
Secure Deduplication of Encrypted Data:
Refined Model and New Constructions

Jian Liu1, Li Duan2, Yong Li3, N. Asokan1

1 Aalto University, Finland
jian.liu@aalto.fi, asokan@acm.org

2 Paderborn University, Germany
liduan@mail.upb.de

3 Ruhr-University Bochum, Germany
yong.li@rub.de

Abstract

Cloud providers tend to save storage via cross-user deduplication, while users
who care about privacy tend to encrypt their files on client-side. Secure dedu-
plication of encrypted data (SDoE) is an active research topic. In this paper, we
propose a formal security model for this problem. We also propose two single-
server SDoE protocols and prove their security in our model. We evaluate their
deduplication effectiveness via simulations with realistic datasets.

1 Introduction

Cloud storage services are very popular. Providers of cloud storage services rou-
tinely use cross-user deduplication to save costs: if two or more users upload
the same file, the storage provider stores only a single copy of the file. Users
concerned about privacy of their data may prefer encrypting their files on client-
side before uploading them to cloud storage. This thwarts deduplication since
identical files are uploaded as completely different ciphertexts. Reconciling dedu-
plication and encryption has been a very active research topic [3,10,4,15,19,13].
One proposed solution is convergent encryption (CE) [10] [4], which derives the
file encryption key solely and deterministically from the file contents. As a result,
identical files will always produce identical ciphertexts given identical public pa-
rameters. Unfortunately, a server compromised by the adversary can perform an
offline brute-force guessing attack over the ciphertexts, due to the determinstic
property of CE.

More recent solutions allow clients to encrypt their files using stronger en-
cryption schemes while allowing the server to perform deduplication. They usu-
ally assume the presence of an independent (trusted) third parties [3] [15] [19].
However, in a cloud storage setting, like in many other commercial client-server
contexts, assuming the presence of an indepdent third party is unjustified in
practice [13] since it is unclear who can bear the costs of such third parties.
Moreover, such schemes cannot prevent the online brute-force guessing attacks
from a compromised active server.

Liu et al. proposed a single-server scheme for secure deduplication without the
need for any third party [13]. Their scheme uses a per-file rate limiting strategy
to prevent online brute-force guessing attacks by a compromised active server.
However, their security model and proof only cover one round of the protocol
(Section 9 in [14]). Consequently, their scheme is vunerable to additional attacks
when considering the long-term operation of the system which involves multiple
rounds of the protocol.

In this paper, we make the following contributions:

– We propose a formal security model for the single-server “secure dedupli-
cation of encrypted data” (SDoE) (Section 2). We claim that a deduplication
scheme proved secure in this model can guarantee that, for a certain file, (1)
a compromised client cannot learn whether or not this file has already been
uploaded by someone else (Section 2.1), and (2) the only way for a compro-
mised server to uniquely determine this file is by doing an online brute-force
attack (Section 2.2).

– We propose two new single-server deduplication schemes and prove their
security in our model. (Section 4)

– We show that their deduplication effectiveness is reasonable via simulations
with realistic datasets. (Section 5)

2 Security Model

We model the threats with security games played between an adversary (at-
tacker) and a challenger. The challenger possesses some secret targeted by the
adversary. As in the real world, the adversary can interact with the challenger by
using different queries to the challenger. At the end of each game, the adversary
outputs what he has learned about the secret and he wins if his output is correct.
The restriction on queries are used to rule out the trivial cases of breaking the
security of the scheme.

2.1 Settings

We consider the generic setting for a cloud storage system where a set of clients
(Cs) store their files on a single storage server (S), and the Cs and S are always
communicating through secured channels. The deduplication happens at server-
side, i.e., the client will always upload the encrypted file and the server knows
whether to discard the uploaded file or not after the protocol execution. All
theses participants are generalized as parties. Each party has a party identifier
pid; a flag τ indicating whether it is corrupted or not. Each C may have one or
more sessions connecting to the S, where each session has a session identifier
sid.

The internal state ΦC,pid of a C is a list of tuples {(fidi, ki)}, which stores the
identifier and the encryption key of each file owned by it. The internal state ΦS
of S contains a list DB = {(bi,fidi, %i,LOi)} and a list of current user identifiers
PID, where bi is a bit indicating whether the file has been uploaded or not, fidi

is an identifier of an encrypted file %i and LOi is the list of owners of %i. Note
that DB contains all possible files.

To initialize DB for the security game, the challenger first generate a list
of file owners with the corresponding identifier list PID. Let PIDh be the
identifier set of honest file owners. Note that before interacting with adver-
saries, PID = PIDh, but A can add new malicious identities to PID by using
RegisterCorrupt(pid) queries described bellow. Then for each fidi, the challenger

chooses bi
$←− {0, 1}. If bi = 0, the tuple would be (0,fidi,−, ∅,−). Otherwise,

it involves a session of a Cj uniformly at random to upload Fi and then makes
Cj modify its internal state accordingly. Afterwards the challenger stores the
ciphertext Ci generated by Cj in the uploading process and adds Cj to LOi. We
denote as DB0 the content of DB after initialization.

2.2 Security against a compromised client

Here, we want to model the attacks from a compromised client. The intuition is
that by interacting with the server, the client must not be able to learn whether
a file already exists in the cloud storage. We allow the adversary A that has
compromised one or more clients to make the following types of oracle queries
in the security experiments:

RegisterCorrupt(pid) The adversary A can register a (new) client with identifier
pid and τ = Corrupted. If pid ∈ PID, A gets the state ΦC,pid of pid,
including all the file identifiers and the corresponding file key {(fidi, ki)}
owned by pid. Otherwise A only gets an empty state. The challenger updates
PID := PID∪{pid} and marks pid as corrupted. In both cases, A can then
perfectly impersonate pid from this moment on.

Send(pid, sid,M) The corresponding oracle computes on the input message M
following the SDoE protocol and returns the output message in the view of
all corrupted parties to A. This oracle models any single step of the SDoE
protocol.

Test() A signals the end of the security game to the challenger, ceases all the
interaction with oracles, and outputs a pair (F ∗, b∗).

Let λ be the security parameter. Given the queries described above, we de-
fine the security experiment ExpSDoE

C,Π (λ) for a SDoE protocol Π against com-

promised clients as follows: ExpSDoE
C,Π (λ) = 1 if A replies to Test() with (F ∗, b∗)

and either of the following case happens:

– If b∗ = 0 and 6 ∃(fidj , kj) ∈
⋃
pid∈PIDh ΦC,pid, (bi, fidi, Ci,LOi) ∈ DB0 s.t.,

E(kj , F
∗) = Ci. (i.e., F ∗ has not been uploaded before).

– If b∗ = 1 and ∃(fidj , kj) ∈
⋃
pid∈PIDh ΦC,pid, (bi, fidi, Ci,LOi) ∈ DB0 s.t.,

E(kj , F
∗) = Ci. (i.e., F ∗ has been uploaded before).

But none of the following events happens before A outputs (F ∗, b∗):

– A has issued RegisterCorrupt(pid) with pid ∈ PIDh, i.e., A cannot imper-
sonate honest file owners.

– A has issued Send(pid, sid,M) with pid ∈ PIDh. (A cannot force an honest
owner to send any messages.)

Definition 1. We define the advantage of an adversary A in the experiment
ExpSDoE

C,Π (λ) as

AdvSDoE
C,Π (λ) = Pr[ExpSDoE

C,Π (λ) = 1]− 1

2

2.3 Security against a compromised server

The intuition behind the security definition is that a SDoE scheme is secure
against a compromised server, if a file can only be uniquely determined by the
compromised server through an online brute-force attack for all candidate files.
The queries (adversary’s ability) captures the essence of concrete attacks, such
as registering malicious clients, uploading and tampering with some messages.
We allow the adversary A that has compromised the server to make the following
types of queries in the security experiments:

RegisterCorrupt(pid, θ) The same as that of compromised clients.
Send(pid, sid,M) The same as that of compromised clients.
AccessDB() The adversary A gets all the Ci and the owner list of each Ci in ΦS

with bi = 1. If this is the ta-th query made by A, then for all the t-th queries
with t > ta, A also gets the updated Φs items with bi = 1 in addition to the
response for other queries.

Execute(pid, P, F) As the initiator, A invokes a complete (sub-)protocol P with
party pid on the input file F and obtains all the messages exchanged, fol-
lowing the description of P .

Test() A outputs two files F0, F1 with equal length. Upon receiving F0, F1, the

challenger chooses b
$←− {0, 1} and replies with a ciphertext Cb = Enc(kfb , Fb).

A performs the above queries and then outputs a bit b
′
.

We define the security experiment ExpSDoE
S,Π (λ) for a SDoE protocolΠ against

partially compromised server as follows: ExpSDoE
S,Π (λ) = 1 if S replies to Test()

with b′ = b, but none of the following events happens before A outputs the bit
b′:

– A has issued RegisterCorrupt(pid) with pid ∈ PIDh.
– A has issued Execute(pid, P, F), F ∈ {F0, F1}. (A have not included F0 or
F1 in its online butte-force attacks.)

– A has issued Send(pid, sid,M) with pid ∈ PIDh.

Definition 2. We define the advantage of an adversary A in the experiment
ExpSDoE

S,Π (λ) as

AdvSDoE
S,Π (λ) = Pr[ExpSDoE

S,Π (λ) = 1]− 1

2

3 PAKE based Deduplication

Bellovin and Merritt [7] proposed a password authenticated key exchange (PAKE)
protocol to against offline brute-force attacks even through users choose low-
entropy passwords. PAKE enables two parties to set up a session key iff they
hold the same secret (“password”). Otherwise, neither party can learn anything
about the key output by the other party.

Bellare et al. provided a game-based definition for the security of PAKE [5].
A random bit b is chosen at the beginning of the game. They assume that there
is an adversary A that has complete control over the environment (mainly, the
network), and is allowed to query the following oracles:

Send(Ui,M) : causes message M to be sent to instance Ui, which computes
following the protocol and gives the result to A. If this query causes Ui to
accept or terminate, this will also be shown to A.

Execute(Ai, Bj) : causes the protocol to be executed to completion between Ai
and Bj , and outputs the transcript of the execution.

Reveal(Ui) : output kUi , which is the session key held by Ui.
Test(Ui) : if b = 1, output the session key kUi ; otherwise, output a string drawn

uniformly from the space of session keys.
Corrupt(Ui) : output Ui’s password.

Let SuccPAKEA (λ) be the event that A outputs a bit b′ = b but none of the
following events happens:

1. a Reveal(Ui) query occurs;
2. a Reveal(Uj) query occurs where Uj is the partner of Ui;
3. a Corrupt(Ui) query occurs before Ui defined its key kUi and a Send(Ui,M)

query occurred.

The advantage of A attacking a PAKE protocol is defined to be

AdvPAKE
A (λ)

def
= 2Pr[SuccPAKEA (λ)]− 1.

The PAKE protocol is considered secure if passwords are uniformly and in-
dependently drawn from a dictionary of size n:

AdvPAKE
A (λ) ≤ nse

n + negl(λ),

where nse is the number of Send queries (to distinct instances Ui). The intuition
behind this definition is that only online brute-force attacks are allowed in a
secure PAKE protocol.
PAKE-based SDoE. Liu et al. present a PAKE-based SDoE scheme that does
not depend on any additional independent servers [13]. Their scheme allows an
uploader to securely obtain the decryption key of another user who has previously
uploaded the same file. Specifically, the uploader C first sends a short hash of
its file (10-20 bits long) to S. S finds other clients who may hold the same
files based on the short hash, and lets them run a single round PAKE protocol

(routed through S) with the long hashes of their files as inputs. At the end of the
protocol, the uploader gets the key of another C if and only if they indeed hold
the same file. Otherwise, it gets a random key. The PAKE-based SDoE scheme
ΠPAKE is shown in Figure 1.
Cs protect themselves against online brute-force attacks by limiting the num-

ber of PAKE instances they will participate in for each file.
Security against compromised clients. As pointed out by Liu et al. them-
selves in [14], additional attacks are possible when considering the long-term
operation of the system. For example, a malicious client can upload a file and
then pretend to be offline. Later it uploads the same file using another identity. If
it gets the the same key as the one it got before, it knows that the file has been
uploaded be someone else. Another attack is also targeting the PAKE phase.
The adversary uploads a file F with the identity of C1 in the first protocol run.
It then uses a different identity C2 to upload F again. By observing whether C1
is involved in the PAKE phase with C2 for F , the adversary knows if there are
other owners of F .

In the next section, we will introduce two protocols that are immune to those
attacks and prove their security under our new model.

4 New SDoE Schemes

Recall that in ΠPAKE, there are two possible cases when an uploader uploads a
file: it either gets the key of a previous uploader of the same file or gets a new
random key. As described in the previous section, a malicious C can distinguish
between these two cases.

In this section, we address the issue in ΠPAKE by having Cs always get random
keys when they upload their files. We propose two schemes. The first scheme
(ΠPAKE,re-enc) borrows the idea from proxy re-encryption [1]. S only keeps a
single copy of duplicated files. When C wants to download its file, S re-encrypts
the file so that C will download the same ciphertext as the one it uploaded.
However, this scheme requires public-key operations on the entire file, which is
not efficient for large files. So we propose a second scheme (ΠPAKE,popular) that
only deduplicates popular files and only protects the privacy of unpopular files.
For unpopular files, Cs get random keys and download the same ciphertexts as
they uploaded. If those files become popular later, S deletes all duplicated copies
and provides a way to help Cs to transform their keys to the right key.

4.1 PAKE-based Deduplication with Re-encryption

The first scheme ΠPAKE,re-enc is shown in Figure 2. It is similar to ΠPAKE. In
the following description, the details of client authentication and file ownership
authentication are omitted. We assume that the owners of each file are stored in
an ordered list with respect to the upload time points. In the case that there are
more than one owner of a candidate file, the newest checker is chosen by S for
the PAKE phase. After PAKE, instead of masking kFi with k′iR, Ci generates a

Upload

C: F S: Φ {Ci : Fi, kFi}
sh← SH(F)
h← H(F)

sh
−−−−−−−−−−−→

If sh = shi

PAKE request
−−−−−−−−−−−→

({ki}, {k′i})← PAKE(h, {hi})
⇐==========================⇒

{ki = kiL||kiR} {k′i = k′iL||k′iR}
{kiL, kiR ⊕ r}
−−−−−−−−−−−→

{k′iL, k′iR ⊕ kFi}
←−−−−−−−−−−−

If ∃ kjL in {kiL, kiR ⊕ r} and
∃ k′jL in {k′iL, k′iR ⊕ kFi}
s.t. kjL = k′jL
dedup := true
e := r ⊕ kFj

Else
dedup := false
e := r′

e
←−−−−−−−−−−−

kF := e⊕ r
c← E(kF , F)
fid← H(c)

c
−−−−−−−−−−−→

If c 6= cj
dedup := false

If dedup is true
drop c

Else
store c

Download

C: fid S: Φ
fid

−−−−−−−−−−−→
If dedup is true

c := cj
c

←−−−−−−−−−−−

Fig. 1. PAKE-based deduplication scheme [13].

random number ri, and masks both kFi and k′iR with ri. C only sends kiL to S.
If there is an index j s.t. kjL = k′jL, S knows that C is uploading the same file
with Cj . Then, it keeps (rj − kFj) and sends (k′jR + rj) to C. Otherwise, it sends
a random number r′. C calculates its file key as kF := e−kjR and then encrypts
its file as F · gkF . Notice that if F is detected to be duplicated, kF is just the
randomness rj generated by Cj . S can just drop this ciphertext if deduplication
happens and stores the fid = H(C) as an alias of the file. Later, when C wants

to download F , C re-encrypts cj to kF : c := cj · grj−kFj = F · gkFj grj−kFj =
F · grj = F · gkF . Notice that cj may be deduplicated already. In this case, S
need to calculate (r0− kF0

) + (r1− kF1
)+, ...,+(rj − kFj) = (rj − kF0

), and then
transfer c0 to C’s ciphertext.
Security against compromised clients. Security of SDoE schemes cannot be
directly reduced to the semantic security of PAKE schemes in [5]. This technical
impossibility in the proof lies in the fact that the password (the hash of the file)
is always known to the adversary in SDoE prior to any other interactions in the
PAKE protocol. To overcome this difficulty, we expand the original definition
of the model in [5] in the following way, which we call the constrained PAKE
security game. Let sk = skL||skR be the session key computed in the Test(i, s)
session, where |skL| = |skR| = 1

2 |sk|.

– The setup of this game is the same as in the original PAKE game except
that each party now holds an additional secret su ∈ K. A public function
f : K × {0, 1}∗ → {0, 1} 1

2 |sk| can be queried by the adversary as f(pi, ·).
– The Test(i, s)-query now returns tk = tkL||tkR, where |tkL| = |tkR| = 1

2 |sk|.
The first half of tk is always the same as the the first half of the real session
key, i.e., tkL = skL. If b = 1, tkR = skR ⊕ f(si, Ti), where Ti,s is the

transcript of this session. Otherwise tkR = skR ⊕ r, where r
$←− {0, 1} 1

2 |sk|.
The adversary wins if she outputs b′ = b.

– Corrupt(u) only returns the password PWu but not the additional secret su.
– A session involving πsi and πtj is fresh if both the following condition holds

• no Reveal(s, i) or Reveal(t, j) is made before Test(i, s).
• no f(pi, Ti,s) is made before Test(i, s).

The winning condition and the advantage of an adversary in a constrained-
PAKE game is defined in the same way as in the PAKE game.

Theorem 1 If there exists a ppt adversary C in ExpSDoE
C,ΠPAKE,re-enc

(λ) with ad-
vantage εC, then there also exists a ppt adversary A with advantage εA in the
underlying constrained-PAKE game against Π in the random oracle model such
that

εC ≤
qH
2lh

+ qH · εA

where Π is the PAKE oracle, lsh the length of the short hash, lh the length of
the long hash and qH is the distinct number of distinct files C has queried for
short hash, hash or uploaded.

Upload

C: F S: Φ {Ci : Fi, kFi}
sh← SH(F)
h← H(F)

sh
−−−−−−−−−−−→

If sh = shi

PAKE request
−−−−−−−−−−−→

({ki}, {k′i})← PAKE(h, {hi})
⇐==========================⇒

{ki = kiL||kiR} {k′i = k′iL||k′iR}
{kiL}

−−−−−−−−−−−→
{k′iL, (k′iR + ri), (ri − kFi)}a

←−−−−−−−−−−−
If ∃ kjL and k′jL
s.t. kjL = k′jL
dedup := true
keep (rj − kFj)
e := (k′jR + rj)

Else
dedup := false
e := r′

randomly choose j
e, j

←−−−−−−−−−−−
kF := e− kjR
c← F · gkF
fid← H(c)

c
−−−−−−−−−−−→

If c 6= cj · grj−kFj

dedup := false
If dedup is true
drop c

Else
store c

Download

C: fid S: Φ
fid

−−−−−−−−−−−→
If dedup is true

c := cj · grj−kFj

= F · gkFj grj−kFj

= F · grj = F · gkF
c

←−−−−−−−−−−−

a ri is chosen by Ci at random in a finite field. All additions and subtractions are in
the same field.

Fig. 2. PAKE-based deduplication via ciphertext transformation.

Proof. We use the sequence of games technique introduced in [18]. Furthermore,
we assume that the hash function is simulated by the challenger and all files are
of equal length.
Game 0 . This is the original game ExpSDoE

C,ΠPAKE,re-enc
(λ).

εC = AdvGame 0
C (λ) (1)

Game 1. Let F′ = {F ′1, F ′2, · · · , F ′qH} be the set of distinct files that C has
issued H-queries or check()-queries before C queries Challenge(). Let (F ∗, b∗) be
the output of C.
If ∃F ′j ∈ F′ : H(F ′i) = H(F ∗) ∧ F ′i 6= F ∗, abort the game. Therefore we have

AdvGame 0
C (λ) ≤ qH

2lh
+ AdvGame 1

C (λ) (2)

This rule makes sure that no hash collision happens.
Game 2. Another abort rule is added in this game. The challenger makes a
guess of an index i ∈ {1, · · · , qH} and if F ∗ 6= F ′i , the challenger aborts the
game. Thus we have

AdvGame 1
C (λ) ≤ qH ·AdvGame 2

C (λ) (3)

Game 3. In this game, the random oracle in ΠPAKE,re-enc is replaced (implicitly)
by the random process for password generation. More specifically, we implicitly
define H : {0, 1}∗ → PW , where PW is the password space and all the public
parameters of Π (for example, group order and generator as in EKE2 in [6])
are included in the public parameters of ΠPAKE,re-enc. This replacement has no
impact on C’s view since all passwords and parameters in Π are also sampled
uniformly at random as required. Thus

AdvGame 2
C (λ) = AdvGame 3

C (λ) (4)

We now construct an adversary A using C against the underlying PAKE
scheme Π . Let d be the nmber of distinct passwords used by parties initialized by
A’s PAKE challenger, where d ≥ qH 4. When storing the files {F1, · · · , Fn}, qH ≤
n ≤ d,Amaps to those files n PAKE parties P1, · · · , Pn with different passwords.
A then sets up the list PIDh and PID as described in the model and binds the
identifiers in PID to each file as owners randomly. Each file identifier fidi and
encryption key kFi are chosen according to the protocol definition and then used
to build each ΦC,pid. Finally A stores all the (bi, fidi, Fi, kFi ,LOi) tuples as
DB0.
Answer the Hash queries H(F ′j).

1. A searches for (F ′j , {P ′j}) .
2. If found, A issues Corrupt(P ′j) and let the output of Corrupt(P ′j) be PWP ′j

.
3. A returns PWP ′j

to C.

4 we assume a polynomial sized file space.

Answer the RegisterCorrupt(pid). If pid /∈ PIDh, A simply enrols this pid in
PID. If pid ∈ PIDh, C fails automatically.
Answer the send(pid,M). If pid /∈ PIDh, A answers the send-queries exactly as
in the SDoE protocol. The hash-value or the PAKE messages to be returned are
obtained in the same way as when answering hash queries.

During every PAKE-phase for uploading Fi, A uses Send to involve an oracle
πis run by party Pi. Afterwards, except for one session involving F ∗, A uses
Reveal on each accepted process Pi,s of party Pi to get session key ki,s.

Denote as P ∗ the PAKE party bound with F ∗. For the PAKE test session
T ∗, A uses the PAKE Test queries to get a challenge session key tk∗. Then A
queries for f(P ∗, T ∗) and computes k∗R = tk∗R⊕ f(P ∗, T ∗). Finally A chooses an
r∗ and uses k∗R as defined in SDoE protocol ΠPAKE,re-enc.

Let i be the original index of F ∗ in DB0. A outputs 1 if b∗ = bi and 0
otherwise. Note that if b = 0 in the constrained PAKE experiment, the right half
of tk∗ is random bit-strings and so is k∗R = tk∗R ⊕ f(P ∗, T ∗). As a consequence,
e is also random. Therefore in this case, C also has no advantage. On the other
hand, if b = 1, k∗R is correctly distributed as in ΠPAKE,re-enc. The probability C
outputs the correct b∗ is the same as A outputs the correct b. Thus we have

εA = AdvGame 3
C (λ) (5)

By combining (1) to (5), we have proved Theorem 1.

Security against compromised server. Next, we prove the security ofΠPAKE,re-enc

against a compromised server, which leads to the following theorem.

Theorem 2 If there exists a ppt adversary S in ExpSDoE
S,ΠPAKE,re-enc

(λ) with advan-

tage εS when sh(F0) = sh(F1), then there also exist a ppt adversary A with
advantage εA in the underlying IND-KPA game against Πenc in the random or-
acle model and a ppt but passive adversary B against the PAKE-protocol Π with
advantage εB such that

εS ≤
2C ·Ne

|K|
+ εB +

(
2lsh

qH

)2 (
2|F|2 · εA

)
where C is the maximal number of owners of each file, K the key space of Πenc,
Ne the number of Execute queries, F the file space, lsh the length of the short
hash, qH the number of distinct files that S has queried for its hash or short hash
and Πenc is the encryption scheme for files.

Proof. First we consider two different cases for S to win.

1. S has issued Execute(pid, P, F) and seen at least one file keys collide into
any of the file keys of the equivalent ciphertexts of F0 or F1.

2. S has not seen any colliding keys by issuing Execute(pid, P, F).

In case 1, since each Execute(pid, P, F) reveals at most one real file key k ∈ K.
On the other hand, since there are at most C owners of each file, each of whom

has an equivalent file key, seeing one key increases the probability of S by at
most C

|K| to decrypt each Fb correctly. Let the advantage of S in case 2 be ε′S .

With the union bound we have

εS ≤
2C ·Ne

|F|
+ ε′S (6)

To further analyze ε′S , two types of adversaries are considered in the following
proof.

1. Adversaries that recover the complete session key generated after the PAKE
phase involving at least one honest client. We call these adversary as type 1
adversaries.

2. Adversaries do not recover any complete session keys generated by one hon-
est clients but respond to the Test(). We call these adversary as type 2
adversaries.

With a simple probability argument, it can be deducted that

ε′S ≤ ε1 + ε2 (7)

where ε1 is the advantage of type 1 adversary and ε2 the advantage of type 2
adversary. Furthermore, we assume that the hash function is simulated by the
challenger and all files are of equal length.

With the analysis above, we prove Theorem 2 by proving the following 2
lemmas.

Lemma 1 (Bounding of the advantage of the type 1 adversary) If there exists
any type 1 adversary A1 with advantage ε1 and running time t1, then there also
exists a passive PAKE adversary B with advantage εB and running time tB ≈ t1
such that ε1 ≤ εB.

Proof. (lemma 1) B can give the transcript of the Test-session to A1 and obtain
the session key skA1

recovered by A1. B then outputs (skA1
= kb).

Note that in our protocol, if the session key is leaked to A1, then the encryption
key kF is also leaked to A1 and vise versa. The confidentiality of kF is the basis
of the remaining proof.

Lemma 2 (Bounding of the advantage of the type 2 adversary) If there exists
any type 2 adversary A2 with advantage ε2 and running time t2, then there also
exists a IND-KPA adversary A with advantage εA and running time tA ≈ t2

such that ε2 ≤
(

2lsh
qH

)2 (
2|F|2 · εA

)
.

Proof. (lemma 2) Game 0 . This is the original game ExpSDoE
S,ΠPAKE,re-enc

(λ).

εA2 = AdvGame 0
S (λ) (8)

Game 1. If any of the files F0, F1 chosen by S when querying Test() has a unique
short hash value, abort the game. We add this rule since in our protocol since
the short hash is also stored as part of the ciphertext. If any sh(Fj) is unique,
S can simply learn Fj by computing and comparing the short hash values of all
file candidates. Fix Fj and let CollSH be the event that sh(Fj) does equal to
some other sh(Fi), Fi ∈ F. Then Pr[CollSH] = qH

2lsh
. Thus we have

Pr[∃Fi, Fk ∈ F, Fi 6= F0 ∧ Fk 6= F1 :

sh(Fi) = sh(F0) ∧ sh(Fk) = sh(F1)] ≥
(qH

2lsh

)2
(9)

Therefore we have

AdvGame 0
S (λ) ≤

(
2lsh

qH

)2

AdvGame 1
S (λ) (10)

Note that lsh is sub-polynomial in λ so the loss factor is not exponential.
Game 2. We add another abort rule. The challenger guesses 2 files j, k. If
{Fj , Fk} 6= {F0, F1} , abort the game. Thus

AdvGame 1
S (λ) ≤ (|F|)2 AdvGame 2

S (λ) (11)

Now we show how to construct A against ΠEnc from S. A can guess {F0, F1}
since Game 2 does not abort. At the setup phase, A includes the public param-
eters of ΠEnc in ΠPAKE,re-enc public parameters, queries for her own challenge
ciphertext Cb with {m0 = F0,m1 = F1} in her IND-KPA game. A fixes this
Cb as the ciphertext of F0 and use other random keys (conformant to security
parameter) to encrypt all other files as described in the model and this protocol.

The Send and RegisterCorrupt queries can be answered as in the proof for
security against compromised client. For AccessDB, A simply gives S all the
ciphertexts and owner lists at that time. Whenever a query from S results in
an observable database change (i.e., new ciphertexts are added or new owners
are added to files), A updates the server state and gives the ciphertext and/or
the changed owner lists to S. For Execute(pid,P,F) with F /∈ {F0, F1}, A can
use the homomorphic property of ΠEnc to correctly generate all the transcript.
Since A knows all other keys and ciphertexts, A can answer all the queries from
S.

If S queries Test(), A replies with Cb of her own and outputs whatever S
outputs. Since the probability that A correctly simulates the SDoE-game for S
is exactly 1

2 , we have

AdvGame 2
S (λ) ≤ 2εA (12)

By combining (8) to (12), we have proved Lemma 2.

By combining (6), (7) and the two lemmas, we have proved Theorem 2.

Upload

C: F S: Φ {Ci : Fi, kFi}
sh← SH(F)
h← H(F)

sh
−−−−−−−−−−−→

If sh = shi

PAKE request
−−−−−−−−−−−→

({ki}, {k′i})← PAKE(h, {hi})
⇐==========================⇒

{ki = kiL||kiR} {k′i = k′iL||k′iR}
{kiL}

−−−−−−−−−−−→
{k′iL, (k′iR ⊕ ri), (ri ⊕ kFi)}a

←−−−−−−−−−−−
If ∃ kjL and k′jL
s.t. kjL = k′jL
dedup := true
keep (rj ⊕ kFj)
e := (k′jR ⊕ rj)

Else
dedup := false
e := r′

e, j
←−−−−−−−−−−−

kF := e⊕ kjR
c← E(kF , F)
fid← H(c)

c
−−−−−−−−−−−→

If c 6= cj
dedup := false

Store c

Download

C: fid S: Φ
fid

−−−−−−−−−−−→
If dedup is true and
F becomes popular:
c := (cj , rj ⊕ kFj)

c
←−−−−−−−−−−−

kF :=
kF ⊕ (rj ⊕ kFj)

a ri is chosen by Ci at random.

Fig. 3. PAKE-based deduplication on popular files.

4.2 PAKE-based deduplication on popular files

Our second scheme (ΠPAKE,popular) is shown in Figure 3. It tries to avoid using
public-key operations to encrypt the entire file. The penalty is that it only dedu-
plicates popular files. The idea is the same as ΠPAKE,re-enc, except that instead of
deleting the duplicated files directly, S keeps them until they become popular.

Note that, for unpopular files, the views of both S and C are similar to those
in ΠPAKE,re-enc, except that XOR is used to replace addition and subtraction and
a symmetric-key encryption scheme E() is used to replace F ·gkF . So the security
argument for ΠPAKE,re-enc still holds for unpopular files here.

Deduplication effectiveness will be negatively affected if only popular files
are deduplicated. In the next section, we show that this affection is small via
simulations with realistic datasets.

5 Simulation

The authors in [13] did a realistic simulation to measure the deduplication ef-
fectiveness of ΠPAKE. They used a dataset comprising of Android application
popularity data to represent the predominance of media files. We follow their
simulation but with two improvements.

First, we expanded the data set to a more reasonable size since their dataset
is relatively small (7 396 235 “upload requests” in total, of which 178 396 are
for distinct files). In order to measure how the system behaves as the number
of unique files increases, a larger dataset is needed. Since such data was not
available, we used the Synthetic Minority Over-sampling (SMOTE) Technique [8]
to generate extra samples. Given a set of input samples and the amount of
required over-samplings, SMOTE performs the following for each input sample:
1. Compute x nearest neighbors for the input sample.
2. Randomly choose a neighbor and a point on the line segment joining the

input sample to the selected neighbor. This point is a new, generated sample.
3. Repeat step 2 until the requested amount of over-sampling has been reached.

For example, if the amount of needed over-sampling is 200%, it will be re-
peated twice.
We used the (file size, popularity) pairs of the original dataset as the input

samples in the SMOTE algorithm. The amount of over-sampling was 500% and
for each input sample five nearest neighbors were considered when the new sam-
ples were computed. The hashes for the synthetic samples were chosen randomly.
These new samples were combined with the samples from the original dataset
into a expanded dataset. The expanded dataset contains 110 942 571 files of
which 2 675 917 are unique. See Figure 4 for the file popularities of the original
dataset and the expanded dataset.

Second, we adjust the distribution of upload request to better reflect the real
world cases. In [13], they map the dataset to a stream of upload requests by
generating the request in random order, i.e., a file that has x copies generates x
upload requests that are uniformly distributed during the simulation. We argue

10 0 10 2 10 4 10 6 10 8

File ID

10 0

10 1

10 2

10 3

10 4

10 5

10 6

N
u

m
b

e
r

o
f

U
p

lo
a

d
 R

e
q

u
e

s
ts

File popularity in media dataset

File popularity in extended media dataset

Fig. 4. File popularity.

that this cannot precisely capture the upload stream in real world: a file usually
has less upload requests when it was generated, and becomes increasingly popular
(more and more people hold it). To capture this case, we assume the upload
requests of a single file follows normal distribution N (µ, σ2) where µ and σ are
chosen randomly. Specifically, for a file Fi that has xi total copies, the number

of copies of Fi uploaded at time point t is yi = 1
σi
√
2π
e
− (t−µi)

2

2σ2
i xi. Then the total

number of files uploaded at time point t is
∑
yi and we assume that they are

uploaded in random order. We do this for all time points and measure the final
deduplication percentage.
Parameters. We follow [13], setting the number of possible files as 825 000,
lsh = 13 and (nRL + n′RL) = 100 (i.e., a C will run PAKE at most 100 times
for a certain file as both uploader and checker). We use these parameters in
our simulations and measure deduplication effectiveness using the dedpulication
percentage ρ:

ρ = (1− Number of all files in storage

Total number of upload requests
) · 100% (13)

Rate limiting. We first assume that all Cs are online during the simulation
and all files will be deduplicated (not limited to popular files). We run simula-
tions with different combinations of RLu and RLc that satisfies RLu+RLc =
100, to see how selecting specific values for rate limits affects the deduplication
effectiveness. Figure 5 shows that setting RLu = RLc = 50 maximises ρ to be
94.85%, which is close to the perfect deduplication percentage of 97.59%.
Offline rate. Note that Cs cannot participate in the deduplication protocol
if they are offline, which may negatively affect deduplication effectiveness. To
estimate this impact, we assign an offline rate to each C as its probability to be

RL
u
(RL

c
)

10(90) 20(80) 30(70) 40(60) 50(50) 60(40) 70(30) 80(20) 90(10)

D
e
d
u
p
lic

a
ti
o
n
 p

e
rc

e
n
ta

g
e

0.4

0.5

0.6

0.7

0.8

0.9

1

Deduplication percentage with different rate limits
Perfect deduplication

Fig. 5. Dedup. percentage VS. rate limits.

offline during one run of the deduplication protocol. We set rate limits RLu = 50
and RLc = 50, and measured ρ by varying the offline rate. Figure 7 shows that
ρ is still reasonably high even for for relatively high offline rates of up to 70%,
but drops quickly beyond that.
Popularity threshold. By far the simulation results is for ΠPAKE,re-enc. Re-
call that ΠPAKE,popular only deduplicates popular files which have a number of
copies that are larger than a threshold, called popularity threshold. To inves-
tigate how this strategy affects deduplication effectiveness, we set rate limits
RLu = 50(RLc = 50), offline rate as 0.5, and run the simulation with differ-
ent popularity thresholds. Figure 7 shows that ρ drops quickly if the popularity
thresholds is larger than 32.

6 Related Work

The first proposed SDoE scheme is convergent encryption (CE) [10], which uses
H(F) as a key to encrypt F , where H() is a publicly known cryptographic hash
function. In this way, different copies of F result in the same ciphertext. However,
a compromised passive S can easily perform an offline brute-force attack over
a predictable file. Bellare et al. recently formalized CE and proposed message-
locked encryption (MLE) and its interactive version (iMLE) [2], which uses a
semantically secure encryption scheme but produces a deterministic tag [4]. So
it still suffers from the same attack. More recent work has attempted to im-
prove MLE in several respects. Qin et al. [16] and Lei et al. [12] made MLE
support Rekeying to protect key compromise and enable dynamic access control

Offline rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
e
d
u
p
lic

a
ti
o
n
 p

e
rc

e
n
ta

g
e
 %

0.92

0.925

0.93

0.935

0.94

0.945

0.95

Deduplication percentage with different offline rates
Deduplication percentage with rate limit 50(50) and offline rate 0

Fig. 6. Dedup. percentage VS. offline rates.

in the cloud storage. Zhao and Chow [20] proposed updatable MLE so that an
encrypted file F can be efficiently updated with O(log|F |) computational cost.
However, none of these improvements is able to make MLE secure against offline
brute-force attack.

DupLESS is a SDoE scheme that improves the security of CE against offline
brute-force attacks [3]. In the key generation phase of CE, they introduce another
secret which is provided by an third party and identical for all Cs. It adopts
oblivious PRF to make sure that Cs generate their keys without revealing their
files, or letting the Cs learn anything about the secret. Duan [11] and Shin [17]
later used decentralized architectures to distributed the trust of the third party
in DupLESS.

Cloudedup is a SDoE scheme that introduces a third party for encryption and
decryption [15]. Stanek et al. propose another SDoE scheme that only dedupli-
cates popular files [19]. Alternatively, Dang and Chang [9] proposed a trusted
hardware based SDoE that encrypts files using a randomized encryption scheme
under the seal key inside enclave, and uses a privacy-preserving comparison
scheme to remove duplicates in the storage. They further use differential privacy
to guarantee that the aggregate information is not exposed by the traffic analy-
sis. However, all the above approaches are vulnerable to the online brute-force
attacks.

7 Conclusions

In this paper, we revisited the problem of secure deduplication of encrypted data
(SDoE). We proposed a formal security model for this problem. We also proposed

Popularity thresholds
 2

0
 2

1
 2

2
 2

3
 2

4
 2

5
 2

6
 2

7
 2

8
 2

9
2

10

D
e
d
u
p
lic

a
ti
o
n
 p

e
rc

e
n
ta

g
e
 %

0.7

0.75

0.8

0.85

0.9

0.95

Deduplication percentage with different popularity thresholds

Deduplication percentage with rate limit 50(50) and offline rate 0.5, no popularity threshold

Fig. 7. Dedup. percentage VS. popularity thresholds.

two single-server SDoE protocols and proved their security in our model. We
showed that both of them can achieve reasonable deduplication effectiveness via
simulations with realistic datasets.

References

1. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur., 9(1):1–30, Feb. 2006.

2. M. Bellare and S. Keelveedhi. Interactive message-locked encryption and secure
deduplication. In IACR International Workshop on Public Key Cryptography,
pages 516–538. Springer, 2015.

3. M. Bellare, S. Keelveedhi, and T. Ristenpart. DupLESS: Server-aided encryption
for deduplicated storage. In USENIX Security, pages 179–194. USENIX Associa-
tion, 2013.

4. M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and
secure deduplication. In EUROCRYPT, volume 7881 of LNCS, pages 296–312.
Springer, 2013.

5. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In B. Preneel, editor, Advances in Cryptology — EURO-
CRYPT 2000: International Conference on the Theory and Application of Crypto-
graphic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings, pages 139–155,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

6. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT, pages 139–155, 2000.

7. S. M. Bellovin and M. Merritt. Encrypted key exchange: password-based protocols
secure against dictionary attacks. In Research in Security and Privacy, 1992.
Proceedings., 1992 IEEE Computer Society Symposium on, pages 72–84, May 1992.

8. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. J. Artif. Int. Res., 16(1):321–357, June 2002.

9. H. Dang and E. C. Chang. Privacy-preserving data deduplication on trusted
processors. In 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), pages 66–73, June 2017.

10. J. Douceur, A. Adya, W. Bolosky, P. Simon, and M. Theimer. Reclaiming space
from duplicate files in a serverless distributed file system. In Distributed Comput-
ing Systems, 2002. Proceedings. 22nd International Conference on, pages 617–624,
2002.

11. Y. Duan. Distributed key generation for encrypted deduplication: Achieving the
strongest privacy. In CCSW, pages 57–68. ACM, 2014.

12. L. Lei, Q. Cai, B. Chen, and J. Lin. Towards Efficient Re-encryption for Secure
Client-Side Deduplication in Public Clouds, pages 71–84. Springer International
Publishing, Cham, 2016.

13. J. Liu, N. Asokan, and B. Pinkas. Secure deduplication of encrypted data without
additional independent servers. In Proceedings of the 22Nd ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’15, pages 874–885, New
York, NY, USA, 2015. ACM.

14. J. Liu, N.Asokan, and B. Pinkas. Secure deduplication of encrypted data without
additional independent servers. Cryptology ePrint Archive, Report 2015/455, 2015.
http://eprint.iacr.org/2015/455.

15. P. Puzio, R. Molva, M. Onen, and S. Loureiro. Cloudedup: Secure deduplica-
tion with encrypted data for cloud storage. In CloudCom, pages 363–370. IEEE
Computer Society, 2013.

16. C. Qin, J. Li, and P. P. C. Lee. The design and implementation of a rekeying-aware
encrypted deduplication storage system. Trans. Storage, 13(1):9:1–9:30, Feb. 2017.

17. Y. Shin, D. Koo, J. Yun, and J. Hur. Decentralized server-aided encryption for
secure deduplication in cloud storage. IEEE Transactions on Services Computing,
PP(99):1–1, 2017.

18. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, 2004:332, 2004.

19. J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl. A secure data deduplication
scheme for cloud storage. In FC, pages 99–118, 2014.

20. Y. Zhao and S. S. Chow. Updatable block-level message-locked encryption. In Pro-
ceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, ASIA CCS ’17, pages 449–460, New York, NY, USA, 2017. ACM.

http://eprint.iacr.org/2015/455

	Secure Deduplication of Encrypted Data: Refined Model and New Constructions
	Jian Liu, Li Duan, Yong Li, N. Asokan

