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Abstract—Ciphertext Policy Attribute-Based Encryption (CP-
ABE) has been proposed to implement fine-grained access con-
trol. Data owners encrypt data with a certain access policy
so that only data users whose attributes satisfy the access
policy can decrypt the ciphertext. A user can be automatically
assigned an access privilege based on whether his/her attributes
satisfying a given access policy described by attributes and
their logical relations. In order to provide more flexible policy-
based access control, attribute-based revocation approaches had
been proposed to provide the NOT logic on attributes to allow
attribute-based revocation. However, previous solutions increase
the attribute management overhead when considering each user’s
ID as an attribute for more precise revocations at the individual
user-level. To address this issue, in this paper, an ID-ABE
scheme is presented, where a user’s ID is incorporated into
the key generation procedure allowing user-ID-based revocation.
In addition to ID-based revocation, ID-ABE also presents a
hierarchical identity structure to build a delegation framework to
enable group-based revocation. In the end, we also evaluate the
performance of the proposed scheme in terms of computation,
storage and communication overhead, which shows the practical
value of the solution for secure data sharing applications.

I. INTRODUCTION

The literature proposes a diversity of access control systems
supporting policies including basic access control lists [1],
cryptographically-enforced capabilities [2], group-based [3],
role-based [4] and attribute-based controls [5]. Most of these
approaches rely on a fully-trusted access monitoring server
to implement policy checking, which are not suitable for
some practical applications, such as cloud computing where
the cloud servers may not be fully trusted. Secure data
sharing in these application scenarios pushes the development
and usage of new cryptographic schemes in supporting ac-
cess control models in a cloud-based data sharing service
model. Among these cryptographic schemes, Ciphertext Policy
Attribute-Based Encryption (CP-ABE) [6] is regarded as one
of promising technologies and is a natural fit for building
an attribute-based access control (ABAC) [7] architecture to
support secure data sharing features such as policy-based data
access control.

In CP-ABE scheme, each user is assigned a set of attributes
based on his/her role and capabilities, which are used as
public keys. The data owner can enforce data access control
by encrypting the data with a data access policy expressed

by a policy tree structure that is composed by a set of
attributes and their logic relations (e.g., AND, OR, k out
of n, etc.). The encrypted data can be placed on a public
cloud storage server. A user can decrypt the ciphertext only
if his assigned attributes can satisfy the logic enforced among
attributes to reach the root of the policy tree. This approach is
promising in that the access control policies are incorporated
into the ciphertext naturally and there is no need for a trusted
third-party to enforce the data access control during the run-
time any more. Different from identity-based and role-based
cryptographic schemes, the public key and ciphertext size of
CP-ABE are not related with the number of data users and
no interactions among data owners and data users are needed.
Moreover, CP-ABE is resistant against collusion attacks from
unauthorized users. All these nice properties make CP-ABE
extremely suitable for implementing access control for secure
data sharing in peer-to-peer environment.

Using attributes to present data access policies is a very
flexible and scalable approach when data owners do not have
a clear picture about who have been included in a desired
policy confined group (called policy group, i.e., described
by a policy tree). However, one major drawback of using
attributes is the introduced attributes management overhead
when the data access requires the accuracy at the user-level,
e.g., revoking specific users from a policy group. To solve
this problem, [8] proposed an indirect revocation approach in
the cloud computing context. However, this approach relies
on either key regeneration or complicated tree structure based
on pre-defined relationships between users and attributes, thus
bringing overwhelming overhead in dynamic system where
users frequently join and leave. Another issue of this approach
is that the trusted authority has to be online all the time to
generate and distribute new private information to non-revoked
users. Considering the aforementioned issues, this approach is
not suitable for application in some application scenarios such
as peer-to-peer networks. In P2P environment, no centralized
trusted authority exists and all the points in the network only
have constrained computing resources. Therefore, we need a
revocation mechanism which is able to not only revoke users
directly on the data owner end but also be efficient to be
applied on mobile devices with limited computation power
and battery life. In addition, the approach also needs to be



scalable for un-revoked users as well as when the number of
revoked users is large.

To this end, Yamada et. al [9] proposed a scheme enabling
negative logic (NOT), where a user can be revoked based on
his assigned attributes or his ID that is regarded as a unique
attribute. However, considering users’ ID as an attribute suffers
practical issues, i.e., complicated attribute management due
to significantly increased the number of attributes. In this
paper, we present a new ID-based hierarchical ABE approach
called ID-HABE to achieve precise user-level revocation. The
salient feature of ID-HABE is incorporating a user’s ID
into his ABE private key. The encryption algorithm works
by two integrated functions: (1) specify attribute literals in
conjunctive/disjunctive normal forms as a policy tree structure
to cover the recipients of the target policy group; (2) revoke
unauthorized users by incorporating their identities into the
ciphertext. In this way, only users whose attributes satisfy the
policy tree structure and meanwhile are not revoked by the
data owners can decrypt the ciphertext.

ID-HABE provides the following major security features
compared to existing ABE solutions: (a) Revocation: it pro-
vides precise user-level control by including users’ IDs into
the policy tree for revocation. In this way, ID-HABE scheme
can revoke a list of users regardless of their assigned attributes.
This approach is desirable when a trusted revocation authority
is not always online since the revocation list is always initiated
by the data owner and the ciphertext is already incorporated the
revocation information. Moreover, it overcomes the attributes
exploration problem when considering a user’s ID as an
attribute. (b) Delegation: ID-HABE provides a hierarchical
delegation framework established to manage users’ IDs and
assigned attributes. The delegation approach not only reduces
the management overhead by distributing the key management
tasks to multiple delegators, but also provides a scalable
framework to revoke a large group of users by revoking their
delegator’s ID.

A. Research Contributions

Our contributions are summarized as follows:

• ID-HABE provides an integrated approach to nicely
incorporate users’ ID into user’s key generation procedure
and eases the attribute management.

• ID-HABE not only supports revocation of individual
users but also is able to effectively revoke all the users
within the same delegation domain.

• ID-HABE supports key-generation delegation, where a
domain authority is responsible for generating private
keys for all the users within its management domain.

• We have proved that the presented ID-HABE construction
is secure based on the proposed security definition.

• The performance evaluation demonstrates that the ID-
HABE scheme is practical for cloud-based data sharing
applications.

B. Arrangement of the paper

The remainder of this paper is organized as follows. In
section II, we introduce some preliminaries used in the fol-
lowing sections. In section III, we show the system model
and the formal definition of ID-HABE together with its
security definition. In section IV, we discuss a trivial but
insecure construction as well as a basic construction of the
simplified ID-HABE scheme. In section V, on the basis of
the construction in section IV, we present constructions of
the ID-HABE scheme. In section VI, delegable ID-HABE
constructions are described. In section VII, we evaluate the
efficiency of the proposed schemes. Section VIII discusses the
related work. Finally, section IX concludes the paper.

II. PRELIMINARIES AND ASSUMPTIONS

In this section, we present the definition of access structure,
linear secret sharing schemes, bilinear map, as well as the M-
q-parallel-BDHE assumption used in the following sections.

A. Access Structure

Access Structure [10]. Let {P1, P2, . . . , Pn} be a set
of parties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone
if ∀B,C: if B ∈ A and B ⊆ C then C ∈ A. An
access structure is a collection A of non-empty subsets of
{P1, P2, . . . , Pn}, i.e.,A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A
are defined as authorized sets, and sets that do not belong to
A are defined as unauthorized sets.

B. Linear Secret Sharing Schemes

Linear Secret Sharing Schemes (LSSS) [10]. A secret
sharing scheme Π over a set of parties is called linear over
Zp if the following two conditions are satisfied:
• the shares for each party form a vector over Zp;
• a share-generating matrix for Π has ` rows and n

columns. For all i = 1, . . . , `, the ith row of M , we define
ρ(i) as the party labeling row i. For the column vector
v = (s, r2, r3, . . . , rn), where s ∈ Zp is the shared secret
and r2, r3, . . . , rn ∈ Z are randomly chosen numbers,
then Mv is the vector of ` shares of the secret s according
to Π, where the share (Mv)i belongs to party ρ(i).

As shown in [10], every linear secret sharing-scheme ac-
cording to the above definition also enjoys the following linear
reconstruction property.

Definition 1 (Linear reconstruction). Assume that Π is an
LSSS for the access structure A. Define S ∈ A as an
authorized set and I ⊂ [1, l] as I = {i : ρ(i) ∈ S}. Then,
constants {wi ∈ Zp}i∈I can be derived in polynomial time
such that such that for valid shares {λi} of any secret s we
have

∑
i∈I wiλi = s. �

C. Bilinear Map

Definition 2 (Bilinear Map). Let G1, G2 and GT be multi-
plicative cyclic groups of prime order p. Let g1 and g2 be
generator of G1 and G2 respectively. A bilinear map is a map
e : G1 ×G2 → GT with the following properties:



• Computable: there exists an efficiently computable algo-
rithm for computing e;

• Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp,
e(ua, vb) = e(u, v)ab; For any u ∈ G1, v1, v2 ∈
G2, e(u, v1v2) = e(u, v1) · e(u, v2);

• Non-degenerate: e(g1, g2) 6= 1;
The bilinear map is called symmetric, if G1 and G2 are a
same group denoted by G. Let g denote the generator of G.�

D. Security Assumption

Modified (decisional) q parallel Bilinear Diffie-Hellman
Exponent problem is similar to the Decisional Parallel Bilinear
Diffie-Hellman Exponent (q-parallel BDHE ) problem [6]. The
definition is as follows.

Definition 3 (M-q-parallel-BDHE). Choose a group G of
prime order p according to the security parameter and a
random generator g of G. Choose a, s, b1, b2, · · · , bq ∈ Zp
at random. Given

y ={g, gs, ga, · · · , g(a
q), , g(a

q+2), · · · , g(a
2q),

∀1≤j≤q ga/bj , · · · , ga
q/bj , , ga

q+2/bj , ..., ga
2q/bj ,

∀1≤j≤q ga·s/bj , · · · , g(a
q·s/bj)},

it is hard for a Probabilistic Polynomial Time (PPT) adversary
to distinguish e(g, g)a

q+1s ∈ GT from a random element R
chosen from GT . An algorithm B that outputs z ∈ {0, 1}
has advantage ε in solving the M-q-parallel-BDHE problem
defined as above if the follwing equation holds

|Pr[B(y, T = e(g, g)a
q+1s) = 0]−Pr[B(y, T = R) = 0]| ≥ ε.

�

The M-q-parallel-BDHE assumption holds if the advan-
tage ε of any PPT adversary B to solve the M-q-parallel-
BDHE problem is a negligible function of the security pa-
rameter.

Theorem 1. The Modified (decisional) q parallel Bilinear
Diffie-Hellman Exponent assumption generically holds.

III. SYSTEM MODEL AND DEFINITIONS

In this section, we first show the system model and then
present the definition of the proposed ID-HABE scheme as
well as its security model.

A. System Model

As shown in Fig. 1, the system under consideration includes
four types of parties: the trusted authority, several domain
authorities, data owners and data users. The data owners
encrypt their data with a certain access policy. Data users
whose attributes satisfy the access policy could decrypt the
ciphertext. Each data owner or data user is managed by a
certain domain authority. Each domain authority is managed
by its parent domain authority or the trusted authority. The
trusted authority is the root authority and is responsible for
managing top-level domain authorities.

Fig. 1 System Model.

B. Algorithm Definition

The ID-HABE scheme consists of the following four algo-
rithms:
• Setup(λ,U). The setup algorithm takes security param-

eter λ and attribute universe U as inputs. It outputs the
public parameters PK and a master secret key MSK.

• KeyGen(MSK,S, ID). The key generation algorithm
takes master secret key MSK, a set of attributes S that
describe the private key, and an identity ID as inputs. It
outputs the private key SK.

• Encrypt(PK, (M, ρ),M, ID). The encryption algo-
rithm takes the public parameters PK, the LSSS matrix
M and its corresponding mapping ρ to each attribute, the
message M and the revoked identity set ID. It outputs
the ciphertext CT.

• Decrypt(CT, SK). The decryption algorithm takes the
ciphertext CT and the private key SK as inputs and outputs
the message M if the attributes of the secret key holder
satisfy the access policy on the ciphertext CT.

If we enable private key delegation, there would be two
types of key generation algorithms. The first one generates
private key for the domain authority and the second generates
private key for the users.

C. Security Model

In our system, the root trusted authority could be fully
trusted by all the users and domain authorities. The users
might collude together in order to obtain access privilege
which they do not have separately. In addition, we need
to consider stronger adversaries whose attributes satisfy the
attribute access policy of the challenge ciphertext but whose
identity is in the revoked identity set. The ID-HABE security
model is formalized by the game between a challenger and an
adversary A below.
• Init: The adversary A commits to the challenge access

structure A∗ and the revoked identity set ID∗ and send
this to the challenger.

• Setup: The challenger runs the setup algorithm. The
master secret key MSK is kept secret and the public
parameters PK are given to the adversary A.

• Phase1: The adversary A makes repeated private key
queries (Si, IDi)i∈[1,q1] where if Si satisfies A∗ then the
identity IDi = ID∗.

• Challenge: The adversary submits two equal length mes-
sages M0 and M1. In addition, the adversary gives a



challenge LSSS access structure A∗ =
(
M∗, ρ∗

)
and a

set ID∗ of revoked identities such that ID∗ must include
all identities that were queried. The challenger picks up
a random coin b, and encrypts Mb under the access
structure A∗ and the revoked identity set ID∗. Then the
challenge ciphertext CT∗ is sent to A.

• Phase2: Repeat Phase1 with the restriction that the
queried sets of (Si, IDi)i∈[q1+1,q] where if Si satisfies
A∗ then the identity IDi = ID∗.

• Guess: The adversary outputs a guess bit b′ of b. Define
AdvA = |Pr[b′ = b]− 1

2 | as the advantage of the adversary
A winning the game.

Definition 4 (ID-HABE Security). A ID-HABE scheme is
secure if the advantage of any probabilistic polynomial time
adversary A winning the above game is at most a negligible
function of the security parameter.

If the private keys of all the users are generated by the root
trusted authority, then the security model above is complete.
Whereas, if private key generation capability is delegated by
the root trusted authority to some domain authorities, we need
to consider what if the secret information used to generate the
private keys are leaked. In particular, we need to ensure that if
a domain authority is attacked successfully, all the private keys
generated by this domain authority cannot be used to decrypt
the ciphertext generated after this time point any more. We
will discuss this in section VI.

IV. BASIC CONSTRUCTIONS

The simplest case of ID-HABE system model is that there
is only one authority, i.e., the trusted authority. The private
keys of all the users are generated by the trusted authority
directly. There is no any domain authorities. Thus, ID-HABE
only needs to support revocation of particular users rather than
revocation of multiple users in a batch. We start from this
simplest case at first, then step further to construct ID-HABE
schemes with multiple domain authorities, and finally con-
struct ID-HABE supporting private key generation delegation.
The notations used in our constructions are presented below.

TABLE I Notations.

U the attribute set defined in the system, |U| = m
p the prime order of the multiplicative cyclic group G
m the number of attributes defined in the system
Zp Zp = {0, 1, · · · , p− 1}

[1, n] [1, n] denotes a set of integers i.e., {1, 2, · · · , n}
Mi the xth row of matrix M
l row number in matrix M of an LSSS access structure

(
M,ρ

)
H the number of layers in the identity structure tree
rg the number of revoked domain authorities
ru the number of revoked users
S the set of attributes created for a specific user

ANCi the set i′s ancestor nodes on the path from root to i
Ia the set of all the domain authority identities
Inr the set of domain authority identities

A. Trivial Construction
Since CP-ABE schemes and identity-based revocation

schemes have been proposed, a straight-forward two-step ap-

proach to constructing an identity revocable CP-ABE scheme
can be described as follows
• Step 1: Enforcing CP-ABE-based access control by ap-

plying the CP-ABE scheme [6], [11].
• Step 2: Enforcing the identity-based revocation scheme

[12] over the CP-ABE ciphertexts generated in Step 1.
The inner layer of CP-ABE insures the access policy en-

forcement while the outlier layer of identity-based revocation
provides the functionality of identity-based user revocation.
Therefore, this construction is a qualified one from the per-
spective of functionality. However, this constructions suffers
from collusion attacks. For example, a data owner C encrypts
a file under access structure A with revoked identity set
including user B whose attributes satisfy A. There is another
user A whose identity is not included in the revoked identity
set but whose attributes do not satisfy the access structure.
A and B could collude to decrypt the ciphertext even though
they do not have the access privilege separately. The process
is as follows. First, since A is not revoked, so he/she could
obtain the CP-ABE ciphertext. Second, B has the attributes
satisfying the access structure, so the plaintext can be obtained.
Therefore, the above trivial construction is not secure.

B. One-ID-One-Authority ID-HABE

The reason that trivial construction above does not work
is that the identity and attributes of a user are separated,
thus making it possible to combine identities and attributes
of different users together. To this end, a feasible approach is
to embed the identity and attributes together into each user’s
private key. Based on this idea, in this section, we show a
scheme OO-ID-HABE for the basic case: one authority, i.e.,
the trusted authority and one identity revocation. We prove
that this construction is secure in terms of Definition 1. The
four algorithms are presented as follows.
Setup(λ,U): The Setup algorithm chooses a group G

of prime order p (decided by the security parameter λ), a
generator g , and m random group elements h1, h2, · · · , hm
that are associated with the m attributes in the system. In
addition, it chooses random exponents α, b ∈ Zp.

The public key is published as

PK =
(
g, gb, gb

2

, e(g, g)α, {hbx}x∈U
)
.

MSK = {α, b} is the master secret key.
KeyGen(MSK,S, ID): The KeyGen algorithm chooses a

random t ∈ Zp and generates the private key SK for user ID

SK = (K = gαgb
2t, {Kx = (gb·IDhx)t}∀x∈S, L = g−t).

Encrypt(PK, (M,ρ),M, ID): M is an `× n matrix and
ID = {ID′} where ID′ is the revoked identity. The Encrypt
algorithm chooses a random vector v = (s, y2, · · · , yn) ∈ Znp .
These values will be used to share an encryption exponent s.
For k ∈ [1, `], it calculates λk = v ·Mk. The ciphertext of the
message M is

CT = (C,C0, Ĉ, (M,ρ), ID), where



C =Me(g, g)αs,

C0 = gs,

Ĉ = {C∗k = gb·λk , C ′k = (gb
2·ID′hbρ(k))

λk}k∈[1,`].

Decrypt(CT, SK): CT is the input ciphertext with access
structure (M,ρ) and SK is a private key for an attribute set
S. Suppose that S satisfies the access structure and define
I ⊂ [1, `] as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a set
of constants such that if {λi} are valid shares of any secret s
according to M , then Σi∈Iωiλi = s. If the identity ID of the
private key holder is not equal to ID′, we can get the value
A. The decryption algorithm then divides out this value from
C and obtains the message M.

A = e(C0,K)

(
∏
i∈I

[e(Kρ(i),C
∗
i )·e(L,C′i)]ωi )1/(ID−ID′)

= e(gs, gαgb
2t)/(

∏
i∈I[e((g

b·IDhρ(i))
t, gb·λi)

·e(g−t, (gb2·ID′hbρ(i))
λi)]ωi)1/(ID−ID′)

= e(gs, gα) · e(gs, gb2t)/(
∏

i∈I[e(g
b·ID·t, gb·λi)

·e(htρ(i), g
b·λi) · e(g−t, gb2·ID′·λi)

·e(g−t, hb·λiρ(i))]
ωi)1/(ID−ID′)

= e(g, g)αs · e(g, g)b
2st

·1/(
∏

i∈I[e(g, g)b
2tλi(ID−ID′)]ωi)1/(ID−ID′)

= e(g, g)αs · e(g, g)b
2st/(

∏
i∈I e(g, g)b

2tλiωi)

= e(g, g)αs · e(g, g)b
2st/e(g, g)b

2t
∑
i∈I λiωi

= e(g, g)αs.

Theorem 2. Suppose the M-q-parallel-BDHE assumption
holds. Then no PPT adversary can selectively break the OO-
ID-HABE scheme with a challenge access structure

(
M∗, ρ∗

)
,

where the size of M∗ is `∗ × n∗ and `∗, n∗ ≤ q.

V. ID-HABE CONSTRUCTIONS

In this section, we will extend the basic OO-ID-HABE
scheme to construct schemes with more complicated func-
tionalities. In particular, in the first subsection we construct
a scheme supporting both one particular user revocation and
one domain authority revocation, so that all the users managed
by the revoked domain authority can be revoked all at once.
Then we extend this scheme to support revocation of multiple
users and multiple domain authorities in the next subsection.

A. One-ID Revocation in ID-HABE

Let us assume that the height of the identity structure tree is
known in advance, which is set to be H. The trusted authority
is on the 0th layer.
Setup(λ,U): The Setup algorithm chooses a group G of

prime order p, a generator g, and random group elements
{hbx}x∈U that are associated with the m attributes. It also
chooses random exponents α, b ∈ Zp.

The public key is published as

PK =
(
g, gb, gb

2

, e(g, g)α, {hbx}x∈U
)
.

MSK = {α, b} is the master secret key.

KeyGen(MSK,S, ID): The KeyGen algorithm chooses a
random t ∈ Zp. The generated private key is as follows

SK = (K = gαgb
2t,Kxa,Kxu, L = g−t), where

Kxa = {Kxia = (gb·IDihix)t}∀x∈S,i∈[1,H],

Kxu = {(gb·IDuhH+1
x )t}∀x∈S.

Encrypt1(PK, (M,ρ),M, ID′u): This is the algorithm for
revoking a particular user. M is an l×n matrix. The Encrypt
algorithm first chooses a random vector v = (s, y2, · · · , yn) ∈
Znp . These values will be used to share an encryption exponent
s. Then extract ID′a = IDH from ID′u. For k ∈ [1, l], it
calculates λk = v ·Mk. Then, for message M, the ciphertext
is

CT = (C,C0, Ĉa, Ĉu, (M,ρ), IDu), where

C =Me(g, g)αs,

C0 = gs,

Ĉa = {C∗ka = gb·λk , C ′ka = (gb
2·ID′ah

(H)·b
ρ(k) )λk}k∈[1,l],

Ĉu = {C∗ku = gb·λk , C ′ku = (gb
2·ID′uh

(H+1)·b
ρ(k) )λk}k∈[1,l],

Decrypt1(CT, SK): CT is the input ciphertext with access
structure (M,ρ) and SK is a private key for a set S. Suppose
that S satisfies the access structure and let I ⊂ [1, l] be defined
as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a set of constants
such that if {λi} are valid shares of any secret s according to
M , then Σi∈Iωiλi = s. If the condition IDH 6= ID′a ∨ IDu 6=
ID′u holds, we calculate Aa or Au

Aa =
∏

i∈I[e(Kρ(i)Ha, C
∗
ia) · e(L,C ′ia)]

ωi
IDH−ID′a

= e(g, g)b
2ts,

Au =
∏

i∈I[e(Kρ(i)u, C
∗
iu) · e(L,C ′iu)]

ωi
IDu−ID′u

= e(g, g)b
2ts.

We can get the value e(g, g)αs by evaluating e(C0,K)
Aa

or
e(C0,K)
Au

. The decryption algorithm then divides out this value
from C and obtains the message M.
Encrypt2(PK, (M,ρ),M, ID′a): This is the algorithm

for revoking a particular authority. M is an l × n matrix.
The Encrypt algorithm first chooses a random vector v =
(s, y2, · · · , yn) ∈ Znp . These values will be used to share an
encryption exponent s. For k ∈ [1, l], it calculates λk = v ·Mk.
Then, for message M, the ciphertext is

CT = (C,C0, Ĉa, (M,ρ), ID′a),

where
C =Me(g, g)αs,

C0 = gs,

Ĉa = {C∗ku = gb·λk , C ′ku = (gb
2·ID′ahi·bρ(k))

λk}k∈[1,l].

Decrypt2(CT, SK): CT is the input ciphertext with access
structure (M,ρ) and SK is a private key for a set S. Extract



the identity IDa which is on the same layer as ID′a. Suppose
that S satisfies the access structure and let I ⊂ [1, l] be defined
as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a set of constants
such that if {λi} are valid shares of any secret s according to
M , then Σi∈Iωiλi = s. If the condition IDa 6= ID′a holds, we
calculate Aa as in Decrypt1.

Theorem 3. Suppose the M-q-parallel-BDHE assumption
holds. Then no PPT adversary can selectively break the OM-
ID-HABE scheme with a challenge access structure

(
M∗, ρ∗

)
,

where the size of M∗ is `∗ × n∗ and `∗, n∗ ≤ q.

B. Multiple-ID Revocation in ID-HABE

In this section, we show how to revoke multiple users and
multiple domain authorities. For description simplicity, here
we set H = 1. It is easy to extend this construction to H > 1.
Setup(λ,U): The Setup algorithm chooses a group G of

prime order p, a generator p and m random group elements
{hbx}x∈U, {hbxi}x∈U,i∈[1,H] that are associated with the m
attributes in the system. It also chooses random exponents
α, b ∈ Zp.

The public parameters are:

PK =
(
g, gb, gb

2

, e(g, g)α, {hbx}x∈U, {hbxi}x∈U,i∈[1,H]

)
.

The master secret key is MSK = {α, b}.
KeyGen(MSK,S, ID): The generated private key is as

follows

SK = (K = gαgb
2t,Kxa,Kxu, L = g−t), where

Kxa = {Kxia = (gb·IDihxi)
t}∀x∈S,i∈[1,H],

Kxu = {(gb·IDuhx)t}∀x∈S.

Encrypt(PK, (M,ρ),M, ID): Denote the set of revoked
domain authorities by IDa = {(ID′hj )}j∈[1,ra]. The set of
revoked user identities is denoted by IDu = {(ID′u,j)}j∈[1,ru].
We could extract the direct domain authorityID′a,j of ID′u,j .
ID = IDa ∪ IDu and |IDa|+ |IDu| = ra + ru = r. Let M
be an l×n matrix. The algorithm first chooses a random vector
v = (s, y2, · · · , yn) ∈ Znp . These values will be used to share
the encryption exponent s. For x ∈ [1, l], it calculates λx = v ·
Mx. The algorithm chooses random µ1, ..., µra , µ

′
1, ..., µ

′
ru ∈

Zp such that µa = µ1 + ... + µra , µu = µ′1 + ... + µ′ru . It
generates the ciphertext

CT = (C,Ca0, Cu0, Ĉa, Ĉau, Ĉu),

where

C =Me(g, g)αsµ, where µ = µa + µu

Ca0 = {Ca = gsµa , Ca,j = gsµj}j∈[1,ra]

Cu0 = {Cu,j = gsµ
′
j}j∈[1,ru]

Ĉa = {C∗ka,j = gb·λkµj , C ′ka,j = (g
b2·ID′hj hρ(k)hj )

λkµj}j∈[1,ra]k∈[1,l] ,

Ĉau = {C∗kau,j = gb·λkµ
′
j , C ′kau,j = (gb

2·ID′a,jhρ(k)H)λkµ
′
j}j∈[1,ru]k∈[1,l] ,

Ĉu = {C∗ku,j = gb·λkµ
′
j , C ′ku,j = (gb

2·ID′u,jhρ(k))
λkµ

′
j}j∈[1,ru]k∈[1,l] .

Decrypt(CT, SK): If neither the domain authority of SK
holder or the SK holder him/herself is revoked, then we first
calculate A as follows

A =
∏
i∈I
∏ra
j=1[e(Kρ(i)hja, C

∗
ia,j) · e(L,C ′ia,j)]

ωi
IDhj

−ID′
hj

= e(g, g)b
2stµa .

Aa = e(Ca,K)
A = e(g, g)αsµa . For particular user revocation

part. Ru1 ⊂ Ru, where Ru1 = {(ID′a,j , ID
′
u,j))|ID′a,j 6=

IDH}. Ru2 ⊂ Ru where Ru2 = {(ID′a,j , ID
′
u,j))|ID′a,j =

IDH ∧ ID′u,j 6= IDu}. We calculate Au1 and Au2 as follows

Au1 =
∏
i∈I
∏
j∈Ru1

[e(Kρ(i)Ha, C
∗
iau,j)e(L,C

′
iau,j)]

ωi
IDH−ID′

a,j

= e(g, g)b
2st

∑
j∈Ru1

µ′j ,

Au2 =
∏
i∈I
∏
j∈Ru2

[e(Kρ(i)Ha, C
∗
iu,j)e(L,C

′
iu,j)]

ωi
IDH−ID′

a,j

= e(g, g)b
2st

∑
j∈Ru2

µ′j .

Then we have:

Au =
∏
j∈Ru1

e(Cu,j ,K)

Au1
·
∏
j∈Ru2

e(Cu,j ,K)

Au2
= e(g, g)αsµu .

We could obtain the message by evaluating C
e(g,g)αsµ , where

e(g, g, )αsµ = Ag ·Au.

Theorem 4. Suppose the M-q-parallel-BDHE assumption
holds. Then no PPT adversary can selectively break the MM-
ID-HABE scheme with a challenge access structure

(
M∗, ρ∗

)
,

where the size of M∗ is `∗ × n∗ and `∗, n∗ ≤ q.

VI. DELEGABLE ID-HABE CONSTRUCTIONS

The constructions above can support revocation for each
individual user as well as domain authorities (i.e., delegators);
however, the trusted authority has to generate the private
key for each user, which incurs the following drawbacks.
First, the trusted authority has to generate the private key for
each user. Second, the trusted authority must verify proofs of
each user’s attributes and also must establish secure channels
to transmit the private keys. Therefore, the trusted authority
becomes a bottleneck in the system. To this end, in this section,
we propose delegable ID-HABE schemes,which allows the
root trusted authority to delegate private key generation and
attributes checking to some domain authorities. Similar to
section V, we first present a construction supporting one user
and one domain authority revocation and then extend this
construction to support multiple users and multiple authorities.

A. One-ID-Multi-Authority Delegable ID-HABE

In this section, we present the construction of one identity
revocable delegable ID-HABE scheme, OMD-ID-HABE. For
clarity, we divide the encryption and decryption algorithm into
two parts. The first one corresponds to one user revocation,
while the second one corresponds to one domain authority
revocation.



Setup(λ,U): The Setup algorithm chooses a group G of
prime order p, a generator g, and m random group elements
h1, · · · , hm that are associated with the m attributes in the
system. It also chooses random exponents α, b and s0 ∈ Zp.

The published parameters are in the form:

PK =
(
g, gb, gb

2

, e(g, g)α, {hbx, hb
2

x }x∈U, {gbs
−1
i , gs

−1
i }i∈I

)
,

where si is evaluated based on the identity structure tree.
schild = IDchild

sparent and sroot = s0.
The master secret key is

MSK =
(
α, b, s0

)
.

KeyGenforDA(SKia,S(i+1)a, ID(i+1)a): This is an algo-
rithm generating secret key for a domain authority ID(i+1)a,
which is at the (i + 1)th layer. This algorithm is run by
an ith level domain authority with identity IDia with secret
delegation key SKia as follows:

SKia =
(
gαgb

2tia , gs
−1
jd tia , g−tia , (gbsjahbx)tia ,

gbsja , hx, g
btia , htiax , hbtiax , sia

)x∈Sia
j∈ANCi∪i

.

Based on the attribute set S(i+1)a (s.t., S(i+1)a ⊂ Sia), IDia
sends the key SKia→(i+1)a to ID(i+1)a.

SKia→(i+1)a =
(
gαgb

2tia , gs
−1
ja tia , g−tia , (gbsjahbx)tia ,

gbsja , hx, g
btia , htiax , hbtiax , s(i+1)a

)x∈S(i+1)a

j∈ANC(i+1)a
.

ID(i+1)a randomly selects t′ ∈ Zp and computes its own
secret key as follows, where t(i+1)a = tia + t′:

SK(i+1)a =
(
gαgb

2t(i+1)a , gs
−1
ja t(i+1)a , g−t(i+)a , (gbsjahbx)t(i+)a ,

gbsja , hx, g
bt(i+1)a , h

t(i+1)a
x , h

bt(i+1)a
x , s(i+1)a

)x∈S(i+1)a

j∈ANC(i+1)a∪(i+1)
,

where some updated items are calculated as follows:

gαgb
2t(i+1)a = gαgb

2tia · (gb
2

)t
′
,

gs
−1
ja t(i+1)a = gs

−1
ja tia · (gs

−1
ja )t

′
,

g−t(i+1)a = g−tia · g−t
′
,

(gbsjahbx)t(i+1)a = (gbsjahbx)tia · (gbsja · hbx)t
′
,

(gbs(i+1)ahbx)t(i+1)a = (gbtia · gbt
′
)s(i+1)a · hbtiax · hbt

′

x ,

gbs(i+1)a = (gb)s(i+1)a ,

gt(i+1)a = gtia · gt
′
,

h
t(i+1)a
x = htiax · ht

′

x ,

h
bt(i+1)a
x = hbtiax · (hbx)t

′
.

KeyGenforUser(SKa,S, ID): SKa is the domain author-
ity IDa that generates the secret key SK for a user ID. The
secret delegation key SKa of IDa is as follows.

SKa =
(
gαgb

2ta , gs
−1
ja ta , g−ta , (gbsjahbx)ta ,

gbsja , hx, g
bta , htax , h

bta
x , sa

)x∈Sa
j∈ANCa∪d

.

The domain authority IDa chooses a random t′ ∈ Zp, and
distributes the following secret key SK to the user ID:

SK =
(
K = gαgb

2tu , {La = gs
−1
ja tu}j∈ANCu , Lu = g−tu ,

{K′xa = (gb·sjahbx)
tu}∀x∈Sj∈ANCu , {Kxu

′ = (gb·IDhx)
tu}∀x∈S

)
,

where tu = ta + t′.
Encrypt1(PK, (M,ρ),M, ID): The is the encryption al-

gorithm for revoking just one user. ID = {
(
ID′a, ID

′
u

)
}. The

Encrypt algorithm takes inputs as an LSSS access infras-
tructure (M,ρ) and the function ρ associates each row of
M to corresponding attributes. Let M be an l × n matrix.
The Encrypt algorithm first chooses a random vector v =
(s, y2, · · · , yn) ∈ Znp . These values will be used to share an
encryption exponent s. For x ∈ [1, l], it calculates λx = v·Mx.
Then, for message M, the ciphertext is presented as follows

CT = (C,C0, Ĉa, Ĉu, ID), where

C =Me(g, g)αs,

C0 = gs,

Ĉa =
(
C∗ka = gbs

−1
i λk , C ′ka = (hb

2

ρ(k))
λk
)i∈Inr
k∈[1,l],

Ĉu =
(
C∗ku = gb·λk , C ′ku = (gb

2·ID′uhbρ(k))
λk
)
k∈[1,l].

Decrypt1(CT, SK): CT is the input ciphertext with access
structure (M,ρ) and SK is a private key for a set S. Suppose
that S satisfies the access structure and let I ⊂ [1, l] be defined
as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a set of constants
such that if {λi} are valid shares of any secret s according
to M , then Σi∈Iωiλi = s. Denote the identity of the direct
domain authority administrating IDu by IDa. The decryption
algorithm runs as follows:

e(C0,K)∏
i∈I[e(K

′
ρ(i)a, C

∗
ia) · e(La, C ′ia)]ωi

, IDa 6= ID′a;

e(C0,Ku)

(
∏

i∈I[e(K
′
ρ(i)u, C

∗
ui) · e(Lu, C ′ui)]ωi)

1
(IDu−ID′u)

, IDu 6= ID′u;

abort, otherwise.
(2)

If SK’s holder is not the revoked user, then by equation
(2), we can get e(g, g)αs and finally get the message M by
evaluating C

e(g,g)αs .
Encrypt2(PK, (M,ρ),M, ID): This is an encryption al-

gorithm for revoking just one domain authority. The Encrypt
algorithm takes inputs as an LSSS access infrastructure (M,ρ)
and the function ρ associates each row of M to corresponding
attributes, where M is an l × n matrix. ID = {ID′a}.
The Encrypt algorithm first chooses a random vector v =
(s, y2, · · · , yn) ∈ Znp . These values will be used to share an
encryption exponent s. For x ∈ [1, l], it calculates λx = v·Mx.
Then, for message M, the ciphertext is presented as follows

CT = (C,C0, Ĉa, ID), where

C =Me(g, g)αs,



C0 = gs,

Ĉa =
(
C∗k = gbs

−1
i λk , C ′k = (hb

2

ρ(k))
λk
)i∈IH
k∈[1,l].

Decrypt2(CT, SK): CT is the ciphertext with access struc-
ture (M,ρ) and SK is a private key for a set S. Suppose that
S satisfies the access structure and let I ⊂ [1, l] be defined as
I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a set of constants
such that if {λi} are valid shares of any secret s according to
M , then Σi∈Iωiλi = s. Denote the identity of the non-revoked
domain authority administrating IDu by IDa. The decryption
algorithm runs as follows


e(C0,K)

(
∏
i∈I[e(K

′
ρ(i)a, C

∗
i ) · e(La, C ′i)]ωi

, if IDa 6= ID′a;

abort, otherwise.
(3)

If SK’s holder is not in the revoked group, then by equation
(3), we can get e(g, g)αs and finally get the message M by
evaluating C

e(g,g)αs .

Theorem 5. Suppose the M-q-parallel-BDHE assumption
holds. Then no PPT adversary can selectively break the
OM-DID-HABE scheme with a challenge access structure(
M∗, ρ∗

)
, where the size of M∗ is `∗ × n∗ and `∗, n∗ ≤ q.

B. Multi-ID-Multi-Authority DID-HABE

In this section, we present the construction of multiple
identities revocable delegable ID-HABE scheme, MMD-ID-
HABE. For clarity, we divide the encryption and decryption
algorithm into three parts. The first one corresponds to re-
vocation of multiple users, the second one corresponds to
revocation of multiple domain authorities and the third one
corresponds to revocation of multiple users together with
multiple domain authorities.

Setup(λ,U): The Setup algorithm chooses a group G of
prime order p, a generator g, and m random group elements
h1, · · · , hm that are associated with the m attributes in the
system. It also chooses random exponents α, b and s0 ∈ Zp.

The public parameters are as follows:

PK =
(
g, gb, gb

2

, e(g, g)α, {hbx, hb
2

x }x∈U, {gbs
−1
i , gs

−1
i }i∈I

)
,

where si is evaluated based on the structure tree of the domain
authoritys. schild = IDchild

sparent , sroot = s0.
The master secret key is in the form:

MSK =
(
α, b, s0

)
.

KeyGenforDA(SKia,S(i+1)a, ID(i+1)a): This is an algo-
rithm generating secret key for a domain authority ID(i+1)a,
which is at the (i + 1)th layer. This algorithm is run by
an ith level domain authority with identity IDia with secret
delegation key SKia:

SKia =
(
gαgb

2tia , gs
−1
jd tia , g−tia , (gbsjahbx)tia ,

gbsja , hx, g
btia , htiax , hbtiax , sia

)x∈Sia
j∈ANCi∪i

.

Based on the attribute set S(i+1)a (s.t., S(i+1)a ⊂ Sia), IDia
sends the key SKia→(i+1)a to ID(i+1)a:

SKia→(i+1)a =
(
gαgb

2tia , gs
−1
ja tia , g−tia , (gbsjahbx)tia ,

gbsja , hx, g
btia , htiax , hbtiax , s(i+1)a

)x∈S(i+1)a

j∈ANC(i+1)a
.

ID(i+1)a randomly selects t′ ∈ Zp and computes its own
secret key as follows, where t(i+1)a = tia + t′.

SK(i+1)a =
(
gαgb

2t(i+1)a , gs
−1
ja t(i+1)a , g−t(i+)a , (gbsjahbx)t(i+)a ,

gbsja , hx, g
bt(i+1)a , h

t(i+1)a
x , h

bt(i+1)a
x , s(i+1)a

)x∈S(i+1)a

j∈ANC(i+1)a∪(i+1)
.

KeyGenforUser(SKa,S, ID): SKa is the domain author-
ity IDa that generates the secret key SK for a user ID. The
secret delegation key SKa of IDa is as follows:

SKa =
(
gαgb

2ta , gs
−1
ja ta , g−ta , (gbsjahbx)ta ,

gbsja , hx, g
bta , htax , h

bta
x , sa

)x∈Sa
j∈ANCa∪d

.

IDa chooses a random t′ ∈ Zp, and distributes the following
secret key SK to user ID:

SKu =
(
K = gαgb

2tu , {La = gs
−1
ja tu}j∈ANCu , Lu = g−tu ,

{K′xa = (gb·sjahbx)
tu}∀x∈Sj∈ANCu , {Kxu

′ = (gb·IDhx)
tu}∀x∈S

)
,

where tu = td + t′.
Encrypt1(PK, (M,ρ),M, ID): This algorithm is for re-

voking multiple users. The Encrypt1 algorithm takes inputs
as an LSSS access infrastructure (M,ρ) where M is an
l × n matrix and the function ρ associates each row of M
to corresponding attributes. ID = {

(
ID′a,j , ID

′
u,j , hj

)
}j∈[1,ru].

The Encrypt algorithm first chooses a random vector v =
(s, y2, · · · , yn) ∈ Znp . These values will be used to share an
encryption exponent s. For x ∈ [1, l], it calculates λx = v·Mx.
The Encrypt algorithm chooses random µ1, ..., µru ∈ Zp,
µ = µ1 + ...+ µru . Then, the ciphertext of message M is

CT = (C,C0, Ĉa, Ĉu, ID), where

C =Me(g, g)αsµ,

C0 = gsµ,

Ĉa = {C∗akj = gbs
−1
i λkµj , C ′ak = (hbρ(k))

λkµj}i∈Inrk∈[1,l],j∈[1,ru],

Ĉu =
(
{C∗ukj = gbλkµj}k∈[1,l],j∈[1,ru],

{C ′ukj = (gb
2·ID′u,jhbρ(k))

λkµj}k∈[1,l],j∈[1,ru]
)
.

Decrypt1(CT, SK): CT is the input ciphertext with access
structure (M,ρ) and SK is a private key for a set S. Suppose
that S satisfies the access structure and let I ⊂ [1, l] be defined
as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a set of constants
such that if {λi} are valid shares of any secret s according to
M , then Σi∈Iωiλi = s. For the jth revoked identity, denote
the identity of the non-revoked domain authority managing ID



by IDa,j . The decryption algorithm calculates e(g, g)b
2tsuj as

follows:


∏
i∈I

[e(K′ρ(i)aj , C
∗
aij) · e(Laj , C′aij)]ωi , IDa,j 6= ID′a,j

(
∏
i∈I[e(Kρ(i)u, C

∗
uij) · e(Lu, C′uij)]ωi)

1
( IDu− ID′

u,j
)
, IDu 6= ID′u,j .

(4)
If SK’s holder is not revoked, then we can get e(g, g)αsµ

by e(C0,K)∏
j∈[1,ru] e(g,g)

b2tλkµj
. Finally get the message M by eval-

uating C
e(g,g)αsµ .

Encrypt2(PK, (M,ρ),M, ID): This algorithm is used to
revoke multiple domain authorities. It takes as inputs an LSSS
access infrastructure (M,ρ), where M is an l× n matrix and
the function ρ associates each row of M to corresponding
attributes. ID = {IDa,j}j∈[1,rg]. The Encrypt2 algorithm first
chooses a random vector v = (s, y2, · · · , yn) ∈ Znp . These
values will be used to share an encryption exponent s. For
x ∈ [1, l], it calculates λx = v · Mx and chooses random
s ∈ Zp. Then, the ciphertext of the message M is as follows

CT = (C,C0, Ĉa, ID), where

C =Me(g, g)αs,

C0 = gs,

Ĉa =
(
C∗ak = gbs

−1
i λk , C ′ak = (hbρ(k))

λk
)i∈Inr
k∈[1,l].

Decrypt2(CT, SK): CT is the ciphertext with access struc-
ture (M,ρ) and SK is a private key for a set S. Suppose that
S satisfies the access structure and let I ⊂ [1, l] be defined
as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a set of
constants such that if {λi} are valid shares of any secret s
according to M , then Σi∈Iωiλi = s. Denote the identity of
a non-revoked domain authority managing IDu by IDa. The
decryption algorithm evaluates Aa as follows:

Aa = e(C0,K)
(
∏
i∈I

[e(K′
dρ(i)

,C∗di)·e(Ld,C
′
di)]

ωi

= e(g, g)αs.

If SK’s holder is not administered by revoked domain
authorities, then we can get e(g, g)αs. Finally the decryption
algorithm divides out this value from C and obtains the
message M.
Encrypt3(PK, (M,ρ),M, ID): This is an algorithm re-

voking both multiple users and multiple domain authorities.
The Encrypt3 algorithm takes as inputs an LSSS access infras-
tructure (M,ρ), where M is an l× n matrix and the function
ρ associates each row of M to corresponding attributes.
ID = IDa ∪ IDu and |IDa|+ |IDu| = ra + ru = r. Denote
the set of revoked domain authority identities as IDa =
{(ID′a,j , ha,j)}j∈[1,ra]. The set of revoked user identities is
denoted by IDu = {(ID′a,j , ID

′
u,j , hu,j)}j∈[1,ru], where ID′u,j

is managed by domain authority ID′a,j . The Encrypt algorithm
first chooses a random vector v = (s, y2, · · · , yn) ∈ Znp . These
values will be used to share an encryption exponent s. For
x ∈ [1, l], it calculates λx = v ·Mx. The Encrypt3 algorithm

chooses random s ∈ Zp. The algorithm chooses random µ1, µ2

such that µ = µa + µu, and µ1, · · · , µra , µ′1, · · · , µ′ru ∈ Zp
such that µa = µ1 + · · ·+µra and µu = µ′1 + · · ·+µ′ru . Then,
for message M, the ciphertext is presented as follows:

CT = (C,C0, Ĉa, Ĉu, Ĉa
′
, ID), where

C =Me(g, g)αsµ,

C0 = gsµ,

Ĉa =
(
C∗akj = gbs

−1
i λku

′
j , C ′ak = (hbρ(k))

λku
′
j
)i∈Inr
k∈[1,l],j∈[1,ra]

.

Ĉu =
(
{C∗ukj = gbλku

′
j}k∈[1,l],j∈[1,ru],

{C ′ukj = (gb
2·IDu,jhbρ(k))

λku
′
j}k∈[1,l],j∈[1,ru]

)
,

Ĉa
′

=
(
C∗dk = gbs

−1
i λkµj , C ′dk = (hbρ(k))

λkµj
)i∈Inr
k∈[1,l],j∈[1,ra]

.

Decrypt3(CT, SK): CT is the ciphertext with access struc-
ture (M,ρ) and SK is a private key for a set S. Suppose
that S satisfies the access structure and let I ⊂ [1, l] be
defined as I = {i : ρ(i) ∈ S}. Let {ωi ∈ Zp}i∈I be a
set of constants such that if {λi} are valid shares of any
secret s according to M , then Σi∈Iωiλi = s. For the jth

revoked user identity, denote the identity of the non-revoked
domain authority administrating IDu by IDa,j . The decryption
algorithm calculates e(g, g)b

2tsµ′j as follows:

 (
∏
i∈I

[e(Kρ(i)u, C
∗
uij) · e(Lu, C′uij)]ωi)

1
(IDu−IDj) , IDu,j 6= ID′u,j ,∏

i∈I[e(K
′
ρ(i)aj , C

∗
aij) · e(Laj , C′aij)]ωi , IDa,j 6= ID′a,j .

(5)

Then we could get e(g, g)b
2tsµu in the following way:

e(g, g)b
2tsµu =

∏
j∈[1,ru]

e(g, g)b
2tsµ′j .

For the jth revoked domain authority, denote the identity of
the domain authority on the hjth layer managing IDu by IDa,j .
The decryption algorithm evaluates e(g, g)b

2tsuj as follows:

e(g, g)b
2tsuj =

∏
i∈I

[e(K ′aρ(i), C
∗
ai) · e(La, C ′ai)]ωi .

Then we could get e(g, g)b
2tsµa in the following way:

e(g, g)b
2tsµa =

∏
j∈[1,ra]

e(g, g)b
2tsµj .

If SK’s holder is not managed by any revoked domain
authority and is not among the revoked users, then we can get
e(g, g)αsµ = C0,K

e(g,g)b2tsµu ·e(g,g)b2tsµa
. Finally get the message

M by evaluating C
e(g,g)αsµ .

Theorem 6. Suppose the M-q-parallel-BDHE assumption
holds. Then no PPT adversary can selectively break the
MM-DID-HABE scheme with a challenge access structure(
M∗, ρ∗

)
, where the size of M∗ is `∗ × n∗ and `∗, n∗ ≤ q.



VII. PERFORMANCE EVALUATION

In this section, the four schemes proposed in this paper
are evaluated in terms of their computation, storage, and
communication performance. The evaluation is performed in
two parts: First, we analyze the performance complexity of the
presented schemes by comparing with the original CP-ABE
scheme. Second, we implement these schemes with the PBC
library [13]. We conduct a computation performance evalu-
ation and compare these scheme with the CP-ABE scheme.

A. Complexity Analysis

Following the notations provided in TABLE I, a compara-
tive analysis is carried out among the OM-ID-HABE scheme,
MM-ID-HABE scheme, OM-DID-HABE scheme, MM-DID-
HABE scheme, as well as the original CP-ABE scheme. There
are four types of time-consuming operations: pairing, expo-
nentiation, multiplication and inversion, included in the five
schemes. According to [14], the pairing and exponentiation
operations are the dominant costs. Therefore, we utilize the
number of pairing and exponentiation operations as metrics
for computation complexity of each scheme. TABLE II and
TABLE III describes the asymptotic complexities of the
setup, key generation, encryption and decryption algorithm
respectively. In this comparison, we assume that the height
of the identity structure tree is 2, i.e., H = 1. In addition,
for the delegable ID-HABE, the key generation for domain
authority is system overall computation overhead, therefore is
not included here.

1) Computation Complexity Analysis: In the setup algo-
rithm of all the five schemes, only one pairing operation, which
is incurred by the evaluation of the value of e(g, g)α.

In CP-ABE, the number of exponentiations in the setup
algorithm is 3. In both OM-ID-HABE scheme and MM-ID-
HABE scheme, m + 3 exponentiation operations are needed.
While in the two delegable schemes, more exponentiation
operations are needed because of the private key generation
delegation functionality and resistance against domain author-
ity impersonation as discussed in the security proof part of
delegable schemes.

In the key generation algorithm of all the five schemes,
no pairing operation is performed. In CP-ABE, the number
of exponentiations needed is |S| + 3. In both OM-ID-HABE
and MM-ID-HABE, this number is increased to 2|S| + 4.
This increase comes from the fact that both user identity and
domain authority identity is embedded in the key component
for each attribute.

For the encryption algorithm, the computation cost in terms
of pairing is the same for CP-ABE, OM-ID-HABE, MM-ID-
HABE, OM-DID-HABE and MM-DID-HABE. The same as
the key generation algorithm, exponentiation operations dom-
inate the cost. In the encryption algorithm of both CP-ABE
and OM-ID-HABE scheme, the number of exponentiation op-
erations is 2l+3 when revoking a domain authority and 3l+4
when revoking a particular user. In MM-ID-HABE, the num-
ber of exponentiation operations is (2rg +3ru)l+rg +ru+1,

where rg denotes the number of revoked domain authorities
and ru denotes the number of revoked particular users. In
the OM-DID-HABE scheme, the number of exponentiation
operations is (|Inr| + 3)l + 3 if only one particular user is
revoked, and is (|Inr|+ 1)l+ 2 if only one domain authority
is revoked. While for the MM-DID-HABE scheme, if only
multiple users are revoked then x = 1, y = 0; if only multiple
domain authorities are revoked then x = 0, y = 1; if there are
both multiple users and multiple domain authorities revoked
then x = 1, y = 1.

In CP-ABE, the number of pairing needed for decryption
is 2|I| + 1, where I is the set of users’ attributes used
in the process of decryption. The decryption algorithm of
the OM-ID-HABE and OM-DID-HABE scheme requires the
same number of pairing operations as the CP-ABE scheme.
Whereas the number increases to be 2|I|(rg + ru) + ru + 1
and 2|I|(ru + 1) respectively since there are multiple users
or domain authorities revoked. The numbers of exponentia-
tions in CP-ABE, OM-ID-HABE, MM-ID-HABE, OM-DID-
HABE and MM-DID-HABE are |I|, |I|, |I|(rg + ru), |I|and
x(|I|ru) + y|I| respectively, where the meaning of x, y is the
same as in TABLE II.

2) Storage and Communication Overhead Analysis: We
evaluate the storage and communication overhead separately.
The main storage overhead comes from the setup algorithm
and key generation algorithm. The communication overheads
come from the ciphertext generated by the encryption algo-
rithm. TABLE IV and TABLE V summarize the storage and
communication overhead of the five schemes.

The storage overhead in the setup algorithm of the CP-ABE
scheme is m+ 4. In OM-ID-HABE and MM-ID-HABE, it is
2m + 6 because of the public parameters generated for the
domain authorities. Whereas, in the OM-DID-HABE and MM-
DID-HABE schemes, to resist against impersonation problem
of the domain authorities, the storage overhead is 2m+2|Ia|+
7.

In CP-ABE, the overhead of storing the private key is |S|+2.
In OM-ID-HABE and MM-ID-HABE, it is 2|S|+ 2. In OM-
DID-HABE and MM-DID-HABE, the private key storage is
2|S|+ 3.

The size of ciphertext of the CP-ABE scheme is 2l+2. The
ciphertext size of OM-ID-HABE is 2l + 2 when revoking a
domain authority and 4l + 2 when revoking a particular user.
The ciphertext size of MM-ID-HABE, OM-DID-HABE and
MM-DID-HABE is 2(rg + ru)l+ rg + ru + 1, x(2l+ 2ru) +
y(|Inr|l + rg + 2) and x(2ru + lru|Inr| + 2lru) + y(rg +
l|Inr|) + 2 respectively, where the meaning of rg , ru, x and
y are the same as the above.

Based on the analysis above, we can see that our pro-
posed ID-HABE schemes incurs more computation overhead
compared to the original CP-ABE scheme. The costs for
the one identity revocable scheme OM-ID-HABE are almost
the same as the CP-ABE scheme. The costs for the one
identity revocable scheme OM-DID-HABE, some additional
costs are brought because of impersonation resistance and
the functionality of delegable private key generation. When



TABLE II Computation Complexity Comparison in terms of the Number of Pairing Operations.

Schemes CP-ABE OM-ID-HABE MM-ID-HABE OM-DID-HABE MM-DID-HABE
Setup 1 1 1 1 1

KeyGen 0 0 0 0 0
Encrypt 0 0 0 0 0

Decryption 2|I|+ 1 2|I|+ 1 2|I|(rg + ru) + ru + 1 2|I|+ 1 2|I|(ru + 1)

TABLE III Computation Complexity Comparison in terms of the Number of Exponentiation Operations.

Schemes CP-ABE OM-ID-HABE MM-ID-HABE OM-DID-HABE MM-DID-HABE
Setup 3 2m+ 3 2m+ 3 2m+ |Ia| 2m+ |Ia|

KeyGen |S|+ 3 2|S|+ 4 2|S|+ 4 2|S|+ 3 2|S|+ 3

Encrypt
2l + 3 (2rg + 3ru)l (|Inr|+ 3)l + 3 x((|Inr|+ 2)rul + ru + 2)

3l + 2 or + or +
3l + 4 rg + ru + 1 (|Inr|+ 1)l + 2 y((|Inr|+ 1)l + 2)

Decrypt |I| |I| |I|(rg + ru) |I| x(|I|ru) + y|I|

TABLE IV Storage Overhead Comparison.

Schemes CP-ABE OM-ID-HABE MM-ID-HABE OM-DID-HABE MM-DID-HABE
Setup m+ 4 2m+ 6 2m+ 6 2m+ 2|Ia|+ 7 2m+ 2|Ia|+ 7

KeyGen |S|+ 2 2|S|+ 2 2|S|+ 2 2|S|+ 3 2|S|+ 3

TABLE V Communication Overhead Comparison.

Schemes CP-ABE OM-ID-HABE MM-ID-HABE OM-DID-HABE MM-DID-HABE

Encrypt
2l + 2 2(rg + 2ru)l x(2l + 2ru) x(2ru + lru|Inr|+ 2lru)

2l + 2 or + + +
4l + 2 rg + ru + 1 y(|Inr|l + rg + 2) y(rg + l|Inr|) + 2

there are multiple identities included in the revocation list, the
computation overhead is proportional to the number of revoked
identities. Although some times the computation overhead
is high, the new functionalities and properties brought by
our scheme are useful in cloud-based secure data sharing
applications.

Fig. 2 Relations between the amount of attributes and time
consumption for setup.

VIII. RELATED WORK

Traditionally, access control is based on the identity of a
user, either directly or through predefined attributes types, e.g.,
roles or groups assigned to that user. However, practitioners
have noted that this access control approach usually needs
cumbersome management and identity, groups and roles are

Fig. 3 Relations between the amount of attributes and time
consumption for key generation.

not sufficient in expressing the access control policies in the
real world. Therefore, a new approach which is referred to as
attribute-based access control (ABAC) is proposed [15]. With
ABAC, whether a user’s request is granted or not is decided
by the attributes of the user, selected attributes of the object
and environment conditions that can be globally recognized.
Compared with role-based access control, ABAC provides the
following nice properties. First, ABAC is more expressive;
Second, ABAC enables access control policy enforcement
without prior knowledge of the specific subjects. Because of
its flexibility, ABAC is nowadays the fastest-growing access
control model [7], [16], [17].

There are several approaches to implementing ABAC,



Fig. 4 Relations between the amount of attributes and time
consumption for encryption.

Fig. 5 Relations between the amount of attributes and time
consumption for decryption.

among which attribute-based encryption (ABE) is regarded
as the most suitable one for data access control in appli-
cations scenarios where server-based access control cannot
be implemented, e.g., cloud computing and MANET. There
exist two complementary forms of ABE, i.e., Key-Policy ABE
(KP-ABE) [18] where the decryption key is associated to the
access control policy and Ciphertext-Policty ABE (CP-ABE)
[11], [19]–[22] where the ciphertext is associated to the access
control policy. CP-ABE is more suitable for enforcing data
access control over data stored on the cloud servers. CP-ABE
allows data owners to define an access structure on attributes
and upload the data encrypted under this access structure to
the cloud servers. Therefore, CP-ABE enables users to define
the attributes a data user needs to possess in order to access
the data. As promising as it is, CP-ABE suffers from user
revocation problem. This issue is first addressed in [23] as a
rough idea. There are also several following researches [24]–
[27], which as we discussed in the introduction are not suitable
for user revocation.

User revocation is always an important problem in the
cryptographic research area. Boldyreva et al. [12] proposed an
identity-based scheme with efficient user revocation capability.
It applies key updates with significantly reduced computa-
tional cost based on a binary tree data structure, which is

also applicable to KP-ABE and fuzzy IBE user revocation.
However, its applicability to CP-ABE is not clear. Libert et
al. [28] proposed an identity-based encryption scheme with
stronger adaptive-ID sense to address the selective security
issue of [12]. Lewko et al. [29] two novel broadcast encryption
schemes with effective user revocation capability. EASiER
[30] architecture is described to support fine-grained access
control policies and dynamic group membership based on
attribute-based encryption. It relies on a proxy to participate in
the decryption and enforce revocation, such that the user can
be revoked without re-encrypting ciphertexts or issuing new
keys to other users. Chen et al. [31] presented an identity-
based encryption scheme based on lattices to realize efficient
key revocation. Li et al. [32] first introduced outsourcing
computation in identity-based encryption and presented a
revocable in the server-aided settings. As a result, it achieves
constant computation cost at public key generator and private
key size at user, and the user does not have to contact public
key generator for key update.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the problem of how to revoke
a user when applying the CP-ABE scheme for secure data
sharing. Compared to previous solutions on attribute-based
revocation, our approach focuses on identity-based revocation
in CP-ABE, which solves the scalability issues when using
attribute-based revocation to revoke users. We propose the
primitive of ID-ABE, and give its security definition. We
present four constructions and validate efficiency of these
constructions through both complexity analysis and real im-
plementation based tests.

There are several research issues need to be further investi-
gated. First, the revoked users’ identities must be included
in the ciphertext, which might lead to private information
leakage. Second, in this work we only focus on identity-
based revocation, while previous researches focus on attribute-
based revocation, and it will be interesting to investigate into
how to combine these two revocation properties together to
achieve more flexible revocation methods. Third, currently, all
the private components of a user’s private key are obtained
from the trusted authority or the same domain authority.
We plan to investigate how to revoke users whose private
key incorporating private components from several different
domain authorities.
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APPENDIX A
SECURITY PROOF OF THEOREM 1

In this section, we briefly show that the M -q-parallel-BDHE
assumption is generically secure. The generic proof template
of BBG [33] and [34] is used. Using the terminology from
BBG we need to show that f = aq+1s is independent of the
polynomials P and Q. We set Q = {1} since all given terms
are in the bilinear group. P is set to be

P = {1, s,∀i∈[1,2q],j∈[1,q],i6=q+1a
i, ai/bj , a

i · s/bj}.

We could choose a generator u and set g = u
∏
j∈[1,q] bj . All

the above terms are substituted by a set of polynomials with
the maximum degree 3q + 1.

Now, we check whether f is symbolically independent of
any two polynomials in P and Q. To realize f from P and
Q, a term of the form am+1s is needed. It can be seen that
no such terms can be realized from the product of any two
polynomials p, p′ ∈ P . To form such a term, a polynomial with
a single factor of s is needed. If s is used as p then p′ has
to be aq+1 which doesn’t exist in P . If we set p = ai · s/bj ,
there always exists bj , which cannot be canceled. Based on
the BBG framework, we can conclude that the M -q-parallel-
BDHE assumption is generically secure.

APPENDIX B
SECURITY PROOF OF THEOREM 2

The basic idea of our proof is if there exists a PPT adversary
A who wins the security game defined in our security model
section, then we could use the attacking capability of this
adversary to solve the M -q-parallel-BDHE assumption. Since
this assumption is proven to be generically secure, we get
a contradiction. Thus we could conclude A doesn’t exist
and the OO-ID-HABE scheme is secure as defined by in
Definition 1. In particular, We show that B could use the
items obtained in the M -q-parallel-BDHE game to simulate as
the challenger in the query phases of OO-ID-HABE security
game successfully. In addition, through embedding the M -q-
parallel-BDHE challenge in the challenge ciphertext sent to
A, B could take advantage of A’s attacking capability.



Proof. Init B takes in a modified decisional q-parallel BDHE
challenge {y, T}. Then the adversary A declares the revoked
user ID∗ and gives the simulator the challenge access structure
(M∗, ρ∗), where the size of M∗ is `∗×n∗ and `∗, n∗ ≤ q. De-
fine the challenge matrix M∗ as M∗ = (M∗1 ,M

∗
2 , · · · ,M∗l∗)T .

Setup B a group G of prime order p, a generator g, and
a random value α′ and sets e(g, g)α = e(g, g)α

′
e(ga, ga

q

),
which implicitly sets α = α′+aq+1. Additionally, it implicitly
sets b = a by setting the public parameters as

g, gb = ga, gb
2

= ga
2

To embed the revoked identity ID∗ = {ID′} and the chal-
lenge access structure in the public parameters {hbx}x∈U, we
regard the challenge matrix M∗ as a row vector set and
divide it into three subsets M∗′, M∗′′ and M∗′′′ such that
M∗′ ∪ M∗′′ ∪ M∗′′′ = M∗ and M∗′ ∩ M∗′′ ∩ M∗′′′ = ∅.
Specifically, M∗′, M∗′′ and M∗′′′ are initially set to be null.
Define the n∗-dimension vector e = (1, 0, ..., 0) and vector
u = (a2, a3, ..., an+1). For i ∈ [1, l], if M∗i is linearly
independent on M∗′ and e cannot be linearly expressed by
M∗′ ∪{M∗i }, then we merge M∗i into M∗′; if M∗i is linearly
independent on M∗′ and e can be linearly expressed by
M∗′∪{M∗i }, then we merge M∗i into M∗′′′; if M∗i is linearly
dependent on M∗′, then we merge M∗i into M∗′′. As a result,
M∗′ is a linear independent vector group while each vector in
M∗′′ can be linearly expressed by M∗′. Although e cannot be
spanned by M∗′, it can be linearly expressed by M∗′ merged
with each vector in M∗′′′. Therefore, each vector in M can
be linearly expressed by M∗′ ∪ {e}.

Let X denote the set of index i, such that ρ(i) = x.
Assume that there are m vectors in M∗′ and let M∗′ =
(M∗′1 ,M

∗′
2 , ...,M

∗′
m)T . For each i ∈ X , its corresponding row

vector Mi can be written as εi0e + εi1M
∗′
1 + εi2M

∗′
2 + ... +

εimM
∗′
m , where (εi0, εi1, ..., εim) ∈ Zm+1

p . By choosing a
random value zx, B programs hbx as:

hx =gzx(
∏
i∈X

g(εi0e+εi1M
∗′
1 +···+εimM∗′m )·u/bi)−ID′

=gzx(
∏
i∈X

∏
j∈[1,n∗]

g(εi0ej+εi1M
∗′
1j+···+εimM

∗′
mj)a

j+1/bi)−ID′ .

If X is an empty set, we set hbx = gzx . Then B sends the
above parameters

(
g, gb, gb

2

, e(g, g)α, {hbx}x∈U
)

to A.
Note that the distribution of the generated public parameters

is the same as that in the Setup of the OO-ID-HABE scheme.
In addition, the revoked identity ID and the challenge access
structure are embedded in the public parameters as well.
Phase 1 For a query (S, ID), B constructs the private key as
follows. Since M∗′ is a set of linearly independent vectors and
the vector e is not in the span of M∗′, we can find a vector
w with w1 = −1 and w ·M∗′i = 0, where 1 ≤ i ≤ m.

Therefore, B selects a random element r ∈ Zp and sets the
private key L to be

L = gr+w·v = gr
∏

i=1,··· ,n∗
(ga

q−i
)wi ,

which implicitly sets the random element t as

t = r + w · v = r + w1a
q−1 + w2a

q−2 + · · ·+ wna
q−n∗ ,

where v = (aq−1, aq−2, · · · , aq−n∗+2). Since ga
2t contains a

term of g−a
q+1

we can cancel out with the unknown term in
gα when creating the K component in the private key. B set
K as follows

K = gα
′
ga

2r
∏

i∈[1,n∗]

(ga
q+2−i

)ωi .

For ∀x ∈ S, if there is no i such that ρ∗(i) = x, B
simply sets Kx = Lzx . For those used in the challenge access
structure, we must make sure that there are no terms of the
form ga

q+1/bi that B can’t simulate. Since w ·M∗′i = 0, all
of these terms cancel. Define X as the set of all i such that
ρ∗(i) = x, B creates Kx as follows

Kx =
(
gaIDgzx(

∏
i∈X

g
(εi0e+εi1M

∗′
1 +,··· ,+εimM∗′m )· ubi )− ID′

)(r+w·v)

=La·ID+zx
(

(
∏
i∈X

g
(εi0e+εi1M

∗′
1 +,··· ,+εimM∗′m )· ubi )−ID′

)(r+w·v)

=La·ID+zx
∏
i∈X

∏
j∈[1,n∗]

(
g(a

j/bi)r

k 6=j∏
k∈[1,n∗]

(g
aq+j−k

bi )wk
)expi,j

where expi,j = −ID′ · (εi0ej + εi1M
∗′
1j + · · ·+ εimM

∗′
mj).

Challenge A provides two equal length messages M0 and
M1 to B as the challenge messages.

First, The simulator flips a coin b and creates the ciphertext
component C =MbT ·e(gs, gα

′
). Then the simulator chooses

random value y′2, y
′
3, · · · , y′n∗ and share the secret s using the

vector
v = (s, y′2, y

′
3, · · · , y′n∗).

Next, it calculates

λk = v · (εk0e + εk1M
∗′
1 + εk2M

∗′
2 + · · ·+ εkmM

∗′
m)

and generates the ciphertext component C∗k as follows

C∗k = ga·
∑m
i=1(εk0e+εkiM

′
1i)s ·

n∗∏
j=2

ga·
∑m
i=1 εkjM

′
ijy
′
j .

For k ∈ [1, l∗], we define Xk as the set of the index i in such
that ρ∗(i) = ρ∗(k). Finally, the simulator builds the ciphertext
component C ′k as:

C ′k =g
∑m
i=1(εk0e+εkiM

′
i1)zρ∗(k)s · g

∑n∗
j=2

∑m
i=1 εkiM

′
ijy
′
jzρ∗(k)

·
∏
i∈Xk

n∗∏
ξ=1

g−(
∑m
j=1 εijM

′
jξ)(1+

∑m
j=1 εkjM

′
j1)ID′aξ+1s/bi

·
∏
i∈Xk

n∗∏
ξ=1

g−(
∑m
j=1 εijM

′
jξ)(

∑n∗
l=2

∑m
j=1 y

′
lεkjM

′
jl)ID′aξ+1/bi .

Phase II Same as phase I.



Guess A outputs a bit b′. If b = b′ then B guesses T =
e(g, g)sa

q+1

else guesses T to be a random group element
in GT . When T = e(g, g)sa

q+1

, B could simulate perfectly,
therefore we have

Pr[B(y, T = e(g, g)sa
q+1

) = 0] =
1

2
+ AdvA.

When T is a random group element, the message Mβ is
completely hidden from A. Thus we have Pr[B(y, T = R) =
0] = 1

2 . If the adversary A could attack the OO-ID-HABE
scheme with non-negligible advantage, then B’s advantage in
the M -q-parallel BDHE problem is non-negligible as well.
Thus, we could conclude that our OO-ID-HABE scheme is
secure.

APPENDIX C
SECURITY PROOF OF THEOREM 3

The basic idea of our proof is if there exists a PPT adversary
A who wins the security game defined in our security model
section, then we could construct an efficient adversary B to
solve the M -q-parallel-BDHE assumption.

Proof. Init B takes in a modified decisional q-parallel BDHE
challenge {y, T}. Then the adversary A declares the revoked
user ID∗ and gives the simulator the challenge access structure
(M∗, ρ∗), where the size of M∗ is `∗×n∗ and `∗, n∗ ≤ q. De-
fine the challenge matrix M∗ as M∗ = (M∗1 ,M

∗
2 , · · · ,M∗l∗)T .

Setup B a group G of prime order p, a generator g, and
a random value α′ and sets e(g, g)α = e(g, g)α

′
e(ga, ga

q

),
which implicitly sets α = α′ + aq+1, which implicitly sets
α = α′1 + aq+1.

Additionally, it implicitly sets b = a by setting the public
parameters as

g, gb = ga, gb
2

= ga
2

To embed the revoked identity ID∗ = {ID′Ha, ID′} and the
challenge access structure in the public parameters {hbx}x∈U,
we regard the challenge matrix M∗ as a row vector set and
divide it into three subsets M∗′, M∗′′ and M∗′′′ such that
M∗′ ∪ M∗′′ ∪ M∗′′′ = M∗ and M∗′ ∩ M∗′′ ∩ M∗′′′ = ∅.
Specifically, M∗′, M∗′′ and M∗′′′ are initially set to be null.
Define the n∗-dimension vector e = (1, 0, ..., 0) and vector
u = (a2, a3, ..., an+1). For i ∈ [1, l], if M∗i is linearly
independent on M∗′ and e cannot be linearly expressed by
M∗′ ∪{M∗i }, then we merge M∗i into M∗′; if M∗i is linearly
independent on M∗′ and e can be linearly expressed by
M∗′∪{M∗i }, then we merge M∗i into M∗′′′; if M∗i is linearly
dependent on M∗′, then we merge M∗i into M∗′′. As a result,
M∗′ is a linear independent vector group while each vector in
M∗′′ can be linearly expressed by M∗′. Although e cannot be
spanned by M∗′, it can be linearly expressed by M∗′ merged
with each vector in M∗′′′. Therefore, each vector in M can
be linearly expressed by M∗′ ∪ {e}.

Let X denote the set of index i, such that ρ(i) = x.
Assume that there are m vectors in M∗′ and let M∗′ =
(M∗′1 ,M

∗′
2 , ...,M

∗′
m)T . For each i ∈ X , its corresponding row

vector Mi can be written as εi0e + εi1M
∗′
1 + εi2M

∗′
2 + ... +

εimM
∗′
m , where (εi0, εi1, ..., εim) ∈ Zm+1

p . By choosing a
random value zx, B programs hx and hxh (h ∈ [1, H]) as

hx =gzx(
∏
i∈X

g(εi0e+εi1M
∗′
1 +···+εimM∗′m )·u/bi)−ID′

=gzx(
∏
i∈X

∏
j∈[1,n∗]

g(εi0ej+εi1M
∗′
1j+···+εimM

∗′
mj)a

j+1/bi)−ID′ .

hxh =gzx(
∏
i∈X

g(εi0e+εi1M
∗′
1 +···+εimM∗′m )·u/bi)−ID′ah

=gzx(
∏
i∈X

∏
j∈[1,n∗]

g(εi0ej+εi1M
∗′
1j+···+εimM

∗′
mj)a

j+1/bi)−ID′ah .

If X is an empty set, hx = h′x = gzx . Then B sends(
g, gb, gb

2

, e(g, g)α, {hbx}x∈U, {hxi
b}x∈U,i∈[1,H]

)
to A.

Note that the distribution of the generated public parameters
is the same as that in the Setup of the OM-ID-HABE scheme.
In addition, the challenge access structure are embedded in
the public parameters as well.
Phase 1 For a query (S, ID), B constructs the private key as
follows. Since M∗′ is a set of linearly independent vectors and
the vector e is not in the span of M∗′, we can find a vector
w with w1 = −1 and w ·M∗′i = 0, where 1 ≤ i ≤ m.

Therefore, B selects a random element r ∈ Zp and sets the
private key L to be

L = gr+w·v = gr
∏

i=1,··· ,n∗
(ga

q−i
)wi ,

which implicitly sets the random element t as

t = r + w · v = r + w1a
q−1 + w2a

q−2 + · · ·+ wna
q−n∗ ,

where v = (aq−1, aq−2, · · · , aq−n∗+2). Since ga
2t contains a

term of g−a
q+1

we can cancel out with the unknown term in
gα when creating the K component in the private key. B set
K as follows

K = gα
′
ga

2r
∏

i∈[1,n∗]

(ga
q+2−i

)ωi .

For ∀x ∈ S, if there is no i such that ρ∗(i) = x, B simply
sets Kxa = Kxu = Lzx . For those used in the challenge access
structure, we must make sure that there are no terms of the
form ga

q+1/bi that B can’t simulate. Since w ·M∗′i = 0, all
of these terms cancel. Define X as the set of all i such that
ρ∗(i) = x, B creates Kx as follows

Kxia =
(
gaIDaigzx(

∏
i∈X

g
(εi0e+εi1M

∗′
1 +···+εimM∗′m )· ubi )−ID′ai

)(r+w·v)

=La·IDai+zx
(

(
∏
i∈X

g
(εi0e+εi1M

∗′
1 +···+εimM∗′m )· ubi )−ID′ai

)(r+w·v)

=La·IDai+zx
∏
i∈X

∏
j∈[1,n∗]

(
g
aj

bi
·r

k 6=j∏
k∈[1,n∗]

(g
aq+j−k

bi )wk
)expi,j



where expi,j = −ID′ai · (εi0ej + εi1M
∗′
1j + · · ·+ εimM

∗′
mj).

Kx =
(
gaIDgzx(

∏
i∈X

g
(εi0e+εi1M

∗′
1 +,··· ,+εimM∗′m )· ubi )− ID′

)(r+w·v)

=La·ID+zx
(

(
∏
i∈X

g
(εi0e+εi1M

∗′
1 +,··· ,+εimM∗′m )· ubi )−ID′

)(r+w·v)

=La·ID+zx
∏
i∈X

∏
j∈[1,n∗]

(
g
aj

bi
·r

k 6=j∏
k∈[1,n∗]

(g
aq+j−k

bi )wk
)expi,j

where expi,j = −ID′ · (εi0ej + εi1M
∗′
1j + · · ·+ εimM

∗′
mj).

Challenge A provides two equal length messages M0 and
M1 to B as the challenge messages.

First, The simulator flips a coin b and creates the ciphertext
component C =MbT ·e(gs, gα

′
). Then the simulator chooses

random value y′2, y
′
3, · · · , y′n∗ and share the secret s using the

vector
v = (s, y′2, y

′
3, · · · , y′n∗).

Next, it calculates

λk = v · (εk0e + εk1M
∗′
1 + εk2M

∗′
2 + · · ·+ εkmM

∗′
m)

and generates the ciphertext component C∗k as follows

Ĉa = {C∗ka = gb·λk , C ′ka = (gb
2·ID′ahbρ(k)H)λk}k∈[1,l],

Ĉu = {C∗ku = gb·λk , C ′ku = (gb
2·ID′uhbρ(k))

λk}k∈[1,l],

C∗ka = ga·
∑m
i=1(εk0e+εkiM

′
1i)s ·

n∗∏
j=2

ga·
∑m
i=1 εkjM

′
ijy
′
j .

C∗ku = ga·
∑m
i=1(εk0e+εkiM

′
1i)s ·

n∗∏
j=2

ga·
∑m
i=1 εkjM

′
ijy
′
j .

For k ∈ [1, l∗], we define Xk as the set of the index i in such
that ρ∗(i) = ρ∗(k). Finally, the simulator builds the ciphertext
component C ′ka and C ′ku as follows

C ′ka =g
∑m
i=1(εk0e+εkiM

′
i1)zρ∗(k)s · g

∑n∗
j=2

∑m
i=1 εkiM

′
ijy
′
jzρ∗(k)

·
∏
i∈Xk

n∗∏
ξ=1

g−(
∑m
j=1 εijM

′
jξ)(1+

∑m
j=1 εkjM

′
j1)ID′aa

ξ+1s/bi

·
∏
i∈Xk

n∗∏
ξ=1

g−(
∑m
j=1 εijM

′
jξ)(

∑n∗
l=2

∑m
j=1 y

′
lεkjM

′
jl)ID′aa

ξ+1/bi .

C ′ku =g
∑m
i=1(εk0e+εkiM

′
i1)zρ∗(k)s · g

∑n∗
j=2

∑m
i=1 εkiM

′
ijy
′
jzρ∗(k)

·
∏
i∈Xk

n∗∏
ξ=1

g−(
∑m
j=1 εijM

′
jξ)(1+

∑m
j=1 εkjM

′
j1)ID′ua

ξ+1s/bi

·
∏
i∈Xk

n∗∏
ξ=1

g−(
∑m
j=1 εijM

′
jξ)(

∑n∗
l=2

∑m
j=1 y

′
lεkjM

′
jl)ID′ua

ξ+1/bi .

Phase II Same as phase I.

Guess A outputs a bit b’. If b = b′ then B guesses T =
e(g, g)sa

q+1

else guesses T to be a random group element
in GT . When T = e(g, g)sa

q+1

, B could simulate perfectly,
therefore we have

Pr[B(y, T = e(g, g)sa
q+1

) = 0] =
1

2
+AdvA.

When T is a random group element, the message Mβ is
completely hidden from A. Thus we have Pr[B(y, T = R) =
0] = 1

2 . If the adversary A could attack the OM-ID-HABE
scheme with advantage which is a non-negligible faction of
the security parameter, then B’s advantage in the M -q-parallel
BDHE problem is non-negligible as well, which contradicts
Theorem 1. Thus, we could conclude that our OM-ID-HABE
scheme is secure.


