with m′ ≈ m
3 , in such a way that dependencies among the columns

of M′ (for instance determined using regular Gaussian elimination) lead to
dependencies among the columns of M. Although this combined approach
does not change the term M(L[r

2 , β]) = L[r
2 , 3β] in Expression (5.3), it was

of great practical importance until the mid 1990s: compared to regular Gaus-
sian elimination, it not just reduced the effort by a factor of approximately 33,
it also reduced the storage requirement of m2 bits by a factor of about 32.
Volker Strassen’s method [88] (applied toM or toM′) reduces M(L[r

2 , β]) in
Expression (5.3) to L[r

2 , (log2 7)β]; with the latest variants of the method by
Don Coppersmith and Shmuel Winograd [25, 50, 5] it would become about
L[r

2 , 2.373β].
Block versions of methods by Cornelius Lanczos [24, 67, 64] or Douglas

Wiedemann [93, 23] (see [53, 2.19] for a high-level description) profit much
more effectively from the sparseness ofM, because for both methods the ef-
fort is dominated by a sequence of O(m) multiplications of the matrixM by a
vector. Both methods find dependencies modulo 2 among the columns of M
in O(mW(M)) bit operations, where the weight W(M) ofM is the number of
non-zero entries ofM. It follows that the term M(L[r

2 , β]) in Expression (5.3)
can be simplified to L[r

2 , 2β]. Storage requirements are limited to storage of the
original sparse matrix M and an m-dimensional vector over (Z/2Z)k, where
the constant k is the blocking factor used. Refer to Chapter 7 on block Lanczos
for more information on these methods. Montgomery contributed not just to
block Lanczos, but also did a lot of work on a preprocessing step that is com-
monly used and that is generally referred to as filtering. The main ideas of this
preprocessing step are described in the next section.

5.2.6 Filtering

Let the notation be as in the previous section. Filtering refers to a collection
of methods that aim to transform the m × (m + ω)-matrix M into an m′ ×
(m′+ω′)-matrixM′ for which m′W(M′) is smaller than mW(M) and such that
dependencies modulo 2 among the columns ofM′ easily lead to dependencies
modulo 2 among the columns ofM. The methods of the previous section can
then profitably be applied to M′ instead of M: in practice a speedup of one

General purpose integer factoring 9

or more orders of magnitude may be expected. Background and more details
about the material presented here can be found in [17, 18, 78]. Moduli different
from 2, as required for the application in Section 5.5.1 on page 24, are handled
in a slightly different but similar manner. Below,M refers to the m × (m + ω)-
matrix in transition, with changing values for m and ω untilM =M′, m = m′,
and ω = ω′, for the final matrixM.

Filtering proceeds by first removing duplicates of columns that correspond
to identical relations (cf. Section 5.2.1 on page 2), next alternatedly removing
singleton columns and sets of columns that are referred to as cliques, and fi-
nally combining the remaining columns in a merge step. These four steps are
further described below. Note that, to avoid useless dependencies, duplicates
must be removed irrespective of attempts to lower mW(M).
Removing duplicates. In practice duplicate relations turn out to be unavoid-
able: lattice sieving with many distinct special q-primes will produce identical
relations (cf. Section 5.5.2 on page 30), prematurely stopped relation collec-
tion jobs may have been restarted, or different relation collection methods may
be used for the same factorization (cf. [19]).

Assuming canonical representations of relations, a few piped Unix com-
mands remove duplicates at minimal human effort. The storage resources and
time required may, however, become substantial. It is common to apply a hash
function to each canonical representation, and to locate and further inspect the
collisions. Appropriate hash functions are easily designed depending on the
application. Refer to [17, Section 2.1] for an example of a hash function pro-
posed by Montgomery that is injective for the relations as generated for the
factorization reported in [19] (so that collisions correspond to duplicate rela-
tions).
Removing singletons. If there is a row inM that contains only a single entry
that is non-zero modulo 2 (or another applicable modulus), then the column
containing that non-zero entry can not occur in a dependency. Such columns,
called singletons, can be removed from M. This is easily done using a fre-
quency table, but because each removal may generate one or more new sin-
gletons, several passes are normally required before all singletons have been
removed. For large collections of relations each singleton-removal pass is quite
time-consuming, with a quick drop in the number of removals during the later
passes. Continuing until the very end may therefore not be worth the effort.
Removing cliques. To have a better chance to get a low mW(M)-value many
more relations are collected than necessary to make the original matrix over-
square (even until the original ω is much larger than m). As mentioned in [78]
(and as for instance used in the structured Gaussian elimination step of the
factorization reported in [56]) the simplest approach is to remove the excess

10

columns in (decreasing) order of their number of odd entries, until the excess
is deemed small enough. But [78] also suggests another approach, which is
further pursued in [17, 18] following ideas of Montgomery. It has become the
most common way to remove the excess columns until ω is reduced to approx-
imately m

2 .
The method is, in filtering context, referred to as clique removal, notwith-

standing the non-standard definition of cliques. Consider the graph with vertex
set corresponding to the set of relations with an edge connecting two vertices if
there is a row inM such that the two corresponding relations are the only two
relations that share a non-zero entry in that row. The components of this graph
are called cliques in [17]. It follows that removal fromM of a single relation
in a clique triggers a chain of singletons in the same clique, so that the clique
can be removed in its entirety. Fast recognition – and removal – of cliques is
therefore an efficient way to deal with large amounts of interdependent excess
columns, while also lowering the number of rows.

With (ev,p)p∈P denoting a column in M (i.e., a relation), and given a fre-
quency table containing, for each row inM, the total number op of odd entries
in the row for p inM, it is easy to compute the value

∑
p∈P:ev,p odd 2−op for each

column. Cliques may now be removed by removing the columns for which the
computed value is at least 1

4 . Because this may remove too many other columns
as well, initially a cut-off larger than 1

4 may be used, gradually lowering it until
a targeted excess remains. The value will be at least 1

2 for newly created single-
tons, so they have a good chance to be removed during a next round of clique
removal with an updated frequency table.
Merging. If there is a p ∈ P for which op = 2, it is advantageous to replace the
two columns in which p occurs an odd number of times by their sum, because
as a result m decreases by at least one and W(M) decreases by at least two.
This is called a two-way merge. After the two-way merges have been carried
out, the process can be repeated for m-way merges, for increasing values of m,
where an m-way merge replaces the m columns sharing a particular p-value
with op = m by m − 1 independent, pair-wise sums among those m columns.
The least weight-increasing set ofm−1 pairs is easily determined as a minimal
spanning tree in the complete graph induced by the m columns. The overall
effect for larger m-values may, however, become counterproductive. Merges
for larger m-values are therefore followed by removal of the heaviest columns,
as long as the oversquareness ω remains large enough.

As a result of the merging step, the final matrixM is written as the product
M = M̃T of a pre-merger matrix M̃ and a merging-transformation matrix T .
Because in the preferred methods to find dependencies the same final matrixM
is repeatedly multiplied by a (changing) vector (cf. Section 5.2.5 on page 7),

General purpose integer factoring 11

it is advantageous to use this representation M̃T of M if W(M̃) + W(T) <
W(M); this approach was first used in [45].

5.2.7 Overall effort

With these insights (which may be anachronistic, depending on the context),
Expression (5.3) on page 5 becomes

L[r
2 ,max(β +

ψr
2β , 2β)]. (5.5)

Optimization of Expression (5.5) still depends on the applicable r- and ψ-
values, as further explained below. In more generality, the overall effort can
be expressed as

L[r
2 ,max((1 + σ)β +

ψr
2β , µβ)] (5.6)

with σ representing the smoothness testing effort and µ the linear algebra ex-
ponent. The value for σ ranges from 0 (as in Expression (5.5)) for elliptic
curve-based smoothness testing and for sieving (if applicable), to 1 for trial
division (with σ = 1

2 for Pollard’s rho method). The linear algebra exponent µ
ranges from 2 (as in Expression (5.5)) for the methods by Lanczos and Wiede-
mann, to 3 for Gaussian elimination (with µ = log2 7 for Strassens’s method
and µ ≈ 2.373 for the Coppersmith-Winograd method). An overview of the
results as of 1983 (some of which may have been improved since then due
to more efficient auxiliary steps) is given in [74, Table on page 93], the most
important ones of which are also presented below.

5.3 Pre-sieving general purpose factoring

Let the notation be as in Section 5.2 on page 2, with P the set of primes up to
L[r

2 , β] for r, β > 0 to be specified below.

5.3.1 Dixon’s random squares method

Not the earliest but conceptually the most straightforward general purpose
factoring method that requires subexponential effort is John Dixon’s random
squares method [33]. It has never been proved to be practical, because by
the time it was proposed more practical methods already existed. The random
squares method selects at random integers v ∈ {1, 2, . . . , n − 1} that have not
been selected before, computes v2 mod n = w ∈ {0, 1, . . . , n − 1}, assumes
that w , 0 (because n can directly be factored if w = 0), uses trial division to

12

write w = w′
∏

p∈P pev,p with w′ ∈ Z free of factors in the set of primes P, and
if w′ = 1 adjoins (v, (ev,p)p∈P) to the set of relations. Once enough relations
have been found, it uses Gaussian elimination to find dependencies.

Expression (5.6) with σ = 1 and µ = 3 applies to Dixon’s random squares
method. The numbers w that are tested for smoothness can be bounded by
n = L[1, 1], so that r = ψ = 1 and the overall effort becomes:

L[1
2 ,max(2β + 1

2β , 3β)],

which is minimized for β = 1
2 and becomes L[1

2 , 2]. The effort of the matrix
step is L[1

2 ,
3
2], which is dominated by the relation collection effort L[1

2 , 2].
Values v for which v <

√
n are useless, but as v <

√
n with probability n−

1
2 =

L[1,− 1
2] this is unlikely to occur because only L[1

2 ,
3
2] values will be selected.

With faster smoothness testing and linear algebra methods (both anachro-
nistic), the overall effort becomes (cf. Expression (5.5) with r = ψ = 1)

L[1
2 ,max(β + 1

2β , 2β)],

which is minimized for β = 1
2

√
2 and becomes L[1

2 ,
√

2]. In this analysis both
steps require the same effort in L-notation, i.e., disregarding everything that
disappears in the o(1)-terms.

Using least absolute remainders for w (and adjoining −1 to P) does not
change L[1

2 , 2] or L[1
2 ,
√

2], but should make the method a bit faster in practice.
Both these efforts are larger than the efforts required by the factoring meth-
ods considered in the remainder of this chapter. However, for Dixon’s random
squares method the analysis does not involve heuristics. See also Section 5.6
on page 44.

5.3.2 Continued fraction method

The continued fraction method (often referred to as CFRAC) developed by
Morrison and Brillhart [65] represented the state of the art in general purpose
integer factoring from 1970, when F7 = 227

+ 1 was factored, until the mid
1970s. A special purpose hardware device (the Georgia Cracker) was built
implementing it [80]. The continued fraction method was used to factor many
Cunningham numbers [12]. It inspired the development of faster general pur-
pose factoring methods, as further described in Section 5.4 below.

From the above analysis of Dixon’s random squares method it follows that
there are two main issues that would have to be addressed in order to get a more
efficient factoring method: the speed of the smoothness test and the size of the
integers w to be tested for smoothness. The second issue had already been

General purpose integer factoring 13

dealt with in the continued fraction methods, several years before Dixon pro-
posed his random squares method. Although generating the w-values is more
cumbersome in the continued fraction method than in Dixon’s random squares
method, this disadvantage is far outweighed by their much smaller size and
thus substantially larger smoothness probability. As explained in detail in [65],
and as follows from for instance [41, Theorem 164], the continued fraction ex-
pansion of

√
n leads to a sequence of triples (vi, ti,wi) ∈ Z3 for i = 0, 1, 2, . . .

such that

v2
i − nt2

i = (−1)iwi where 0 < wi < 2
√

n. (5.7)

It follows that for those i for which wi is found to be smooth, the value vi along
with the vector of exponents of the factorization of wi (including the sign)
leads to a relation. With r = 1 and ψ = 1

2 (as 0 < wi < 2
√

n = L[1, 1
2]), trial

division (σ = 1), and Gaussian elimination (µ = 3), the overall effort from
Expression (5.6) on page 11 becomes

L[1
2 ,max(2β + 1

4β), 3β],

which is minimized for β = 1
4

√
2 and becomes L[1

2 ,
√

2]. The effort L[1
2 ,

3
4

√
2]

of the matrix step is again dominated by the effort of relation collection, in
accordance with Morrison’s and Brillhart’s practical experience. This asymp-
totic result was first, and informally, derived in the mid 1970s by Schroeppel:
informal because the effort of the matrix step was not included in his argument;
because the smoothness result used (as stated in Section 5.2.2 on page 4) had
by then not been fully proved yet; because the wi-values are chosen deter-
ministically and can hardly be argued to behave as randomly selected positive
integers at most L[1, 1

2]; and finally because only primes p with Legendre sym-
bol

(n
p
)
∈ {0, 1} can occur in the factorizations of the wi-values, thus requiring

the later and more refined argument from [84, Theorem 74].
With σ = 0 and µ = 2 as in Expression (5.5) on page 11 (anachronistic,

because the required methods did not exist yet in 1970), and the customary
heuristic handwaving, the effort is reduced to

L[1
2 ,max(β + 1

4β), 2β],

which is minimized for β = 1
2 and becomes L[1

2 , 1] (with balanced efforts for
the two steps).

Morrison and Brillhart describe how, depending on n, it is often advanta-
geous to replace n by kn for a small positive multiplier k ∈ Z, in order to boost
the smoothness probabilities by aiming for more small primes with

(kn
p
)

= 1
than with

(n
p
)

= 1, or even to use several k-values (most likely leading to more
primes that may occur). They also suggest to allow in the factorizations of the

14

wi-values a large prime less than the square of the smoothness bound. As ment-
ioned in Section 5.2 on page 2 such large prime relations can be recognized at
no additional effort during trial division. A pair of large prime relations with
the same large prime is easily transformed into a single regular relation (with,
however, on average more non-zero entries in the exponent-vector and thus a
less sparse matrix).

5.4 Linear and quadratic sieve

5.4.1 Linear sieve

Schroeppel found a way to replace trial division by sieving, as introduced in
Section 5.2.4 on page 6, while keeping ψ almost as small as in the continued
fraction method, namely ψ = 1

2 + o(1). Despite a promising start the practical
potential of his linear sieve was never conclusively shown: according to [83]
its first attempted factorization – that of the eighth Fermat number F8 = 228

+1
in 1980, and a tour de force at that time – was cut short during the first stage
of the linear algebra step, because the factorization of F8 was independently
announced by others (and later reported in [11]). The linear sieve work on F8

remains unpublished till the present day and was, at the time, only known to
those who had been so fortunate to attend the single talk that Schroeppel ever
gave about his linear sieve [83].

In the linear sieve the values tested for smoothness are

(i + [
√

n])(j + [
√

n]) − n = i j + (i + j)[
√

n] + [
√

n]2 − n (5.8)

for i, j ∈ Z of relatively small absolute value and with, say, |i| ≥ | j|. Values as
in Expression (5.8) have two advantages, and lead to one complication. The
first advantage is that they are easier to generate than the wi-values in Expres-
sion (5.7) as used in the continued fraction method, while having a comparable
smoothness probability: because [

√
n]2 − n is of order

√
n, each value in Ex-

pression (5.8) is only of order |i + j|
√

n if |i| and | j| are relatively small. More
precisely, if |i| and | j| are bounded by L[ui, γi] and L[u j, γ j], respectively, for
some ui, u j < 1, then

|i j + (i + j)[
√

n] + [
√

n]2 − n| ≤ L[ui, γi]L[u j, γ j] +

(L[ui, γi] + L[u j, γ j])L[1, 1
2] + L[1, 1

2]

= L[1, 1
2].

Thus, when expressed in L-notation the values generated by Expression (5.8)
are of the same order L[1, 1

2] as the wi-values in the continued fraction method,

General purpose integer factoring 15

and the smoothness disadvantage of |i + j|
√

n compared to 2
√

n in the continued
fraction method disappears in the o(1). It follows that r = 1 and ψ = 1

2 .
The second advantage is that for fixed j Expression (5.8) is a linear poly-

nomial in i. This implies that smoothness testing can be done using sieving.
From the sieving analysis in Section 5.2.4 on page 6 it follows that as long as
the length L[ui, γi] of the interval of i-values is at least as large as the smooth-
ness bound L[1

2 , β], the sieving effort for a fixed j equals L[ui, γi]. An overall
sieving effort of L[ui, γi]L[u j, γ j] then follows.

A complication arises from the fact that a smooth w = (i+ [
√

n])(j+ [
√

n])−n
generated by Expression (5.8) leads to

w =
∏
p∈P

pei, j,p where w ≡ (i + [
√

n])(j + [
√

n]) mod n (5.9)

which does not conform to Condition (5.1) on page 3. This is easily fixed by
taking i = j, an idea that was discarded by Schroeppel for reasons set forth
below [83]. Schroeppel fixed it in another manner, namely by adjoining to P
the (i + [

√
n])- and (j + [

√
n])-values with |i| ≤ L[ui, γi] and | j| ≤ L[u j, γ j]. With

ei, j,i+[
√

n] = ei, j, j+[
√

n] = −1, this turns (5.9) into

w
(i+[
√

n])(j+[
√

n]) =
∏
p∈P

pei, j,p where w
(i+[
√

n])(j+[
√

n]) = 1 mod n,

which is of the required form. As a consequence, however, the cardinality
of P, and thus the number of relations to be found, increases from L[1

2 , β]
to L[1

2 , β] + max(L[ui, γi], L[u j, γ j]). To find these relations over a search space
of L[ui, γi]L[u j, γ j] elements, it must be the case that

L[ui, γi]L[u j, γ j] ≥
(
L[1

2 , β] + max(L[ui, γi], L[u j, γ j])
)
L[1

2 ,
1

4β] (5.10)

because, as shown above, the values to be tested for smoothness are of order
L[1, 1

2] and are thus heuristically assumed to be L[1
2 , β]-smooth with probabil-

ity L[1
2 ,−

1
4β]. It follows that the optimal ui and u j satisfy max(ui, u j) = 1

2 . If
ui , u j then it must be the case that γi ≥ γi + 1

4β or that γ j ≥ γ j + 1
4β (be-

cause of Condition (5.10)), which is impossible. Thus ui = u j = 1
2 , simplifying

Condition (5.10) to

L[1
2 , γi + γ j] ≥ L[1

2 ,max(β, γi, γ j) + 1
4β]

and thus

γi + γ j ≥ max(β, γi, γ j) + 1
4β . (5.11)

The relation effort is bounded from below by L[ui, γi]L[u j, γ j] = L[1
2 , γi +

γ j] (as argued above), attaining this lower bound if γi ≥ β, and the linear

16

algebra effort is L[1
2 , µmax(β, γi, γ j)]. Because β+ 1

4β ≥ 1 (reaching its minimal
value 1 for β = 1

2) it follows from Condition (5.11) that γi + γ j ≥ 1 and thus
that max(γi, γ j) ≥ 1

2 , so that the efforts are bounded from below by L[1
2 , 1]

and L[1
2 ,

µ
2], respectively. The minima are achieved for β = γi = γ j = 1

2 , which
is optimal.

It is impossible to lower the overall effort (thus, if µ > 2, the effort of the
linear algebra step) by balancing the two efforts involved: for β = 1

2 this is
obvious, and if β , 1

2 , then β + 1
4β > 1 and thus max(γi, γ j) > 1

2 and the
linear algebra effort becomes larger than L[1

2 ,
µ
2]. With (not anachronistic) µ =

log2 7 due to Strassen’s method, the overall effort of Schroeppel’s linear sieve
narrowly beats the continued fraction method’s L[1

2 ,
√

2] because 1
2 log2 7 ≈

1.404 < 1.414 ≈
√

2 (see also [74, Table on page 93]).

The resulting optimal (but heuristic, expected and asymptotic) relation col-
lection effort L[1

2 , 1] is the factoring effort that was cited in [81, Section IX.A],
neglecting the dominating term L[1

2 ,
µ
2] for the linear algebra step. At the time

this was somewhat optimistic but also understandable because experience with
the continued fraction method had shown that the linear algebra effort was con-
sistently negligible compared to the relation collection effort. For the purposes
of [81], the optimism was later justified by the development of faster linear
algebra methods (with µ = 2), and then turned out to be too pessimistic due to
the number field sieve.

Variant with i = j. As mentioned above, Schroeppel considered taking i = j
but rejected this idea, even though (5.9) with i = j would directly conform
to Condition (5.1) on page 3 without adjoining the (i + [

√
n])- and (j + [

√
n])-

values to P (while also effectively reducing the size of P by a factor of two, as
shown below). Schroeppel argued that, with i and j independently bounded by
L[1

2 ,
1
2], Expression (5.8) on page 14 generates a total of L[1

2 , 1] values that are
all bounded by L[1

2 ,
1
2]
√

n in absolute value [83]. To generate the same number
of values with i = j, the bound on i becomes L[1

2 , 1], resulting in a bound of
L[1

2 , 1]
√

n on the absolute values generated by Expression (5.8) on page 14. In
L-notation, L[1

2 ,
1
2]
√

n and L[1
2 , 1]
√

n are both equal to L[1, 1
2], and both lead

to smoothness probability L[1
2 ,−

1
4β]. But in practice the choice i = j leads

to noticeably lower smoothness probabilities. The latter effect was perceived
to be worse than having to generate about twice as many relations, because it
would result in an overall slowdown of the relation collection step. The more
cumbersome linear algebra step that Schroeppel had to deal with by allowing
i , j was considered to be a mere nuisance because, so far, the matrix effort
had been futile compared to the relation collection effort. New developments,
however, and to some extent Schroeppel’s own analysis and experience, proved

General purpose integer factoring 17

him wrong, because it turned out that even with i = j the i-values can be kept
small, as further shown in Section 5.4.3 on the next page and Section 5.4.4
on page 19. Schroeppel also reported [83] that he initially rejected the use
of a multiplier as had been used in the continued fraction method, but later
reconsidered, and that he allowed two large primes per relation, about a decade
before that was independently done in [58].

5.4.2 Quadratic sieving: plain

Unfazed by the issue pointed out by Schroeppel, Pomerance proposed using
Schroeppel’s linear sieve with i = j. He called it quadratic sieve because,
similar to Schroeppel’s linear sieve, it uses a sieve to locate smooth values of
the quadratic polynomial

(i + [
√

n])2 − n = i2 + 2i[
√

n] + [
√

n]2 − n (5.12)

(cf. Section 5.2.4 on page 6). Pomerance’s description [74] is the first paper
containing careful and accessible explanations and thorough analyses of gen-
eral purpose factoring methods and their variants, setting an example for later
publications and turning the subject into a more serious scientific endeavor.

Initial results obtained by the quadratic sieve were not stellar, with [37] re-
porting a 47-digit factorization; this may be compared to Schroeppel’s 78-digit
linear sieve effort that was aborted during the linear algebra step, and which
had, at the time, garnered little or no attention. It took several additional con-
tributions – notably by Jim Davis, Diane Holdridge and Gus Simmons, by
Montgomery, and by Pomerance, Jeffrey Smith and Randy Tuler – to turn the
quadratic sieve into the state of the art in general purpose integer factoring, a
position it held until 1994. These developments are described below.

An advantage of quadratic sieve over linear sieve is the simplified analysis
and, for µ > 2, its better overall heuristic asymptotic effort. Because i = j, the
generic analysis from Section 5.2.3 on page 5 applies with r = 1, ψ = 1

2 , and
σ = 0 in Expression (5.6) on page 11. More precisely, redoing the linear sieve
effort analysis with i = j, the original cardinality L[1

2 , β] of P and an i-interval
of length L[u, γ] for some u and γ with 0 < u < 1 and γ > 0, Condition (5.10)
on page 15 simplifies to

L[u, γ] ≥ L[1
2 , β + 1

4β] (5.13)

because the values to be tested for smoothness, in absolute value bounded
by L[u, γ]L[1, 1

2] = L[1, 1
2] (since u < 1), are heuristically assumed to be

L[1
2 , β]-smooth with probability L[1

2 ,−
1

4β]. It follows from Condition (5.13)
that L[u, γ] ≥ L[1

2 , β] so that, with the sieving analysis from Section 5.2.4

18

on page 6, the relation collection effort becomes L[u, γ]. Minimizing the sum
of the relation collection effort L[u, γ] and the linear algebra effort L[1

2 , µβ]
under Condition (5.13), first leads to u = 1

2 and then with γ = β + 1
4β to

overall effort L[1
2 ,max(β + 1

4β , µβ)] (as indeed in Expression (5.6) with r = 1,

ψ = 1
2 , and σ = 0), which depends on µ. For µ = 3 it results in β = 1

4

√
2 and

L[1
2 ,

3
4

√
2] = L[1

2 , 1.061] and for µ = log2 7 in β = 0.372 and L[1
2 , 1.044]. For

µ = 2 it results in β = 1
2 and reaches its minimal value L[1

2 , 1]. In all cases the
efforts of the two steps are balanced.

If p divides (i + [
√

n])2 − n then n ≡ (i + [
√

n])2 mod p, so that n is a square
modulo p. It follows that only primes p with Legendre symbol

(n
p
)

= 1 can
occur in the factorizations of values generated by Expression (5.12), as in the
continued fraction method. Following Morrison and Brillhart, the use of a suit-
able multiplier is therefore recommended. Also, the condition

(n
p
)

= 1 effec-
tively halves the size of P, making the quadratic sieve linear algebra step in
practice yet again easier compared to linear sieve. Because Expression (5.12)
is a quadratic polynomial in i, finding the roots modulo the primes in P is
more cumbersome than for the linear polynomials in the linear sieve; this issue
is further discussed on page 22 in Section 5.4.4. The growth of the polyno-
mial values behaves according to Schroeppel’s prediction and has a noticeably
counterproductive effect compared to linear sieve. In the remainder of this sec-
tion it is shown how this problem was overcome. When expressed in the L-
notation, all variants presented below require the same effort: the speedups,
though practically worthwhile, all disappear in the o(1).

5.4.3 Quadratic sieving: fancy

Davis, Holdridge and Simmons in [29] were the first who managed to avoid a
single large sieving interval and the resulting growth of the values to be tested
for smoothness. Their method, referred to by the authors as quadratic sieving:
fancy, proved to be more effective than the plain quadratic sieve as used in [37].
In 1984 it was used to set a 71-digit factorization record: on a Cray X-MP
mainframe computer the relation collection took 8.75 hours, followed by 45
minutes for the linear algebra.

Assume that as a result of regular sieving over i ∈ I with the polynomial
in Expression (5.12) on page 17 a number of large prime relations (cf. Sec-
tion 5.2.4 on page 6) has been found, each involving a single prime larger than
the smoothness bound, but smaller than its square. For each such large prime

General purpose integer factoring 19

relation, corresponding to an equation of the form

(iq + [
√

n])2 − n = q
(∏

p∈P

peiq ,p
)

(5.14)

involving a large prime q and an integer iq with iq ∈ I, Davis, Holdridge and
Simmons use a sieve over i ∈ I′ to find smooth values of the quadratic integer
polynomial

(qi+iq+[
√

n])2−n
q = qi2 + 2i(iq + [

√
n]) +

(iq+[
√

n])2−n
q . (5.15)

Each new smooth value thus found corresponds to a new large prime rela-
tion involving the large prime q, and can be combined with large prime re-
lation (5.14) to produce a regular relation (which is, however, less sparse). If
I′ ⊆ I, the values of the polynomial in Expression (5.15) may be assumed to
have smoothness probabilities comparable to or better than the values encoun-
tered during the sieve using the polynomial in Expression (5.12).

The advantage compared to the plain quadratic sieve is that a new sieve can
be used for each large prime relation found as a result of the sieve using Ex-
pression (5.12). In particular, both I and I′ can be chosen considerably smaller
than the single large sieving interval used in the plain quadratic sieve. In [29]
it is reported that with judicious choices for I and I′ composites of approxi-
mately 64 digits could be factored at the same effort as approximately 56-digit
ones using the original method.

5.4.4 Multiple polynomial quadratic sieve

In the mid 1980s, and independent of Davis, Holdridge and Simmons, Mont-
gomery invented another way to keep the polynomial values in quadratic sieve
relatively small. His method, now known as the multiple polynomial quadratic
sieve, was published in [87] and quickly became the general purpose factoring
method of choice. It allows straightforward embarrassingly parallel imple-
mentation, making it perfectly suitable to use the idle time of the networks of
desktop computers that were emerging around that time. Indeed, in [87] the
multiple polynomial quadratic sieve was used to factor an 81-digit composite
on a local network, the first general purpose factorization surpassing Schroep-
pel’s aborted 78-digit F8-attempt, later reaching 87 digits as further described
by Thomas Caron and Robert Silverman in [16]. This was quickly and in-
dependently followed by the first scientific distributed Internet computation
that the author is aware of, reaching for the first time a 100-digit general pur-
pose factorization, as described by the author and Mark Manasse in [57]. The

20

Figure 5.1 Proof of the factorization of the Scientific American challenge.

independent, non-networked but nevertheless widely parallelized implement-
ation described in [4] trailed this development by a few unfortunate months;
it was particularly challenging because it required daily, campus-wide floppy-
disk collection and distribution [76].

Probably the most prominent result obtained using the multiple polynomial
quadratic sieve was the 1994 factorization of the 129-digit challenge pub-
lished in the August 1977 issue of Scientific American, solved in [6] by Derek
Atkins, Michael Graff, the author and Paul Leyland (cf. Figure 5.1). It used
the software from [57] and did not take advantage of the somewhat faster self-
initializing method described at the end of this section, because improving the
software was not found to be worth the effort: around that time the much more
promising method from Section 5.5.3 on page 37 was about to become prac-
tical and competitive with the quadratic sieve (refer to [38, Section 5] for a
direct comparison). Indeed, in [6] the 129-digit quadratic sieve factorization
was already referred to as “probably the last gasp of an elderly workhorse”.
Two other old workhorses that were used for the last time for a record factor-
ization were the combination of structured and regular Gaussian elimination
(cf. Section 5.2.5 on page 7) and the 16 384-core massively parallel MasPar
supercomputer: half a day on a desktop to reduce the original sparse bit-matrix
M with m ≈ 525 000 to a dense matrix M′ with m′ ≈ 188 000, followed by
two days of regular Gaussian elimination on the MasPar to find dependencies
among the columns ofM′.

Montgomery showed how to construct a virtually limitless supply of integer
polynomials f as in Expression (5.12) on page 17 and Expression (5.15) by
focusing on their two crucial properties. The first of these is that they have a
non-zero discriminant that is zero modulo n: this ensures that a smooth value

General purpose integer factoring 21

leads to a relation as in Condition (5.1) on page 3. The second is that, for any
arbitrarily selected γ ≥ β, the polynomial values must be bounded by L[1

2 , γ]
√

n
over the sieving interval of length L[1

2 , γ]. This guarantees not just the usual
L[1

2 , β]-smoothness probability L[1
2 ,−

1
4β] but also makes it possible to sieve

with many polynomials over short sieving intervals: in theory L[1
2 , β + 1

4β − γ]
polynomials, each over an interval of length L[1

2 , γ]. In Expressions (5.12)
and (5.15) this is achieved for polynomials of a specific form and specific γ-
values, but there are many degrees of freedom that can be exploited, as shown
below.

Following Montgomery’s construction as described in [87] and [53, 4.16],
consider values f (i) of the quadratic integer polynomial

f (X) = a2X2 + bX + c (5.16)

for integers i with |i| ≤ L[1
2 , γ], with integers a, b, c such that the discriminant

∆ = b2 − 4a2c of f is a small odd multiple of n. It follows that

f (i) ≡ (ai + b
2a)2 mod n,

so that each L[1
2 , β]-smooth f (i) leads to a relation as in Condition (5.1) on

page 3. To bound f (i) by L[1
2 , γ]
√

n for |i| ≤ L[1
2 , γ], the leading coefficient a2

of f must be of order
√

n
L[1

2 ,γ]
. Furthermore, to maximize the probability that

f (i) is divisible by primes at most L[1
2 , γ], the leading coefficient a2 must be

free of prime factors at most L[1
2 , γ]. These two conditions are satisfied if a is

chosen as a prime number such that a2 ≈
√

∆

L[1
2 ,γ]

. To make sure that a solution

to b2 ≡ ∆ mod 4a2 is easy to find as well, a is chosen such that a ≡ 3 mod 4
and with Legendre symbol

(∆
a
)

equal to one: it follows that b̃ = ∆
a+1

4 mod a
satisfies b̃2 ≡ ∆ mod a, after which b̃ is lifted to b with b2 ≡ ∆ mod 4a2 by
first solving (b̃ + ka)2 ≡ ∆ mod a2 for k, which leads to

k = ∆−b̃2

a
(
(2b̃)−1 mod a

)
mod a

(known as Hensel’s lemma), and defining b = b̃ + ka or b = b̃ + ka − a2

depending on which of the two is the proper, odd choice. The resulting b and
c = b2−∆

4a2 are of order
√

∆

L[1
2 ,γ]

and L[1
2 , γ]
√

∆, respectively, as required.
The number of suitable a-values, and thus of suitable polynomials f (X) as

in (5.16), is of order n
1
4 +o(1). It is therefore a simple matter to parallelize the

sieving effort for the multiple polynomial quadratic sieve: for any n-value for
which it is worthwhile to parallelize the factoring effort, disjoint intervals con-
taining an adequate supply of a-values can be farmed out to any realistic num-
ber of sieving clients, with the resulting relations collected at a central location.

22

This is how [87, 16] and, independently but later and on a larger scale, [57]
worked.

Further improvements. Selecting the best value for γ involves a trade-off

because smaller γ-values result in higher smoothness probabilities (of, on av-
erage, smaller f (i)-values), but also in more frequent sieve initialization, i.e.,
computing the roots of the polynomial f (X) modulo all primes p ≤ L[1

2 , β]
with

(n
p
)

= 1. This requires the relatively costly calculation of a−1 modulo all
those primes. As shown in [79], Montgomery’s construction of a and b allows
a further generalization where a single a, chosen as the product of ` distinct
primes from a collection of κ (much smaller) primes, gives rise to 2`−1 distinct
b-values. In this so-called self-initializing quadratic sieve, due to Pomerance,
Smith, and Tuler, the 2`−1 polynomials resulting from each of the

(
κ
`

)
choices

for a, can be ordered in such a way that the roots modulo p for the current
polynomial lead with a few additions modulo p to the roots of the next polyno-
mial. In this way the costly inversions can essentially be amortized over

(
κ
`

)
2`−1

polynomials, leading to a speedup of about a factor of two over the multiple
polynomial quadratic sieve [20]. Refer to [79], [4] and [68] for details and
to [43] for a recent improvement.

An additional speedup of a similar order of magnitude can be obtained by
allowing more than a single large prime per relation, as shown for the multiple
polynomial quadratic sieve in [58] (re-inventing what Schroeppel had already
used for linear sieve, but had never published) and in [61].

Though relevant and of some interest when they occurred, with hindsight all
developments since the continued fraction method sketched above were only
rather modest improvements of its basic idea. Probably the biggest single con-
tributions were Schroeppel’s informal first analysis of the smoothness bound
trade-off and his introduction of sieving, followed by Pomerance’s influential
more formal treatment of the subject in [74]. The constant c in the factoring
effort estimate L[1

2 , c] slowly decreased over time, but got stuck at c = 1: as
further shown below, (failed) attempts to further reduce c were not sufficiently
ambitious by targeting the wrong constant in L[1

2 , 1]. An example is the cu-
bic sieve algorithm, a never realized extension of the approach from [24] (see
also [53, Section 4.E]).

As follows from Expression (5.6) on page 11, no general purpose factoring
method that is based on the two-step approach from Section 5.2.1 on page 2
can improve on L[1

2 , c] for positive c as long as the numbers to be tested for
smoothness are of order L[1, ψ] = nψ+o(1) for positive ψ. It took a new idea (or,
actually, a sequence of new ideas) to replace this constant power nψ+o(1) of n
by a vanishingly small power of n: more precisely, by L[2

3 , ψ] = no(1), which

General purpose integer factoring 23

then results in overall effort L[1
3 , c] for some positive c (cf. Expression (5.6)).

This is further explained in the next section.

5.5 Number field sieve

While the polishing efforts described in the previous section were underway,
an independent development took place that started as a cottage industry (cf.
Figure 5.2) but that quickly took center stage. Triggered by the factorizations
of the seventh Fermat number F7 in 1970 and the eighth Fermat number F8

in 1980 (cf. sections 5.3.2 on page 12 and 5.4.1 on page 14), and rightly con-
cluding from [57] that the ninth Fermat number F9 would be out of reach of
general purpose factoring methods for the foreseeable future unless a break-
through would occur, Pollard designed, in 1988, a new factorization method
specifically targeted at Fermat numbers. After using it to factor F7 on his 8-bit
Philips P2012 computer (with 64K random access memory and two 640K disk
drives), he sent a description of his method (later published as [72]) to Andrew
Odlyzko, accompanied by a letter, dated August 31, 1988, with Richard Brent,
John Brillhart, Hendrik Lenstra, Claus Schnorr, and Hiromi Suyama in copy:

For a 40-digit number the time is perhaps a little
longer than QS on my computer. With larger numbers,
for those able to attempt them, it may have an
advantage over QS.
...
(Perhaps I am talking nonsense?).
...
If F9 is still unfactored, then it might be a
candidate for this kind of method eventually?
I would be grateful for any comments.

Pollard was, of course, known for not talking nonsense, but Odlyzko did not
take the bait. Lenstra, however, did. This led not only to the factorization of F9

in 1990 – to Pollard’s great numerological relief – but more importantly to the
development of the number field sieve integer factoring method, the current
state of the art in general purpose integer factorization. As sketched below,
Montgomery later played an active role in the auxiliary steps that turned the
number field sieve into a practical factoring method.

Pollard’s original method, factoring with cubic integers as described in [72],
applied only to integers of a special form. It led to the factorization method
in [55] which was called the number field sieve (cf. [3]) and which was more
general than Pollard’s method because it could use quartic, quintic, etc. instead

24

Figure 5.2 Tidmarsh Cottage, the birthplace of the number field sieve.

of just cubic integers, but which still only applied to composites of a special
form. This restriction was removed in [14], at which point the original num-
ber field sieve became known as the special number field sieve, and the new
method from [14] as the general number field sieve. At this point in time, the
“general” is dropped most of the time. In this section the various historical
developments before and after Pollard’s method from [72] and as collected
in [54] are described.

5.5.1 Earlier methods to compute discrete logarithms

Compared to earlier general purpose integer factorization methods, Pollard’s
method in [72] introduced two main new ingredients: factorization into prime
ideals of certain elements of an algebraic number field of degree three (or
higher), and homomorphically mapping such elements to integers modulo n to
get two distinct factorizations that are identical modulo n. Both ingredients had
already been used for quadratic fields by Coppersmith, Odlyzko and Schroep-
pel in their Gaussian integer method from [24] to compute discrete logarithms
over prime fields, a method that is related to Taher ElGamal’s method from [35]
to compute discrete logarithms over quadratic extensions of prime fields using
prime ideal factorizations. The latter method was a generalization of an ear-

General purpose integer factoring 25

lier method to compute discrete logarithms over prime fields [92, 1] (and as
mentioned in [71, Section 1]), which in turn was based on the same two-step
approach to integer factorization described in Section 5.2.1 on page 2. The
developments from [92, 1] via [35] to [24] that would ultimately lead to [72]
and [54] are described below.
Discrete logarithms over prime fields. Let q be a prime number and let g be
a generator of the multiplicative group F×q of the finite field Fq of q elements.
The discrete logarithm of h ∈ 〈g〉 with respect to g, denoted logg h, is the
x ∈ Z/(q − 1)Z such that gx = h. As shown in [92], the two-step approach to
integer factorization from Section 5.2.1 can also be used to compute discrete
logarithms, with Leonard Adleman in [1] being the first to use Schroeppel’s
approach to analyse that the required effort is subexponential in log q (cf. Sec-
tion 5.2.2 on page 4). If in Dixon’s random squares method from Section 5.3.1
on page 11 the values w are selected as w = gχ ∈ Fq for random exponents
χ ∈ Z/(q − 1)Z (and identifying Fq in the canonical manner with the set of
integers {0, 1, . . . , q − 1}), a relation w =

∏
p∈P peχ,p leads to the identity

χ =
(∑

p∈P

eχ,p logg p
)

mod (q − 1).

With |P| linearly independent relations the values logg p for p ∈ P can be
found using linear algebra modulo q − 1, after which, for each h for which
logg h must be calculated, values τ ∈ Z/(q − 1)Z are randomly selected until
hgτ =

∏
p∈P peτ,p so that

logg h =
(∑

p∈P

eτ,p logg p
)
− τ mod (q − 1).

Discrete logarithms over general finite fields. The above method works be-
cause of the canonical identification between the elements of Fq and the ele-
ments of the set of integers {0, 1, . . . , q−1}. This makes it possible to embed Fq

into the integers while transferring smoothness-related properties of the set of
integers {0, 1, . . . , q − 1} to the corresponding elements of Fq. Given this sim-
ple approach, it is a natural question to ask what happens if prime fields are
replaced by extension fields. In [67] it is shown that the same approach works
again for fixed constant field characteristic q with the extension degree d go-
ing to infinity: with f (X) ∈ Fq[X] irreducible of degree d, the extension field
Fqd is isomorphic to (Fq[X])/(f), which is naturally embedded in Fq[X]. An
extension field element can thus be defined to be smooth if the corresponding
polynomial of degree at most d − 1 in Fq[X] factors into polynomials in Fq[X]
of sufficiently small degrees. The required effort is of the form Lq[1

2 , c] for
constant c ∈ R>0, i.e., subexponential in d (see [67] and also [53, 3.9-3.12]).

26

More refined methods exploit the considerable degree of freedom in the re-
presentation of field elements if the characteristic is fixed (but d → ∞). Cop-
persmith, in his 1984 paper [21], was the first to achieve L[1

3 , c]. After almost
three decades this line of research was picked up again, resulting in a sequence
of dramatic further improvements [39, 42, 8, 40].
Discrete logarithms over quadratic extension fields. Naively doing the same
for d = 2 to compute discrete logarithms in Fq2 , with prime q, fails because the
elements of Fq2 would be identified with polynomials of degree at most one
in Fq[X], via the isomorphism between Fq2 and (Fq[X])/(f). With the above
definition of smoothness of polynomials, all elements are smooth and the al-
gorithm becomes meaningless. ElGamal in [35] showed how to fix this. First
he uses the same isomorphism Fq2 ' (Fq[X])/(f) for the calculation of the
w-values, which will be degree one polynomials in X over Fq. In these poly-
nomials he replaces X and Fq by α and Z, respectively, where α is a zero of f
regarded as an irreducible polynomial in Z[X] (with the usual canonical map
between Fq and the set of integers {0, 1, . . . , q − 1}, and where irreducibility
over Z follows from irreducibility modulo q). This results in w-values in Z[α],
the smoothness of which is then defined in terms of a smooth prime ideal fac-
torization in the algebraic number field Q(α) ' Q[X]/(f).
Prime ideal factorization. As described in [35, Appendix C] for quadratic
number fields and for higher degree number fields in [55], [14] and [56], prime
ideal factorizations in Q(α) lead to a myriad of issues. The present informal
description is loosely based on [35, Appendix C] and [55, Sections 2, 3, 5] to
cover both the present discrete logarithm application and the number field sieve
in Section 5.5 on page 23. For simplicity it is assumed that Z[α] is a unique
factorization domain; for the more general case refer to [35, Appendix C], [55,
Section 3] and [14].

Assume that f is monic and of degree d as above. Because the field Fqd is
isomorphic to (Fq[X])/(f), the generator g of the multiplicative group F×qd of
Fqd can be represented as a polynomial g(X) ∈ (Fq[X])/(f) of degree at most
d − 1. For random χ ∈ Z/(qd − 1)Z, the element w = gχ ∈ F×qd is calculated
as g(X)χ ∈ (Fq[X])/(f), which results in a polynomial w(X) = (Fq[X])/(f) of
degree at most d−1. For the present purpose d = 2, so that the polynomial w(X)
has degree at most one. Although in sections 5.5.2, 5.5.3, and 5.5.4 below
more general d-values are used, the different construction that is used there also
leads to polynomials w(X) ∈ (Fq[X])/(f) of degree at most one. The resulting
polynomial w(X) can thus be written as a−bX ∈ (Fq[X])/(f). This polynomial
is interpreted as a − bα ∈ Z[α], tested for smoothness in Z[α], and if smooth
written as a product over Z[α] of prime elements in Z[α]. From this product a
relation then follows. The test for smoothness is straightforward: a − bα is B-

General purpose integer factoring 27

smooth if and only if its norm N(a − bα) = bd f
(a

b
)
∈ Z is B-smooth (note that

the norm is a degree d integer polynomial that is homogeneous in a and b). The
remaining steps are more involved, as briefly described in the next paragraphs.

Integer factors that a and b may have in common are easily dealt with in
the usual manner. Therefore let gcd(a, b) = 1 from now on, and let N(a − bα)
(and thus a − bα) be B-smooth. One could now hope that if N(a − bα) =∏

p∈P pea,b,p for some set of primes P, then a−bα =
∏
p∈P p

ea,b,p withP denoting
a set of prime elements in Z[α] that corresponds one way or another to P.
This is indeed the case if “prime element” means prime ideal; the equality
is interpreted as the factorization of the ideal (a − bα) into prime ideals; and
if a final issue is addressed: generally speaking a prime ideal is not uniquely
identified by its norm, so ambiguities have to be resolved. The latter is easily
done too: because N(a−bα) = bd f

(a
b
)
, a prime p divides N(a−bα) if and only

if a
b mod p is a root of f modulo p. Therefore, it suffices to define

P = {(p, z) : p prime, p ≤ B, z ∈ Z, 0 ≤ z < p, f (z) ≡ 0 mod p}

and to rewrite the above factorization of N(a − bα) as

N(a − bα) =
∏

(p,z)∈P

pea,b,p,z

where ea,b,p,z = 0 if a , bz mod p. Note that for d = 2 at most two pairs in P
share the same prime. After identifying each pair (p, z) ∈ P with the prime
ideal p generated by p and z − α, the prime factorization of N(a − bα) over P
corresponds to the prime ideal factorization

(a − bα) =
∏
p∈P

p
ea,b,p (5.17)

of the ideal (a− bα). These prime ideals p are first degree prime ideals and are
the only prime ideals that can occur in the prime ideal factorization of ideals
of the form (a − bα).

Two more issues must be addressed to turn Equation (5.17) into a factor-
ization of the element a − bα ∈ Z[α] that holds over Z[α] = (Z[X])/(f) and
that can thus be turned into a factorization in (Fq[X])/(f) ' Fqd . The latter
is required for ElGamal’s method to compute discrete logarithms in Fq2 and
for the early version of the special number field sieve – later it turned out that
the prime ideal factorization in Equation (5.17) suffices (thanks to two other
additional ideas, mentioned on pages 39 and 41 in Section 5.5.3).
Factoring a − bα over Z[α]. As is, in Equation (5.17), the ideal p generated
by p and z − α does not contribute in a useful or meaningful fashion to a
factorization of a−bα over Z[α], because p can not be interpreted as an element

28

of Z[α]. In the context of [35] and [55] this can be fixed by determining,
for each p = (p, z − α) ∈ P, an element gp ∈ Z[α] that generates the same
ideal as p: this is the case if the norm N(gp) of gp equals p and gp regarded
as a polynomial of degree at most d − 1 has a root z modulo p. Here N(gp)
is as above if d = 2 (in which case gp is a polynomial in α of degree at most
one); in general N(gp) is a degree d integer polynomial that depends on f and
that is homogeneous in the d coefficients of gp (see also [55, 3.6]). In [35,
Lemma 4] and [55, Section 3] a search-process is described that determines gp
for all p ∈ P and that is efficient for the polynomials at hand in [35] and [55].
Essentially, degree d − 1 integer polynomials with relatively small coefficients
are inspected until all generators gp have been found. Once all found, the prime
ideal factorization (5.17) of the ideal (a − bα) can be rewritten as

(a − bα) =
∏
p∈P

(gp)ea,b,p . (5.18)

Even though gp ∈ Z[α], Equation (5.18) may not yet be the factorization of
a − bα over Z[α] that is aimed for, because the prime ideal generators gp are
not unique. In principle, any choice for gp is as good as any other one, but
different choices would lead to different factorizations of a − bα, which can
not be correct. This final issue is resolved by finding the unit contribution:
if gp and ḡp are distinct but generate the same prime ideal, then their quotient
is a polynomial u , 1 in Z[α] of norm equal to one. Such a u is a unit. In
more generality, given a choice of prime ideal generators gp for all p ∈ P, the
quotient ua,b of a − bα and

∏
p∈P(gp)ea,b,p satisfying Equation (5.18) is called

the unit contribution. To be able to deal with the unit contributions, each much
be written as a product over a fixed set of units. This is done as follows.

During the search for the prime ideals generators gp, a minimal finite set U ⊂
Z[α] of units can be determined that multiplicatively generates all units, di-
rectly by keeping the polynomials of norm equal to one or by considering
quotients of two generators that have, in absolute value, the same norm [55,
Section 3]. Once U has been determined, integers ea,b,u can be found such that
ua,b =

∏
u∈U u

ea,b,u . This can be done using table look-up or using (much faster)
complex embeddings as described in [55, Section 5]. As a result it is found that

a − bα =
(∏
u∈U

u
ea,b,u

)(∏
p∈P

g
ea,b,p
p

)
(5.19)

holds over Z[α] = (Z[X])/(f).
Wrapping up discrete logarithms over quadratic extension fields. Return-
ing, for d = 2, to where a − bα came from, namely from gχ = a − bX ∈
(Fq[X])/(f) ' Fq2 where g generates F×q2 and χ is chosen at random from

General purpose integer factoring 29

Z/(q2 − 1)Z, Equation (5.19) is the relation that follows from the smoothness
of a − bα. With X substituted for α (also in all u ∈ U and in gp for all p ∈ P)
it holds for integer polynomials modulo the polynomial f (X) ∈ Z[X]. It thus
holds modulo q too and, with all polynomials interpreted as elements of Fq2 ,
leads to

χ = logg(a − bX) =
(∑
u∈U

ea,b,u logg u +
∑
p∈P

ea,b,p logg gp
)

mod (q2 − 1).

As usual, with |U| + |P| relations the discrete logarithms of all u ∈ U and all gp
for p ∈ P can be found using linear algebra modulo q2 − 1. Individual discrete
logarithms can then be calculated as described above. In [35] ElGamal has
shown that the required effort is subexponential in log q.
Gaussian integer method. Returning to the computation of discrete loga-
rithms over prime fields Fq, in [24] Coppersmith, Odlyzko and Schroeppel
show how the ideas of Schroeppel’s linear sieve can be used to substantially
speed up the basic algorithm described in one of the earliest paragraphs of this
section. One of their methods combines Gaussian integers (similar to ElGa-
mal’s method sketched above, with d = 2) with a homomorphism between the
set Z[i] of Gaussian integers and the ring Z/qZ of integers modulo q to find
two distinct factorizations that are the same modulo q. This combination can
be interpreted as the degree two version of what was later used in the number
field sieve for general degrees, and is briefly described below.

Let f (X) = X2−t ∈ Z[X], where |t| is small, t < 0, and t is a quadratic residue
modulo q. With α such that f (α) = 0, the same assumption as above is made
that Z[α] is a unique factorization domain (unnecessarily limiting the choice
of t to just nine possibilities for the present simplified description). With m ∈ Z
such that m2 ≡ t mod q, the mapping ϕ from Z[α] to Z/qZ that maps a − bα
to a − bm mod q is a ring homomorphism because f (α) = 0 ≡ f (m) mod q. It
follows that if the integer a − bm is B-smooth and the Gaussian integer a − bα
is smooth as in Equation (5.19), and where a and b are coprime as usual, then∏

p≤B

pea,b,p = a − bm ≡ ϕ(a − bα) mod q

and

ϕ(a − bα) = ϕ

((∏
u∈U

u
ea,b,u

)(∏
p∈P

g
ea,b,p
p

))
=

(∏
u∈U

ϕ(u)ea,b,u
)(∏
p∈P

ϕ(gp)ea,b,p
)
.

This leads to the relation∏
p≤B

pea,b,p ≡
(∏
u∈U

ϕ(u)ea,b,u
)(∏
p∈P

ϕ(gp)ea,b,p
)

mod q (5.20)

30

and thus to the identity∑
p≤B

ea,b,p logg p ≡
(∑
u∈U

ea,b,u logg ϕ(u) +
∑
p∈P

ea,b,p logg ϕ(gp)
)

mod (q − 1)

between the discrete logarithms of a specific set of elements of F×q ' (Z/qZ)×.
With sufficiently many identities of this sort, all these discrete logarithms can
be determined – assuming logg g = 1 is among them – after which individual
logarithms can be found in, more or less, the customary fashion.

In [24] integers y, z of order
√

q with y
z ≡ m mod q are determined (by in-

terrupting the iteration of the extended Euclidean calculation of m−1 mod q
approximately halfway) to replace a − bm of approximate order q by z(a −
bm) ≡ az − by mod q of approximate order

√
q. This considerably increases

the smoothness probabilities, at the cost of introducing an additional factor z
on the right-hand side of Relation (5.20) (and an additional term logg z on the
right-hand side of the ensuing identity modulo q − 1), but the basic idea re-
mains the same. After this modification, the overall required effort becomes
Lq[1

2 , 1], using, for the first time, the Lanczos method and thus µ = 2 (cf. Sec-
tion 5.2.5 on page 7 and Section 5.2.7 on page 11) for the linear algebra step.
The method has for a long time been competitive with later number field sieve
based discrete logarithm methods [91].

Interestingly, with |a|, |b| ≤ Lq[1
2 ,

1
2], the smoothness probabilities of the

integers and of the algebraic integers are unbalanced: for the integers az−by the
probability is Lq[1

2 ,−
1
2], for the algebraic integers the smoothness is bounded

below by a positive constant [24]. If a larger degree polynomial f (X) is used,
then the probabilities can be better balanced. This is precisely what happens in
the number field sieve.

5.5.2 Special number field sieve

Pollard in [72] showed how the ideas from Section 5.5.1 on page 24 can be
used with degree d > 2 to factor numbers of the form x3 − t, for small |t|, while
using a unique factorization domain Z[α] for his example factorization of F7.
Elsewhere (cf. his letter quoted above in Section 5.5 on page 23) he mentioned
that non-unique factorization and degree higher than three seem possible

and not too difficult. This was indeed shown to be the case in the
follow-up paper [55]. Using d = 5 and a rough first implementation of a gener-
alized version of Pollard’s method, several previously unfactored composites
from the Cunningham tables [28, 12] were factored. Many of these numbers
were at the time out of reach of the multiple polynomial quadratic sieve or its
faster self-initializing variant. Several cases were encountered where Z[α] was

General purpose integer factoring 31

not a unique factorization domain and had to be replaced by the ring of integers
of Q(α) to get unique factorization. These early experiments culminated in the
summer of 1990 in the factorization of F9, reported by the author, Lenstra,
Manasse and Pollard in [56]. Since then much more refined implementations
have been used to obtain a string of factorization records for Cunningham num-
bers, most recently the shared factorizations from [45] mentioned in the intro-
duction (which also uses one of the ideas from [22], described in Section 5.5.4
on page 43). Pollard’s method, now known as the special number field sieve, is
at this point in time still the state of the art for the factorization of Cunningham
and other numbers of a similar special form.
Relations in the special number field sieve. A relation in the original variants
of the number field sieve [72, 55] is a higher degree variation of the homomor-
phic equivalence (5.20) on page 29 encountered in the Gaussian integer method
in Section 5.5.1 on page 24, with the prime q replaced by the composite n to
be factored: when Relation (5.20) is divided by its left-hand side, an equation
similar to the one in Condition (5.1) on page 3 is obtained (with w = v = 1):

1 ≡
(∏

p≤B

p−ea,b,p
)(∏
u∈U

ϕ(u)ea,b,u
)(∏
p∈P

ϕ(gp)ea,b,p
)

mod n.

With π(B) + |U| + |P| + ω such equations (with ω the oversquareness as in
Section 5.2.1 on page 2) the composite n can most likely be factored.

As set forth in Section 5.5.1, Relation (5.20) requires simultaneous smooth-
ness, for coprime integers a, b, of the integers a − bm and N(a − bα) = bd f

(a
b
)

where f (m) ≡ 0 mod n for an irreducible, degree d polynomial f (X) ∈ Z[X]
with f (α) = 0. Because |a| and |b| will be relatively small, the smoothness
probabilities depend on the size of m, the degree d, and the sizes of the coeffi-
cients of f (X). In the Gaussian integer method the size-issue was addressed by
replacing m by y

z for smaller y and z, and by taking f (X) = X2 − t for small |t|.
In the special number field sieve it is done by considering a similar polynomial
of degree larger than two, and by considering only specific n-values.
Special numbers. Pollard in [72] targeted composites of the form x3 − k for
small |k|. In [55] this was generalized to xD − k for small positive integers D
and |k|. Examples of such composites are the Cunningham numbers, with fac-
torizations tabulated in [28, 12] and to the present day the subject of intense
computations. Given a composite n = xD − k and a targeted degree d, a poly-
nomial f (X) = Xd − t ∈ Z[X] and integer m with f (m) ≡ 0 mod n are easily
found by taking the smallest integer ` such that `d ≥ D and putting t = kx`d−D

and m = x`.
The choice of d leads to a trade-off between the smoothness probabilities of

a − bm and bd f
(a

b
)
, with larger d leading to smaller a − bm but faster growth

32

of |bd f
(a

b
)
| for larger a- and b-values. This trade-off is analyzed further below.

It leads to a d-value that grows as a function of n and smoothness probabilities
of a − bm and bd f

(a
b
)

that are better balanced than in the Gaussian integers
method.

With f (X) = Xd − t, deriving Relation (5.20) on page 29 from a pair (a −
bm, bd f

(a
b
)
) of smooth integers works as described in Section 5.5.1 on page 24,

assuming that Z[α] is a unique factorization domain. If the latter is not the
case the general number field sieve approach (cf. below) may be used while
still exploiting the favorable smoothness probabilities resulting from the poly-
nomial Xd − t (compared to the polynomials that normally occur in the gen-
eral number field sieve). Alternatively, as suggested in [55, Section 3] and as
done for several of the factorizations obtained in [55], the search-based ap-
proach from Section 5.5.1 can still be used, but with Z[α] replaced by 1

c Z[α]
for an appropriately chosen small c ∈ Z>1 (and with ϕ redefined as ϕ

(a−bα
c

)
=

(a − bm)(c−1 mod n) mod n).
Finding relations. Pairs of coprime integers a, b (with b ≥ 0) such that a− bm
and bd f

(a
b
)

= ad − tbd are both smooth are normally found using a two-stage
sieving process. Commonly, everything related to a − bm is referred to as the
rational side, and everything related to bd f

(a
b
)

as the algebraic side. With the
notation from Section 5.2.3 on page 5 let L[r

2 , β] be the smoothness bound
(without loss of generality shared for the smoothness of a−bm and of bd f

(a
b
)
),

where r > 0 and β > 0 are specified in the analysis below. Furthermore, assume
that coprime pairs of integers a, b with |a| ≤ L[r

2 , γa] and 0 ≤ b ≤ L[r
2 , γb] must

be considered, with, without loss of generality, γa ≥ γb and γa + γb = 2β (cf.
Section 5.2.3 and the analysis below). Under this standard assumption on the
size L[r

2 , γa + γb] = L[r
2 , 2β] of the search space versus the smoothness bound

L[r
2 , β], the sieving effort equals L[r

2 , 2β] for both methods sketched below.
Line sieving. The first method to find relations, as used by the earliest imple-
mentations, is line sieving. Pollard in [72] used it in a first stage to locate pairs
of coprime integers a, b for which a − bm is smooth, and then, in the sec-
ond stage, used trial division to inspect the corresponding values of bd f

(a
b
)

for
smoothness. In [55] line sieving was used in both stages, i.e., first to find pairs
of coprime integers a, b for which a − bm is (likely to be) smooth and next to
find the pairs for which bd f

(a
b
)

is smooth as well. This gave the number field
sieve its name. In line sieving, for b = 0, 1, 2, . . . , L[r

2 , γb] in succession the en-
tire line of a-values with |a| ≤ L[r

2 , γa] is sieved. This is similar to Schroeppel’s
linear sieve where consecutively for each fixed j-value the interval of i-values
is processed.

The elementary line siever from [55] was used for, among others, the factor-
ization of F9 reported in [56] and, after considerable improvements by Mont-

General purpose integer factoring 33

gomery, for many other factorizations (see for instance [10]). The order of the
two sieving stages in the special number field sieve is explained by the fact
that on average the absolute values |a − bm| on the rational side are larger than
the absolute values |bd f

(a
b
)
| on the algebraic side: compared to the reverse or-

der of sieving, fewer candidate locations resulting from the first sieve over the
|a− bm|-values remain to be inspected after the second sieve over the |bd f

(a
b
)
|-

values. In the general number field sieve |bd f
(a

b
)
| is on average larger than

|a − bm| so that it becomes more efficient to reverse the order of the sieving
stages: there pairs of integers a, b for which bd f

(a
b
)

is likely to be smooth are
located first, and next the resulting set of pairs is further restricted to pairs for
which a − bm is smooth as well.
Lattice sieving. Unless γb is small, it is more efficient to use lattice sieving, as
suggested by Pollard in [73]. Lattice sieving was used for the first time in [38]
(for the general number field sieve), and has from that time on been used for
all record factorizations obtained using the special or the general number field
sieve (for the record reported in [19] both line sieving and lattice sieving were
used). In lattice sieving relation collection is split up, not according to disjoint
lines as in line sieving, but into non-disjoint subtasks specified by (prime, root)
pairs (q, z) for primes q relatively close to the smoothness bound L[r

2 , β]. The
prime q is often referred to as special prime or special q-prime. This has noth-
ing to do with the “special” in special number field sieve; the prime q, how-
ever, is reminiscent of how Davis, Holdridge and Simmons managed to get
quadratic sieve to work, cf. Section 5.4.3 on page 18. In subtask (q, z) relations
are sought specified by pairs of coprime integers a, b for which a

b ≡ z mod q.
Because a relation given by a pair of integers a, b may be found by different
subtasks (q, z) and (q̄, z̄) if a

b ≡ z mod q and a
b ≡ z̄ mod q̄, duplicates among the

relations must be removed. There are on the order of L[r
2 , β] (prime, root) pairs

for which the prime is close to L[r
2 , β], each of which is processed (typically in

parallel, in ranges of sequential q-values) until enough distinct relations have
been found. It follows that per (prime, root) pair effort at most L[r

2 , β] may be
spent. How this is achieved is described below.

Let (q, z) with q of order L[r
2 , β] be a fixed (prime, root) pair. In the spe-

cial number field sieve (q, z) is typically chosen such that z ≡ m mod q and
subtask (q, z) results in pairs of coprime integers a, b with q dividing a − bm;
in the general number field sieve (q, z) is chosen such that f (z) ≡ 0 mod q so
that q divides bd f

(a
b
)

for the pairs a, b resulting from subtask (q, z). Without
loss of generality, assume that z ≡ m mod q and that γa = γb = β. The pairs
of integers a, b for which q divides a − bm form an index-q sublattice of Z2

with basis {
(

q
0

)
,
(

z
1

)
} over Z: in subtask (q, z) only elements of this sublattice

are considered. Intersecting the sublattice with the original rectangular search

34

space {(a, b) : |a| ≤ L[r
2 , β], 0 ≤ b ≤ L[r

2 , β]} results in a search space for

subtask (q, z) that consists of approximately 2L[r
2 ,2β]
q = L[r

2 , β] elements. This
intersection is not calculated precisely, but only approximated in the sense that
a subtask search space is defined that should be approximately as effective as
the actual intersection: first a reduced basis {u, v} ⊂ Z2 of the original ba-
sis {

(
q
0

)
,
(

z
1

)
} is found (i.e., the vectors u and v should have entries that are in

absolute value close to
√

q) after which the intersection is approximated as
{
(

a
b

)
= iu + jv ∈ Z2 : |i| ≤ L[r

2 ,
β
2], 0 ≤ j ≤ L[r

2 ,
β
2]}. The subtask search space

is then defined as the rectangle {(i, j) : |i| ≤ L[r
2 ,

β
2], 0 ≤ j ≤ L[r

2 ,
β
2]} in the

(i, j)-plane, with each pair (i, j) identified with the a, b pair
(

a
b

)
= iu + jv with

a
b ≡ z mod q.
Sieving by vectors. The above new rectangle of size 2L[r

2 ,
β
2] × L[r

2 ,
β
2] =

L[r
2 , β] in the (i, j)-plane must be sieved with all L[r

2 , β] distinct (prime, root)
pairs (p, zp) while spending effort L[r

2 , β], i.e., proportional to the size of the
subtask search space. This implies that line sieving can not be used because
it would consider all L[r

2 ,
β
2] consecutive j-values (i.e., all lines in the new

rectangle; cf. [13]) and it would do so for for each of the L[r
2 , β] (prime, root)

pairs (p, zp). Thus, line sieving would take effort at least L[r
2 ,

3
2β], which is

more than L[r
2 , β]. Instead, in the (i, j)-plane sieving with a (prime, root) pair

(p, zp) must be done in such a way that it takes effort at most L[r
2 ,β]
p ; summation

over all (prime, root) pairs (p, zp) then results in an upper bound L[r
2 , β] on the

total sieving effort (cf. Equation (5.4) on page 7).
As above, the points to be visited per pair (p, zp) belong to an index-p sub-

lattice of the (i, j)-plane. Those among them that belong to the new rectangle
in the (i, j)-plane are located in a manner similar to how that new rectangle
was defined: first a suitably reduced basis is determined for the index-p sublat-
tice induced by (p, zp) in the (i, j)-plane, after which the intersection with the
rectangle can be determined. Pollard in [73] refers to this approach as sieving
by vectors and poses the problem how to quickly generate the points in the
intersection. It was done crudely but fairly effectively in [9, 38] by consider-
ing small linear combinations of the vectors spanning the reduced bases; refer
to [36], however, for the solution to Pollard’s problem.
Speedup obtained by lattice sieving. When using lattice sieving with special
q-primes between B0 and B1 close to the smoothness bound L[r

2 , β], a fraction
≈ log log B1

log B0
of the original search space is considered. The precise values de-

pend on how much sieving (or over-sieving) one decides to do, but normally
speaking the fraction will be considerably less than one and far outweighs the
overhead inherent in sieving by vectors (as the latter requires a basis reduction
step for each (prime, root) pair (p, zp) that must be sieved with). Another nega-

General purpose integer factoring 35

tive effect is that relations for which a− bm is (B0 − 1)-smooth will be missed.
Overall, however, for large composites lattice sieving is to be preferred to line
sieving. It should be noted that when sieving the values that have a special
prime q as a fixed divisor, sieving is normally restricted to (prime, root) pair
(p, zp) for which the prime p is less than q.

Free relations. With P and P as in Section 5.5.1 on page 24, if during the
construction ofP a prime p ∈ P is encountered such that f (X) splits into linear
factors modulo p, a free relation is obtained. Let f (X) =

∏
z(X − z)ez mod p

for distinct integers z ∈ {0, 1, . . . , p − 1} and strictly positive integers ez. For
each of these integers z, define pp,z as the first degree prime ideal of norm p
generated by p and z − α. Then the ideal generated by p equals the product of
the ideals pez

p,z. With Pp the set containing all these ideals pp,z it follows that
(p) =

∏
pp,z∈Pp

p
ez
p,z which is, with a = p, b = 0, and ep,0,pp,z = ez, an equation

of the same form as Equation (5.17) on page 27. This leads to a useful relation
because p ∈ P and Pp ⊂ P. The fraction of relations that thus comes for free
is inversely proportional to the degree of the splitting field of f (X).

Heuristic asymptotic analysis of the special number field sieve. In the anal-
ysis below the second argument used in the L-notation introduced in Sec-
tion 5.2.2 on page 4 often involves an o(1)-term, for D → ∞ where n =

xD − k; this term is silently ignored. Let r, ψr ∈ R>0 be such that max(|a −
bm|, |bd f (a

b)|) ≤ L[r, ψr], and let s, β ∈ R>0 be such that the largest of the
two smoothness bounds is upper bounded by L[s, β] (zero arguments can be
seen not to work). Thus, it suffices to find L[s, β] + L[s, β] = L[s, β] coprime
(a, b) pairs that satisfy the smoothness requirements. Furthermore, dependen-
cies must be found in a sparse L[s, β] × L[s, β]-matrix, at cost L[s, 2β] (cf.
Section 5.2.5 on page 7).

With the smoothness probabilities from Section 5.2.2 and heuristically as-
suming that the values a− bm and bd f

(a
b
)

behave as independent random inte-
gers, it is expected that to find a single satisfactory coprime (a, b) pair, it suf-
fices to consider L[r − s, ψs] random pairs, for some ψs ∈ R>0. Because L[s, β]
pairs suffice, at most L[s, β]L[r − s, ψs] pairs have to be inspected, which is
minimized for s = r

2 (cf. this repeats the argument given just before Expres-
sion (5.3) on page 5).

The trade-off between the smoothness probabilities of a − bm and bd f
(a

b
)

now determines the values for r and the degree d. It follows from max(|a −
bm|, |bd f (a

b)|) ≤ L[r, ψr] that m ≤ L[r, ψ] for some ψ ∈ R>0. With m ≈ n
1
d =

e
1
d log n, this bound on m implies that d ≈ δ(log n

log log n)1−r, where δ = 1
ψ

. With
a search space that contains L[r

2 , β + ψs] pairs (a, b) and given the symmetry
of |a| and b in |bd f (a

b)|, both |a| and b may be upper bounded by L[r
2 , γ] for

36

some γ ≥ β+ψs
2 , so that max(|a|, b)d = L[1− r

2 , γδ]. Balancing the upper bounds
for |a− bm| and |bd f (a

b)|, leads to the optimal choice r = 1− r
2 , and thus r = 2

3 .
In terms of the L-notation, no savings can be obtained when different smooth-

ness bounds are used for |a−bm| and |bd f (a
b)|, so let L[1

3 , β] be the smoothness
bound for both. With |a| and b both bounded by L[1

3 , γ] and m by L[2
3 , ψ] and

heuristically assuming random behavior and independence, the values a − bm
and |bd f (a

b)| are both L[1
3 , β]-smooth with probability L[1

3 ,−
ψ
3β]L[1

3 ,−
γδ
3β], so

that a total of L[1
3 , β+

ψ+γδ
3β] pairs must be inspected to find L[1

3 , β] satisfactory

ones (and ψs =
ψ+γδ

3β). This is minimized when 3β2 = ψ + γδ and thus results,
with effort L[1

3 , 0] per smoothness test (cf. Section 5.2.4 on page 6), in effort
L[1

3 , 2 max(β, γ)] to find the required (a, b) pairs. Taking γ = β and noting that
this satisfies all the above boundary conditions, and including the cost L[1

3 , 2β]
to find the dependencies, it follows that the overall effort is L[1

3 , 2β], which
remains to be minimized under the condition 3ψβ2 − β − ψ2 = 0. The single
positive root β = 1

6ψ
(
1 +

√
1 + 12ψ3)

attains its minimal value β = (2
3)

2
3 for

ψ = (2
3)

1
3 (and thus δ = (3

2)
1
3). The resulting overall effort is L[1

3 , (
32
9)

1
3].

More general polynomials with constant coefficients. The above analysis
of the relation collection and linear algebra effort applies for n → ∞ as long
as the absolute values of the coefficients of the polynomial f (X) are bounded
by a constant. Even though the algorithm as described in this section may not
apply to such more general polynomials (because the search for generators of
the first degree prime ideals may fail) one nevertheless says that the special
number field sieve applies to n-values that admit polynomials with coefficients
bounded by a constant. For these somewhat more general n-values the search
for generators may be replaced by the more general approach used for the
general number field sieve and described in Section 5.5.3 below.
Large prime relations. Relations involving large primes play a much more
prominent role in the number field sieve than in earlier general purpose factor-
ing methods, because large primes can relatively easily be found on the rational
side (i.e., large primes dividing a − bm) and on the algebraic side (i.e., large
primes dividing bd f

(a
b
)
). Depending on the number of large primes allowed,

the number of pairs to be inspected after the sieving may increase considerably,
resulting in relatively costly cofactor processing (for which other factoring al-
gorithms, including the elliptic curve method and quadratic sieve, turn out to be
useful). The presence of large primes also complicates the linear algebra step
(cf. the discussion in Section 5.2.6 on page 8 on filtering and Montgomery’s
contributions to it) and even deciding if enough relations have been collected
becomes a more cumbersome process. Overall, however, usage of large primes
leads to a considerable speedup (which, as usual, disappears in the o(1) in the

General purpose integer factoring 37

L-notation). Refer to [34] for the earliest results (which were, back then, found
to be rather surprising) and to [62, 45] for the most recent ones.

5.5.3 General number field sieve

Though it had not escaped at least one of the authors of [55] that, if a number of
obstructions are ignored, an approach and analysis similar to the special num-
ber field sieve could apply to arbitrary composites, Joe Buhler and Pomerance
were the first who dared to publicly suggest this. Their optimism turned out
to be justified: after several obstacles had been resolved, the general number
field sieve became a reality in the early 1990s. As a result (as shown below
and with the usual vigorous handwaving) the expected general purpose fac-
toring effort was reduced, quite spectacularly, from L[1

2 , 1] to L[1
3 ,

(64
9
) 1

3] ≈
L[1

3 , 1.9223], for n → ∞. This is a bit worse than the special number field

sieve’s L[1
3 ,

(32
9
) 1

3] ≈ L[1
3 , 1.5263] but not overly so. Given the proven prac-

ticality of the special number field sieve, some expected that its generaliza-
tion would soon turn out to be practical as well – and quite possibly replace
quadratic sieve as the best practical general purpose factoring method.

Despite the encouraging remarks in [14, Section 1], this expectation was not
generally shared. Initial experiments were indeed hardly encouraging. In [9] a
66-digit general number was factored (using lattice sieving, cf. Section 5.5.2
on page 30) in a few hours on a MasPar supercomputer (cf. Section 5.4.4 on
page 19), where quadratic sieve took only a few minutes. This compares very
poorly to the performance of the special number field sieve, which had been
used to obtain the record factorization of F9, an achievement that was far be-
yond the capacity of quadratic sieve. Neither were the results reported in [13]
competitive, but it is not clear if sieving by vectors was used in the lattice
sieving from [13] (as required to get the right performance). The first more
encouraging estimate appeared in [32, Section 1], confirmed by an experiment
reported in [38, Section 5] suggesting that the 129-digit quadratic sieve fac-
torization reported in [6], at that point in time the state of the art in general
purpose factoring, could have been achieved at about a third of the effort using
the general number field sieve.

In 1996 the general number field sieve finally replaced quadratic sieve as the
state-of-the-art general purpose factoring method for non-special numbers as
well: the factorization of a 130-digit general composite took an effort that was,
according to [27], “a fraction of what was spent on the previous record” (of the
129-digit composite in [6]), and used the advantageous effect, as had already
been reported in [34], of the use of multiple large primes on both the rational

38

and algebraic side. Probably the most prominent factorization achieved with
the general number field sieve is still the 1999 factorization of a 512-bit crypt-
ographic modulus, in [19]. For 512-bit numbers it thus took almost a decade
to close the gap between “special” and “general”. The latter factorization re-
quired a 500-fold larger effort than the former, so this gap was not entirely
closed by Moore’s law. The current general number field sieve factorization
record stands at 768 bits [44]1. There is a 400-fold effort gap between the cur-
rent special number field sieve record (which stands at about 1200 bits) and
a general 1024-bit composite (the factorization of which could have practical
implications). Actually closing this gap using current methods would result in
a power-bill that can not – or hardly – be justified by the importance of the
resulting factorization: it would be preferable to have a significantly improved
method before embarking on a general 1024-bit factorization. Unfortunately,
however, factoring developments over the last two decades have been disap-
pointing. Thus, it seems there comes no end to the number field sieve’s “day in
the sun” [14, Section 1]: true progress in general purpose factoring has come
to a standstill since the publication of [14] and [22]. The sole exception is [86],
but as it relies on the as yet uncertain realization of quantum computing it has
no practical implications, yet.
Polynomial selection. Finding a suitable polynomial for arbitrary n is easy;
finding a good polynomial is much harder and figuring out how to actually
use it to factor n is yet another story (part of which is told below). Indeed, for
any composite n and d ∈ Z>0, any integer m close to but less than n

1
d may be

chosen, after which f (X) may be defined as
∑d

i=0 fiXi where n =
∑d

i=0 fimi is
the base m representation of n (i.e., fi ∈ Z and 0 ≤ fi < m, for 0 ≤ i ≤ d).
If luck has it that the resulting f (X) is not irreducible (this has not happened
yet in practice), a factorization of n may follow right away. The order m ≈ n

1
d

estimate of the coefficients of f (X) (as used in the analysis below) gives only
a rough impression of the relative performance of a particular choice. Initially
mostly due to the efforts by Montgomery, selecting and distinguishing more
effective parameters for the number field sieve has grown into an active area of
research, to which Chapter 6 is devoted.

No matter how carefully a polynomial f (X) has been selected, however, the
rough estimate m ≈ n

1
d for its coefficients is inescapable, generally speaking.

This leads, unavoidably, to a rather ill-behaved number field Q(α) where the
approach sketched in Section 5.5.1 on page 24 meets with a number of obstruc-
tions that looked, in the late 1980s, hard to overcome. For instance, although
obtaining the prime ideal factorization of the ideal (a−bα) as in Equation (5.17)
1 The current general number field sieve record for the computation of discrete logarithms over

prime fields also stands at 768 bits [46]

General purpose integer factoring 39

on page 27 is still possible, turning it into Equation (5.19) on page 28 (as re-
quired to obtain Relation (5.20) on page 29) requires finding generators in Z[α]
(or in 1

c Z[α], for some integer c) for the units and the prime ideals in P. For
general number fields – as may be expected given a defining polynomial with
coefficients of order n

1
d – it is not even feasible to write down such genera-

tors [55, Section 9], let alone find them (and the primitive search described in
Section 5.5.1 would most certainly be inadequate).

While joint efforts were underway to remove the obstructions, which seemed
possible but cumbersome [14], Leonard Adleman proposed an elegant and de-
ceptively simple solution in [2]. This led to the approach sketched below.
Relations in the general number field sieve. In the general number field sieve
relations are given by coprime pairs of integers a, b for which the integers
a−bm and bd f

(a
b
)

are both smooth, just as in the special number field sieve. In
the latter, relations are turned into identities modulo n between two products
by applying ϕ to the relations themselves. Sufficiently many modular identi-
ties can then be combined into a single identity modulo n between two squares:
an integer square on the left-hand side with on the right-hand side the square
of the product of a (large) number of ϕ-values of elements of Z[α]. This ap-
proach requires turning Equation (5.17), for each pair a, b under consideration,
into something with a right-hand side to which ϕ can be applied, such as Equa-
tion (5.19). As mentioned above and as shown in [55] that works if the polyno-
mial f (X) defining the number field has a particularly nice form, but as elab-
orated upon in [14] (and mentioned above) it is problematic for general f (X).
As discussed in [14] there are several ways to overcome this problem, the most
convenient one of which is using Adleman’s quadratic characters.
Remark. More general descriptions of the general number field sieve no longer
refer to a rational side (for a − bm) and an algebraic side (for bd f (a

b)) but
replace a − bm by bd̄g(a

b) for a polynomial g(X) ∈ Z[X] of degree d̄ ≥ 1 that
has modulo n a root m in common with f (X). The methods described in this
chapter apply to this more general situation as well. Refer to Chapter 6 for a
discussion on more general pairs of polynomials.
Quadratic characters. In [2] Adleman proposed to construct the above iden-
tity modulo n between two squares in a different manner: an integer square
on the left-hand side, as above, but on the right-hand side the square of the
ϕ-value of an element of Z[α]. In this way the application of ϕ is postponed
as long as possible, and everything “on the right-hand side” stays in Z[α] un-
til the last moment. To get this to work in a naive fashion, sets S of pairs of
coprime integers a, b would have to be found such that

∏
(a,b)∈S (a − bm) ∈ Z

is the square of some x ∈ Z, and such that η =
∏

(a,b)∈S (a − bα) ∈ Z[α] is
a square so that

√
η ∈ Z[α] can be computed; the required modular identity

40

x2 ≡ y2 mod n would then follow with y = ϕ(
√
η). Unfortunately, this does not

work, due to the fourth obstruction listed in [14, Section 6], namely that
√
η

does not necessarily belong to Z[α]. But, as also shown in [14, Section 6],
this can easily be fixed: with f ′(X) the derivative of the polynomial f (X) it
is the case that f ′(α)

√
η belongs to Z[α] and the modular identity becomes

(f ′(m)x)2 ≡ ϕ(f ′(α)
√
η)2 mod n.

The condition on
∏

(a,b)∈S (a − bm) is equivalent to a dependency modulo 2
among the exponent vectors of the factorizations of the smooth values a − bm,
as usual. The condition on η =

∏
(a,b)∈S (a− bα) is only slightly more involved.

In the first place, if f ′(α)2η is a square in Z[α] the sum of exponent vectors
(ea,b,p)p∈P as in Equation (5.17) on page 27 is a vector with all even entries.
This condition is equivalent to the usual dependency modulo 2 among the vec-
tors (ea,b,p)p∈P (which is a stronger condition than just

∏
(a,b)∈S bd f

(a
b
)

being a
square). Furthermore, if f ′(α)2η is a square in Z[α] then

∏
(a,b)∈S (a − bzq) is

a square modulo q, for any prime, root pair (q, zq) with q prime and f (zq) ≡
0 mod q [14, Section 8]. But, these are only necessary conditions for f ′(α)2η

to be a square in Z[α].
As shown in [2], an effective version of the converse is true too: f ′(α)2η is

most likely a square in Z[α] if the vectors (ea,b,p)p∈P are dependent modulo 2,
and if

∏
(a,b)∈S (a − bzq) is a square modulo q for sufficiently many (q, zq) pairs

as above for which f ′(zq) . 0 mod q and for which the first degree prime ideal
generated by q and zq −α does not belong to P. Refer to [14, Section 8] for the
number of prime, root pairs that suffices in theory; in practice one commonly
uses 64 or 128 pairs. To enforce the condition that

∏
(a,b)∈S (a− bzq) is a square

modulo q, for each (q, zq)-pair each vector (ea,b,p)p∈P includes an additional bit
with value zero if a − bzq is a square modulo q and with value one otherwise.
It remains to compute f ′(α)

√
η ∈ Z[α].

Computing square roots in the number field sieve. Let η =
∏

(a,b)∈S (a−bα) ∈
Z[α] be an element of known smooth norm for which it is known that f ′(α)2η

is the square of an element of Z[α]. Several methods have been proposed to
compute the latter element f ′(α)

√
η ∈ Z[α] or just ϕ(f ′(α)

√
η) ∈ Z/nZ (which

would suffice for the present application); refer to [89] for a recent discussion.
A direct approach would be to calculate the quadratic polynomial X2 −

f ′(α)2η ∈ Z[α][X] and to factor it over Q(α) using a standard (polynomial-
time) method to do so; refer to [14, Section 9] and [89] for references and an
extensive discussion of this method. Back in the early 1990s it was deemed to
be infeasible, but at this point in time it enjoys renewed interest, simply because
these days symbolic algebra packages seem to be able to handle the resulting
problems (involving rather large coefficients) without too much trouble. If it
works, it is certainly quite convenient.

General purpose integer factoring 41

The first method to be used in practice (in [9]) was due to Jean-Marc Cou-
veignes [26]. It requires d to be odd, is based on the use of Chinese remain-
dering, and produces ϕ(f ′(α)

√
η) ∈ Z/nZ. Let Q be a product of distinct

primes such that Q
2 bounds the absolute values of the integer coefficients of

f ′(α)
√
η and such that f (X) remains irreducible modulo each q dividing Q.

Here it is assumed that such a Q can be found, but see [26] and [14, Sec-
tion 9]. For any prime q dividing Q it is the case that (Z/qZ)[X]/(f (X)) is
isomorphic to the finite field Fqd of qd elements, so that ± f ′(α)

√
η mod q can

easily be computed in Fqd . The root f ′(α)
√
η ∈ Z[α] can then be computed by

combining (using Chinese remaindering) the roots modulo all primes q divid-
ing Q, where the sign-ambiguity (i.e., which of the two choices modulo q to
use) is resolved using norm-calculations and the fact that d is odd. As shown
in [26] (and used in [9]) the calculation of f ′(α)

√
η ∈ Z[α] (with huge coef-

ficients, in absolute value only bounded by Q
2) can be avoided in a neat way

and ϕ(f ′(α)
√
η) ∈ Z/nZ can be calculated directly without requiring arith-

metic with numbers larger than n2. Although it is conceptually quite simple
and allows (to a large extent) parallelization, the disadvantage of Couveignes’
method is that it works only for odd d and, more importantly, that the effort
involved grows quadratically with the number of primes dividing Q.
Montgomery’s square root method. Both disadvantages were addressed by
the method proposed in 1994 by Montgomery in [63]. Since its initial devel-
opment it has not led to any new insights or algorithms, because it is perfectly
satisfactory as is: currently it is still the method of choice for practical appli-
cations (but see also the combination of the direct approach and Couveignes’
method in [89, Section 4]).

A proper description of the method can be found in Montgomery’s own
paper [63] and in [66]. Here the following rough description suffices.

Let η =
∏

(a,b)∈S (a − bα) ∈ Z[α] be such that f ′(α)
√
η ∈ Z[α], as above,

and thus the ideal generated by η equals a product
∏
p∈P p

2ep (for integers ep)
of squared first degree prime ideals, with P as in Section 5.5.1 on page 24.
Montgomery’s square root is an iterative process that builds the desired square
root in Z[α] by patiently – and measurably – chipping away parts of η. Ini-
tialize the square-root-to-be ς ∈ Z[α] as one. The basic idea is to remove a
product of some of the squared prime ideals from η, find a generator in Z[α]
of an ideal contained in the product of the (non-squared) ideals, to multiply the
square-root-to-be ς by that generator, and to iterate until η has become small
enough to further compute its square root directly. This works, except that the
newly found generator may contain a factor not contained in the product of
ideals, so per iteration η may have to be corrected by the square of the inverse
of that spurious factor. To make this correction step less cumbersome, η is con-

42

structed in a different way (though equivalent from the point of view of the
linear algebra), namely as a quotient of two similar products as above, with
approximately equal norms in the numerator and the denominator:

η =

∏
(a,b)∈S num

(a − bα)∏
(a,b)∈S den

(a − bα)

which leads to

η =

∏
p∈Pnum

p2ep∏
p∈Pden

p2ep

with Pnum ∪ Pden = P. With ςnum, ςden ∈ Z[α] and a spurious factor s ∈ Z, all
with initial value equal to one, this leads to the following slightly more precise
description. If the norm of the ideal

∏
p∈Pnum

p2ep is small enough, then compute
the square root ς directly and replace ςnum by ςnumς. Otherwise, let P′ be a
subset of Pnum such that the ideal I =

∏
p∈P′ p

ep has a norm in some targeted
interval and such that ps ∈ P

′ if s , 1. Identifying I with a lattice (for which a
basis is easily constructed given the (prime, root) generators of the first degree
prime ideals in P′), a short vector ς in the lattice is found (using, for instance
a basis reduction algorithm [52]). The short vector ς can be interpreted as an
element of Z[α] and the ideal (ς) is contained in the ideal I. To check equality
of those two ideals, the spurious factor s is replaced by the quotient of the
norms of the ideals (ς) and I. If s , 1, then the proper ideal ps of norm s
is located (i.e., psI = (ς)) and Pden is replaced by Pden ∪ ps, with eps = 1.
Finally, Pnum is replaced by Pnum − P

′ and ςnum is replaced by ςnumς. Once
ςnum has been updated, repeat the process with the roles of (Pnum, ςnum) and
(Pden, ςden) reversed.

The targeted interval for the norm of I (i.e., the choice of P′) is probably
best determined empirically. It has been proved that per iteration the loss (i.e.,
the spurious factor s) is relatively small compared to the gain (i.e., the norm
of I), and the method requires effort roughly proportional to the size of P.
Heuristic asymptotic analysis of the general number field sieve. The analy-
sis of the general number field sieve proceeds along the same lines as the anal-
ysis of the special number field sieve. The main difference occurs when bound-
ing |bd f

(a
b
)
|, which is here bounded by (d+1)m max(|a|, b)d = L[2

3 , ψ]L[1
3 , γ]d =

L[2
3 , ψ + γδ]. It follows that a total of L[1

3 , β +
2ψ+γδ

3β] pairs (a, b) must be in-
spected, which is minimized when 3β2 = 2ψ + γδ. With γ = β this leads to
the modified quadratic equation 3ψβ2 − β− 2ψ2 = 0 with a single positive root
β = 1

6ψ
(
1 +

√
1 + 24ψ3)

which attains its minimal value β =
(8

9
) 1

3 for ψ =
(1

3
) 1

3 .

The overall effort becomes L[1
3 ,

(64
9
) 1

3] with δ = 3
1
3 .

General purpose integer factoring 43

5.5.4 Coppersmith’s modifications

Two variants of the general number field sieve were proposed by Coppersmith
in [22]. At this point in time (and in the public domain) neither of these meth-
ods has proved to be practical yet, though an obvious adaptation of Copper-
smith’s second method to special numbers was shown to be practical [45].
Using more number fields per composite. The first method lowers the gen-

eral number field effort from L[1
3 ,

(64
9
) 1

3] ≈ L[1
3 , 1.9223] to L[1

3 ,
(92+26

√
13)

1
3

3] ≈
L[1

3 , 1.9019] using a conceptually straighforward idea. For any m ≈ n
1
d and

degree d polynomial f (X) ∈ Z[X] with f (m) ≡ 0 mod n (with coefficients of
order m) many similar degree d polynomials can easily be constructed, for in-
stance by adding multiples in Z[X] of X−m to f (X). Assume that λ such poly-
nomials have been selected, giving rise to λ distinct algebraic numbers fields,
say Q(α1), Q(α2), . . ., Q(αλ). For any coprime pair a, b of integers for which
a−bm is smooth there are λ (assumed to be) independent chances for one of the
ideals (a−bαi) to be smooth (as in Equation (5.17) on page 27, withP replaced
by Pi). Per smooth a− bm, as many distinct vectors will result as there are dis-
tinct smooth prime ideals, where the vectors are (|P| +

∑λ
i=1 |Pi|)-dimensional:

|P| coordinates for the exponents on the rational side plus |Pi| coordinates for
each of the λ number fields, where per relation only one of the λ latter parts
contains non-zero entries.

In [22], the optimal λ-value is derived (as ≈ L[1
3 , 0.1250]) along with the

smoothness bounds |P| ≈ L[1
3 ,

1.9019
2] and |Pi| =

|P|
λ

for 1 ≤ i ≤ λ, which then
leads to the effort cited above. Sieving can be used on the rational side to find
the pairs for which a − bm is smooth. With λ > 1 it follows from the relative
sizes of the rational and algebraic smoothness bounds that on the algebraic
sides sieving has to be replaced by elliptic curve-based smoothness testing (cf.
Section 5.2.4 on page 6).
Factorization factory. This method exploits the idea that distinct composites
may share a database of smooth values on the rational side. Actually creating
such a database could have severe implications because it would reduce the
individual factoring effort to L[1

3 ,
(20+8

√
6

9
) 1

3] ≈ L[1
3 , 1.6386], which is getting

close to the effort required by the special number field sieve. The catch is that
this low effort can only be achieved after a preparatory effort L[1

3 ,
(12+5

√
6

3
) 1

3] ≈
L[1

3 , 2.0069] to build the database, and that it requires an amount of permanent
storage that is proportional to the individual factoring effort: as it refers to
storage, this can only be interpreted as staggering.

As above, pairs a, b for which a − bm is smooth may be used for different
polynomials, but in the present case the polynomials are targeted at different
composites to be factored. Let m = 2

N
d for some targeted bit size N, and sup-

44

pose that in a preparatory sieving step a sufficiently large set S of coprime
pairs a, b has been collected for which a − bm is smooth. Any N-bit compos-
ite n (which does not have to be known before the preparatory step is carried
out) can then be factored by first finding pairs a, b in S for which bd f

(a
b
)

is
smooth (for a polynomial f (X) ∈ Z[X] with f (m) ≡ 0 mod n, constructed in
the usual manner), after which the linear algebra and square root steps can be
carried out in the usual manner. As mentioned in [22] (and analyzed in detail
in [31]), optimization leads to matching relatively small rational and algebraic
smoothness bounds (both ≈ L[1

3 , 0.8193], proportional to the square root of the
individual factoring effort), but a relatively large rational sieving rectangle (of
size ≈ L[1

3 , 2.0069]) to allow collection of sufficiently many smooth values on
the rational side. As above, sieving can not be used on the algebraic side.

Refer to [45] for a limited scale application of the factorization factory idea
where the roles of the rational and algebraic sides are reversed: two examples
are presented of a single special polynomial f (X) that is shared by several
Mersenne numbers (for a number of different roots per polynomial).

5.6 Provable methods

This chapter is concluded with a brief description of the relatively poor state of
the art in general purpose factoring algorithms that allow a rigorous analysis.
None of the rigorous methods below has ever been proved practical.

No general purpose factoring method is known for which the expected asymp-
totic effort is provably of the form L[r, c] for r < 1

2 (and constant c ∈ R>0). All
methods below require effort L[1

2 , c], for various constants c ∈ R>0, and they
all rely on Pomerance’s rigorous version of the elliptic curve-based smoothness
test from [75] mentioned in Section 5.2.4 on page 6.

So far, the only general purpose factoring method in this chapter for which
the analysis does not involve heuristic arguments is Dixon’s random squares
method from Section 5.3.1 on page 11 with a provable expected asymptotic
factoring effort L[1

2 ,
√

2]. Brigitte Vallée has shown in [90] how to improve
Dixon’s random squares method by still choosing the random integers v al-
most uniformly but such that the least absolute remainder v2 mod n is of order

only n
2
3 . This results in a provable expected factoring effort L[1

2 ,
√

4
3] (cf. Sec-

tion 5.2.7 on page 11).
Further lowering the effort seems to require using the approach initiated

by Martin Seysen in [84]. It replaces Dixon’s random integers v by random
quadratic forms of negative discriminant ∆ = −n, while still using the familiar
two-step approach from Section 5.2.1 on page 2. As informally shown in [53,

General purpose integer factoring 45

sections 2.C and 4.10-4.14] smooth forms can be combined (using linear al-
gebra) to produce ambiguous forms, and thereby most likely a factorization
of |∆| = n. Because smoothness of the forms used depends on smoothness of
integers of order

√
n, this leads to factoring effort L[1

2 , 1] in the usual manner
(cf. Section 5.2.7). The generalized Riemann hypothesis can be used to ensure
that sufficiently many small primes p exist for which

(∆
p
)

= 1 (the only ones
that can occur in smooth forms), which then leads to a rigorous but conditional
effort L[1

2 , 1] [51] (see also [53, 4.14]). The dependence on the Riemann hy-
pothesis was removed by Lenstra and Pomerance, in [60]. This is, a quarter of
a century later, still the state of the art in provable general purpose factoring.

Acknowledgements
The author thanks Scott Contini, Robert Granger, Herman te Riele, Thorsten
Kleinjung, and Richard Schroeppel for their contributions and comments.

Bibliography
[1] L. M. Adleman. A subexponential algorithm for the discrete logarithm problem

with applications to cryptography. In Proceedings of the 20th Annual Symposium
on Foundations of Computer Science, SFCS ’79, pages 55–60, Washington, DC,
USA, 1979. IEEE Computer Society. (Cited on page 25.)

[2] L. M. Adleman. Factoring numbers using singular integers. In Proceedings of
the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New
Orleans, Louisiana, USA, pages 64–71, 1991. (Cited on pages 39 and 40.)

[3] L. M. Adleman. The story of sneakers, the movie and Len Adleman the
mathematician. URL: http://www.usc.edu/dept/molecular-science/
fm-sneakers.htm, 1991. (Cited on page 23.)

[4] W. R. Alford and C. Pomerance. Implementing the self-initializing quadratic
sieve on a distributed network. In A. J. van der Poorten, I. Shparlinski, and
H. G. Zimmer, editors, Number theoretic and algebraic methods in computer sci-
ence (Moscow 1993), pages 163–174. World Scientific, 1995. (Cited on pages 20
and 22.)

[5] A. Ambainis, Y. Filmus, and F. Le Gall. Fast matrix multiplication: Limitations
of the Coppersmith-Winograd method. In R. A. Servedio and R. Rubinfeld, edi-
tors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 585–593.
ACM, 2015. (Cited on page 8.)

[6] D. Atkins, M. Graff, A. K. Lenstra, and P. C. Leyland. The magic words are
squeamish ossifrage. In J. Pieprzyk and R. Safavi-Naini, editors, Advances in
Cryptology – ASIACRYPT’94, volume 917 of Lecture Notes in Computer Sci-
ence, pages 263–277. Springer, Heidelberg, Nov. / Dec. 1995. (Cited on pages 20
and 37.)

[7] E. Bach and J. Shallit. Factoring with cyclotomic polynomials. Mathematics of
Computation, 52:201–219, 1989. (Cited on page 1.)

[8] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In P. Q.
Nguyen and E. Oswald, editors, Advances in Cryptology – EUROCRYPT 2014,
volume 8441 of Lecture Notes in Computer Science, pages 1–16. Springer, Hei-
delberg, May 2014. (Cited on page 26.)

[9] D. J. Bernstein and A. K. Lenstra. A general number field sieve implementation.
pages 103–126 in [54], 1992. (Cited on pages 34, 37, and 41.)

[10] R. P. Brent, P. L. Montgomery, H. J. J. te Riele, H. Boender, M. Elkenbracht-
Huizing, R. Silverman, and T. Sosnowski. Factorizations of an ± 1, 13 ≤ a < 100:
Update 2, 1996. (Cited on page 33.)

[11] R. P. Brent and J. M. Pollard. Factorization of the eighth Fermat number. Mathe-
matics of Computation, 36(154):627–630, 1981. (Cited on pages 1 and 14.)

[12] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff Jr.
Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 Up to High Powers, volume 22
of Contemporary Mathematics. American Mathematical Society, First edition,
1983, Second edition, 1988, Third edition, 2002. Electronic book available at:
http://homes.cerias.purdue.edu/~ssw/cun/index.html, 1983. (Cited
on pages 1, 12, 30, and 31.)

http://www.usc.edu/dept/molecular-science/fm-sneakers.htm
http://www.usc.edu/dept/molecular-science/fm-sneakers.htm
http://homes.cerias.purdue.edu/~ssw/cun/index.html

48 Bibliography

[13] J. Buchmann, J. Loho, and J. Zayer. An implementation of the general num-
ber field sieve. In D. R. Stinson, editor, Advances in Cryptology – CRYPTO’93,
volume 773 of Lecture Notes in Computer Science, pages 159–165. Springer, Hei-
delberg, Aug. 1994. (Cited on pages 34 and 37.)

[14] J. P. Buhler, H. W. Lenstra Jr., and C. Pomerance. Factoring integers with the
number field sieve. pages 50–94 in [54], 1992. (Cited on pages 24, 26, 37, 38, 39,
40, and 41.)

[15] E. Canfield, P. Erdös, and C. Pomerance. On a problem of Oppenheim concerning
“Factorisatio Numerorum”. J. Number Theory, 17:1–28, 1983. (Cited on page 4.)

[16] T. R. Caron and R. D. Silverman. Parallel implementation of the quadratic sieve.
J. Supercomput., 1:273–290, 1988. (Cited on pages 1, 19, and 22.)

[17] S. Cavallar. Strategies in filtering in the number field sieve. In W. Bosma, edi-
tor, ANTS, volume 1838 of Lecture Notes in Computer Science, pages 209–231.
Springer, 2000. (Cited on pages 9 and 10.)

[18] S. Cavallar. On the number field sieve integer factorisation algorithm. PhD thesis,
Leiden University, 2002. (Cited on pages 9 and 10.)

[19] S. Cavallar, B. Dodson, A. K. Lenstra, W. M. Lioen, P. L. Montgomery, B. Mur-
phy, H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. C. Leyland, J. Marchand,
F. Morain, A. Muffett, C. Putnam, C. Putnam, and P. Zimmermann. Factoriza-
tion of a 512-bit RSA modulus. In B. Preneel, editor, Advances in Cryptology –
EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages
1–18. Springer, Heidelberg, May 2000. (Cited on pages 9, 33, and 38.)

[20] S. Contini. Factoring integers with the self-initializing quadratic sieve. Masters
Thesis, U. Georgia, 1997. (Cited on page 22.)

[21] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two.
IEEE Transactions on Information Theory, 30:587–594, 1984. (Cited on page 26.)

[22] D. Coppersmith. Modifications to the number field sieve. Journal of Cryptology,
6(3):169–180, 1993. (Cited on pages 2, 31, 38, 43, and 44.)

[23] D. Coppersmith. Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Mathematics of Computation, 62(205):333–350, 1994.
(Cited on page 8.)

[24] D. Coppersmith, A. M. Odlyzko, and R. Schroeppel. Discrete logarithms in
GF(p). Algorithmica, 1(1):1–15, 1986. (Cited on pages 8, 22, 24, 25, 29, and 30.)

[25] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. J. Symbolic Comput., 9:251–280, 1990. (Cited on page 8.)

[26] J.-M. Couveignes. Computing a square root for the number field sieve. pages
95–102 in [54], 1992. (Cited on page 41.)

[27] J. Cowie, B. Dodson, R. M. Elkenbracht-Huizing, A. K. Lenstra, P. L. Mont-
gomery, and J. Zayer. A world wide number field sieve factoring record: On to
512 bits. In K. Kim and T. Matsumoto, editors, Advances in Cryptology – ASI-
ACRYPT’96, volume 1163 of Lecture Notes in Computer Science, pages 382–394.
Springer, Heidelberg, Nov. 1996. (Cited on page 37.)

[28] A. J. C. Cunningham and H. J. Woodall. Factorizations of yn ± 1, y =

2, 3, 5, 6, 7, 10, 11, 12 up to high powers. Frances Hodgson, London, 1925. (Cited
on pages 1, 30, and 31.)

49

[29] J. A. Davis, D. B. Holdridge, and G. J. Simmons. Status report on factoring
(at the Sandia national laboratories). In T. Beth, N. Cot, and I. Ingemarsson,
editors, Advances in Cryptology – EUROCRYPT’84, volume 209 of Lecture Notes
in Computer Science, pages 183–215. Springer, Heidelberg, Apr. 1985. (Cited on
pages 18 and 19.)

[30] N. De Bruijn. On the number of positive integers ≤ x and free of prime factors
> y, ii. Indag. Math., 38:239–247, 1966. (Cited on page 4.)

[31] M. Delcourt, T. Kleinjung, and A. K. Lenstra. Analyses of number field sieve
variants. manuscript in preparation, 2016, 2016. (Cited on page 44.)

[32] T. F. Denny, B. Dodson, A. K. Lenstra, and M. S. Manasse. On the factorization
of RSA-120. In D. R. Stinson, editor, Advances in Cryptology – CRYPTO’93,
volume 773 of Lecture Notes in Computer Science, pages 166–174. Springer, Hei-
delberg, Aug. 1994. (Cited on page 37.)

[33] J. D. Dixon. Asymptotically fast factorization of integers. Mathematics of Com-
putation, 36(153):255–260, 1981. (Cited on page 11.)

[34] B. Dodson and A. K. Lenstra. NFS with four large primes: An explosive experi-
ment. In D. Coppersmith, editor, Advances in Cryptology – CRYPTO’95, volume
963 of Lecture Notes in Computer Science, pages 372–385. Springer, Heidelberg,
Aug. 1995. (Cited on page 37.)

[35] T. ElGamal. A subexponential-time algorithm for computing discrete logarithms
over GF(p2). IEEE Transactions on Information Theory, 31:473–481, 1985.
(Cited on pages 24, 25, 26, 28, and 29.)

[36] J. Franke and T. Kleinjung. Continued fractions and lattice sieving. In
Special-purpose Hardware for Attacking Cryptographic Systems – SHARCS
2005, 2005. http://www.hyperelliptic.org/tanja/SHARCS/talks/
FrankeKleinjung.pdf. (Cited on page 34.)

[37] J. L. Gerver. Factoring large integers with a quadratic sieve. Mathematics of
Computation, 41:287–294, 1983. (Cited on pages 17 and 18.)

[38] R. Golliver, A. K. Lenstra, and K. McCurley. Lattice sieving and trial division. In
Algorithmic Number Theory Symposium – ANTS’94, volume 877 of LNCS, pages
18–27, 1994. (Cited on pages 20, 33, 34, and 37.)

[39] F. Göloglu, R. Granger, G. McGuire, and J. Zumbrägel. On the function field
sieve and the impact of higher splitting probabilities — application to discrete
logarithms in F21971 and F23164 . In R. Canetti and J. A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 109–128. Springer, Heidelberg, Aug. 2013. (Cited on page 26.)

[40] R. Granger, T. Kleinjung, and J. Zumbrägel. On the discrete logarithm problem
in finite fields of fixed characteristic. Available from http://arxiv.org/abs/
1507.01495, 6th July 2015. (Cited on page 26.)

[41] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford
Univ. Press, 4th edition, 1960. (Cited on page 13.)

[42] A. Joux. A new index calculus algorithm with complexity L(1/4 + o(1)) in small
characteristic. In T. Lange, K. Lauter, and P. Lisonek, editors, SAC 2013: 20th
Annual International Workshop on Selected Areas in Cryptography, volume 8282
of Lecture Notes in Computer Science, pages 355–379. Springer, Heidelberg, Aug.
2014. (Cited on page 26.)

http://www.hyperelliptic.org/tanja/SHARCS/talks/FrankeKleinjung.pdf
http://www.hyperelliptic.org/tanja/SHARCS/talks/FrankeKleinjung.pdf
http://arxiv.org/abs/1507.01495
http://arxiv.org/abs/1507.01495

50 Bibliography

[43] T. Kleinjung. Quadratic sieving. Mathematics of Computation, 85:1861–1873,
2016. (Cited on page 22.)

[44] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, H. J. J. te Riele, A. Timofeev, and
P. Zimmermann. Factorization of a 768-bit RSA modulus. In T. Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Com-
puter Science, pages 333–350. Springer, Heidelberg, Aug. 2010. (Cited on pages 1
and 38.)

[45] T. Kleinjung, J. W. Bos, and A. K. Lenstra. Mersenne factorization factory. In
P. Sarkar and T. Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part
I, volume 8873 of Lecture Notes in Computer Science, pages 358–377. Springer,
Heidelberg, Dec. 2014. (Cited on pages 2, 11, 31, 37, 43, and 44.)

[46] T. Kleinjung, C. Diem, A. K. Lenstra, C. Priplata, and C. Stahlke. Computation
of a 768-bit prime field discrete logarithm. In J.-S. Coron and J. Nielsen, editors,
Eurocrypt 2017, Part I, volume 10210 of Lecture Notes in Computer Science,
pages 185–201. Springer, Heidelberg, 2017. (Cited on page 38.)

[47] M. Kraitchik. Théorie des nombres, Tome II. Gauthiers-Villars, Paris, 1926.
(Cited on page 2.)

[48] M. Kraitchik. Recherches sur le théorie des nombres, Tome II. Gauthiers-Villars,
Paris, 1929. (Cited on page 2.)

[49] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over
finite fields. In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology
– CRYPTO’90, volume 537 of Lecture Notes in Computer Science, pages 109–
133. Springer, Heidelberg, Aug. 1991. (Cited on page 8.)

[50] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the
39th International Symposium on Symbolic and Algebraic Computation, ISSAC
’14, pages 296–303, New York, NY, USA, 2014. ACM. (Cited on page 8.)

[51] A. K. Lenstra. Fast and rigorous factorization under the generalized Riemann
hypothesis. Indagationes Mathematicae, 50:443–454, 1988. (Cited on page 45.)

[52] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982. (Cited on page 42.)

[53] A. K. Lenstra and H. W. Lenstra Jr. Algorithms in number theory. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science (Volume A: Algo-
rithms and Complexity), pages 673–715. Elsevier and MIT Press, 1990. (Cited on
pages 4, 6, 8, 21, 22, 25, 44, and 45.)

[54] A. K. Lenstra and H. W. Lenstra Jr. The Development of the Number Field Sieve,
volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, 1993. (Cited on
pages 1, 24, 25, 47, 48, 50, and 51.)

[55] A. K. Lenstra, H. W. Lenstra Jr., M. S. Manasse, and J. M. Pollard. The number
field sieve. pages 11–42 in [54], 1989. (Cited on pages 23, 26, 28, 30, 31, 32, 37,
and 39.)

[56] A. K. Lenstra, H. W. Lenstra Jr., M. S. Manasse, and J. M. Pollard. The factoriza-
tion of the ninth Fermat number. Mathematics of Computation, 61(203):319–349,
1993. (Cited on pages 9, 26, 31, and 32.)

[57] A. K. Lenstra and M. S. Manasse. Factoring by electronic mail. In J.-J. Quisquater
and J. Vandewalle, editors, Advances in Cryptology – EUROCRYPT’89, volume

51

434 of Lecture Notes in Computer Science, pages 355–371. Springer, Heidelberg,
Apr. 1990. (Cited on pages 1, 19, 20, 22, and 23.)

[58] A. K. Lenstra and M. S. Manasse. Factoring with two large primes. Mathematics
of Computation, 63:785–798, 1994. (Cited on pages 17 and 22.)

[59] H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics,
126(3):649–673, 1987. (Cited on pages 1 and 6.)

[60] H. W. Lenstra Jr. and C. Pomerance. A rigorous time bound for factoring inte-
gers. Journal of the American Mathematical Society, 5:483–516, 1992. (Cited on
page 45.)

[61] P. C. Leyland, A. K. Lenstra, B. Dodson, A. Muffett, and S. S. Wagstaff Jr. MPQS
with three large primes. In C. Fieker and D. R. Kohel, editors, Algorithmic Num-
ber Theory, 5th International Symposium, ANTS-V, volume 2369 of Lecture Notes
in Computer Science, pages 446–460. Springer, 2002. (Cited on page 22.)

[62] A. Miele, J. W. Bos, T. Kleinjung, and A. K. Lenstra. Cofactorization on graphics
processing units. In L. Batina and M. Robshaw, editors, Cryptographic Hardware
and Embedded Systems – CHES 2014, volume 8731 of Lecture Notes in Computer
Science, pages 335–352. Springer, Heidelberg, Sept. 2014. (Cited on page 37.)

[63] P. L. Montgomery. Square roots of products of algebraic numbers. Mathemat-
ics of Computation 1943-1993: A Half-Century of Computational Mathematics,
48:567–571, 1994. (Cited on page 41.)

[64] P. L. Montgomery. A block Lanczos algorithm for finding dependencies over
GF(2). In L. C. Guillou and J.-J. Quisquater, editors, Advances in Cryptology –
EUROCRYPT’95, volume 921 of Lecture Notes in Computer Science, pages 106–
120. Springer, Heidelberg, May 1995. (Cited on page 8.)

[65] M. A. Morrison and J. Brillhart. A method of factoring and the factorization of F7.
Mathematics of Computation, 29(129):183–205, 1975. (Cited on pages 1, 2, 12,
and 13.)

[66] P. Q. Nguyen. A Montgomery-like square root for the number field sieve. In
J. Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer Science,
pages 151–168. Springer, 1998. (Cited on page 41.)

[67] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic signif-
icance. In T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in Cryptology
– EUROCRYPT’84, volume 209 of Lecture Notes in Computer Science, pages
224–314. Springer, Heidelberg, Apr. 1985. (Cited on pages 8 and 25.)

[68] R. Peralta. A quadratic sieve on the n-dimensional cube. In E. F. Brickell, editor,
Advances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer
Science, pages 324–332. Springer, Heidelberg, Aug. 1993. (Cited on page 22.)

[69] J. M. Pollard. Theorems on factorization and primality testing. Proceedings of
the Cambridge Philosophical Society, 76:521–528, 1974. (Cited on page 1.)

[70] J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical Mathe-
matics, 15(3):331–334, 1975. (Cited on pages 1 and 6.)

[71] J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics
of Computation, 32(143):918–924, 1978. (Cited on page 25.)

[72] J. M. Pollard. Factoring with cubic integers. pages 4–10 in [54], 1988. (Cited on
pages 23, 24, 25, 30, 31, and 32.)

[73] J. M. Pollard. The lattice sieve. pages 43–49 in [54], 1990. (Cited on pages 33
and 34.)

52 Bibliography

[74] C. Pomerance. Analysis and comparison of some integer factoring algorithms.
In J. Hendrik W. Lenstra and R. Tijdeman, editors, Computational methods in
number theory I, volume 154 of Mathematical Centre Tracts, pages 89–139, Am-
sterdam, 1982. Mathematisch Centrum. (Cited on pages 4, 11, 16, 17, and 22.)

[75] C. Pomerance. Fast, rigorous factorization and discrete logarithm algorithms.
pages 119–143 in [?], 1987. (Cited on pages 6 and 44.)

[76] C. Pomerance, October 1988. Private communication. (Cited on page 20.)
[77] C. Pomerance. A tale of two sieves. Notices of the AMS, 43(12):1473–1485,

December 1996. (Cited on page 2.)
[78] C. Pomerance and J. W. Smith. Reduction of huge, sparse matrices over finite

fields via created catastrophes. Experiment. Math., 1:89–94, 1992. (Cited on
pages 8, 9, and 10.)

[79] C. Pomerance, J. W. Smith, and R. Tuler. A pipeline architecture for factoring
large integers with the quadratic sieve algorithm. SIAM j. Comput., 17:387–403,
1988. (Cited on page 22.)

[80] C. Pomerance, J. W. Smith, and S. S. Wagstaff. New ideas for factoring large
integers. In D. Chaum, editor, Advances in Cryptology – CRYPTO’83, pages 81–
85. Plenum Press, New York, USA, 1983. (Cited on page 12.)

[81] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signature and public-key cryptosystems. Communications of the Association for
Computing Machinery, 21(2):120–126, 1978. (Cited on pages 1, 4, and 16.)

[82] R. J. Schoof. Quadratic fields and factorization. In J. Hendrik W. Lenstra and
R. Tijdeman, editors, Computational methods in number theory II, volume 155
of Mathematical Centre Tracts, pages 235–286, Amsterdam, 1982. Mathematisch
Centrum. (Cited on page 2.)

[83] R. Schroeppel, April 2015. Private communication. (Cited on pages 1, 14, 15, 16,
and 17.)

[84] M. Seysen. A probabilistic factorization algorithm with quadratic forms of neg-
ative discriminant. Mathematics of Computation, 48:757–780, 1987. (Cited on
pages 13 and 44.)

[85] D. Shanks. Class number, a theory of factorization, and genera. In D. J. Lewis, ed-
itor, Symposia in Pure Mathematics, volume 20, pages 415–440. American Math-
ematical Society, 1971. (Cited on page 2.)

[86] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
1997. (Cited on page 38.)

[87] R. D. Silverman. The multiple polynomial quadratic sieve. Mathematics of Com-
putation, 48:329–339, 1987. (Cited on pages 19, 21, and 22.)

[88] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356,
1969. (Cited on page 8.)

[89] E. Thomé. Square root algorithms for the number field sieve. In F. Özbudak
and F. Rodríguez-Henríquez, editors, WAIFI, volume 7369 of Lecture Notes in
Computer Science, pages 208–224. Springer, 2012. (Cited on pages 40 and 41.)

[90] B. Vallée. Generation of elements with small modular squares and provably fast
integer factoring algorithms. Mathematics of Computation, 56:823–849, 1991.
(Cited on page 44.)

53

[91] D. Weber. Computing discrete logarithms with quadratic number rings. In EU-
ROCRYPT’98, pages 171–183, 1998. (Cited on page 30.)

[92] A. E. Western and J. C. P. Miller. Tables of indices and primitive roots. Royal
Society Mathematical Tables, vol 9, Cambridge University Press, 1968. (Cited on
pages 2 and 25.)

[93] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans.
Inform. Theory, IT–32(1):54–62, Jan. 1986. (Cited on page 8.)

[94] H. C. Williams. A p + 1 method of factoring. Mathematics of Computation,
39(159):225–234, 1982. (Cited on page 1.)

Subject index

algebraic side, 32

block Lanczos algorithm, see Lanczos
algorithm

block Wiedemann algorithm, see Wiedemann
algorithm

CFRAC, see continued fraction method
characteristic, 25
Chinese remainder theorem, 41
congruence of squares, 2

finding dependencies, 7
generic analysis, 5
linear algebra, 3, 7
relation collection, 3, 6
smoothness testing, see smoothness testing

continued fraction method, 12–14
multiplier, 13

Coppersmith-Winograd method, 8, 11
cubic sieve, 22
Cunningham number, 1, 12, 31

discrete logarithm, 25–30
Dixon’s random squares method, 11–12

elliptic curve method of factorization, 1, 6
embarrassing parallelism, 1, 19

factor base, 3
factoring with cubic integers, 23
factorization factory, 2, 43
Fermat number, 1, 14, 23
filtering, 8–11
finding dependencies, 7
first degree prime ideal, 27
free relation, 35

Gaussian elimination, 8, 9, 20
Gaussian integer method, 24, 29
general number field sieve, see number field

sieve

Georgia Cracker, 12

integer factoring, 1
Internet computation, 1, 19

L-notation, 4
Lanczos algorithm, 8
large prime relation, 6, 14, 17, 18, 22, 36–38
linear algebra step, 3
linear sieve, 14–17

multiplier, 17
look-up table, 28

matrix multiplication exponent, 8, 11
Mersenne number, 2, 44
Morrison-Brillhart approach, 2
multiple polynomial quadratic sieve, see

quadratic sieve, multiple polynomial
multiplier, 13, 17, 18

number field sieve, 23, 37–42, 44
Coppersmith’s variant, 43
heuristic analysis, 42, 43
quadratic character, 39
relation, 39

oversquareness, 2, 3

p − 1 method, 1
p + 1 method, 1
polynomial selection, 38
prime ideal factorization, 26
provable integer factoring, 11–12, 44

quadratic sieve, 17–23
fancy, 18–19
multiple polynomial, 19–22
multiplier, 18
plain, 17–18
self-initializing, 20, 22

rational side, 32

56 Subject index

record calculation
discrete logarithm

extension field, 26
prime field, 38

integer factoring
continued fraction method, 1, 12
number field sieve, 2, 38
quadratic sieve, 1, 18, 20
special number field sieve, 2, 23, 31

relation, 3
relation collection step, 3
rho method, 1
RSA challenge

RSA-512, 38
RSA-768, 2, 38

sieving, 6–7
by vectors, 34
lattice sieving, 9, 33–35
line sieving, 32

smoothness
integers, 4
polynomials, 25

smoothness testing, 6
elliptic curve method of factorization, 6
sieving, see sieving
trial division, 6

sparseness, 7
special q-prime, 9, 19, 33
special number, 31
special number field sieve, 24, 30–37

finding relations, 32–35
heuristic analysis, 35
relation, 31

square root computation for the number field
sieve, 40–42

Couveignes’ method, 41
direct method, 40, 41
Montgomery’s method, 41–42

squfof, 2
Strassen’s method, 8, 11, 16

trial division, 1, 6

unit contribution, 28

Wiedemann algorithm, 8

	General purpose integer factoring
	Introduction
	General purpose factoring
	Two-step approach
	Smoothness and L-notation
	Generic analysis
	Smoothness testing
	Finding dependencies
	Filtering
	Overall effort

	Pre-sieving general purpose factoring
	Dixon's random squares method
	Continued fraction method

	Linear and quadratic sieve
	Linear sieve
	Quadratic sieving: plain
	Quadratic sieving: fancy
	Multiple polynomial quadratic sieve

	Number field sieve
	Earlier methods to compute discrete logarithms
	Special number field sieve
	General number field sieve
	Coppersmith's modifications

	Provable methods

	Bibliography
	Subject index

