
Fuzzy Password-Authenticated Key Exchange

Pierre-Alain Dupont1,2,3, Julia Hesse4,6, David Pointcheval2,3, Leonid Reyzin5, and
Sophia Yakoubov5

1 DGA
2 DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France

3 INRIA
4 Technische Universität Darmstadt

5 Boston University
6 Work done while at École Normale Supérieure

April 9, 2018

Abstract. Consider key agreement by two parties who start out knowing a common secret
(which we refer to as “pass-string”, a generalization of “password”), but face two compli-
cations: (1) the pass-string may come from a low-entropy distribution, and (2) the two
parties’ copies of the pass-string may have some noise, and thus not match exactly. We
provide the first efficient and general solutions to this problem that enable, for example,
key agreement based on commonly used biometrics such as iris scans.

The problem of key agreement with each of these complications individually has been
well studied in literature. Key agreement from low-entropy shared pass-strings is achieved
by password-authenticated key exchange (PAKE), and key agreement from noisy but high-
entropy shared pass-strings is achieved by information-reconciliation protocols as long as
the two secrets are “close enough.” However, the problem of key agreement from noisy
low-entropy pass-strings has never been studied.

We introduce (universally composable) fuzzy password-authenticated key exchange (fPAKE),
which solves exactly this problem. fPAKE does not have any entropy requirements for the
pass-strings, and enables secure key agreement as long as the two pass-strings are “close”
for some notion of closeness. We also give two constructions. The first construction achieves
our fPAKE definition for any (efficiently computable) notion of closeness, including those
that could not be handled before even in the high-entropy setting. It uses Yao’s garbled
circuits in a way that is only two times more costly than their use against semi-honest
adversaries, but that guarantees security against malicious adversaries. The second con-
struction is more efficient, but achieves our fPAKE definition only for pass-strings with low
Hamming distance. It builds on very simple primitives: robust secret sharing and PAKE.

Keywords: Authenticated Key Exchange, PAKE, Hamming Distance, Error Correcting
Codes, Yao’s Garbled Circuits

1 Introduction

Consider key agreement by two parties who start out knowing a common secret (which
we refer to as “pass-string”, a generalization of “password”). These parties may face sev-
eral complications: (1) the pass-string may come from a non-uniform, low-entropy dis-
tribution, and (2) the two parties’ copies of the pass-string may have some noise, and
thus not match exactly. The use of such pass-strings for security has been extensively
studied; examples include biometrics and other human-generated data [Dau04, ZH93,
BS00,EHMS00,MG09,MRW02,KR08], physically unclonable functions (PUFs) [PRTG02,
GCvD02,TSS+06,SD07,YD10], noisy channels [Wyn75], quantum information [BBR88],
and sensor readings of a common environment [HHW+17,HCS+18].

The Noiseless Case. When the starting secret is not noisy (i.e., the same for both par-
ties), existing approaches work quite well. The case of low-entropy secrets is covered
by password-authenticated key exchange (PAKE), in a long line of work the first formal
models for which were introduced by Bellare et al. [BPR00] and Boyko et al. [BMP00].
A PAKE protocol allows two parties to agree on a shared high-entropy key if and only
if they hold the same short password. Even though the password may have low entropy,
PAKE ensures that off-line dictionary attacks are impossible. Roughly speaking, an ad-
versary has to participate in one on-line interaction for every attempted guess at the
password. Because key agreement is not usually the final goal, PAKE protocols need to
be securely composable with whatever protocols (such as authenticated encryption) use
the output key. This composability has been achieved by universally composable (UC)
PAKE defined by Canetti et al. [CHK+05] and implemented in several follow-up works.

In the case of high-entropy secrets, off-line dictionary attacks are not a concern, which
enables more efficient protocols. If the adversary is passive, randomness extractors [NZ93]
do the job. The case of active adversaries is covered by the literature on so-called ro-
bust extractors defined by Boyen et al. [BDK+05] and, more generally, by many papers
on privacy amplification protocols secure against active adversaries, starting with the
work of Maurer [Mau97]. Composability for these protocols is less studied; in particular,
most protocols leak information about the pass-string itself, in which case reusing the
pass-string over multiple protocol executions may present problems [Boy04] (with the
exception of [CFP+16]).

The Noisy Case. When the pass-string is noisy (i.e., the two parties have slightly dif-
ferent versions of it), this problem has been studied only for the case of high-entropy
pass-strings. A long series of works on information-reconciliation protocols (started by
Bennett et al. [BBR88]) and their one-message variants called fuzzy extractors (defined
by Dodis et al. [DORS08], further enhanced for active security starting by Renner et
al. [RW04]) achieves key agreement when the pass-string has a lot of entropy and not too
much noise. Unfortunately, these approaches do not extend to the low-entropy setting
and are not designed to prevent off-line dictionary attacks.

Constructions for the noisy case depend on the specific noise model. The case of bi-
nary Hamming distance — when the n pass-string bits held by the two parties are the

2

same at all but δ locations — is the best studied. Most existing constructions require, at
a minimum, that the pass-string should have at least δ bits of entropy. This requirement
rules out using most kinds of biometric data as the pass-string— for example, estimates
of entropy for iris scans (transformed into binary strings via wavelet transforms and
projections) are considerably lower than the amount of errors that need to be toler-
ated [BH09, Section 5]. Even the PAKE-based construction of Boyen et al. [BDK+05]
suffers from the same problem.

One notable exception is the construction of Canetti et al. [CFP+16], which does
not have such a requirement, but places other stringent limitations on the probability
distribution of pass-strings. In particular, because it is a one-message protocol, it cannot
be secure against off-line dictionary attacks.

1.1 Our Contributions

We provide definitions and constant-round protocols for key agreement from noisy pass-
strings that:

– Resist off-line dictionary attacks and thus can handle low-entropy pass-strings,
– Can handle a variety of noise types and have high error-tolerance, and
– Have well specified composition properties via the UC framework [Can01].

Instead of imposing entropy requirements or other requirements on the distribution
of pass-strings, our protocols are secure as long as the adversary cannot guess a pass-
string value that is sufficiently close. There is no requirement, for example, that the
amount of pass-string entropy is greater than the number of errors; in fact, one of our
protocols is suitable for iris scans. Moreover, our protocols prevent off-line attacks, so each
adversarial attempt to get close to the correct pass-string requires an on-line interaction
by the adversary. Thus, for example, our protocols can be meaningfully run with pass-
strings whose entropy is only 30 bits—something not possible with any prior protocols
for the noisy case.

New Models. Our security model is in the Universal Composability (UC) Framework of
Canetti [Can01]. The advantage of this framework is that it comes with a composability
theorem that ensures that the protocol stays secure even when run in arbitrary environ-
ments, including arbitrary parallel executions. Composability is particularly important
for key agreement protocols, because key agreement is rarely the ultimate goal. The
agreed-upon key is typically used for some subsequent protocol—for example, to instan-
tiate a secure channel. Further, this framework allows to us to give a definition that is
indifferent to how the initial pass-strings are generated. We have no entropy requirements
or constraints on the pass-string distribution; rather, security is guaranteed as long as
the adversary’s input to the protocol is far enough from the correct pass-string.

As a starting point, we use the definition of UC security for PAKE from Canetti et
al. [CHK+05]. The PAKE ideal functionality is defined as follows: the secret pass-strings
(called “passwords” in PAKE) of the two parties are the inputs to the functionality, and two
random keys, which are equal if and only if the two inputs are equal, are the outputs. The

3

main change we make to PAKE is enhancing the functionality to give equal keys even if
the two inputs are not equal, as long as they are close enough. We also relax the security
requirement to allow one party to find out some information about the other party’s
input—perhaps even the entire input—if the two inputs are close. This relaxation makes
sense in our application: if the two parties are honest, then the differences between their
inputs are a problem rather than a feature, and we would not mind if the inputs were
in fact the same. The benefit of this relaxation is that it permits us to construct more
efficient protocols. (We also make a few other minor changes which will be described
in Section 2.) We call our new UC functionality “Fuzzy Password-Authenticated Key
Exchange” or fPAKE.

New Protocols. The only prior PAKE-based protocol for the noisy setting by Boyen et
al. [BDK+05], although more efficient than ours, does not satisfy our goal. In particular,
it is not composable, because it reveals information about the secret pass-strings (we
demonstrate this formally in Appendix H). Because some information about the pass-
strings is unconditionally revealed, high-entropy pass-strings are required. Thus, in order
to realize our definition for arbitrary low-entropy pass-strings, we need to construct new
protocols.

Realizing our fPAKE definition is easy using general two-party computation techniques
for protocols with malicious adversaries and without authenticated channels [BCL+05].
However, we develop protocols that are considerably more efficient: our definitional re-
laxation allows us to build protocols that achieve security against malicious adversaries
but cost just a little more than the generic two-party computation protocols that achieve
security only against honest-but-curious adversaries (i.e., adversaries who do not deviate
from the protocol, but merely try to infer information they are not supposed to know).

Our first construction uses Yao’s garbled circuits [Yao86,BHR12] and oblivious trans-
fer (see Chou and Orlandi [CO15] and references therein). The use of these techniques is
standard in two-party computation. However, by themselves they give protocols secure
only against honest-but-curious adversaries. In order to prevent malicious behavior of the
players, one usually applies the cut-and-choose technique [LP11], which is quite costly:
to achieve an error probability of 2−λ, the number of circuits that need to be garbled in-
creases by a factor of λ, and the number of oblivious transfers that need to be performed
increases by a factor of λ/2. We show that for our special case, to achieve malicious secu-
rity, it suffices to repeat the honest-but-curious protocol twice (once in each direction),
incurring only a factor of 2 overhead over the semi-honest case. 1 Mohassel et al. [MF06]
and Huang et al. [HKE12] suggest a similar technique (known as “dual execution”), but
at the cost of leaking a bit of the adversary’s choice to the adversary. In contrast, our
construction leaks nothing to the adversary at all (as long as the pass-strings are not
close). This construction works regardless of what it means for the two inputs to be
“close,” as long as the question of closeness can be evaluated by an efficient circuit.
1 Gasti et al. [GSY+16] similarly use Yao’s garbled circuits for continuous biometric user authentication
on a smartphone. Our approach can eliminate the third party in their application, at the cost of
requiring two garbled circuits instead of one. As far as we know, ours is the first use of garbled circuits
in the two-party fully malicious setting without calling on an expensive transformation.

4

Our second construction is for the Hamming case: the two n-character pass-strings
have low Hamming distance if not too many characters of one party’s pass-string are
different from the corresponding characters of the other’s pass-string. The two parties
execute a PAKE protocol for each position in the string, obtaining n values each that agree
or disagree depending on whether the characters of the pass-string agree or disagree in
the corresponding positions. It is important that at this stage, agreement or disagreement
at individual positions remains unknown to everyone; we therefore make use of a special
variant of PAKE which we call implicit-only PAKE (we give a formal UC security definition
of implicit-only PAKE and show that it is realized by the PAKE protocol of Bellovin
and Merritt [BM92] and Abdalla et al. [ACCP08]). This first step upgrades Hamming
distance over a potentially small alphabet to Hamming distance over an exponentially
large alphabet. We then secret-share the ultimate output key into n shares using a robust
secret sharing scheme, and encrypt each share using the output of the corresponding
PAKE protocol.

The second construction is more efficient than the first in the number of rounds, com-
munication, and computation. However, it works only for Hamming distance. Moreover,
it has an intrinsic gap between functionality and security: if the honest parties need to
be within distance δ to agree, then the adversary may break security by guessing a secret
within distance 2δ. See Figure 11 for a comparison between the two constructions.

The advantages of our protocols are similar to the advantages of universally compos-
able PAKE: They provide composability, protection against off-line attacks, the ability to
use low-entropy secret inputs, and handle any distribution of those inputs. And, of course,
because we construct fuzzy PAKE, our protocols can handle noisy inputs—including many
types of noisy inputs that could not be handled before. Our first protocol can handle any
type of noise as long as the notion of “closeness” can be efficiently computed, whereas
most prior work was for Hamming distance only. However, these advantages come at
the price of efficiency. Our protocols require 2–5 rounds of interaction, as opposed to
many single-message protocols in the literature [DKK+12,CFP+16,WCD+17]. They are
also more computationally demanding than most existing protocols for the noisy case,
requiring one public-key operation per input character. We emphasize, however, that our
protocols are much less computationally demanding than the protocols based on general
two-party computation, as already discussed above, or general-purpose obfuscation, as
discussed in [BCKP14, Section 4.3.4].

2 Security Model

We now present a security definition for fuzzy password-authenticated key exchange
(fPAKE). We adapt the definition of PAKE from Canetti et al. [CHK+05] to work for
pass-strings (a generalization of “passwords”) that are similar, but not necessarily equal.
Our definition uses measures of the distance d(pw, pw′) between pass-strings pw, pw′ ∈ Fnp .
In Section 3.3 and Section 4, Hamming distance is used, but in the generic construction
of Section 3, any (efficiently computable) other notion of distance can be used instead.
We say that pw and pw′ are “similar enough” if d(pw, pw′) ≤ δ for a distance notion d
and a threshold δ that is hard-coded into the functionality.

5

Parties first engage our functionality (described in Figure 1) by making NewSession
queries, which include their pass-strings. Once both parties have made NewSession
queries, the simulator can make NewKey queries on behalf of the parties, prompting the
functionality to release an appropriate session key to the party in question. In an execu-
tion in which the adversary does not meddle, both session keys will be random: they will
match if the pass-strings are “similar enough”, and be independent otherwise.

Modeling Adversarial Capabilities To model the possibility of dictionary attacks, the
functionality allows the adversary to make one pass-string guess against each player (P0

and P1). In the real world, if the adversary succeeds in guessing (a pass-string similar
enough to) party Pi’s pass-string, it can often choose (or at least bias) the session key
computed by Pi. To model this, the functionality then allows the adversary to set the
session key for Pi.

As usual in security notions for key exchange, the adversary also sets the session
keys for corrupted players. In the definition of Canetti et al. [CHK+05], the adversary
additionally sets Pi’s key if P1−i is corrupted. However, contrary to the original definition,
we do not allow the adversary to set Pi’s key if P1−i is corrupted but did not guess Pi’s
pass-string. We make this change in order to protect an honest Pi from, for instance,
revealing sensitive information to an adversary who did not successfully guess her pass-
string, but did corrupt her partner.

Roles There are two categories of fPAKE protocols: symmetric protocols in which the two
parties execute the same code, and asymmetric protocols in which the two parties execute
different code. Frequently in asymmetric protocols, one party can be seen as the “sender”
who initiates the protocol, and the other can be seen as the “receiver” who responds.2

In our ideal functionality, each party includes a role tag in her NewSession query;
one party should identify herself as the sender (denoted as role = sender), while the
other should identify herself as the receiver (role = receiver). The functionality simply
forwards these role tags to the simulator; the roles do not affect any of the functinality’s
decisions.

In the case of symmetric protocols, the role tags are unnecessary, since a sender
and a receiver execute the same code. In the case of asymmetric protocols, the simulator
needs the role tags in order to determine which code to execute. It might look strange
that the functionality ignores these role tags once it forwards them to the simulator; it
might seem that, in the case of an asymmetric protocol, the functionality should only
proceed if one of the roles provided is sender and the other receiver. However, in such
a situation, the simulator can trigger the desired behavior — an abort — simply by never
issuing a NewKey query.3

2 To reflect the fact that, even in symmetric protocols, one party likely requests that the other engage
in key exchange with her, such a request message can be pre-pended to any symmetric protocol.

3 An asymmetric protocol where the parties do not abort when both are executing the same role’s
code (but the resulting keys are not distributed as they should be) cannot securely instantiate our
functionality.

6

The functionality fPAKE is parameterized by a security parameter λ and tolerances δ ≤ γ. It
interacts with an adversary S and two parties P0 and P1 via the following queries:
– Upon receiving a query (NewSession, sid, pwi, role) from party Pi, where pwi is a

password and role = sender implies that Pi wishes to initiate a key exchange, while role =
receiver implies that Pi wishes to respond:
• Send (NewSession, sid,Pi, role) to S;
• If one of the following is true, record (Pi, pwi) and mark this record fresh:

∗ This is the first NewSession query
∗ This is the second NewSession query and there is a record (P1−i, pw1−i)

– Upon receiving a query (TestPwd, sid,Pi, pw
′
i) from the adversary S:

If there is a fresh record (Pi, pwi), then set d← d(pwi, pw
′
i) and do:

• If d ≤ δ, mark the record compromised and reply to S with “correct guess”;
• If d > δ, mark the record interrupted and reply to S with “wrong guess”.

– Upon receiving a query (NewKey, sid,Pi, sk) from the adversary S:
If there is no record of the form (Pi, pwi), or if this is not the first NewKey query for Pi, then
ignore this query. Otherwise:
• If at least one of the following is true, then output (sid, sk) to player Pi:

∗ The record is compromised
∗ Pi is corrupted
∗ The record is fresh, P1−i is corrupted, and there is a record (P1−i, pw1−i) with
d(pwi, pw1−i) ≤ δ

• If this record is fresh, both parties are honest, there is a record (P1−i, pw1−i) with
d(pwi, pw1−i) ≤ δ, a key sk′ was sent to P1−i, and (P1−i, pw1−i) was fresh at the time,
then output (sid, sk′) to Pi;

• In any other case, pick a new random key sk′ of length λ and send (sid, sk′) to Pi.
• Mark the record (Pi, pwi) as completed.

Fig. 1. Ideal Functionality fPAKE

Notes Another minor change we make is considering only two parties — P0 and P1 — in
the functionality, instead of considering arbitrarily many parties and enforcing that only
two of them engage the functionality. This is because universal composability takes care
of ensuring that a two-party functionality remains secure in a multi-party world.

As in the definition of Canetti et al. [CHK+05], we consider only static corruptions in
the standard corruption model of Canetti [Can01]. Also as in their definition, we chose
not to provide the players with confirmation that key agreement was successful. The
players might obtain such confirmation from subsequent use of the key.

Leakage By default, in the fPAKE functionality the TestPwd interface provides the ad-
versary with one bit of information — whether the pass-string guess was correct or not.
This definition can be strengthened by providing the adversary with no information at
all, as in implicit-only PAKE (FiPAKE, Figure 8), or weakened by providing the adversary
with extra information when the adversary’s guess is close enough.

To capture the diversity of possibilities, we introduce a more general TestPwd inter-
face, described in Figure 2. It includes three leakage functions that we will instantiate
in different ways below—Lc if the guess is close enough to succeed, Lf if it is too far.
Moreover, a third leakage function—Lm for medium distance—allows the adversary to
get some information even if the adversary’s guess is only somewhat close (closer than

7

– Upon receiving a query (TestPwd, sid,Pi, pw
′
i) from the adversary S:

If there is a fresh record (Pi, pwi), then set d← d(pwi, pw
′
i) and do:

• If d ≤ δ, mark the record compromised and reply to S with Lc(pwi, pw
′
i);

• If δ < d ≤ γ, mark the record compromised and reply to S with Lm(pwi, pw
′
i);

• If γ < d, mark the record interrupted and reply to S with Lf (pwi, pw
′
i).

Fig. 2. A Modified TestPwd Interface to Allow for Different Leakage

some parameter γ ≥ δ), but not close enough for successful key agreement. We thus
decouple the distance needed for functionality from the (possibly larger) distance needed
to guarantee security; the smaller the gap between these two distances, the better, of
course.

Below, we list the specific leakage functions Lc, Lm and Lf that we consider in this
work, in order of decreasing strength (or increasing leakage):

1. The strongest option is to provide no feedback at all to the adversary. We define
fPAKEN to be the functionality described in Figure 1, except that TestPwd is from
Figure 2 with

LNc (pwi, pw′i) = LNm(pwi, pw′i) = LNf (pwi, pw′i) = ⊥ .

2. The basic functionality fPAKE, described in Figure 1, leaks the correctness of the
adversary’s guess. That is, in the language of Figure 2,

Lc(pwi, pw′i) = “correct guess”,
and Lm(pwi, pw′i) = Lf (pwi, pw′i) = “wrong guess”.

The classical PAKE functionality from [CHK+05] has such a leakage.
3. Assume the two pass-strings are strings of length n over some finite alphabet, with

the jth character of the string pw denoted by pw[j]. We define fPAKEM to be the
functionality described in Figure 1, except that TestPwd is from Figure 2, with Lc and
Lm that leak the indices at which the guessed pass-string differs from the actual one
when the guess is close enough (we will call this leakage the mask of the pass-strings).
That is,

LMc (pwi, pw′i) = ({j s.t. pwi[j] = pw′i[j]}, “correct guess”),
LMm (pwi, pw′i) = ({j s.t. pwi[j] = pw′i[j]}, “wrong guess”)

and LMf (pwi, pw′i) = “wrong guess”.

4. The weakest definition — or the strongest leakage — reveals the entire actual pass-
string to the adversary if the pass-string guess is close enough. We define fPAKEP

to be the functionality described in Figure 1, except that TestPwd is from Figure 2,
with

LPc (pwi, pw′i) = LPm(pwi, pw′i) = pwi and LPf (pwi, pw′i) = “wrong guess”.

Here, LPc and LPm do not need to include “correct guess” and “wrong guess”, respec-
tively, because this is information that can be easily derived from pwi itself.

8

The first two functionalities are the strongest, but there are no known constructions that
realize them, other than through generic two-party computation secure against malicious
adversaries, which is an inefficient solution. The last two functionalities, though weaker,
still provide meaningful security, especially when γ = δ. Intuitively, this is because strong
leakage only occurs when an adversary guesses a “close” pass-string, which enables him
to authenticate as though he knows the real pass-string anyway.

In Section 3, we present a construction satisfying fPAKEP for any efficiently com-
putable notion of distance, with γ = δ (which is the best possible). We present a con-
struction for Hamming distance satisfying fPAKEM in Section 4, with γ = 2δ.

3 General Construction Using Garbled Circuits

In this section, we describe a protocol realizing fPAKEP that uses Yao’s garbled cir-
cuits [Yao86]. We briefly introduce this primitive in Sec. 3.1 and refer to Yakoubov [Yak17]
for a more thorough introduction.

The Yao’s garbled circuit-based fPAKE construction has two advantages:

1. It is more flexible than other approaches; any notion of distance that can be efficiently
computed by a circuit can be used. In Section 3.3, we describe a suitable circuit for
Hamming distance. The total size of this circuit is O(n), where n is the length of
the pass-strings used. Edit distance is slightly less efficient, and uses a circuit whose
total size is O(n2).

2. There is no gap between the distances required for functionality and security — that
is, there is no leakage about the pass-strings used unless they are similar enough to
agree on a key. In other words, δ = γ.

Informally, the construction involves the garbled evaluation of a circuit that takes in
two pass-strings as input, and computes whether their distance is less than δ. Because
Yao’s garbled circuits are only secure against semi-honest garblers, we cannot simply have
one party do the garbling and the other party do the evaluation. A malicious garbler could
provide a garbling of the wrong function — maybe even a constant function — which
would result in successful key agreement even if the two pass-strings are very different.
However, as suggested by Mohassel et al. [MF06] and Huang et al. [HKE12], since a
malicious evaluator (unlike a malicious garbler) cannot compromise the computation, by
performing the protocol twice with each party playing each role once, we can protect
against malicious behavior. They call this the dual execution protocol.

The dual execution protocol has the downside of allowing the adversary to specify
and receive a single additional bit of leakage. It is important to note that because of
this, dual execution cannot directly be used to instantiate fPAKE, because a single bit
of leakage can be too much when the entropy of the pass-strings is low to begin with
— a few adversarial attempts will uncover the entire pass-string. Our construction is as
efficient as that of Mohassel et al. and Huang et al., while guaranteeing no leakage to a
malicious adversary in the case that the pass-strings used are not close. We describe how
we achieve this in Section 3.1.3.

Due to the symmetric layout of our construction, we skip all role tags in this section.

9

3.1 Building Blocks

In Section 3.1.1, we briefly review oblivious transfer. In Section 3.1.2, we review Yao’s
Garbled Circuits. In Section 3.1.3, we describe in more detail our take on the dual exe-
cution protocol, and how we avoid leakage to the adversary when the pass-strings used
are dissimilar.

3.1.1 Oblivious Transfer (OT) Informally, 1-out-of-2 Oblivious Transfer (see Chou
and Orlandi [CO15] and citations therein) enables one party (the sender) to transfer
exactly one of two secrets to another party (the receiver). The receiver chooses (by index
0 or 1) which secret she wants. The security of the OT protocol guarantees that the
sender does not learn this choice bit, and the receiver does not learn anything about the
other secret.

3.1.2 Yao’s Garbled Circuits (YGC) In this section, we give a brief introduc-
tion to Yao’s garbled circuits [Yao86]. We refer to Yakoubov [Yak17] for a more de-
tailed description, as well as a summary of some of the Yao’s garbled circuits opti-
mizations [BMR90,KS08, PSSW09,KMR14, ZRE15,BMR16]. Informally, Yao’s garbled
circuits are an asymmetric secure two-party computation scheme. They enable two par-
ties with sensitive inputs (in our case, pass-strings) to compute a joint function of their
inputs (in our case, an augmented version of similarity) without revealing any additional
information about their inputs. One party “garbles” the function they wish to evaluate,
and the other evaluates it in its garbled form.

Below, we summarize the garbling scheme formalization of Bellare et al. [BHR12],
which is a generalization of YGC.

Functionality. A garbling scheme G consists of a tuple of four polynomial-time algorithms
(Gb,En,Ev,De):

1. Gb(1λ, f) → (F, e, d). The garbling algorithm Gb takes in the security parameter λ
and a circuit f , and returns a garbled circuit F , encoding information e, and decoding
information d.

2. En(e, x) → X. The encoding algorithm En takes in the encoding information e and
an input x, and returns a garbled input X.

3. Ev(F,X) → Y . The evaluation algorithm Ev takes in the garbled circuit F and the
garbled input X, and returns a garbled output Y .

4. De(d, Y) → y. The decoding algorithm De takes in the decoding information d and
the garbled output Y , and returns the plaintext output y.

A garbling scheme G = (Gb,En,Ev,De) is projective if the encoding information e consists
of 2n wire labels (each of which is essentially a random string), where n is the number
of input bits. Two wire labels are associated with each bit of the input; one wire label
corresponds to the event of that bit being 0, and the other corresponds to the event of
that bit being 1. The garbled input includes only the wire labels corresponding to the

10

actual values of the input bits. In projective schemes, in order to give the evaluator the
garbled input she needs for evaluation, the garbler can send her all of the wire labels
corresponding to the garbler’s input. The evaluator can then use OT to retrieve the wire
labels corresponding to her own input.

Similarly, we call a garbling scheme output-projective if decoding information d con-
sists of two labels for each output bit, one corresponding to each possible value of that
bit. The garbling schemes used in this paper are both projective and output-projective.

Correctness. Informally, a garbling scheme (Gb,En,Ev,De) is correct if it always holds
that De(d,Ev(F,En(e, x))) = f(x).

Security. Bellare et al. [BHR12] describe three security notions for garbling schemes:
obliviousness, privacy and authenticity. Informally, a garbling scheme G = (Gb,En,Ev,De)
is oblivious if a garbled function F and a garbled input X do not reveal anything about
the input x. It is private if additionally knowing the decoding information d reveals the
output y, but does not reveal anything more about the input x. It is authentic if an
adversary, given F and X, cannot find a garbled output Y ′ 6= Ev(F,X) which decodes
without error.

In Appendix B, we define a new property of output-projective garbling schemes called
garbled output randomness. Informally, it states that even given one of the output labels,
the other should be indistinguishable from random.

3.1.3 Malicious Security: A New Take on Dual Execution with Privacy-
Correctness Tradeoffs While Yao’s garbled circuits are naturally secure against a
malicious evaluator, they have the drawback of being insecure against a malicious garbler.
A garbler can “mis-garble” the function, either replacing it with a different function
entirely or causing an error to occur in an informative way (this is known as “selective
failure”).

Typically, malicious security is introduced to Yao’s garbled circuits by using the cut-
and-choose transformation [LP15,Lin13,HKE13]. To achieve a 2−λ probability of cheating
without detection, the parties need to exchange λ garbled circuits [Lin13].4 Some of the
garbled circuits are “checked”, and the rest of them are evaluated, their outputs checked
against one another for consistency. Because of the factor of λ computational overhead,
though, cut-and-choose is expensive, and too heavy a tool for fPAKE. Other, more efficient
transformations such as LEGO [NO09] and authenticated garbling [WRK17] exist as well,
but those rely heavily on pre-processing, which cannot be used in fPAKE since it requires
advance interaction between the parties.

Mohassel et al. [MF06] and Huang et al. [HKE12] suggest an efficient transformation
known as “dual execution”: each party plays each role (garbler and evaluator) once, and
then the two perform a comparison step on their outputs in a secure fashion. Dual
execution incurs only a factor of 2 overhead over semi-honest garbled circuits. However,
4 There are techniques [LR14] that improve this number in the amortized case when many computations
are done — however, this does not fit our setting.

11

it does not achieve fully malicious security. It guarantees correctness, but reduces the
privacy guarantee by allowing a malicious garbler to learn one bit of information of
her choice. Specifically, if a malicious garbler garbles a wrong circuit, she can use the
comparison step to learn one bit about the output of this wrong circuit on the other
party’s input. This one extra bit of information could be crucially important, violating
the privacy of the evaluator’s input in a significant way.

We introduce a tradeoff between correctness and privacy for boolean functions. For
one of the two possible outputs (without loss of generality, ‘0’), we restore full privacy at
the cost of correctness. The new privacy guarantee is that if the correct output is ‘0’, then
a malicious adversary cannot learn anything beyond this output, but if the correct output
is ‘1’, then she can learn a single bit of her choice. The new correctness guarantee is that
a malicious adversary can cause the computation that should output ‘1’ to output ‘0’
instead, but not the other way around. Our privacy–correctness tradeoff is summarized
in Figure 3.

[M
F
06
]

[H
K
E
12
] Correct Output Computed Output Privacy

1 1 OR ‘cheating’ 1-bit leakage
0 0 OR ‘cheating’ 1-bit leakage

O
ur

P
ro
to
co
l Correct Output Computed Output Privacy

1 1 OR 0 1-bit leakage
0 0 full privacy

Fig. 3. The Privacy-Correctness Tradeoff of Dual Execution Protocols for Boolean Functions

The main idea of dual execution is to have the two parties independently evaluate one
another’s circuits, learn the output values, and compare the output labels using a secure
comparison protocol. This comparison step is simply a check for malicious behavior; if
comparison fails, then honest party Pi learns that P1−i cheated. If the comparison step
succeeded, P1−i might still have cheated — and gleaned an extra bit of information —
but Pi is assured that she has the correct output.

In our construction, however, the parties need not learn the output values before the
comparison. Instead, the parties can compare output labels assuming an output of ‘1’,
and if the comparison fails, the output is determined to be ‘0’. More formally, let d0[0],
d0[1] be the two output labels corresponding to P0’s garbled circuit, and d1[0], d1[1] be
the two output labels corresponding to P1’s circuit. Let Y1 ∈ [d1[0], d1[1]] be the output
label learned by P0 as a result of evaluation, and Y0 ∈ [d0[0], d0[1]] be the label learned by
P1. The two parties securely compare (d0[1], Y1) to (Y0, d1[1]); if the comparison succeeds,
the output is “1”.

Whereas in dual execution the comparison step is just a sanity check, here it deter-
mines the actual computation output. If the correct output is ‘1’, a cheating P1−i can
still learn one bit of information by mis-garbling her circuit; depending on the output of
the mis-garbled circuit, the comparison step will either succeed or fail. If the comparison
fails, Pi will accept an incorrect output of ‘0’, and never be aware that P1−i cheated. If

12

the correct output is ‘0’, however, there is nothing P1−i can do to cause the comparison
step to succeed, since in order to do this, she would need to use the second output label
di[1] as an input. Since the true output was ‘0’, and thus Yi = di[0], by the garbled
output randomness property of the garbling scheme, P1−i can’t even distinguish di[1]
from random.

Our privacy–correctness tradeoff is perfect for fPAKE. If the parties’ inputs are similar,
learning a bit of information about each other’s inputs is not problematic, since arguably
the small amount of noise in the inputs is a bug, not a feature. If the parties’ inputs are
not similar, however, we are guaranteed to have no leakage at all. We pay for the lack
of leakage by allowing a malicious party to force an authentication failure even when
authentication should succeed, which either party can do anyway simply by providing an
incorrect input.

In Section 3.2.2, we describe our Yao’s garbled circuit-based fPAKE protocol in detail.
Note that in this protocol, we omit the final comparison step; instead, we use the output
lables ((d0[1], Y1) and (Y0, d1[1])) to compute the agreed-upon key directly (via XOR).

3.2 Construction

Building a fPAKE from YGC and OT is not straightforward, since all constructions of OT
assume authenticated channels, and fPAKE (or PAKE) is designed with unauthenticated
channels in mind. We therefore follow the framework of Canetti et al. [CDVW12], who
build a UC secure PAKE protocol using OT. We first build our protocol assuming authen-
ticated channels, and then apply the generic transformation of Barak et al. [BCL+05]
to adapt it to the unauthenticated channel setting. More formally, we proceed in three
steps:

1. First, in Section 3.2.1, we define a randomized fuzzy equality-testing functional-
ity FRFE, which is analogous to the randomized equality-testing functionality of
Canetti et al.

2. In Section 3.2.2, we build a protocol that securely realizes FRFE in the OT-hybrid
model, assuming authenticated channels.

3. In Section 3.2.3, we apply the transformation of Barak et al. to our protocol. This
results in a protocol that realizes the “split” version of functionality FPRFE, which we
show to be enough to implement to fPAKEP . Split functionalities, which were intro-
duced by Barak et al., adapt functionalities which assume authenticated channels
to an unauthenticated channels setting. The only additional ability an adversary
has in a split functionality is the ability to execute the protocol separately with the
participating parties.

3.2.1 The Randomized Fuzzy Equality Functionality Figure 4 shows the ran-
domized fuzzy equality functionality FPRFE, which is essentially what FPfPAKE would look
like assuming authenticated channels. The primary difference between FPRFE and FPfPAKE
is that the only pass-string guesses allowed by FPRFE are the ones actually used as pro-
tocol inputs; this limits the adversary to guessing by corrupting one of the participating

13

The functionality FRFE is parameterized by a security parameter λ and a tolerance δ. It interacts
with an adversary S and two parties P0 and P1 via the following queries:
– Upon receiving a query (NewSession, sid, pwi) from party Pi ∈ {P0,P1}:

• Send (NewSession, sid,Pi) to S;
• If this is the first NewSession query, or if this is the second NewSession query and there

is a record (P1−i, pw1−i), then record (Pi, pwi).
– Upon receiving a query (TestPwd, sid,Pi) from the adversary S, Pi ∈ {P0,P1}:

If records of the form (P0, pw0) and (P1, pw1) do not exist, if P1−i is not corrupted, or this is
not the first TestPwd query for Pi, ignore this query. Otherwise, if d(pw0, pw1) ≤ δ, send pwi
to the adversary S.

– Upon receiving a query (NewKey, sid,Pi, sk) from the adversary S, Pi ∈ {P0,P1}:
If there are no records of the form (Pi, pwi) and (P1−i, pw1−i), or if this is not the first NewKey
query for Pi, then ignore this query. Otherwise:
• If at least one of the following is true, then output (sid, sk) to party Pi.

∗ Pi is corrupted
∗ P1−i is corrupted and d(pw0, pw1) ≤ δ

• If both parties are honest, d(pw0, pw1) ≤ δ, and a key k1−i was sent to P1−i, then
output (sid, k1−i) to Pi.

• In any other case, pick a new random key ki of length λ and send (sid, ki) to Pi.

Fig. 4. Ideal Functionality FPRFE for Randomized Fuzzy Equality

parties, not through man in the middle attacks. Like in FPfPAKE, if a pass-string guess is
“similar enough”, the entire pass-string is leaked. This leakage could be replaced with any
other leakage from Section 2; FRFE would leak the correctness of the guess, FMRFE would
leak which characters are the same between the two pass-strings, etc.

Note that, unlike the randomized equality functionality in the work of Canetti et
al. [CDVW12], FPfPAKE has a TestPwd interface. This is because NewKey does not return
the necessary leakage to an honest user. So, an interface enabling the adversary to retrieve
additional information is necessary.

3.2.2 A Randomized Fuzzy Equality Protocol In Figure 5 we introduce a protocol
ΠRFE that securely realizes FPRFE using Yao’s garbled circuits. Garbled circuits are secure
against a malicious evaluator, but only a semi-honest garbler; however, we obtain security
against malicious adversaries by having each party play each role once, as describe in
Section 3.1.3. In more detail, both parties Pi ∈ {P0,P1} proceed as follows:

1. Pi garbles the circuit f that takes in two pass-strings pw0 and pw1, and returns ‘1’
if d(pw0, pw1) ≤ δ and ‘0’ otherwise. Section 3.3 describes how f can be designed
efficiently for Hamming distance. Instead of using the output of f (‘0’ or ‘1’), we will
use the garbled output, also referred to as an output label in an output-projective
garbling scheme. The possible output labels are two random strings — one corre-
sponding to a ‘1’ output (we call this label ki,correct = di[1]), and one corresponding
to a ‘0’ output (we call this label ki,wrong = di[0]).

2. Pi uses OT to retrieve the input labels from P1−i’s garbling that correspond to
Pi’s pass-string. (Similarly, Pi uses OT to send P1−i the input labels from her own
garbling that correspond to P1−i’s pass-string.)

14

P0(pw0 ∈ {0, 1}n) P1(pw1 ∈ {0, 1}n)

1 (F0, e0, d0)← Gb(1λ, f) (F1, e1, d1)← Gb(1λ, f)
parse e0 = (e0,0, e0,1) parse e1 = (e1,1, e1,0)

2 perform two OTs in parallel:

(sender)
e0,1−−−−−−→

pw1←−−−−−− (receiver)
OT

−−−−−−→
X0,1 = En(e0,1, pw1)

(receiver)
pw0−−−−−−→

e1,0←−−−−−− (sender)
OT

←−−−−−−
X1,0 = En(e1,0, pw0)

3 X0,0 = En(e0,0, pw0) X1,1 = En(e1,1, pw1)
4

X1,1, F1↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁
X0,0, F0

X1 = (X1,1, X1,0) X0 = (X0,0, X0,1)
5 Y1 = Ev(F1, X1) Y0 = Ev(F0, X0)
6 k0,wrong = d0[0] k1,wrong = d1[0]
7 k0,correct = d0[1] k1,correct = d1[1]
8 k0 = k0,correct ⊕ Y1 k1 = k1,correct ⊕ Y0

Fig. 5. A Protocol ΠRFE Realizing FPRFE using Yao’s garbled circuits and an Ideal OT Functionality. If
at any point an expected message fails to arrive (or arrives malformed), the parties output a random key.
Subscripts are used to indicate who produced the object in question. If a double subscript is present, the
second subscript indicates whose data the object is meant for use with. For instance, a double subscript
0, 1 denotes that the object was produced by party P0 for use with P1’s data; e0,1 is encoding information
produced by P0 to encode P1’s pass-string. Note that we abuse notation by encoding inputs to a single
circuit separately; the input to P0’s circuit corresponding to pw0 is encoded by P0 locally, and the input
corresponding to pw1 is encoded via OT. For any projective garbling scheme, this is not a problem.

3. Pi sends P1−i her garbled circuit, together with the input labels from her garbling
that correspond to her own pass-string. After this step, Pi should have P1−i’s garbled
circuit and a garbled input consisting of input labels corresponding to the bits of the
two pass-strings.

4. Pi evaluates P1−i’s garbled circuit, and obtains an output label Y1−i (where Y1−i ∈
{k1−i,correct, k1−i,wrong}) .

5. Pi outputs ki = ki,correct ⊕ Y1−i.

The natural question to ask is why ΠRFE only realizes FPRFE, and not a stronger
functionality with less leakage. We argue this assuming (without loss of generality) that
P1 is corrupted. ΠRFE cannot realize a functionality that leaks less than the full pass-
string pw0 to P1 if d(pw0, pw1) ≤ δ; intuitively, this is because if P1 knows a pass-string
pw1 such that d(pw0, pw1) ≤ δ, P1 can extract the actual pass-string pw0, as follows. If
P1 plays the role of OT receiver and garbled circuit evaluator honestly, P0 and P1 will
agree on k0,correct. P1 can then mis-garble a circuit that returns k1,correct if the first bit of
pw0 is 0, and k1,wrong if the first bit of pw0 is 1. By testing whether the resulting keys k0

and k1 match (which P1 can do in subsequent protocols where the key is used), P1 will

15

be able to determine the actual first bit of pw0. P1 can then repeat this for the second
bit, and so on, extracting the entire pass-string pw0. Of course, if P1 does not know a
sufficiently close pw1, P1 will not be able to perform these tests, because the keys will
not match no matter what circuit P1 garbles.

More formally, if P1 knows a pass-string pw1 such that d(pw0, pw1) ≤ δ and carries
out the mis-garbling attack described above, then in the real world, the keys produced
by P0 and P1 either will or will not match based on some predicate p of P1’s choosing
on the two pass-strings pw0 and pw1. Therefore, in the ideal world, the keys should also
match or not match based on p(pw0, pw1); otherwise, the environment will be able to
distinguish between the two worlds. In order to make that happen, since the simulator
does not know the predicate p in question, the simulator must be able to recover the
entire pass-string pw0 (given a sufficiently close pw1) through the TestPwd interface.

Theorem 1. If (Gb,En,Ev,De) is a projective, output-projective and garbled-output ran-
dom secure garbling scheme, then protocol ΠRFE with authenticated channels in the FOT-
hybrid model securely realizes FPRFE with respect to static corruptions for any threshold δ,
as long as the pass-string space and notion of distance are such that for any pass-string
pw, it is easy to compute another pass-string pw′ such that d(pw, pw′) > δ.5

Proof (Sketch). For every efficient adversary A, we describe a simulator SRFE such that
no efficient environment can distinguish an execution with the real protocol ΠRFE and
A from an execution with the ideal functionality FPRFE and SRFE. SRFE is described in
Figure 21. We prove indistinguishability in a series of hybrid steps. First, we introduce
the ideal functionality as a dummy node. Next, we allow the functionality to choose
the parties’ keys, and we prove the indistinguishability of this step from the previous
using the garbled output randomness property of our garbling scheme (Definition 9,
Theorem 10). Next, we simulate an honest party’s interaction with another honest party
without using their pass-string, and prove the indistinguishability of this step from the
previous using the obliviousness property of our garbling scheme. Finally, we simulate
an honest party’s interaction with a corrupted party without using the honest party’s
pass-string, and prove the indistinguishability of this step from the previous using the
privacy property of our garbling scheme.

We give a more formal proof of Theorem 1 in Appendix C.

3.2.3 From Split Randomized Fuzzy Equality to fPAKE The Randomized Fuzzy
Equality (RFE) functionality FPRFE assumes authenticated channels, which an fPAKE
protocol cannot do. In order to adapt RFE to our setting, we use the split functionality
transformation defined by Barak et al. [BCL+05]. Barak et al. provide a generic transfor-
mation from protocols which require authenticated channels to protocols which do not.
In the “transformed” protocol, an adversary can engage in two separate instances of the
protocol with the sender and receiver, and they will not realize that they are not talk-
ing to one another. However, it does guarantee that the adversary cannot do anything
5 This is used in the argument of indistinguishability of Games G2 and G3 in Appendix C.

16

The functionality sFPRFE is parameterized by a security parameter λ. It interacts with an adver-
sary S and two parties P0 and P1 via the following queries:
– Initialization

• Upon receiving a query (Init, sid) from a party Pi ∈ {P0,P1}, send (Init, sid,Pi)
to the adversary S.

• Upon receiving a query (Init, sid,Pi, H, sidH) from the adversary S:
∗ Verify that H ⊆ {P0,P1}, that Pi ∈ H, and that if a previous set H ′ was recorded,

either (1) H ∩H ′ contains only corrupted parties and sidH 6= sidH′ , or (2) H = H ′

and sidH = sidH′ .
∗ If verification fails, do nothing.
∗ Otherwise, record the pair (H, sidH) (if it was not already recorded), output

(Init, sid, sidH) to Pi, and locally initialize a new instance of the original RFE func-
tionality FRFE denoted HFPRFE, letting the adversary play the role of {P0,P1} −H
in HFPRFE.

– RFE
• Upon receiving a query from a party Pi ∈ {P0,P1}, find the set H such that
Pi ∈ H, and forward the query to HFPRFE. Otherwise, ignore the query.

• Upon receiving a query from the adversary S on behalf of Pi corresponding to
set H, if HFPRFE is initialized and Pi 6∈ H, then forward the query to HFPRFE. Otherwise,
ignore the query.

Fig. 6. Functionality sFPRFE

beyond this attack. In other words, it provides “session authentication”, meaning that
each party is guaranteed to carry out the entire protocol with the same partner, but not
“entity authentication”, meaning that the identity of the partner is not guaranteed.

Barak et al. achieve this transformation in three steps. First, the parties generate
signing and verification keys, and send one another their verification keys. Next, the
parties sign the list of all keys they have received (which, in a two-party protocol, consists
of only one key), sign that list, and send both list and signature to all other parties.
Finally, they verify all of the signatures they have received. After this process — called
“link initialization” — has been completed, the parties use those public keys they have
exchanged to authenticate subsequent communication.

We describe the Randomized Fuzzy Equality Split Functionality in Figure 6. It is
simplified from Figure 1 in Barak et al. [BCL+05] because we only need to consider two
parties and static corruptions.

It turns out that sFPRFE is enough to realize FPfPAKE. In fact, the protocol ΠRFE with
the split functionality transformation directly realizes FPfPAKE. In Appendix D, we prove
that this is the case.

3.3 An Efficient Circuit f for Hamming Distance

The Hamming distance of two pass-strings pw, pw′ ∈ Fnp is equal to the number of loca-
tions at which the two pass-strings have the same character. More formally,

d(pw, pw′) := |
{
j | pw[j] 6= pw′[j], j ∈ [n]

}
|.

We design f for Hamming distance as follows:

17

pw1
0

pw1
1

pw2
0

pw2
1

pw3
0

pw3
1

pw4
0

pw4
1

{0, 1}

eq

eq

eq

eq

threshold

Fig. 7. The f circuit

1. First, f XORs corresponding (binary) pass-string characters, resulting in a list of
bits indicating the (in)equality of those characters.

2. Then, f feeds those bits into a threshold gate, which returns 1 if at least n− δ of its
inputs are 0, and returns 0 otherwise. f returns the output of that threshold gate,
which is 1 if and only if at least n− δ pass-string characters match.

This circuit, illustrated in Figure 7, is very efficient to garble; it only requires n cipher-
texts. Below, we briefly explain this garbling. Our explanation assumes familiarity with
YGC literature [Yak17, and references therein]. Briefly, garbled gadget labels [BMR16]
enable the evaluation of modular addition gates for free (there is no need to include any
information in the garbled circuit to enable this addition). However, for a small modulus
m, converting the output of that addition to a binary decision requires m−1 ciphertexts.
We utilize garbled gadgets with a modulus of n+ 1 in our efficient garbling as follows:

1. The input wire labels encode 0 or 1 modulo n+ 1. However, instead of having those
input wire labels encode the characters of the two pass-strings directly, they encode
the outputs of the comparisons of corresponding characters. If the jth character of
Pi’s pass-string is 0, then Pi puts the 0 label first; however, if the jth character of
Pi’s pass-string is 1, then Pi flips the labels. Then, when P1−i is using oblivious
transfer to retrieve the label corresponding to her jth pass-string character, she will
retrieve the 0 label if the two characters are equal, and the 1 label otherwise. (Note
that this pre-processing on the garbler’s side eliminates the need to send X0,0 and
X1,1 in Figure 5.)

2. Compute a n-input threshold gate, as illustrated in Figure 6 of Yakoubov [Yak17].
This gate returns 0 if the sum of the inputs is above a certain threshold (that is,
if at least n − δ pass-string characters differ), and 1 otherwise. This will require n
ciphertexts.

Thus, a garbling of f consists of n ciphertexts. Since fPAKE requires two such garbled
circuits (Figure 5), 2n ciphertexts will be exchanged.

Larger Pass-string Characters. If larger pass-string characters are used, then Step 1 above
needs to change to check (in)equality of the larger characters instead of bits. Step 2 will

18

remain the same. There are several ways to perform an (in)equality check on characters
in Fp for p ≥ 2:

1. Represent each character in terms of bits. Step 1 will then consist of XORing cor-
responding bits, and taking an OR or the resulting XORs of each character to get
negated equality. This will take an additional n log(p) ciphertexts for every pass-
string character.

2. Use garbled gadget labels from the outset. We will require a larger OT (1-out-of-p
instead of 1-out-of-2), but nothing else will change.

4 Specialized Construction For Hamming Distance

In Appendix H, we show that it is not straightforward to build a secure fPAKE from
primitives that are, by design, well-suited for correcting errors. However, PAKE protocols
are appealingly efficient compared to the garbled circuits used in the prior construction.
In this section, we ask whether the failed approach can be rescued in an efficient way,
and we answer this question in the affirmative.

4.1 Building Blocks

4.1.1 Robust Secret Sharing We recall the definition of a robust secret sharing
scheme, slightly simplified for our purposes from Cramer et al. [CDD+15]. For a vector
c ∈ Fnq and a set A ⊆ [n], we denote with cA the projection Fnq → F|A|q , i.e., the sub-vector
(ci)i∈A.

Definition 2. Let λ ∈ N, q a λ-bit prime, Fq a finite field and n, t,m, r ∈ N with
t < r ≤ n and m < r. An (n, t, r)q robust secret sharing scheme (RSS) consists of two
probabilistic algorithms Share : Fq → Fnq and Reconstruct : Fnq → Fq with the following
properties:

– t-privacy: for any s, s′ ∈ Fq, A ⊂ [n] with |A| ≤ t, the projections cA of c $← Share(s)

and c′A of c′ $← Share(s′) are identically distributed.
– r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s), and

any c̃ such that cA = c̃A, it holds that Reconstruct(c̃) = s.

In other words, an (n, t, r)q-RSS is able to reconstruct the shared secret even if the
adversary tampered with up to n − r shares, while each set of t shares is distributed
independently of the shared secret s and thus reveals nothing about it. We note that we
allow for a gap, i.e., r ≥ t+ 1. Schemes with r > t+ 1 are called ramp RSS.

Definition 3 (Smoothness). We say that an (n, t, r)q-RSS is

– m-smooth if for any s ∈ Fq, A ⊂ [n] with |A| ≤ m, any c output by Share(s), and
any c̃ such that c̃A = cA, c̃Ā

$← Fn−|A|q , for all PPT A it holds that

|Pr[1← A(1λ,Reconstruct(c̃))]− Pr[1← A(1λ, u)]|

is negligible in λ, where the probability is taken over the random coins of A and
Reconstruct and u $← Fq.

19

– m-smooth on random secrets if it is m-smooth for randomly chosen s $← Fq and the
probabilities are additionally taken over the coins consumed by this choice.

Definition 4 (Strong t-privacy). We say that an (n, t, r)q-RSS has strong t-privacy,
if for any s ∈ Fq, A ⊂ [n] with |A| ≤ t, the projection cA of c $← Share(s) is distributed
uniformly randomly in F|A|q .

Note that strong t-privacy implies t-privacy. The opposite does not necessarily hold. (To
see that the opposite might not hold, imagine a Share algorithm creating shares that
start with “I’m a share!”). Also note that, in case of random errors occuring, as long as
there are fewer then t undisturbed shares, a strong t-private scheme actually hides the
locations (and with this also the number) of errors.

4.1.2 Linear Codes A linear q-ary code of length n and rank k is a subspace C with
dimension k of the vector space Fnq . The vectors in C are called codewords. The size of a
code is the number of codewords it contains, and is thus equal to qk. The weight of a word
w ∈ Fnq is the number of its non-zero components, and the distance between two words is
the Hamming distance between them (equivalently, the weight of their difference). The
minimal distance d of a linear code C is the minimum weight of its non-zero codewords,
or equivalently, the minimum distance between any two distinct codewords.

A code for an alphabet of size q, of length n, rank k, and minimal distance d is called
an (n, k, d)q-code. Such a code can be used to detect up to d − 1 errors (because if a
codeword is sent and fewer than d−1 errors occur, it will not get transformed to another
codeword), and correct up to b(d − 1)/2c errors (because for any received word, there
is a unique codeword within distance b(d − 1)/2c). For linear codes, the encoding of a
(row vector) word W ∈ Fkq is performed by an algorithm C.Encode : Fkq → Fnq , which is
the multiplication of W by a so-called “generating matrix” G ∈ Fk×nq (which defines an
injective linear map). This leads to a row-vector codeword W ·G =: c ∈ C ⊂ Fnq .

The Singleton bound states that for any linear code, it holds that k + d ≤ n + 1. A
maximum distance separable (or MDS) code satisfies k+ d = n+ 1. Since d = n− k+ 1,
MDS codes are fully described by the parameters (q, n, k). Such an (n, k)q-MDS code can
correct up to b(n − k)/2c errors; it can detect if there are errors whenever there are no
more than n− k of them. For a matrix G generating an MDS code, any set of k columns
of G are linearly independent.

For a thorough introduction to linear codes and proofs of all statements in this short
overview we refer the reader to [Rot06].

Observe that a linear code, due to the linearity of its encoding algorithm, is not a
primitive designed to hide anything about the encoded message (e.g., a popular choice for
the generating matrix is G := (Ik|∗) with Ik being the k × k identity matrix). However,
we show in the following lemma how to turn an MDS code into a RSS scheme with
additional smoothness guarantees.

Lemma 5. Let C be a (n + 1, k)q-MDS code. We set L to be the last column of the
generating matrix G of the code C and we denote by C ′ the (n, k)q-MDS code whose

20

generating matrix G′ is G without the last column. Let further algorithm Decode of the
MDS code C ′ be of the following form:

1. On input a word c ∈ Fnq , Decode chooses D ⊆ [n] with |D| = k.
2. Let G′D denote the matrix obtained from G′ by eliminating all columns with indices

not in D. Decode now outputs cD ·G′−1
D .

Let Share and Reconstruct work as follows:

– Share(s) for s ∈ Fq first chooses a random row vector W ∈ Fkq such that W · L = s,
and outputs c ← C ′.Encode(W) (equivalently, we can say that Share(s) chooses a
uniformly random codeword of C whose last coordinate is s, and outputs the first n
coordinates as c).

– Reconstruct(w) for w ∈ Fnq first runs C ′.Decode(w). If it gets a vector W ′, then
output s =W ′ · L, otherwise output s $← Fq.

Then Share and Reconstruct form a t-smooth, strongly t-private (n, t, r)q-RSS for t = k−1
and r = d(n+ k)/2e that is (r − 1)-smooth on random secrets.

Proof. Let us consider all required properties from Definitions 2, 3 and 4.

– strong t-privacy: Assume |A| = t (privacy for smaller A will follow immediately by
adding arbitrary coordinates to it to get to size t). Let J = A ∪ {n + 1}; note that
|J | = t+1 = k. Note that for the code C, any k coordinates of a codeword determine
uniquely the input to Encode that produces this codeword (otherwise, there would
be two codewords that agreed on k elements and thus had distance n− k+1, which
is less than the minimum distance of C). Therefore, the mapping given by EncodeJ :

Fkq → F|J |q is bijective; thus coordinates in J are uniform when the input to Encode
is uniform. The algorithm Share chooses the input to Encode uniformly subject to
fixing the coordinate n+1 of the output. Therefore, the remaining coordinates (i.e.,
the coordinates in A) are uniform.

– r-robustness: Note that C has minimum distance n − k + 2, and therefore C ′ has
minimum distance n− k + 1 (because dropping one coordinate reduces the distance
by at most 1). Therefore, C ′ can correct b(n − k)/2c = n − r errors. Since cA = c̃A
and |A| ≥ r, there are at most n − r errors in c̃, so the call to C ′.Decode(c̃) made
by Reconstruct(c̃) will output W̃ =W . Then Reconstruct(c̃) will output s = W̃ ·L =
W · L.

– t-smoothness: to prove this, we show that disturbing one share uniformly random
already randomizes the output of Reconstruct. LetD denote the set chosen by Decode.
Since every codeword is uniquely determined by k elements, the mappings fi : Fq →
Fq, x 7→ Encode(G′−1

D (c))n+1 with c ← Fkq , ci = x are bijective for all i ∈ [k]. Since
t = k − 1, c̃D contains at least one entry that is chosen uniformly at random and
thus the claim follows from the fact that the output of Reconstruct is computed as
Encode(G′−1

D (·)).
– (r − 1)-smoothness on random secrets: first, it holds that r − 1 > k and thus c̃

contains more than k undisturbed shares. We distinguish two cases. Either D chosen

21

by Decode contains only undisturbed shares (i.e., D ⊆ A), then Reconstruct will
output s which is distributed uniformly random in Fq. Else, D 6⊆ A. In this case, at
least one element of c̃D is distributed uniformly random and the randomness of the
output of Reconstruct follows as in the proof of t-smoothness.

Note that the Shamir’s secret sharing scheme is exactly the above construction with
Reed-Solomon codes [MS81]. Further, we are not aware of any decoding algorithm for
linear MDS codes that cannot be adopted to comply with our restrictions on Decode.

4.1.3 Implicit-Only PAKE PAKE protocols can have two types of authentication:
implicit authentication, where at the end of the protocol the two parties share the same
key if they used the same pass-string and random independent keys otherwise; or explicit
authentication where, in addition, they actually know which of the two situations they
are in. A PAKE protocol that only achieves implicit authentication can provide explicit
authentication by adding key-confirmation flows [BPR00].

The standard PAKE functionality FpwKE from [CHK+05] (see Figure 17) is designed
with explicit authentication in mind, or at least considers that success or failure will
later be detected by the adversary when he will try to use the key. Thus, it reveals to
the adversary whether a pass-string guess attempt was successful or not. However, some
applications could require a PAKE that does not provide any feedback, and so does not
reveal the situation before the keys are actually used. Observe that, regarding honest
players, FpwKE already features implicit authentication since the players do not learn
anything but their own session key.

Definition of implicit-only PAKE. We introduce a new notion called implicit-only PAKE
or iPAKE (see Figure 8). The iPAKE ideal functionality is designed to implement implicit
authentication with respect to the adversary as well as honest players, by not providing
the adversary with any feedback in response to a password guess. Of course, in many
cases, the parties and the adversary can later check whether their session keys match
or not, and so whether the pass-strings were the same or not. We stress that this is not
leakage from the PAKE protocol itself, but from the environment.

In addition to the changes we already make to the FpwKE ideal functionality in our
fPAKE functionality description, we make one more change in our iPAKE functionality.
In response to a TestPwd query, the functionality silently updates the internal state of
the record (from fresh to either compromised or interrupted), meaning that the query
outcome is not given to the adversary S. Without going into details, it is clear that
the simulation of an honest party is hard if the simulator S does not know whether the
password it extracted from the corrupt party is correct or not. However, the simulator
gets help from the functionality, which sets honest parties’ keys appropriately.

We further alter this functionality to allow for public labels, as shown in Appendix F,
Figure 26. The resulting functionality F`-iPAKE idealizes what we call labeled implicit-only
PAKE (or `-iPAKE for short), resembling the notion of labeled public key encryption
as formalized in [Sho01]. In a nutshell, labels are public authenticated strings that are
chosen by each user individually for each execution of the protocol. Authentication here

22

The functionality FiPAKE is parameterized by a security parameter λ. It interacts with an adver-
sary S and the (dummy) parties P0 and P1 via the following queries:
– Upon receiving a query (NewSession, sid, pwi, role) from party Pi:

• Send (NewSession, sid,Pi, role) to S;
• If one of the following is true, record (Pi, pwi) and mark this record fresh:

∗ This is the first NewSession query
∗ This is the second NewSession query and there is a record (P1−i, pw1−i)

– Upon receiving a query (TestPwd, sid,Pi, pw
′
i) from S :

If there is a fresh record (Pi, pwi), then:
• If pwi = pw′i, mark the record compromised;
• If pwi 6= pw′i, mark the record interrupted.

– Upon receiving a query (NewKey, sid,Pi, sk) from S, where |sk| = λ:
If there is no record of the form (Pi, pwi), or if this is not the first NewKey query for Pi, then
ignore this query. Otherwise:
• If at least one of the following is true, then output (sid, sk) to player Pi:

∗ The record is compromised
∗ Pi is corrupted
∗ The record is fresh, P1−i is corrupted, and there is a record (P1−i, pw1−i) with

pwi = pw1−i
• If this record is fresh, both parties are honest, there is a record (P1−i, pw1−i) with

pwi = pw1−i, a key sk′ was sent to P1−i, and (P1−i, pw1−i) was fresh at the time, then
output (sid, sk′) to Pi;

• In any other case, pick a new random key sk′ of length λ and send (sid, sk′) to Pi.
• Mark the record (Pi, pwi) as completed.

Fig. 8. Functionality FiPAKE

means that tampering with the label can be efficiently detected. Such labels can be used
to, e.g., distribute public information such as public keys reliably over unauthenticated
channels.

A UC-Secure `-iPAKE Protocol. In the seminal paper by Bellovin and Merritt [BM92],
the Encrypted Key Exchange protocol (EKE) is proposed, which is essentially a Diffie-
Hellman [DH76] key exchange. The two flows of the protocol are encrypted using the pass-
string as the encryption key with an appropriate symmetric encryption scheme. The EKE
protocol has been further formalized by Bellare et al. [BPR00] under the name EKE2. We
present its labeled variant in Figure 9. The idea of appending the label to the symmetric
key is taken from [ACCP08]. We prove security of this protocol in the FRO,FIC,FCRS-
hybrid model. That is, we use an ideal random oracle functionality FRO to model the
hash function, and ideal cipher functionality FIC to model the encryption scheme and
assume a publicly available common reference string modeled by FCRS. Formal definitions
of these functionalities are given in Appendix A.

Theorem 6. If the CDH assumption holds in G, the protocol EKE2 depicted in Fig-
ure 9 securely realizes F`-iPAKE in the FRO,FIC,FCRS-hybrid model with respect to static
corruptions.

We note that this result is not surprising, given that other variants of EKE2 have al-
ready been proven to UC-emulate FpwKE. Intuitively, a protocol with only two flows not

23

A(pw ∈ Fp) B(pw′ ∈ Fp)

x
$← FP , `← L, X ← gx

X∗ ← Epw||`(X)
`,X∗−−−−−−−→ y

$← FP , `′ ← L, Y ← gy
`′, Y ∗←−−−−−−− Y ∗ ← Epw′||`′(Y)

Z ← Dpw||`′(Y
∗)x Z′ ← Dpw′||`(X

∗)y

k ← H(X∗, Y ∗, Z) k′ ← H(X∗, Y ∗, Z′)
output (`′, k) output (`, k′)

Fig. 9. Protocol EKE2, in a group G = 〈g〉 of prime order P , with a hash function H : G3 → {0, 1}k
and a symmetric cipher E ,D onto G for keys in Fp × L, where L is the label space.

depending on each other does not leak the outcome to the adversary via the transcript,
which explains why EKE2 is implicit-only. Hashing of the transcript keeps the adversary
from biasing the key unless he knows the correct pass-string or breaks the ideal cipher.
For completeness, we include the full proof in Appendix F.

4.2 Construction

We show how to combine an RSS with a signature scheme and an `-iPAKE to obtain an
fPAKE. The high-level idea is to fix the issue that arose in the protocol from Appendix H
due to pass-strings being used as one-time pads. Instead, we first expand the pass-string
characters to keys — which we refer to as “character keys” — with large entropy using
`-iPAKE. The resulting character keys are then used as one-time pads for shares of a
chosen output session key. We also apply known techniques from the literature, i.e.,
adding signatures and labels to prevent man-in-the-middle attacks. Our full protocol is
depicted in Figure 10. It works as follows:

1. In the first phase, the two parties aim at enhancing their pass-strings to a vector of
high-entropy character keys. For this, the pass-strings are viewed as vectors of char-
acters. The parties repeatedly execute a PAKE on each of these characters separately.
The PAKE will ensure that the character key vectors held by the two parties match
in all positions where their pass-strings matched, and are independent in all other
positions.

2. In the second phase of the protocol one party, the sender, will pick the final session
key uniformly at random and send it in such a way that it reaches the other party
only if enough of the character keys match. This is done by applying an RSS to the
key, and sending it to the other party using the character key vector as a one time
pad. The robustness property of the RSS ensures that a few non-matching password
digits do not prevent the receiver from recovering the sender’s key.

When using the MDS code–based RSS which is described in Lemma 5, the one-time
pad encryption of the shares (which form a codeword) can be viewed as the code-offset
construction for information reconciliation (aka secure sketch) [JW99,DRS04] applied to

24

Sender (pw ∈ Fnp) Receiver (pw′ ∈ Fnp)

(vk, sk)
$← SigGen(1λ)

(vk,pwt)t−−−−−−−→
(ε,pw′

t)t←−−−−−−
for t = 1, . . . , n `-iPAKE for t = 1, . . . , n

(ε,Kt)t←−−−−−−
(`t,K

′
t)t−−−−−−−→ abort if `r 6= `s for

any r, s or `1 /∈ VK
Let K := (Kt)t∈[n] Let K′ := (K′t)t∈[n]

U
$← Fq , C ← Share(U)

E ← C +K
σE ← Sign(vk, E)

E, σE , vk−−−−−−−−−−−−−−−−−−→ abort if vk 6= `1
output k← U or Vfy(vk, σE , E) = 0

U ′ ← Reconstruct(E −K′)
output k′ ← U ′

Fig. 10. Protocol fPAKERSS where q ≈ 2λ is a prime number and + denotes the group operation in Fnq . ε
denotes the empty string. (Share,Reconstruct) is a Robust Secret Sharing scheme with Share : Fq → Fnq ,
and (SigGen → VK × SK, Sign,Vfy) is a signature scheme. The parties repeatedly execute a labeled
implicit-only PAKE protocol with label space VK and key space Fq, which takes inputs from VK × Fp.
If at any point an expected message fails to arrive (or arrives malformed), the parties output a random
key.

the character key vectors. We present our construction in terms of RSS, but we could in-
stead present this construction using information reconciliation. The syndrome construc-
tion of secure sketches 5 can also be used here instead of the code-offset construction.

4.3 Security of fPAKERSS

We show that our protocol realizes functionality FMfPAKE in the F`-iPAKE-hybrid model.
In a nutshell, the idea is to simulate without the pass-strings by adjusting the character
keys outputted by F`-iPAKE to the mask of the pass-strings, which is leaked by FMfPAKE.

Theorem 7. If RSS := (Share : Fq → Fnq ,Reconstruct : Fnq → Fq) is a strongly t-
private, t-smooth (n, t, r)q-RSS that in addition is (r− 1)-smooth on random secrets, and
(SigGen, Sign,Vfy) is an EUF-CMA secure one-time signature scheme, protocol fPAKERSS
securely realizes FMfPAKE with γ = n − t − 1 and δ = n − r in the F`-iPAKE-hybrid model
with respect to static corruptions.

In particular, if we wish key agreement to succeed as long as there are fewer than
δ errors, we instantiate RSS using the construction of Lemma 5 based on a (n + 1, k)q
MDS code, with k = n − 2δ. This will give r = d(n + k)/2e = n − δ, so δ will be equal
to n− r, as required. It will also give γ = n− t− 1 = 2δ.

We thus obtain the following corollary:

Corollary 8. For any δ and γ = 2δ, given an (n+1, k)q-MDS code for k = n−2δ (with
minimal distance d = n − k + 2) and an EUF-CMA secure one-time signature scheme,
protocol fPAKERSS securely realizes FMfPAKE in the F`-iPAKE-hybrid model with respect to
static corruptions.

25

Proof sketch of Theorem 7. We start with the real execution of the protocol and indis-
tinguishably switch to an ideal execution with dummy parties relaying their inputs to
and obtaining their outputs from FMfPAKE. To preserve the view of the distinguisher (the
environment Z), a simulator S plays the role of the real world adversary by controlling
the communication between FMfPAKE and Z. During the proof, we build FMfPAKE and S by
subsequently randomizing pass-strings (since the final simulation has to work without
them) and session keys (since FMfPAKE hands out random session keys in certain cases).
We have to tackle the following difficulties, which we will describe in terms of attacks.

– Passive attack: in this attack, Z picks two pass-strings and then observes the tran-
script and outputs of the protocol, without having access to any internal state of
the parties. We show that Z cannot distinguish between transcript and outputs that
were either produced using Z’s pass-strings or random pass-strings. Regarding the
outputs, we argue that even in the real execution the session keys were chosen uni-
formly at random (with Z not knowing the coins consumed by this choice) as long
as the RSS either reconstructs the uniformly random secret correctly or outputs a
different uniformly random value. Depending on the distance of the passwords this
is guaranteed either by robustness or smoothness for random secrets, both of which
are properties of the RSS. Regarding the transcript, randomization is straightforward
using properties of the one-time pad.

– Man-in-the-middle attack: in this attack, Z injects a malicious message into a session
of two honest parties. There are several ways to secure protocols that have to run
in unauthenticated channels and are prone to this attack. Basically, all of them
introduce methods to bind messages together to prevent the adversary from injecting
malicious messages. To do this, we need the labeled version of our iPAKE and a one-
time signature scheme6. Unless Z is able to break a one-time-signature scheme, this
attack always results in an abort.

– Honest-but-curious/Active attack: in this attack, Z corrupts one of the parties. The
simulator will get help from FMfPAKE by issuing a TestPwd query, which will inform him
whether the passwords used by both parties are close and, if so, in which positions
they match (i.e., their mask).
• If the sender is honest, we show how to use this information to simulate the

transcript. Note that knowledge of the mask is necessary since, due to corruption,
Z can now actually decrypt the one-time pad and thus the transcript reveals the
positions of the errors in the pass-strings, which are of course already known to Z.
If the simulator does not learn a mask, then the passwords are too far away and
it follows from the strong privacy of the RSS that real and simulated transcript
are indistinguishable from Z’s view. Note that here, since Z is aware of the non-
matching pass-string positions, it is crucial that strong privacy guarantees that
the locations of all errors are hidden from Z.

6 Instead of labels and one-time signature, one could just sign all the messages, as would be done
using the split-functionality [BCL+05], but this would be less efficient. This trade-off, with labels, is
especially useful when we use a PAKE that admits adding labels basically for free, as it is the case
with the special PAKE protocol we use.

26

• If the receiver is honest and Z injects a malicious message on behalf of the sender,
the simulator uses the mask to compute the output of the honest receiver. If no
mask is obtained then again the pass-strings are too far away from each other,
and the smoothness property of the RSS (for arbitrarily chosen secrets) says that
the receiver’s output can be simulated by chosing it uniformly at random.

One interesting subtlety that arises is the usage of the iPAKE. Observe that the UC
security notion for a regular PAKE as defined by Canetti et al. [CHK+05] and recalled in
Appendix A provides an interface to the adversary to test a pass-string once and learn
whether it is right or wrong. Using this notion, our simulator would have to answer to
such queries from Z. Since this is not possible without FMfPAKE leaking the mask all the
time, it is crucial to use the iPAKE variant that we introduced in section 4.1.3. Using this
stronger notion, the adversary is still allowed one pass-string guess which may affect the
output, but the adversary learns nothing more about the outcome of his guess than he
can infer from whatever access he has to the outputs alone. Since our protocol uses the
outputs of the PAKE as one-time pad keys, it is intuitively clear that by preventing Z
from getting additional leakage about these keys, we protect the secrets of honest parties.

4.4 Further Discussion: Removing Modeling Assumptions

All of the assumptions in our protocol come from the realization of the F`-iPAKE function-
ality. The `-iPAKE protocol from section 4.1.3 requires a random oracle, an ideal cipher
and a CRS. We note that we can remove everything except for the CRS by, e.g., taking
the PAKE protocol introduced by Katz and Vaikuntanathan [KV11]. This protocol also
securely realizes our F`-iPAKE functionality7. However, it is more costly than our `-iPAKE
protocol since both messages each contain one non-interactive zero knowledge proof.

Since fPAKE implies a regular PAKE (simply set δ = 0), Canetti et al. [CHK+05] give
strong evidence that we cannot hope to realize FfPAKE without a CRS.

5 Comparison of fPAKE Protocols

In this section, we give a brief comparison of our fPAKE protocols. First, in Figure 11, we
describe the assumptions necessary for the two constructions, and the security parameters
that they can achieve.
7 In a nutshell, their protocol is implicit-only for the same reason as the `-iPAKE protocol we use here:
there are only two flows that do not depend on each other, so the transcript cannot reveal the outcome
of a guess unless it reveals the pass-string to anyone. Regarding the session keys, usage of a hash
function takes care of randomizing the session key in case of a failed dictionary attack. Furthermore,
the protocol already implements labels. A little more detailed, looking at the proof by Katz and
Vaikuntanathan [KV11], the simulator does not make use of the answer of TestPwd to simulate any
messages. Regarding the session key that an honest player receives in an corrupted session, they are
chosen to be random in the simulation (in Expt3). Letting this happen already in the functionality
makes the simulation independent of the answer of TestPwd also regarding the computation of the
session keys.

27

Assumptions Threshold δ Gap γ − δ
fPAKERSS UC-secure `-iPAKE < n/2 δ

fPAKEYGC (1) UC-secure OT (2) projective,
output-projective and garbled-output

random secure garbling scheme

Any None

Fig. 11. Assumptions, Distance Thresholds and Functionality/Security Gaps achieved by the two
schemes. fPAKERSS is the construction in Figure 10. fPAKEYGC is the construction in Figure 5 with
the split functionality transformation of Barak et al. [BCL+05].

Then, in Figure 12, we describe the efficiency of the constructions when concrete
primitives (OT / `-iPAKE) are used to instantiate them. fPAKERSS is instantiated as
the construction in Figure 10 with the `-iPAKE in Figure 9 and an RSS. fPAKEYGC is
instantiated as the construction in Figure 5 with the UC-secure oblivious transfer protocol
of Chou and Orlandi [CO15] described in Figure 25, with the garbling scheme of Bal et
al. [BMR16], and with the split functionality transformation of Barak et al. [BCL+05].
Though fPAKEYGC can handle any efficiently computable notion of distance, Figure 12
assumes that both constructions use Hamming distance (and that, specifically, fPAKEYGC
uses the circuit described in Figure 7). We describe efficiency in terms of sub-operations
(per-party, not in aggregate).

Note that these concrete primitives each have their own set of required assumptions.
Specifically, the `-iPAKE in Figure 9 requires a random oracle (RO, described in Fig-
ure 14), ideal cipher (IC, described in Figure 15) and common reference string (CRS,
described in Figure 13). The oblivious transfer protocol in Figure 25 requires a random
oracle. The garbling scheme of Bal et al. [BMR16] requires a mixed modulus circular
correlation robust hash function, which is a weakening of the random oracle assumption.

For fPAKERSS, the factor of n arises from the n times EKE2 is executed. For fPAKEYGC,
the factor of n comes from the garbled circuit. Additionally, in fPAKEYGC, three com-
munication flows come from OT. The last of these is combined with sending the garbled
circuits. Two additional flows of communication come from the split functionality trans-
formation. The need for signatures also arises from the split functionality transformation.

Efficiency Optimizations to fPAKEYGC We can make several small efficiency improve-
ments to the fPAKEYGC construction which are not reflected in Figure 12. First, instead
of using the split functionality transformation of Barak et al. [BCL+05], we can use
the split split functionality of Camenisch et al. [CCGS10]. It uses a split key exchange
functionality to establish symmetric keys, and then uses those to symmetrically encrypt
and authenticate each flow. While this does not save any communication rounds, it does
reduce the number of public key operations needed. Second, if the pass-strings are more
than λ bits long (where λ is the security parameter), OT extensions that are secure
against malicious adversaries [AHMR15] can be used. If the pass-strings are fewer than
λ bits long, then nothing is to be gained from using OT extensions, since OT extensions
require λ “base OTs”. However, if the pass-strings are longer — say, if they are some

28

O
ut
pu

t
K
ey

Fo
rm

at

#
(B

id
ir
ec
ti
on

al
)

C
om

m
un

ic
at
io
n

F
lo
w
s

#
E
xp

on
en
ti
at
io
ns

#
H
as
he
s

#
E
nc
ry
pt
io
ns

#
D
ec
ry
pt
io
ns

#
Sh

ar
e

#
R
ec
on

st
ru
ct

#
Si
gK

ey
G
en
s

#
Si
gn

s

#
Si
gV

er
ifi
es

fPAKERSS
sender Fq 2 2n n n n

1 0 1 1 0

receiver 0 1 0 0 1

fPAKEYGC {0, 1}λ 5 3n+ 2 4n+ 7 2n n − − 1 5 5

Fig. 12. Efficiency (in Terms of Sub-Operations) of the Two Constructions. Here, by “bidirectional
communication flow” we mean two flows, one in each direction, which do not depend on one another.
fPAKERSS is the construction in Figure 10 instantiated with the `-iPAKE in Figure 9. The first fPAKERSS

row describes the sender’s efficiency; the second row describes the receiver’s efficiency. fPAKEYGC is
the construction in Figure 5 instantiated with the UC-secure oblivious transfer protocol of Chou and
Orlandi [CO15] described in Figure 25, the garbling scheme of Bal et al. [BMR16], and with the split
functionality transformation of Barak et al. [BCL+05]. fPAKEYGC is described in a single row, since it is
a symmetric protocol.

biometric measurement that is thousands of bits long — then OT extensions would save
on the number of public key operations, at the cost of an extra round of communication.

Acknowledgments

We thank Ran Canetti for guidance on the details of UC key agreement definitions, and
Adam Smith for discussions on coding and information reconciliation.

This work was supported in part by the European Research Council under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement
no. 339563 – CryptoCloud). Leonid Reyzin gratefully acknowledges the hospitality of
École Normale Supérieure, where some of this work was performed. He was supported,
in part, by US NSF grants 1012910, 1012798, and 1422965.

References

ACCP08. Michel Abdalla, Dario Catalano, Céline Chevalier, and David Pointcheval. Efficient two-
party password-based key exchange protocols in the UC framework. In Tal Malkin, editor,
CT-RSA 2008, volume 4964 of LNCS, pages 335–351. Springer, Heidelberg, April 2008.

AHMR15. Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How to efficiently evalu-
ate RAM programs with malicious security. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 702–729. Springer, Heidelberg,
April 2015.

BBR88. Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

BCKP14. Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On virtual grey box obfus-
cation for general circuits. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 108–125. Springer, Heidelberg, August 2014.

29

BCL+05. Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation
without authentication. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 361–377. Springer, Heidelberg, August 2005.

BDK+05. Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Secure
remote authentication using biometric data. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 147–163. Springer, Heidelberg, May 2005.

BH09. Marina Blanton and William MP Hudelson. Biometric-based non-transferable anonymous
credentials. In Information and Communications Security, pages 165–180. Springer, 2009.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM
Press, October 2012.

BM92. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages
72–84. IEEE Computer Society Press, May 1992.

BMP00. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using Diffie-Hellman. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 156–171. Springer, Heidelberg, May 2000.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

BMR16. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean and arithmetic
circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 16, pages 565–577. ACM Press, October 2016.

Boy04. Xavier Boyen. Reusable cryptographic fuzzy extractors. In Vijayalakshmi Atluri, Birgit
Pfitzmann, and Patrick McDaniel, editors, ACM CCS 04, pages 82–91. ACM Press, October
2004.

BPR00. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of
LNCS, pages 139–155. Springer, Heidelberg, May 2000.

BS00. Sacha Brostoff and M.Angela Sasse. Are passfaces more usable than passwords?: A field trial
investigation. People and Computers, pages 405–424, 2000.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

Can07. Ran Canetti. Obtaining universally compoable security: Towards the bare bones of trust
(invited talk). In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages
88–112. Springer, Heidelberg, December 2007.

CCGS10. Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential authenticated
identification and key exchange. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 255–276. Springer, Heidelberg, August 2010.

CDD+15. Ronald Cramer, Ivan Bjerre Damgård, Nico Döttling, Serge Fehr, and Gabriele Spini. Linear
secret sharing schemes from error correcting codes and universal hash functions. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
313–336. Springer, Heidelberg, April 2015.

CDVW12. Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee. Efficient
password authenticated key exchange via oblivious transfer. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 449–466.
Springer, Heidelberg, May 2012.

CFP+16. Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, and Adam D. Smith. Reusable
fuzzy extractors for low-entropy distributions. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 117–146. Springer, Heidel-
berg, May 2016.

CHK+05. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Uni-
versally composable password-based key exchange. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Heidelberg, May 2005.

30

CKKZ12. Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security
of the “free-XOR” technique. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 39–53. Springer, Heidelberg, March 2012.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM
Press, May 2002.

CO15. Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In Kristin E.
Lauter and Francisco Rodríguez-Henríquez, editors, LATINCRYPT 2015, volume 9230 of
LNCS, pages 40–58. Springer, Heidelberg, August 2015.

Dau04. John Daugman. How iris recognition works. Circuits and Systems for Video Technology,
IEEE Transactions on, 14(1):21 – 30, January 2004.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

DKK+12. Yevgeniy Dodis, Bhavana Kanukurthi, Jonathan Katz, Leonid Reyzin, and Adam Smith. Ro-
bust fuzzy extractors and authenticated key agreement from close secrets. IEEE Transactions
on Information Theory, 58(9):6207–6222, 2012.

DORS08. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

DRS04. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540. Springer, Heidelberg, May 2004.

EHMS00. Carl Ellison, Chris Hall, Randy Milbert, and Bruce Schneier. Protecting secret keys with
personal entropy. Future Generation Computer Systems, 16(4):311–318, 2000.

FHH14. Eduarda S. V. Freire, Julia Hesse, and Dennis Hofheinz. Universally composable non-
interactive key exchange. In Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume
8642 of LNCS, pages 1–20. Springer, Heidelberg, September 2014.

GCvD02. Blaise Gassend, Dwaine E. Clarke, Marten van Dijk, and Srinivas Devadas. Silicon physical
random functions. In Vijayalakshmi Atluri, editor, ACM CCS 02, pages 148–160. ACM Press,
November 2002.

GSY+16. Paolo Gasti, Jaroslav Sedenka, Qing Yang, Gang Zhou, and Kiran S. Balagani. Secure,
fast, and energy-efficient outsourced authentication for smartphones. Trans. Info. For. Sec.,
11(11):2556–2571, November 2016.

HCS+18. Jun Han, Albert Chung, Manal Kumar Sinha, Madhumitha Harishankar, Shijia Pan,
Hae Young Noh, Pei Zhang, and Patrick Tague. Do you feel what i hear? Enabling au-
tonomous IoT device pairing using different sensor types. In IEEE Symposium on Security
and Privacy, 2018.

HHW+17. Jun Han, Madhumitha Harishankar, Xiao Wang, Albert Jin Chung, and Patrick Tague. Con-
voy: Physical context verification for vehicle platoon admission. In 18th ACM International
Workshop on Mobile Computing Systems and Applications (HotMobile), 2017.

HKE12. Yan Huang, Jonathan Katz, and David Evans. Quid-Pro-Quo-tocols: Strengthening semi-
honest protocols with dual execution. In 2012 IEEE Symposium on Security and Privacy,
pages 272–284. IEEE Computer Society Press, May 2012.

HKE13. Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 18–35. Springer, Heidelberg, August 2013.

HMQ04. Dennis Hofheinz and Jörn Müller-Quade. Universally composable commitments using random
oracles. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 58–76. Springer,
Heidelberg, February 2004.

JW99. Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In ACM CCS 99, pages
28–36. ACM Press, November 1999.

KMR14. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible garbling
for XOR gates that beats free-XOR. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 440–457. Springer, Heidelberg, August
2014.

31

KR08. Vladimir Kolesnikov and Charles Rackoff. Password mistyping in two-factor-authenticated
key exchange. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of
LNCS, pages 702–714. Springer, Heidelberg, July 2008.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of
LNCS, pages 486–498. Springer, Heidelberg, July 2008.

KV11. Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated
key exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 293–310.
Springer, Heidelberg, March 2011.

Lin13. Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 1–17. Springer, Heidelberg, August 2013.

LP11. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose obliv-
ious transfer. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 329–346.
Springer, Heidelberg, March 2011.

LP15. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. Journal of Cryptology, 28(2):312–350, April 2015.

LR14. Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 476–494. Springer, Heidelberg, August
2014.

Mau97. Ueli M. Maurer. Information-theoretically secure secret-key agreement by NOT authenticated
public discussion. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
209–225. Springer, Heidelberg, May 1997.

MF06. Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-party compu-
tation. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006,
volume 3958 of LNCS, pages 458–473. Springer, Heidelberg, April 2006.

MG09. Rene Mayrhofer and Hans Gellersen. Shake well before use: Intuitive and secure pairing of
mobile devices. IEEE Transactions on Mobile Computing, 8(6):792–806, 2009.

MRW02. Fabian Monrose, Michael K Reiter, and Susanne Wetzel. Password hardening based on
keystroke dynamics. International Journal of Information Security, 1(2):69–83, 2002.

MS81. Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and Reed-Solomon codes.
Commun. ACM, 24(9):583–584, 1981.

NO09. Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation. In Omer
Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 368–386. Springer, Heidelberg,
March 2009.

NZ93. Noam Nisan and David Zuckerman. More deterministic simulation in logspace. In 25th ACM
STOC, pages 235–244. ACM Press, May 1993.

PRTG02. Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-way func-
tions. Science, 297(5589):2026–2030, 2002.

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-
party computation is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 250–267. Springer, Heidelberg, December 2009.

Rot06. Ron Roth. Introduction to Coding Theory. Cambridge University Press, New York, NY,
USA, 2006.

RW04. Renato Renner and Stefan Wolf. The exact price for unconditionally secure asymmetric
cryptography. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 109–125. Springer, Heidelberg, May 2004.

SD07. G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authentication
and secret key generation. In Proceedings of the 44th annual Design Automation Conference,
pages 9–14. ACM, 2007.

32

Sho01. Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint
Archive, Report 2001/112, 2001. http://eprint.iacr.org/2001/112.

TSS+06. Pim Tuyls, Geert Jan Schrijen, Boris Skoric, Jan van Geloven, Nynke Verhaegh, and Rob
Wolters. Read-proof hardware from protective coatings. In Louis Goubin and Mitsuru Matsui,
editors, CHES 2006, volume 4249 of LNCS, pages 369–383. Springer, Heidelberg, October
2006.

WCD+17. Joanne Woodage, Rahul Chatterjee, Yevgeniy Dodis, Ari Juels, and Thomas Ristenpart. A
new distribution-sensitive secure sketch and popularity-proportional hashing. In CRYPTO
2017, Part III, volume 10403 of LNCS, pages 682–710. Springer, 2017.

WRK17. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient
maliciously secure two-party computation. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 17, pages 21–37. ACM Press, October / Novem-
ber 2017.

Wyn75. Aaron D. Wyner. The wire-tap channel. The Bell System Technical Journali, 54, October
1975.

Yak17. Sophia Yakoubov. A gentle introduction to Yao’s garbled circuits, 2017. http://web.mit.
edu/sonka89/www/papers/2017ygc.pdf.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

YD10. Meng-Day Mandel Yu and Srinivas Devadas. Secure and robust error correction for physical
unclonable functions. IEEE Design & Test, 27(1):48–65, 2010.

ZH93. Moshe Zviran and William J. Haga. A comparison of password techniques for multilevel
authentication mechanisms. The Computer Journal, 36(3):227–237, 1993.

ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer, Heidelberg,
April 2015.

A Ideal UC Functionalities

Common Reference String. The Common Reference String (CRS) functionality was
already defined in [Can07]. We recall it in Figure 13 for completeness. Note that we do
not let FCRS check whether a party is allowed to obtain the CRS — it is assumed public.

The functionality FDCRS is parameterized with a distribution D and proceeds as follows:

– Upon receiving (sid, crs):
• If there is no value r recorded, then choose and record a value r $← D.
• Reply with (sid, r).

Fig. 13. Functionality FCRS

Random Oracles. The Random Oracle (RO) functionality was already defined by
Hofheinz and Müller-Quade in [HMQ04]. We recall it in Figure 14 for completeness. It is
clear that the random oracle model UC-emulates this functionality.

Ideal Cipher. An ideal cipher [BPR00] is a block cipher that takes a plaintext or a
ciphertext as input. We describe the ideal cipher functionality FIC in Figure 15, in the

33

http://eprint.iacr.org/2001/112
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf

The functionality FRO proceeds as follows, running on security parameter k, with a set of (dummy)
parties P1, . . . ,Pn and an adversary S:

– FRO keeps a list L (which is initially empty) of pairs of bit strings.
– Upon receiving a value (sid,m) (with m ∈ {0, 1}∗) from some party Pi or from S, do:

• If there is a pair (m, h̃) for some h̃ ∈ {0, 1}k in the list L, set h := h̃.
• If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair (m,h) ∈ L.

Once h is set, reply to the activating machine (i.e., either Pi or S) with (sid, h).

Fig. 14. Functionality FRO

same vein as the above random oracle functionality. It is clear that the ideal cipher model
UC-emulates this functionality. Note that this functionality characterizes a perfectly
random permutation for each key by ensuring injectivity for each query simulation: to
this aim, it uses a list L and projections Msk and Csk, that are global, independently of
the sid.

The functionality FIC takes as input the security parameter k, and interacts with an adversary S and
with a set of (dummy) parties P1, . . . ,Pn by means of these queries:

– FIC keeps a (initially empty) list L containing 3−tuples of bit strings and two (initially empty)
sets Csk and Msk for every sk. (The sets are not created until sk is first used, thus avoiding the
need to instantiate exponentially many sets.)

– Upon receiving a query (sid, E, sk,m) (with m ∈ {0, 1}k) from some party Pi or S,
do:
• If there is a 3−tuple (sk,m, c̃) for some c̃ ∈ {0, 1}k in the list L, set c := c̃.
• If there is no such record, choose uniformly c ∈ {0, 1}k\Csk which is the set consisting of

ciphertexts not already used with sk. Next, it stores the 3−tuple (sk,m, c) ∈ L and sets both
Msk ←Msk ∪ {m} and Csk ← Csk ∪ {c}.

Once c is set, reply to the activating machine with (sid, c).
– Upon receiving a query (sid,D, sk, c) (with c ∈ {0, 1}k) from some party Pi or S, do:

• If there is a 3−tuple (sk, m̃, c) for some m̃ ∈ {0, 1}k in L, set m := m̃.
• If there is no such record, choose uniformly m ∈ {0, 1}k\Msk which is the set consisting of

plaintexts not already used with sk. Next, it stores the 3−tuple (sk,m, c) ∈ L and sets both
Msk ←Msk ∪ {m} and Csk ← Csk ∪ {c}.

Once m is set, reply to the activating machine with (sid,m).

Fig. 15. Functionality FIC

Oblivious Transfer. The Oblivious Transfer (OT) functionality was defined by Canetti
et al. [CLOS02]. We recall it in Figure 16.

Password-Authenticated Key Exchange. The initial PAKE functionality FpwKE
has been defined by Canetti et al. [CHK+05]. We recall it in Figure 17. We stress that this
functionality immediately leaks the result of the TestPwd-query, which models explicit
authentication; when the adversary tries a password, it learns whether the guess was
correct or not.

34

The functionality FOT is parameterized by a security parameter λ. It interacts with an adversary S
and the players S (the sender) and R (the receiver) via the following queries:

– Upon receiving a query (Send, sid, x0, x1) from S, where x0, x1 ∈ {0, 1}λ, record the
tuple (x0, x1).

– Upon receiving a query (Receive, sid, i) from R:
If there is a record (x0, x1), then send (sid, xi) to R and sid to S, and halt. Otherwise, ignore
the query.

Fig. 16. Functionality FOT

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S
and a set of (dummy) parties P1, . . . ,Pn via the following queries:

– Upon receiving a query (NewSession, sid,Pi,Pj, pw, role) from party Pi:
• Send (NewSession, sid,Pi,Pj , role) to S;
• If one of the following is true, record (Pi,Pj , pw) and mark this record fresh:

∗ This is the first NewSession query
∗ This is the second NewSession query and there is a record (Pj ,Pi, pw′)

– Upon receiving a query (TestPwd, sid,Pi, pw
′) from S :

If there is a fresh record (Pi,Pj , pw), then do:
• If pw = pw′, mark the record compromised, and reply to S with correct guess;
• If pw 6= pw′, mark the record interrupted, and reply to S with wrong guess.

– Upon receiving a query (NewKey, sid,Pi, sk) from the S, where |sk| = k:
If there is a record of the form (Pi,Pj , pw), and this is the first NewKey query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to

player Pi;
• If this record is fresh, there is a record (Pj ,Pi, pw′) with pw = pw′, a key sk′ was sent

to Pj , and (Pj ,Pi, pw) was fresh at the time, then output (sid, sk′) to Pi;
• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi,Pj , pw) as completed.

Fig. 17. Functionality FpwKE

35

In our paper, we start from this functionality to derive the basic functionality fPAKE,
in Section 2, after a few changes:

– we consider only two parties — P0 and P1 —, which is enough since universal com-
posability takes care of ensuring that a two-party functionality remains secure in a
multi-party world;

– we do not allow the adversary to set Pi’s key if P1−i is corrupted but did not guess
Pi’s password. We make this change in order to protect an honest Pi from, for
instance, revealing sensitive information to an adversary who did not successfully
guess her password, but did corrupt her partner.

B Garbled Output Randomness: A New Yao’s Garbled Circuit
Definition

We refer to Yakoubov [Yak17] for a gentle introduction to Yao’s Garbled Circuits. Note
that the authenticity property implies that, in an output-projective garbling scheme, if
the output is a single bit, the second output label and the second token of d are hard
for the evaluator to guess (no probabilistic polynomial-time adversary can guess it with
non-negligible probability). However, for our fPAKE construction (Section 3), we require
a stronger property: not only should the second output label be hard to guess, but it
should be indistinguishable from random. We call this garbled-output randomness.

Challenger Adversary A

f, x←−−−−−−−−−−−−−−−−−−
(F, e, d)← Gb(1λ, f)

X ← En(e, x)

b
$← {0, 1}
If b = 0:
r = Y1−y
If b = 1:

r is chosen at random
(or simulated)

F,X, r−−−−−−−−−−−−−−−−−−→
b′←−−−−−−−−−−−−−−−−−−

A wins (i.e. the game returns 1) if b′ = b

Fig. 18. The GOutRandAG (1
λ) Game, where y = f(x) ∈ {0, 1}, Yy is the corresponding garbled output

(or output label), and Y1−y is the other output label.

Define the adversary A’s advantage in the the garbled-output randomness game (Fig-
ure 18) as

GOutRandAdvG(1
λ,A) =

∣∣∣Pr[GOutRandAG (1
λ) = 1]− 1

2

∣∣∣.

36

Definition 9. An output-projective binary output garbling scheme G = (Gb,En,Ev,De)
is garbled-output random if for all sufficiently large security parameters λ, for any poly-
nomial time adversary A,

GOutRandAdvG(1
λ,A) = negl .

In order to achieve this, we modify the scheme of Bal et al. [BMR16] to put the
output wire label through the hash function H one more time; the two labels will thus
be Y0 = H(finaloutput,W 0

output) and Y1 = H(finaloutput,W 0
output⊕R), whereW 0

output and
W 0
output ⊕R were the labels in the scheme of Bal et al.

Theorem 10. This modified scheme is garbled-output random (Definition 9) when the
key derivation function H is mixed-modulus circular correlation robust (Definition 1 of
Bal et al. [BMR16]).

Proof (Proof Sketch).
Definition 9 requires the indistinguishability of (real garbled circuit and inputs, real

second output label) and (real garbled circuit and inputs, random second output label);
in shorthand, we want to show that (real, real) ∼ (real, random), where ∼ denotes
computational indistinguishability.

We use the setting (simulated garbled circuit and inputs, random second output la-
bel) — (simulated, random) for short — as a hybrid step. We show that (real, real) ∼
(simulated, random). We do this by having the adversary A (modeled after the one in
Choi et al. [CKKZ12]) compute the second output label O(finaloutput, 2, 2,W b

output, 1, 0)
(using the mixed-modulus circular correlation robustness oracle) and send it to the obliv-
iousness adversary B along with the garbled circuit and garbled inputs. If the oracle is
random, B will see (simulated, random). Otherwise, B will see (real, real). If B can
distinguish between those two, then A can use that to break mixed-modulus circular
correlation robustness. Hence, (real, real) ∼ (simulated, random).

Because the garbling scheme is oblivious, we know that (simulated, random) ∼
(real, random), since we can always add a random value to the adversary’s view in
the obliviousness game.

Now that we have (real, real) ∼ (simulated, random) and (simulated, random) ∼
(real, random), we can conclude that (real, real) ∼ (real, random).

C Proof of Theorem 1

We proceed in a series of games, where no probabilistic polynomial-time environment can
distinguish the view of the adversary A in each game from that in the previous game. We
start with the real execution of the protocol and end with the ideal execution. Figure 19
summarizes the changes made in each game.

Game G0: Real
This is the real execution of ΠRFE where the environment Z runs the protocol (de-
scribed in Figure 5) with parties P0 and P1, both having access to an ideal OT

37

Game Functionality F SRFE Property Used
NewSession TestPwd NewKey

Game G0 N/A N/A N/A N/A

Game G1
forwards inputs

to SRFE

forwards outputs
to dummy
parties

runs protocol for
honest parties

Game G2 records inputs
creates NewKey
queries from
party outputs

bo
th

pa
rt
ie
s
ho

ne
st Game G3

chooses keys for
both parties

when
d(pw0, pw1) ≤ δ

garbled output
randomness

Game G4

chooses key for
P0 when

d(pw0, pw1) > δ

garbled output
randomness

Game G5

chooses keys for
both parties

when
d(pw0, pw1) > δ

garbled output
randomness

Game G6 simulates F0, X0 obliviousness

Game G7
does not forward

pw0, pw1

simulates F1, X1 obliviousness

P
i
ho

ne
st
,P

1
−
i
co
rr
up

t Game G8

replaces the
malicious

NewSession
input with the
one given by
SRFE

extracts
malicious pw′1−i
from OT, and

tells F to replace
the malicious
NewSession

input with pw′1−i

Game G9

chooses key for
Pi when

d(pw0, pw1) > δ
(now fully

implemented)

garbled output
randomness

Game G10

simulates Fi, Xi
using

d(pwi, pw
′
1−i)

privacy

Game G11
does not forward

pwi

fully
implemented

makes TestPwd
query to set pw′i

Fig. 19. A Summary of the Sequence of Games in the Proof of Theorem 1

38

functionality FOT, and an adversary A that, w.l.o.g., can be assumed to be the
dummy adversary as shown in [Can01, section 4.4.1].

Game G1: Adding Ideal Layout
This is the real game, but with dummy party and ideal functionality nodes thrown in
and all previously existing nodes (except the environment) grouped into one machine,
called the simulator (SRFE, or S for short). Please refer to Figure 20 for the differences
between G0 and G1.

FOT

P0 P1

A

Z Z

F

S

P0 P1

FOT

A

Fig. 20. Transition from game G0 (left) to game G1 (right), showing a setting where both parties are
honest.

Game G2: Adding F ’s Record-Keeping and TestPwd Interface
Modifications to F : We now allow F to do all of the record-keeping described in
Figure 4.
F still forwards NewSession queries from the dummy parties in their entirety (in-
cluding the pass-string) to SRFE, but also records them. Since this is a matter of
internal record-keeping only, this does not affect A’s view.
Modifications to SRFE: SRFE creates NewKey queries for F from whatever output the
simulated parties produce. In this game, F still simply forwards the keys it is given
to the dummy parties without modifying them, so this does not affect A’s view.

Game G3: Allowing F to Choose Keys For Two Honest Parties With Close
Pass-strings
Modifications to F : We now allow F to follow the instructions in Figure 4 to choose
the key when P0 and P1 are both honest, and d(pw0, pw1) ≤ δ.
We can use any environment who can distinguish this game from Game G2 to build
an adversary B that can break the garbled output randomness property (Definition 9,
Theorem 10) of our garbling scheme.
Since both parties are honest, in order to use the environment as a distinguisher,
the adversary needs to give the environment a transcript of the parties’ interactions

39

(F0, X0,0, F1, X1,1) as well as the parties’ output keys. Because we are in the OT
hybrid model, the environment sees neither inputs to the OT nor its outputs.
Our adversary B executes SRFE’s simulation of P0 with the F of Game G2 with
some modifications. First, it finds a pass-string pw such that d(pw0, pw) > δ. (Note
that in order for this reduction to work, such a pass-string must be efficiently com-
putable, which it is by the assumption in the statement of Theorem 1.) Instead of
running Gb, B queries the garbled output randomness challenger on (f, (pw0, pw))
to obtain (F0, X0, r). Let X0 = (X0,0, X0,1). Note that F0 and X0,0 are generated
by the challenger exactly as they would be by SRFE, so those values do not change.
(X0,1 is different, since pw is different from pw1, but X0,1 is not visible to the en-
vironment.) Since the adversary used a pass-string pw that is dissimilar to pw1, it
uses the value r — corresponding to the output label not returned by Ev(F0, X0) —
as k0,correct. (Ev(F0, X0) would give k0,wrong.) If b = 0, the challenger will return the
actual k0,correct as r, and the environment’s view will be that of Game G2. If b = 1,
the challenger will give a random value as r. If r is truly random, then so is r⊕Y1; so,
the environment’s view will be that of Game G3. (Note that we do not change the
way in which P1 generates F1, X1, but we do set P1’s output key to be the same as
P0’s. This will be the key that an honest execution of the protocol would produce if
b = 0, and random otherwise.) The adversary B then returns the environment’s guess
as b′. The advantage of B in the garbled output randomness game will be exactly the
same as that of the environment in distinguishing between Game G2 and Game G3.

Game G4: Allowing F to Choose Keys For One of Two Honest Parties With
Dissimilar Pass-strings
Modifications to F : We now allow F to follow the instructions in Figure 4 to choose
the key for P0 when P0 and P1 are both honest, and d(pw0, pw1) > δ.
We can use any environment who can distinguish this game from Game G3 to build
an adversary B that can break the garbled output randomness property (Definition 9,
Theorem 10) of our garbling scheme.
Our adversary B executes SRFE’s simulation of P0 with the F of Game G3 with
some modifications. Instead of running Gb, B queries the garbled output randomness
challenger on (f, (pw0, pw1)) to obtain (F0, X0, r). Note that F0 and X0 are generated
by the challenger exactly as they would be by SRFE, so these values do not change. If
b = 0, the challenger will return the actual k0,correct as r, and the environment’s view
will be that of Game G3. If b = 1, the challenger will give a random value as r. If r is
truly random, then so is r⊕Y1; so, the environment’s view will be that of Game G4.
The adversary B then returns the environment’s guess as b′. The advantage of B
in the garbled output randomness game will be exactly the same as that of the
environment in distinguishing between Game G3 and Game G4.

Game G5: Allowing F to Choose Keys For Both Honest Parties With Dis-
similar Pass-strings
Modifications to F : We now allow F to follow the instructions in Figure 4 to choose
the key for P1 as well as for P0 when P0 and P1 are both honest, and d(pw0, pw1) > δ.

40

We can use any environment who can distinguish this game from Game G4 to build
an adversary that can break the garbled output randomness property (Definition 9,
Theorem 10) of our garbling scheme, exactly as we did in the reduction above.

Game G6: Simulating F,X for One of Two Honest Parties
Modifications to SRFE: Consider the case when both P0 and P1 are honest. In this
game, the simulator replaces P0’s garbled circuit and input with simulated ones.
SRFE does not need to simulate anything relating to the OT, since the environment
cannot observe OT functionality inputs or outputs if both participating parties are
honest. SRFE uses the obliviousness simulator to generate F0, X0 (while continuing to
generate F1, X1 honestly), and sends the garbled circuits and the appropriate parts
of the garbled inputs between the parties. SRFE outputs ⊥ bot as both parties’ keys,
since the outputs don’t matter - F takes care of outputting appropriate keys as of a
few games ago (Game G3 if d(pw0, pw1) ≤ δ, and Games G4,G5 otherwise), so this
change is not observable by the environment.
We can use any environment who can distinguish this game from Game G5 to build
an adversary B that can break the obliviousness property of our garbling scheme. B
executes SRFE’s simulation of P0 as in Game G5, but instead of generating (F0, X0)
and (F1, X1) according to the protocol, it queries the obliviousness challenger on
(f, (pw0, pw1)) to obtain (F0, X0). If b = 0, the challenger will return actual (Fi, Xi)
values, and the environment’s view we will be that of Game G5. If b = 1, the
challenger will return simulated values, and the environment’s view will be that of
this game. The adversary B then returns the environment’s guess as b′. The advantage
of B in the obliviousness game will be exactly the same as that of the environment
in distinguishing between Game G5 and Game G6.

Game G7: Removing Pass-string Forwarding Always
Modifications to F : We now modify F to forward only (NewSession, sid,Pi) to SRFE
(omitting the pass-string pwi) for Pi ∈ {P0,P1} when P0 and P1 are both honest.
Modifications to SRFE: In Game G6, SRFE started simulating P0’s messages with-
out using knowledge of pw0. SRFE now also simulates P1’s messages by using the
obliviousness simulator to generate the garbled circuit and input F1, X1.
We can use any environment who can distinguish this game from Game G6 to build
an adversary B that can break the obliviousness property of our garbling scheme. B
executes SRFE’s simulation of P1 as in Game G6, but instead of generating (F1, X1)
according to the protocol, it queries the obliviousness challenger on (f, (pw1, pw0))
to obtain (F1, X1). If b = 0, the challenger will return actual (F1, X1) values, and the
environment’s view we will be that of Game G6. If b = 1, the challenger will return
simulated values, and the environment’s view will be that of this game. The adversary
B then returns the environment’s guess as b′. The advantage of B in the obliviousness
game will be exactly the same as that of the environment in distinguishing between
Game G6 and Game G7.

Game G8: Setting the Malicious Input as in the “Standard Corruption Model”
Modifications to SRFE: In this game, SRFE sets a corrupt party P1−i’s NewSession
input according to the standard corruption model [Can01]. It does so as soon as it

41

sees pw′1−i, when it is given as an input to the ideal OT functionality. Since F does
not currently use pw1−i, this does not affect the environment’s view.

Game G9: Allowing F to Choose the Key For An Honest Party With a Pass-
string Dissimilar to Its Corrupt Partners’
Modifications to F : We now allow F to follow the instructions in Figure 4 to choose
all keys. Note that the only remaining scenario this affects is the one where only one
party Pi ∈ {P0,P1} is honest, and d(pw0, pw1) > δ. If both parties are corrupt, or
if only one party is corrupt and d(pw0, pw1) ≤ δ, F still simply forwards the output
key.
We can use any environment who can distinguish this game from Game G8 to build
an adversary B that can break the garbled output randomness property (Definition 9,
Theorem 10) of our garbling scheme. Our adversary B executes SRFE’s simulation of
P0 with the F of Game G8 with some modifications. Instead of running Gb first, it
waits to see P1−i’s input pw′1−i to the ideal OT functionality, and then queries the
garbled output randomness challenger on (f, (pwi, pw′1−i)) to obtain (Fi, Xi, r). Note
that Fi and Xi are generated by the challenger exactly as they would be by SRFE,
so those values do not change. The adversary then uses r as ki,correct. If b = 0, the
challenger will return the actual ki,correct as r, and the environment’s view will be
that of Game G8. If b = 1, the challenger will give a random value as r. If r is truly
random, then so is r⊕Y1−i; so, the environment’s view will be that of Game G9. The
adversary B then returns the environment’s guess as b′. The advantage of B in the
garbled output randomness game will be exactly the same as that of the environment
in distinguishing between Game G8 and Game G9.

Game G10: Simulating Garbled Circuit and Inputs For An Honest Party With
a Corrupt Partner
Modifications to SRFE: In this game, SRFE simulates Fi and Xi when Pi is honest
and P1−i is corrupt.
In more detail, SRFE proceeds as follows on behalf of Pi:
– SRFE postpones step 1.
– In step 2, SRFE:
• Plays an OT sender as follows:
∗ Waits for P1−i to provide their select bits to the OT. As a result, SRFE

learns the pass-string used by P1−i, pw′1−i.
∗ If d(pwi, pw′1−i) ≤ δ sets y = 1, and sets y = 0 otherwise.
∗ Uses the privacy simulator for the garbling scheme to generate
(Fi, Xi, di)← S(1λ, f, y).
∗ Parses (Xi,i, Xi,1−i)← Xi.
∗ Sends Xi,1−i to P1−i as the OT output.

• Plays an OT receiver honestly.
– SRFE follows the instructions in Figure 5 for steps 3-8.

We can use any environment who can distinguish this game from Game G9 to build
an adversary B that can break the privacy property of our garbling scheme. Our
adversary B executes SRFE’s simulation of P0 with some modifications. Instead of

42

running the privacy simulator S, it queries the privacy challenger on (f, (pwi, pw′1−i))
to obtain (Fi, Xi, di). If b = 0, the challenger will return actual (Fi, Xi, di) values,
and the environment’s view will be that of Game G9; if b = 1, the challenger return
simulated values, and the environment’s view will be that of this game. The adversary
B then returns the environment’s guess as b′. The advantage of B in the privacy
game will be exactly the same as that of the environment in distinguishing between
Game G9 and Game G10.

Game G11: Removing Pass-string Forwarding To An Honest Party With a
Corrupt Partner
Modifications to F :
– If Pi is honest and P1−i is corrupt, then, upon receiving a NewSession query, F

forwards only (NewSession, sid,Pi) to SRFE (omitting the pass-string pwi).
– F now processes TestPwd queries (which were not issued in any prior game)

according to the instructions in Figure 4. Given a (TestPwd, sid,Pi) query (Pi ∈
{P0,P1}), if d(pw0, pw1) ≤ δ, F sends pwi to SRFE.

Modifications to SRFE: Now that SRFE does not know Pi’s pass-string, it must simu-
late the honest party’s messages without that knowledge.
In more detail, SRFE proceeds as follows on behalf of Pi:
– SRFE postpones step 1.
– In step 2, SRFE:
• Plays an OT sender as follows:
∗ As in Game G10, waits for P1−i to provide their select bits to the OT.

As a result, SRFE learns the pass-string used by P1−i, pw′1−i.
∗ Makes a (TestPwd, sid,Pi) query to F . If d(pwi, pw′1−i) ≤ δ (that is,

the adversary has approximately guessed Pi’s pass-string), SRFE learns
pwi, and sets pw′i = pwi. Otherwise, it sets pw′i at random such that
d(pw′i, pw′1−i) > δ, and uses pw′i in place of pwi in the rest of the simu-
lation.
∗ As in Game G10, If d(pwi, pw′1−i) ≤ δ sets y = 1, and sets y = 0

otherwise.
∗ As in Game G10, uses the privacy simulator for the garbling scheme to

generate (Fi, Xi, di)← S(1λ, f, y).
∗ As in Game G10, parses (Xi,i, Xi,1−i)← Xi.
∗ As in Game G10, sends Xi,1−i to P1−i as the OT output.

• Plays an OT receiver honestly with pw′i.
– SRFE follows the instructions in Figure 5 for steps 3-8.

Nothing could have changed from the point of view of Z. If d(pwi, pw′1−i) ≤ δ, this
game is identical to Game G10. If d(pwi, pw′1−i) > δ, a random pw′i is used instead
of pwi. However, pw′i only affects the OT execution with Pi as receiver, where P1−i
does not receive any outputs anyway. In this case, Pi’s output key gets set randomly
by F as of Game G9, so that does not change.

In Figure 21, we show the simulator SRFE for ΠRFE.

43

– Upon receiving (NewSession, sid,Pi) from FPRFE for honest party Pi when P1−i is also honest, SRFE
generates Fi, X1−i using the obliviousness simulator for the garbling scheme, and sends those to P1−i.

– Upon receiving (NewSession, sid,Pi) from FPRFE for honest party Pi when P1−i is corrupt, SRFE does the
following:
• SRFE postpones step 1.
• In step 2, SRFE:

∗ Plays an OT sender as follows:
· Waits for P1−i to provide their select bits to the OT. As a result, SRFE learns the pass-

string used by P1−i, pw′1−i.
· Makes a (TestPwd, sid,Pi) query to F . If d(pwi, pw

′
1−i) ≤ δ (that is, the adversary has

approximately guessed Pi’s pass-string), SRFE learns pwi, and sets pw′i = pwi. Otherwise,
it sets pw′i at random such that d(pw′i, pw

′
1−i) > δ, and uses pw′i in place of pwi in the

rest of the simulation.
· If d(pwi, pw

′
1−i) ≤ δ sets y = 1, and sets y = 0 otherwise.

· Uses the privacy simulator for the garbling scheme to generate (Fi, Xi, di)← S(1λ, f, y).
· Parses (Xi,i, Xi,1−i)← Xi.
· Sends Xi,1−i to P1−i as the OT output.

∗ Plays an OT receiver honestly with pw′i.
• SRFE follows the instructions in Figure 5 for steps 3-8 with pw′i.

Additionally, SRFE forwards all other instructions from Z to A and reports all output of A towards Z. In-
structions of corrupting a player are only obeyed if they are received before the protocol started, i.e., before S
received any NewSession query from FPRFE.

Fig. 21. Simulator SRFE for ΠRFE

D Proof that sFP
RFE is Enough to Realize FP

fPAKE

In Figure 22, we describe a protocol fPAKEYGC which trivially realizes FPfPAKE in the
sFPRFE-hybrid model.

Upon receiving the input (sid, pwi), Pi ∈ {P0,P1} does the following:

– Sends (Init, sid) to sFPRFE;
– Sends (NewSession, sid, pwi) to sFPRFE;
– Waits for k from sFPRFE, and
– Outputs k.

Fig. 22. Protocol fPAKEYGC realizing FPfPAKE in the sFPRFE-hybrid model.

Theorem 11. Protocol fPAKEYGC realizes FPfPAKE in the sFPRFE-hybrid model.

Proof. For every efficient adversary A, we describe a simulator SfPAKE in Figure 23
such that no efficient environment can distinguish an execution with the real protocol
fPAKEYGC and A from an execution with the ideal functionality FPfPAKE and SfPAKE. Since
the environment does not get any information about the honest parties except their out-
put, all the simulator needs to do is respond to queries to sFPRFE. Since the honest party
does nothing except query the ideal functionality sFPRFE, and its output gets replaced by
values chosen by FPfPAKE, there is nothing to simulate.

44

SfPAKE responds to queries to sFPRFE as follows:

– Upon getting (Init, sid) from A on behalf of corrupt party P1−i ∈ {P0,P1}, SfPAKE does
nothing.

– Upon getting (Init, sid,Pi, H, sidH) from A, SfPAKE does nothing.
– Upon getting (NewSession, sid, pwi) from A on behalf of honest party Pi ∈ {P0,P1}, SfPAKE

does nothing.
– Upon getting (NewSession, sid, pw′1−i) from A on behalf of corrupt party P1−i ∈ {P0,P1},
SfPAKE:
• Records pw′1−i;
• Sends (TestPwd, sid,Pi, pw′1−i) to FPfPAKE;
• If d(pwi, pw

′
1−i) ≤ δ, SfPAKE learns pwi.

– Upon getting a (TestPwd, sid,Pi) query fromA, SfPAKE responds with the output of the TestPwd
query above.

– Upon getting a (NewKey, sid,Pi, ki) query from A, if Pi is corrupt, SfPAKE outputs ki to Pi. In
any case, SfPAKE forwards (NewKey, sid,Pi, ki) to FPfPAKE.

Additionally, SfPAKE forwards all other instructions from Z to A and reports all output of A towards
Z. Instructions of corrupting a player are only obeyed if they are received before the protocol started,
i.e., before S received any NewKey query from FPfPAKE.

Fig. 23. Simulator SfPAKE for fPAKEYGC.

All that remains to show is that the values produced by FPfPAKE and by sFPRFE are
identically distributed. We describe the outputs of FPfPAKE and sFPRFE in Figure 24. The
table enumerates all possible cases in the functionalities. Cases in sFPRFE are described
in terms of the distances between pass-strings: between the honest parties’ pass-strings
if no man in the middle attack occurred, and between adversarial and honest pass-
strings if it did. (If the adversary engaged one party but not the other, only one of the
distances is filled in.) Cases in FPfPAKE are described in terms of record markings (“fresh”,
“compromised” or “interrupted”). There is a one-to-one mapping between the cases in
sFPRFE and FPfPAKE such that the outputs for the parties, whether they are honest or
corrupt, are identically distributed. Those outputs are described in the last three columns
of the table, as tuples of values the first of which is output to P0, and the second of which
is output to P1. a, b are adversarially chosen values (which may or may not be distinct).
r, s are independent, uniformly random values.

The transformation of Barak et al. proceeds in two steps. First, links are initialized:

1. Each party generates a signing and verification key pair, and sends the verification
key to its partner.

2. Each party then signs the key it receives and sends the signature back.
3. Each party verifies the signature it receives on its own verification key using the

verification key it received; if the signature does not verify, it aborts.

Second, the parties run the protocol exactly as they would over authenticated channels,
signing each message with their signing key, and verifying each signature they receive.

45

sFPRFE FPfPAKE
outputs in both sFPRFE

and FPfPAKE
distance

between P0’s
pass-string and

P1’s
pass-string

d(pw0, pw1), if
MITM didn’t

happen

distance
between P0’s

pass-string and
the adversary’s
d(pw0, pw

′
1), if

MITM
happened

distance
between P1’s

pass-string and
the adversary’s
d(pw′0, pw1), if

MITM
happened

P0’s record P1’s record
P0 and
P1

honest

P0

honest,
P1

corrupt

P0 and
P1

corrupt

close (≤ δ) fresh fresh r, r a, b a, b
far (> δ) fresh fresh r, s r, b a, b

close (≤ δ) close (≤ δ) compro-
mised

compro-
mised a, b a, b a, b

close (≤ δ) far (> δ) compro-
mised interrupted a, s a, b a, b

close (≤ δ) compro-
mised fresh a, s a, b a, b

far (> δ) close (≤ δ) interrupted compro-
mised r, b r, b a, b

far (> δ) far (> δ) interrupted interrupted r, s r, b a, b
far (> δ) interrupted fresh r, s r, b a, b

close (≤ δ) fresh compro-
mised r, b r, b a, b

far (> δ) fresh interrupted r, s r, b a, b

Fig. 24. Output tables for FPfPAKE and sFPRFE. r, s represent random outputs, while a, b represent adver-
sarially chosen outputs.

Applying this transformation adds (1) two rounds of communication, and (2) a
hash operation and a signature operation for each message, assuming the hash-and-sign
paradigm is used.

E A Concrete OT

In this section, we recall a concrete UC-secure oblivious transfer protocol due to Chou
and Orlandi [CO15]. While they consider the general case of 1-out-of-n transfer, we only
consider n = 2. Say m 1-out-of-2 OTs are performed. The protocol requires the sender to
compute m+ 2 exponentiations, and the receiver to compute 2m exponentiations, for a
total of 3m+ 2 exponentiations. Figure 25 shows a summary of the protocol. Note that
this construction does require a random oracle.

F Proof of Theorem 6

We proceed in a series of games, starting with the real execution of the protocol and
ending up with the ideal execution, with a simulator. To abbreviate notation, we skip all
role tags used by F`-iPAKE since they are not needed due to the symmetric layout of the
protocol. For convenience, we refer to a query (NewKey, sid,Pi, `′, ki) from the adversary S
as due when:

– Pi is honest

46

Sender S Receiver R

a
$← Zp

A = ga
A−−−−−−−−−−−−−−−−−−→

T = Aa

m times



let M0,M1 be the let c ∈ {0, 1} be the
current messages current choice bit

b
$← Zp

B←−−−−−−−−−−−−−−−−−− B = Acgb

k0 = H(A,B,Ba) kc = H(A,B,Ab)
k1 = H(A,B,Ba/T)

e0 ← Ek0(M0)
e1 ← Ek1(M1)

e0, e1−−−−−−−−−−−−−−−−−−→
Mc = DkR(ec)

Fig. 25. A Concrete OT [CO15] to be used in ΠRFE

The functionality F`-iPAKE is parameterized by a security parameter λ and makes use of two
initially empty lists ΛP and ΛL, storing pass-strings and labels, respectively. It interacts with an
adversary S and the (dummy) parties P0 and P1 via the following queries:
– Upon receiving a query (NewSession, sid, pwi, role, `) from party Pi:

• Send (NewSession, sid,Pi, role, `) to S;
• If one of the following is true, record (Pi, pwi) in ΛP and mark this record fresh, and

record (Pi, `) in ΛLunless there already exists a record (Pi, ·) in ΛL.
∗ This is the first NewSession query
∗ This is the second NewSession query and there is a record (P1−i, pw1−i)

– Upon receiving a query (TestPwd, sid,Pi, pw
′
i, `

′) from S :
If there is a fresh record (Pi, pwi) in ΛP , then do:
• If pwi = pw′i, mark the record compromised; else mark it interrupted;
• Record (P1−i, `

′) in ΛL, possibly overwriting any existing record (P1−i, ·).

– Upon receiving a query (NewKey, sid,Pi, sk) from S, where |sk| = λ:
If there is a record (P1−i, `) in ΛL, extract ` from it; otherwise set `← ⊥.
If there is a record of the form (Pi, pwi) in ΛP , and this is the first NewKey query for Pi, then:
• If at least one of the following is true, then output (sid, `, sk) to player Pi:

∗ The record is compromised
∗ Pi is corrupted
∗ The record is fresh, P1−i is corrupted, and there is a record (P1−i, pw1−i) with

pw1−i = pwi
• If this record is fresh, both parties are honest, there is a record (P1−i, pw1−i) with

pw1−i = pwi, a key sk′ was sent to P1−i, and (P1−i, pw1−i) was fresh at the time, then
output (sid, `, sk′) to Pi;

• In any other case, pick a new random key sk′ of length λ and send (sid, `, sk′) to Pi.
No matter what, mark the record (Pi, pwi) as completed.

Fig. 26. Functionality F`-iPAKE

47

The parties P0 and P1 are running with FCRS,FRO and FIC.
Protocol Steps:

1. When a party Pi, i ∈ {0, 1}, receives an input (NewSession, sid,Pi, pwi, `) from Z, it does the
following:
– chooses x $← Fq
– sends (sid, crs) to FCRS and receives (sid, (g, q)) back
– sends (sid, E , pwi||`, gx) to FIC and receives (sid, X∗) back
– sends (sid, `,X∗) to P1−i and waits for an answer

2. When Pi, who already obtained an input (NewSession, sid,Pi, pwi, `) and thus holds
(x, (g, q), X∗), receives a message (sid, `′, Y ∗) from P1−i, it
– sends (sid,D, pwi||`, Y ∗) to FIC and receives (sid, X ′) back
– sends (sid, X∗, Y ∗, X ′y) to FRO and receives (sid, ki) back
– outputs (sid, `′, ki) towards Z and terminates the session.

Fig. 27. A UC Execution of EKE2. We skip the role tags since they are not needed due to the symmetric
layout of the protocol.

– there is a fresh record of the form (Pi, pwi) in ΛP
– this is the first NewKey query for Pi
– there is a record (P1−i, pw1−i) in ΛP with pwi = pw1−i and P1−i is honest
– a key k1−i was sent to the other party, and (P1−i, pw1−i) was fresh at the time.

Game G0: The real protocol execution. This is the real execution where the en-
vironment Z runs the EKE2 protocol (see Figure 27) with parties P0 and P1, both
having access to ideal CRS, RO, and IC functionalities, and an adversary A that,
w.l.o.g., is assumed to be the dummy adversary as shown in [Can01, section 4.4.1].

Game G1: Modeling the ideal layout. We first regroup and create new machines,
similar to Game 1 in the proof of Theorem 7. The new machine S executes the code
of the CRS, RO and IC functionalities as depicted in Figures 13, 14, and 15.

Game G2: Simulating the ideal functionalities. We modify simulation of FRO and
FIC as follows. We let S implement Figure 15 by maintaining a list ΛIC with entries
of the form (k,m, α, E|D, c). S handles encryption and decryption queries as follows:
– Upon receiving (sid, E , k,m) (for shortness of notation, we will also write Ek(m)

for this query), if k /∈ Fp or m /∈ G then abort. Else, if there is an entry
(k,m, ∗, ∗, c) in ΛIC , S replies with (sid, c). Else, S chooses c $← G \ {1}. If there
already is a record (∗, ∗, ∗, ∗, ∗, c) in ΛIC , S aborts. Else, S adds (k,m,⊥, E , c)
to ΛIC and replies with (sid, c).

– Upon receiving (sid,D, k, c) (or Dk(c), for short), if k /∈ Fp or c /∈ G then abort.
Else, if there is an entry (k,m, ∗, ∗, c) in ΛIC , S replies with (sid,m). Else, S
chooses α ← F∗q . If there already is a record (∗, ∗, gα, ∗, ∗, ∗) in ΛIC , S aborts.
Else, S adds (k, gα, α,D, c) to ΛIC and replies with (sid, gα).

Similarly, let ΛRO denote the list that S maintains upon implementing Figure 14,
containing entries of the form (m,h). We let S handle queries to FRO as follows:
– Upon receiving H(m), if m /∈ {0, 1}∗ ×{0, 1}∗ ×G3, then abort. Else, if there is

an entry (m,h) in ΛRO, S replies with (sid, h). Else, S chooses h $← {0, 1}k. If

48

FRO FICFCRS

Pi P1−i

A

Z Z

F

SPi P1−i

FRO FICFCRS

A

Fig. 28. Transition from game G0 (left) to game G1 (right), showing a setting where P1−i is corrupted.

there already is a record (∗, ∗, h) in ΛRO, S aborts. Else, S adds (m,h) to ΛRO
and replies with (sid, h).

These modifications later allow S to extract unique inputs from values obtained from
the two functionalities. Especially, note that ΛIC will never contain (∗, ki, ∗, ∗, E , c),
(∗, k1−i, ∗, ∗, E , c) with ki 6= k1−i. The entry α serves S as a trapdoor for solving
discrete-log type problems.
Since q is greater than 2λ, if the oracles are only queried a polynomial number of
times, the birthday problem states that game G1 and game G2 are indistinguishable
with probability overwhelming in λ.

Game G3: Building FiPAKE. In this game, we start modeling F`-iPAKE. First, we let F
maintain two initially empty lists: ΛP , a list of tuples of the form (Pi, pwi) and ΛL,
a list of tuples of the form (Pi, `). Upon receiving a query (NewSession, sid, pwi, `)
from (dummy) party Pi, if this is the first NewSession query, or if this is the second
NewSession query and there is a record (P1−i, pw1−i, `

′), then F records (Pi, pwi) in
ΛP and marks this record as fresh. If ΛL does not contain any record (Pi, ·) so far,
F also records (Pi, `) in ΛL. Then, F relays the query (NewSession, sid, pwi, `) to S.
Now that F knows about pass-strings and labels, we can add a TestPwd interface to
F as described in Figure 8. We let S parse outputs (sid, `′, ki) towards F to be of
the form (NewKey, sid,Pi, `′, ki) by adding the NewKey tag and the name of the party
who produced the output. Additionally, we let F translate this back to (sid, `′, ki)
and send it to Z via the dummy party Pi, marking the corresponding record as
completed.

49

None of these modifications changes the output towards Z compared to the previous
game G2.

Game G4: F generates a random session key for an honest, interrupted ses-
sion. Upon receiving a query (NewKey, sid,Pi, ki) from S, if Pi is not corrupted and
there is a record of the form (Pi, pwi) that is marked as interrupted, and this is
the first NewKey query for Pi, we let F choose a random session key k∗ of length
λ. Additionally, F derives the label as follows: if there is a record (P1−i, `

∗) in ΛL,
extract `∗ from it; otherwise, set `∗ ← ⊥. Then, F outputs (sid, `∗, k∗) to P .
If there is no such interrupted record, F continues to relay ki and `′.
Since the simulators described in game G3 and game G4 do not make use of the
TestPwd interface, none of the records of F are marked as interrupted and thus
the output towards Z is equally distributed in both games.

Game G5: S handles dictionary attacks against the client P0 using the TestPwd
interface. In this game, we will only change the simulation. First note that the
client, the initiator of the protocol, is intended to send the first message, and we call
him P0. If both P0 and P1 are honest, P0 obtained input and Z advises A to sub-
stitute (sid, `′, Y ∗) with (sid, `Z , Y

∗
Z), or if P1 is corrupted and produces (sid, `Z , Y

∗
Z)

as first flow, then S will proceed simulation of P0 using `Z and Y ∗Z . In this sit-
uation, we modify S as follows: upon receiving (sid, `Z , Y

∗
Z), if there is an entry

(pwZ ||ˆ̀, ∗, ∗, E , Y ∗Z) for any ˆ̀ ∈ L in ΛIC
8, the simulator asks a TestPwd query

(TestPwd, sid,P0, pwZ , `Z) to F . S then proceeds the simulation using pwZ and `Z
instead of pw0 and `′9. If there is no entry (pwZ ||ˆ̀, ∗, ∗, E , Y ∗Z) in ΛIC , S sends
(TestPwd, sid,P0, pw0, `Z) to F10.
Regarding the label, observe that S’s NewKey query will contain `Z which was con-
tained in the output of the honest P0 (cf. Figure 27). Since TestPwd queries overwrite
any existing labels, there will be an entry (P1, `Z) in ΛL and thus, regarding the label,
the output towards Z does not change compared to the previous game. Regarding
the session key, we have to analyze different cases depending on whether Y ∗Z was
generated using FIC or not. However, observe that the only changes of session keys
between this and the previous game occur whenever a TestPwd query of S causes a
record to be marked as interrupted.
– There is an entry (pwZ ||ˆ̀, ∗, ∗, E , Y ∗Z) in ΛIC : if pwZ = pw0, the record is marked

compromised and the session key is not changed by F . If pwZ 6= pw0, on the other
hand, the record is marked interrupted and F hands out a random session key,
as opposed to game G4. However, since the session key is distributed as before,
Z can only detect this by reproducing P0’s input (sid, X∗, Y ∗Z ,CDH(Dpw0||`(X

∗),
Dpw0||`Z (Y

∗
Z)) to FRO. Lemma 12 (see below) shows indistinguishability of

game G4 and game G5.
8 This entry is unique due to simulation of FIC as described in game G2.
9 Note that, since F does not leak any information at this point, S cannot depend on the outcome of
a TestPwd query.

10 Letting S guess a pass-string that he actually knows seems a little artificial. Indeed, the simulation in
this case will be changed in game G12 when S becomes oblivious of P0’s pass-string.

50

– There is no entry (∗, ∗, ∗, E , Y ∗Z) in ΛIC : since the TestPwd query will result in
a compromised record, the modified simulation has no impact on the output
towards Z in this case.

The following lemma bounds the probability that an unsuccessful dictionary attack
leads to a non-random looking session key. Since in this case the labels do not play any
role (the encryption keys of the form pass− string||label will not match regardless
of the labels), we ignore them for the sake of simplicity.

Lemma 12. If CDH holds in G, then ∀pw0, Y
∗
Z ← Z, where Y ∗Z is a ciphertext

generated through FIC with some key pwZ 6= pw0, pw0 ∈ Fp, it holds that

Pr
G5

[CDH(Dpw0
(X∗),Dpw0

(Y ∗Z))← Z(X∗)] = negl(λ).

Proof. We create an attacker BCDH given a CDH instance (g,A = ga, B = gb). BCDH
runs Z simulating game G5 as follows: BCDH internally runs all of the participating
machines, i.e. S, F and the dummy parties as in game G5, but with some modifica-
tions. First, BCDH computes X∗ ← Epw0

(A) and updates ΛIC accordingly, aborting
if there already was an entry (pw0, A, ∗, E , ∗). Upon receiving a query Dpw0

(Y ∗Z),
BCDH again aborts if there already is an entry (pw0, ∗, ∗, E , Y ∗Z). Otherwise, it draws
β

$← Fq and sets the answer to this query to be Bgβ . This can happen multiple
times (for different Y ∗Z), and BCDH keeps track of the pairs (β, Y ∗Z) in a list ΛCDH .
The last modification concerns the part of the simulator’s code of game G5 where a
value Z ← Dpw0

(Y ∗)a needs to be computed, but note that BCDH does not know a.
Instead, BCDH just sets Z ← ⊥.
Finally, BCDH picks a random entry from ΛRO asked by the environment, parses it
as ((pw0, X

∗, Y ∗Z , Z), h), looks for an entry (β, Y ∗Z) in ΛCDH and outputs Z/(ga)β as
a CDH solution.
First, note that if BCDH does not abort, it perfectly emulates Z’s view in game G5,
since A,Bgβ are random in G and the record for P0 will be interrupted, which means
that F will output a random session key for P0, overwriting ⊥. Second, BCDH only
has to abort if there is a collision upon choosing random values from G.
Assume that Z outputs CDH(Dpw0

(X∗),Dpw0
(Y ∗Z)) with non-negligible probability.

This is only possible if Z asked both corresponding decryption queries. Existence
of (pwZ , ∗, ∗, E , Y ∗Z) with pwZ 6= pw0 in ΛIC ensures that the answer to Dpw0

(Y ∗Z)
can be chosen by BCDH as described above. Thus, BCDH finds a correct CDH solution
with non-negligible probability 1/qZ , where qZ is the number of hash queries issued
by Z.

Game G6: S handles dictionary attacks against the server P1 using the TestPwd
interface. Again, in this game we only change the simulation. Analogously to
game G5, we let S use the TestPwd interface upon receiving adversarially gener-
ated X∗Z , `Z upon simulating P1. Observe that the only difference is due to the order
of flows: if S extracts an incorrect pass-string, he produces Y ∗ using this wrong pass-
string. However, Y ∗ will be distributed as before and again, Z can only detect the

51

change by reproducing P1’s input to FRO, namely (sid, X∗Z , Y
∗,CDH(Dpw1||`Z (X

∗
Z),

Dpw1||`′(Y
∗)).

Using an analogous argument to Lemma 12, indistinguishability from game G5 fol-
lows from the hardness of CDH in G.

Game G7: F aligns session keys. Upon receiving a query (NewKey, sid,Pi, `′, ki) from
S for a session, if this query is due then output (sid, `∗, k∗) to Pi where k∗ is the session
key that was formerly sent to the other party and the label `∗ is derived as usual: if
there is a record (P1−i, `

∗) in ΛL, extract `∗ from it; otherwise, set `∗ ← ⊥.
We now analyze distinguishability of this game from game G6. If Z tampered with
the transcript, any player that received a modified message will not have a fresh
record anymore (cf. simulation described in games G5 and G6) and the output of
this player towards Z is not changed in this game. On the other hand, if Z does
not advise A to tamper with any message, F did not overwrite any labels and thus
`∗ = `′. Additionally, perfect correctness of the EKE2 protocol ensures that, in case
of a due record, ki = k∗.
Note that F still differs from the functionality F`-iPAKE described in Figure 8 in
some aspects. First, it does not output randomly generated session keys towards Z
for honest sessions. Furthermore, it reports all pass-strings to S. We will take care
of these remaining differences in the next games.

Game G8: In some cases, F generates a random session key when the other
party is corrupted. Upon receiving a NewKey query (NewKey, sid,Pi, `′, ki) from S,
if there is a fresh record of the form (Pi, pwi) in ΛP , and this is the first NewKey query
for Pi, Pi is honest and P1−i corrupted and there is a record (P1−i, pw1−i) in ΛP with
pwi 6= pw1−i, we let F pick a new random key k∗ of length λ and send (sid, `∗, k∗)
to Pi, where `∗, as usual, is taken from the list ΛL or set to be ⊥.
The simulation ensures that the record (Pi, pwi) is either compromised or interrupted
(cf. description of the simulator in games G5 and G6). Thus, the modification has
no effect since it only concerns fresh records.

Game G9: F generates a random session key for an honest session. Upon
receiving a NewKey query (NewKey, sid,Pi, `′, ki) from S, if there is a fresh record of
the form (Pi, pwi) in ΛP , and this is the first NewKey query for Pi, both parties are
honest and the NewKey query is not due, we let F pick a new random key k∗ of
length k and send (sid, `∗, k∗) to Pi, where `∗, as usual, is taken from the list ΛL or
set to be ⊥.
In other words, F now generates a random session key upon a first NewKey query for
an honest party Pi with fresh record (Pi, pwi) where the other party is also honest,
if (at least) one of the following events happens:
1. There is a record (P1−i, pw1−i) in ΛP with pwi 6= pw1−i;
2. No output was sent to the other party yet;
3. If there was output to the other party, the record (P1−i, pw1−i) in ΛP was not

fresh and thus interrupted or compromised at that time
In all of these cases, S chose a fresh ki following a uniform distribution and `′ was
contained in the NewSession query of Pi’s partner, thus `′ = `∗. Regarding the
session key, Z can only notice a difference if it reproduces ki by computing Pi’s

52

input (sid, X∗, Y ∗,CDH(Dpwi||`(X
∗),Dpwi||`′(Y

∗)) to FRO and sending it to FRO via
the adversary A.
The following lemma bounds the probability that a session key of an unattacked
session does not look random.

Lemma 13. If CDH holds in G, then ∀pw, `, `′ ← Z with pw ∈ Fp and `, `′ ∈ L it
holds that

Pr
G9

[CDH(Dpw||`(X
∗),Dpw||`′(Y

∗))← Z(X∗, Y ∗)] = negl(λ).

Proof. We only sketch the proof since it is similar to the proof of Lemma 12. Namely,
the strategy of embedding (randomized versions of) a CDH challenge into the simu-
lation of game G9 is done by just encrypting both CDH challenge elements to obtain
X∗ and Y ∗. For the final argument, note that ⊥ is not seen by Z since it is either
replaced using a random session key or a previously computed key.

It follows that game G8 and game G9 are indistinguishable.
Game G10: F always takes all labels from the list ΛL.We modify F as follows: if F

outputs (sid, `′, ki) towards Pi where `′, ki are taken from a query (NewKey, sid,Pi, `′, ki)
from S, F extracts `∗ from a record (P1−i, `

∗) in ΛL or sets `∗ ← ⊥ if such a record
does not exist. F then outputs (sid, `∗, ki) towards Pi. We additionally modify S to
remove the labels from the NewKey queries altogether.
First observe that we can remove the labels from the NewKey queries because, in
this and the past games, we ensured that F now does not access this label anymore.
However, we still have to argue indistinguishability of the current and the previous
game. The cases where ki of S is relayed by F towards Pi are the following:
– Pi has a compromised record
– Pi is corrupted
– Pi has a fresh record, its partner is corrupted and has a record with a matching

pass-string
In the first case, we have that `′ = `∗ since the label `′ outputted by Pi was also
contained in a TestPwd query by S and overwrote any existing label send by Pi’s
partner. For the second case, observe that since we restrict to static corruption,
corrupted players will not have records in ΛP and thus this case will never happen.
In the third case, corruption of the partner ensures that S issued a TestPwd query
which overwrote any existing label with `′, so `′ = `∗ as well.
Observe that now F acts like F`-iPAKE regarding the output of session keys and labels.
The only remaining difference is that the NewSession queries still contain the pass-
strings of the parties. In the next games, we will make the simulation independent
of these pass-strings.

Game G11: Simulate without pw1 if server P1 is honest. In case of receiving a
(NewSession, sid, pw1, `

′) from an honest P1 playing the role of a server, we modify
F by forwarding only (NewSession, sid,P1, `

′) to S. We now have to modify S to
proceed simulation without knowing pw1. Upon receiving (NewSession, sid,P1, `

′)

53

from F for an honest P1, we let S draw uniformly at random a “dummy” pass-string
pwS and proceed the simulation of P1 using pwS as a pass-string.
We first note that, if at any time S sends a NewKey query to F containing a session key
k1 for P1, this session key is only seen by Z if P1’s record is compromised. Otherwise,
we thus only have to argue indistinguishability of the transcripts of game G10 and
game G11.
– Z sends `Z , X∗Z , there is a record (pwZ ||ˆ̀, X, ∗, E , X∗) in ΛIC for some ˆ̀∈ L and

pwZ = pw1: since S will issue a TestPwd query that will result in a compromised
record (cf. simulation described in game G6), nothing is changed since pwS was
never used, and Y ∗ is generated using the correct pass-string pwZ .

– Z sends `Z , X∗Z , there is a record (pwZ ||ˆ̀, X, ∗, E , X∗) in ΛIC for some ˆ̀∈ L and
pwZ 6= pw1: since P1 will receive a random session key from F in this case (the
record will be marked interrupted), we only have to argue indistinguishability
of Y ∗ generated with pwZ ||`′ instead of pw1||`′. Simulation of FIC ensures that
Y ∗ is distributed uniformly random as before. Observe that here it is crucial
that even for a corrupted session, an interrupted record lets the functionality
hand out a random session key, since S has no means to decide whether it has
to output a session key for P1 that matches the session key that Z can compute
on behalf of P0 from the message (`′, Y ∗).

– Z sends `Z , X∗Z and no E record: the simulation described in game G6 tells S
to issue a TestPwd query, but now using pwS instead of pw1. If, coincidentally,
pw1 = pwS , nothing changes. On the other hand, if pw1 6= pwS , P1 obtains a
random session key from F as opposed to the game before and Y ∗ is created
using pwS ||`′ instead of pw1||`′. This can only be detected if Z reproduces P1’s
input to FRO from game G10, which happens only with negligible probability
according to Lemma 14 (see below).

– both parties honest and no injections: P1 will obtain a uniformly random session
key from F in this case, and thus the only difference is that Y ∗ was created using
pwS ||`′ instead of pw1||`′. Again, this is indistinguishable since Y ∗ is distributed
exactly as before.

The following lemma bounds the probability that an injected X∗ that was not ob-
tained using encryption leads to a non-random looking session key.

Lemma 14. If CDH holds in G, then ∀pw1, `
′, `Z , X

∗
Z ← Z, where X∗Z was not

generated using FIC, `′, `Z ∈ L and pw1 ∈ Fp, it holds that

Pr
G11

[CDH(Dpw1||`Z (X
∗
Z),Dpw1||`′(Y

∗))← Z(Y ∗)] = negl(λ).

Proof. Note that the only difference to Lemma 12 is that this time, no record
(∗, ∗, ∗, E , X∗Z) exists so the fact that BCDH is able to embed an element of its CDH
challenge into Dpw1

(X∗Z) is even more obvious. The rest of the proof is analogously
to Lemma 12.

Game G12: Simulate without pw0 if client P0 is honest. In a similar fashion,
we now let F cut the pass-string from NewSession queries to an honest P0. We

54

again have to modify S to proceed simulation without knowing pw0. Upon receiving
(NewSession, sid,P0, `) from F for an honest P0, we let S draw uniformly at random
a “dummy” pass-string pwS . S proceeds the simulation of P0 using pwS as a pass-
string.
Additionally, we further change S in case of a dictionary attack against client P0, i.e.,
upon receiving `Z , Y ∗Z from Z. After submitting a TestPwd query with an extracted
pwZ , we let S now choose x′ $← FP and add (pwZ ||`, gx

′
, x′,⊥, X∗) to ΛIC and

proceed the simulation of P0 using x′ instead of x.
– Z sends `Z , Y ∗Z , there is a record (pwZ ||ˆ̀, Y, ∗, E , Y ∗) in ΛIC for some ˆ̀ ∈ L

and pwZ = pw0: S will issue a TestPwd query that will result in a compromised
record (cf. simulation described in game G5), resulting in a session key that
is computed using pwZ instead of pwS . Additionally, X∗ is generated using the
incorrect pass-string pwS . However, adjusting ΛIC as described above still allows
S to know the exponent of DpwZ ||`(X

∗) and continue the simulation, making it
look like pwZ was used from the beginning. Z’s view is distributed exactly as
before since x′, x are both uniformly random in FP .

– Z sends `Z , Y ∗Z , there is a record (pwZ ||ˆ̀, Y, ∗, E , Y ∗) in ΛIC for some ˆ̀ ∈ L
and pwZ 6= pw0: since P0 will receive a random session key from F in this case
(the record will be interrupted), we only have to argue indistinguishability of
X∗ generated with pwS |` instead of pw0||`. Simulation of FIC ensures that Y ∗ is
distributed uniformly random as before. Again, it is crucial here that F helps S
by randomizing the session key if needed.

– Z sends `Z , Y ∗Z and no E record: the simulation described in game G5 tells S to
issue a TestPwd query, but now using pwS ||` instead of pw0||`. If, coincidentally,
pw0 = pwS , nothing changes. On the other hand, if pw0 6= pwS , P0 obtains a
random session key from F as opposed to the game before and X∗ was created
using pwS ||` instead of pw0||`. This can only be detected if Z reproduces P0’s
input to FRO from game G11, which happens only with negligible probability
using an argument very similar to Lemma 14.

– both parties honest and no injections: P0 will obtain a uniformly random session
key from F in this case, and thus the only difference is that X∗ was created using
pwS ||` instead of pw0||`. Again, this is indistinguishable since X∗ is distributed
exactly as before.

Observe that in game G12, F = F`-iPAKE
11, and thus the theorem follows. The

complete description of the simulator of game G12 interacting with F`-iPAKE and Z
is given in Figure 29.

11 We note that we can, w.l.o.g, assume that there are no NewSession queries from Z to corrupted
parties. Thus, it is enough to remove the pass-strings from the NewSession queries given as input
from Z to honest parties.

55

The simulator S, initialized with a security parameter λ, first runs a group generation algorithm
using λto obtain a cyclic group G with generator g of order q with log2(q) ≥ λ. Then, S initializes
the dummy adversary A. S then interacts with an ideal functionality F`-iPAKE and an environment
Z via the following queries:
– Upon receiving a query (NewSession, sid,Pi, `) from F`-iPAKE:

• initialize a party Pi, connect it to A and proceed the UC protocol execution de-
scribed in Figure 27 using pwS

$← Fp as pass-string and S’s random coins. (Cf.
games G0,G11 and G12.)

– Upon receiving a query (sid,m) from any entity: (Cf. games G1 and G2.)
If m /∈ 〈g〉3, then abort. Else:
• if there is an entry (m,h) then reply with (sid, h).
• else, choose h $← Fq and abort if there already is an entry (∗, ∗, h) in ΛRO. Else, reply

with (sid, h).
– If an internally simulated party Pi produces an output (sid, `′, ki):

Send (NewKey, sid,Pi, ki) to F`-iPAKE. (Cf. game G1.)
– If Z sends (sid, `Z , Z

∗
Z) to an honest party Pi:

• if (pwZ ||ˆ̀, ∗, ∗, E , Z∗Z) ∈ ΛIC for any ˆ̀ ∈ L, then send (TestPwd, sid,Pi, pwZ , `Z) to
F`-iPAKE and proceed the simulation of Pi with pwZ . (Cf. games G5 and G6.)

• if (∗, ∗, ∗, E , Z∗Z) /∈ ΛIC , then send (TestPwd, sid,Pi, pwS , `Z) to F`-iPAKE. (Cf.
games G5 and G6.)

• if Pi was started with input (NewSession, sid,Pi, `), choose x′
$← FP , add

(pwZ ||`, gx
′
, x′,⊥, Z∗) to ΛIC and proceed as if x′ was the value drawn uniformly random

from Fq at the beginning of the simulation of Pi. (Cf. game G12.)
– Upon receiving a query (sid, Encrypt, k,m) from any entity: (Cf. games G1 and G2.)

If k /∈ Fp or m /∈ G then abort. Else:
• if there is an entry (k,m, ∗, ∗, c) in ΛIC , reply with (sid, c)

• else, choose c $← G \ {1}. If there already is a record (∗, ∗, ∗, ∗, c) then abort. Else, add
(k,m,⊥, E , c) to ΛIC and reply with (sid, c).

– Upon receiving a query (sid, Decrypt, k, c) from any entity: (Cf. games G1 and G2.)
If k /∈ Fp or c /∈ G then abort. Else:
• if there is an entry (k,m, ∗, ∗, c) in ΛIC , reply with (sid,m).
• else, choose α $← F∗p. If there already is a record (∗, gα, ∗, ∗, ∗) then abort. Else, add

(k, gα, α,D, c) to ΛIC and reply with (sid, gα).
– Upon receiving a query (sid, crs) from any entity: (Cf. game G1.)

• reply with (sid, (g, q)).

Additionally, S forwards all other instructions from Z to A and reports all output of A towards Z.
Instructions of corrupting a player are only obeyed if they are received before the protocol started,
i.e., before S received any NewSession query from F`-iPAKE.

Fig. 29. The Simulator S for the EKE2 Protocol

G Proof of Theorem 7

For the proof, we describe an honest execution of the protocol fPAKERSS in the UC
framework in Figure 30. See [FHH14] for a detailed description on how to execute pro-
tocols within the UC framework. This real protocol execution will be the starting point
for our proof. We then proceed in a series of games, to end up with the ideal execution
running with only dummy parties, a simulator and the ideal functionality FMfPAKE. For
convenience, we refer to a received protocol message as adversarially generated if it was

56

not produced by either P0 or P1. We also refer to a query (NewKey, sid,Pi, ki) from the
adversary S with an honest party Pi as due if

– there is a fresh record of the form (Pi, pwi)
– this is the first NewKey query for Pi
– there is a record (P1−i, pw1−i) with d(pwi, pw1−i) ≤ δ and P1−i is honest
– a key k1−i was sent to the other party while (P1−i, pw1−i) was fresh at the time.

We also define a masking function that reveals the positions of the identical bits:

m(pw, pw′) :=
{
i|pwi = pw′i, i ∈ [n]

}

The parties P0,P1 are running with F`-iPAKE.
Protocol Steps:

1. When a party Pi, i ∈ {0, 1}, receives an input (NewSession, sid, pwi, sender) from Z, it does
the following:
– compute (vk, sk)

$← SigGen(1λ)
– query n times F`-iPAKE with (NewSession, sid, (pwi)t, vk), t = 1, ..., n, receiving back

(sid, `t,Kt) as answer
– choose U $← Fq
– compute C ← Share(U)
– compute E ← C + (Kt)

n
t=1

– compute σE ← Sign(vk, E)
– send (sid, E, σE , vk) to P1−i
– set k← U
– send (sid, k) towards Z and terminate the session.

2. When a party Pi, i ∈ {0, 1}, receives an input (NewSession, sid, pwi, receiver) from Z, it does
the following:
– query n times F`-iPAKE with (NewSession, sid, (pwi)t, ε), t = 1, ..., n, receiving back

(sid, `t,K
′
t) as answer

– if not all `t are equal or `1 6= VK, then abort
3. When Pi, who already obtained an input (NewSession, sid, pwi, receiver) and thus holds a

vector (sid, `t,K′t) obtained from F`-iPAKE, receives a message (sid, E, σE , vk) from P1−i, it does
the following:
– set K′ := (K′t)t∈[n]
– abort if vk 6= `1
– abort if Vfy(vk, σE , E) = 0
– compute U ′ ← Reconstruct(E −K′)
– set k← U ′

– send (sid, k) towards Z and terminate the session.

Fig. 30. A UC Execution of fPAKERSS

Game G0: The real protocol execution. This is the real execution of fPAKERSS
where the environment Z runs the protocol (cf. Figure 10) with parties P0 and P1,
both having access to an ideal `-iPAKE functionality F`-iPAKE, and an adversary A
that, w.l.o.g., can be assumed to be the dummy adversary as shown in [Can01, section
4.4.1].

57

Game G1: Modeling the ideal layout.We first make some purely conceptual changes
that do not modify the input/output interfaces of Z. We add one relay (also referred
to as dummy party) on each of the wires between Z and a party. We also add one
relay covering all the wires between the dummy parties and real parties and call it F
(and let F relay messages according to the original wires). We group all the formerly
existing instances except for Z into one machine and call it S. Note that this implies
that S executes the code of the `-iPAKE functionality F`-iPAKE. The differences are
depicted in Figure 20 with FOT replaced by F`-iPAKE.

Game G2: Building FMfPAKE. In this game, we start modeling FMfPAKE. First, we let
F maintain a list of tuples of the form (Pi, pwi). Upon receiving a query of the
form (NewSession, sid, pwi, role) from party Pi, if this is the first NewSession-
query, or if this is the second NewSession-query and there is a record (P1−i, pw1−i),
then F records (Pi, pwi) and marks this record as fresh. In any case the query
(NewSession, sid,Pi, pwi, role) is relayed to S. Now that F knows about pass-strings,
we can add a TestPwd interface to F as described in Figure 2, using leakage functions
LMc , L

M
m and LMf . We let S parse outputs towards F as (NewKey, sid,Pi, ki) by adding

the NewKey tag and the name of the party who produced the output. Additionally, we
let F translate this back to (sid, ki), send it to Z via Pi and mark the corresponding
record as completed.
None of these modifications changes the output towards Z compared to the previous
game G1.

Game G3: F generates a random session key for an interrupted session. Upon
receiving a query (NewKey, sid,Pi, ki) from S, if there is a record of the form (Pi, pwi)
that is marked as interrupted, and this is the first NewKey query for Pi, we let F
output a random session key of length λ to Pi. Otherwise, it continues to relay ki.
Since the simulators described in game G2 and game G3 do not make use of the
TestPwd interface, none of the records of F are marked as interrupted and thus
the output towards Z is equally distributed in both games.

Game G4: S handles dictionary attacks using the TestPwd interface. In this
game, we only change the simulation. Consider the following setting: Pi obtained
input (NewSession, sid, pwi, role) and P1−i is corrupted and already provided its
inputs to F`-iPAKE. In this situation, S will proceed simulation of Pi as follows:
S assembles pwZ ∈ Fnp from the queries to F`-iPAKE that P1−i issued. S sends
(TestPwd, sid,Pi, pwZ) to F , obtaining either “wrong guess”, “correct guess” and per-
haps also a mask M ⊆ [n] from F . If S does not receive a mask, S is not modified
further. Else, let I := [n] \M the set of mismatching indices, and d := |I| ≤ γ their
number. S sets up keys K,K ′ ∈ Fnq with Kt = K ′t

$← Fq for the matching indices
t ∈ M and Kt,K

′
t

$← F2
p for the mismatching indices t ∈ I, where K ′ denotes the

F`-iPAKE output of P1−i. S now continues the simulation of Pi using K as output of
F`-iPAKE.
We have to analyze different cases depending on the different outcomes of TestPwd.
However, note that the modifications only have an impact on the output ki of Pi

58

if the record gets interrupted, and only affect the transcript if the answer to the
TestPwd query contains a mask. Considering the case where TestPwd
– outputs m and sets the record compromised, i.e. d ≤ γ since the distribution of
K,K ′ only depends on the mask of the pass-strings, the view of Z is identically
distributed in game G4 and game G3;

– outputs “wrong guess” and sets the record interrupted, i.e. d > γ: Pi will now
obtain a randomly chosen session key from F , substituting the key ki computed
by S. If Pi obtained role = sender, the output in game G4 and game G3 is
equally distributed since the honest sender outputs a random Fq value according
to the protocol description. If Pi obtained role = receiver, both outputs are
indistinguishable with overwhelming probability due to the smoothness of the
RSS, since in game G3 at least γ + 1 shares are random.

Game G5: Excluding man-in-the-middle attacks. Again, in this game, we only
change the simulation. We now consider the case where Z injects a message into a
session where both parties are honest. We modify S as follows: upon receiving an
adversarially generated (sid,MZ , σZ , vkZ) from Z intended for party Pi, S aborts.
Observe that the simulation is only changed compared to the previous game if it
is not aborted due to protocol instructions. This means that both games are equal
unless all checks pass, especially Vfy(vkZ , σZ ,MZ) = 1. Any distinguisher between
game G5 and game G4 can thus be turned into a forger of a valid message w.r.t
the verification key of an honest party. Indinstinguishability thus follows from the
security of the one-time signature scheme.

Game G6: F aligns session keys. Upon receiving a query (NewKey, sid,Pi, ki) from
S, if this query is due then output (sid, k1−i) to Pi where k1−i is the session key that
was formerly sent to the other party.
We now analyze distinguishability of this game from game G5. If Z tampered with
the transcript, the simulation in game G5 ensures that the simulation aborts and
there is thus no NewKey query for Pi. On the other hand, if Z does not advise A
to tamper with any message, perfect correctness of fPAKERSS protocol ensures that,
in case of a due record where the parties hold close pass-strings pwi, pw1−i with
d(pwi, pw1−i) ≤ n − r, the output of F towards Z is the same as in the previous
game G5. Observe that perfect correctness directly follows from the perfect correct-
ness of F`-iPAKE and the r-robustness of the secret sharing, which is always able to
correct up to n− r errors.
Note that F still differs from the functionality FMfPAKE in some aspects. First, it
does not output randomly generated session keys towards Z for honest sessions.
Furthermore, it reports all pass-strings to S. We will take care of these remaining
differences in the next games.

Game G7: In some cases, F generates a random session key when the other
party is corrupted. Upon receiving a NewKey query (NewKey, sid,Pi, ki) from S,
if there is a fresh record of the form (Pi, pwi), and this is the first NewKey query
for Pi, Pi is honest and P1−i corrupted and there is a record (P1−i, pw1−i) with
d(pwi, pw1−i) > δ, we let F pick a new random key k from Fq and send (sid, k)
to Pi.

59

The simulation ensures that the record (Pi, pwi) is either compromised or interrupted
(cf. description of the simulator in game G4). Thus, the modification has no effect
since it only concerns fresh records.

Game G8: F generates a random session key for an honest session. Upon
receiving a NewKey query (NewKey, sid,Pi, ki) from S, if there is a fresh record of
the form (Pi, pwi), and this is the first NewKey query for Pi, both parties are honest
and the NewKey query is not due, we let F pick a new random key k from Fq and
send (sid, k) to Pi.
In other words, F now generates a random session key upon a first NewKey query for
an honest party Pi with fresh record (Pi, pwi) where P1−i is also honest, if (at least)
one of the following events happen:
1. There is a record (P1−i, pw1−i) with d(pwi, pw1−i) > δ; then, the probability that

ki was already random in game G7 is overwhelming due to the r−1-smoothness
of the RSS on random secrets. Note that to apply this property it is crucial that
both parties are honest and thus the value U is randomly chosen.

2. No session key was sent to P1−i yet; we just have to consider the case where
there is a record (P1−i, pw1−i) with d(pwi, pw1−i) ≤ δ since we already dealt
with the other case in the first event. Due to the r-robustness of the RSS, the
session key in the previous game was U , which is distributed uniformly random
in Fq.

3. If there was a session key sent to P1−i, the record (P1−i, pw1−i) was not fresh
and thus interrupted or compromised at that time; since our simulation never
issues TestPwd queries for honest sessions (in fact, game G5 states that S aborts
upon man-in-the-middle attacks with overwhelming probability), this event can
not happen in our simulation.

Game G9: Simulating without pass-string if both parties are honest. In case
of receiving a (NewSession, sid, pwi, role) from an honest Pi, we modify F by for-
warding only (NewSession, sid,Pi, role) to S. We now have to modify S to proceed
simulation without knowing pw. Upon receiving (NewSession, sid,Pi, role) from F
for an honest Pi, we let S draw uniformly at random a “dummy” pass-string pwS
and proceed the simulation of Pi using pwS as a pass-string.
We first observe that Z is oblivious of ki contained in the (NewKey, sid,Pi, ki) query
that S will eventually send to F during the simulation (since F never lets the sim-
ulator determine ki for an honest session). We thus only have to consider the case
where Pi has role = sender. We show that Z, knowing pwi, pw1−i and seeing two
transcripts, cannot tell which one was generated using pwi, pw1−i and which one was
generated using pwS , pw1−i with a random pwS unknown to Z. But this is trivial
since the distribution of the values U,K does not depend on the pass-strings: U is
randomly chosen from Fq. F`-iPAKE ensures that K is randomly chosen from Fnq .

Game G10: Simulating without pass-string if someone is corrupted. Upon re-
ceiving (NewSession, sid, pwi, role) from Pi where P1−i is corrupted, we modify F
to only relay (NewSession, sid,Pi, role) to S. Additionally, we let S draw uniformly
at random a “dummy” pass-string pwS and proceed the simulation of Pi using pwS
as a pass-string. Note that due to the simulation described in game G4, S will

60

ask a TestPwd query, and after this query the simulation described in that game
is already independent of pwi except when F ’s reply does not contain a mask, i.e.,
d(pwi, pw1−i) > γ. In this case, we now let S set the output of F`-iPAKE towards Pi
to be a random K

$← Fnq .
Regarding indistinguishability, first note that in any case the input of Pi to F`-iPAKE
does not impact any values and thus we only have to argue further in case S is mod-
ified. Thus, Pi’s record will get interrupted and Pi will obtain a uniformly random
session key from F , meaning that we only have to consider the case where Pi has
role = sender and argue indistinguishability of E, σE , vk generated with either K
depending on pwi (as in the previous game) or K $← Fnq (as in the current game).
Opposed to the situation in game G9, note that now Z knows K ′.
Since d(pwi, pw1−i) > γ = n− t− 1, at most t components of K ′ are the same as K
in G9 with large probability 1− n−t

q , and thus w.h.p. Z learns at most t components
of C. Hence the transcript of the current and previous games are indistinguishable
due to the strong t-privacy of the RSS.
Observe that now F is equal to FMfPAKE and S is equal to the simulator described in
Figure 31. The theorem thus follows.

The simulator S, initialized with a security parameter λ, initializes the dummy adversary A. S em-
ulates an ideal labeled iPAKE functionality F`-iPAKE as depicted in Figure 26 for all calling entities
in the systema. Additionally, S interacts with an ideal functionality FMfPAKE and a distinguisher,
the environment Z, via the following queries:
– Upon receiving a query (NewSession, sid,Pi, role) from FM

fPAKE: initialize a party Pi and
connect it to A.
• If P1−i is honest, S proceeds the UC protocol execution as described in Figure 30 using

pwS
$← Fp as pass-string for Pi. (Cf. game G9.)

• If P1−i is corrupted, then S waits until P1−i submitted n queries to F`-iPAKE and then
assembles pwZ ∈ Fnp from them. S sends (TestPwd, sid,Pi, pwZ) to FMfPAKE. If S receives
back a mask M , let I := [n] \ M , and S sets up n Fq-keys K with Kt = K′t ∀t ∈ I

and Kt
$← Fp 6= K′t ∀t ∈ M , where K′ denotes the output of F`-iPAKE towards P1−i. S

now continues the simulation of Pi using K as outputs of F`-iPAKE. (Cf. game G4.) If S
does not receive a mask, S sets the output of F`-iPAKE towards Pi to be K $← Fnq . (Cf.
game G10.)

– If an internally simulated party Pi produces an output (sid, ki):
Send (NewKey, sid,Pi, ki) to FMfPAKE.

– If Z sends (sid,MZ , σZ , vkZ) to an honest party Pi: if P1−i is honest, S aborts after the
Vfy step in the protocol, regardless of its outcome. (Cf. game G5.)

Additionally, S forwards all other instructions from Z to A and reports all output of A towards Z.
Instructions of corrupting a player are only obeyed if they are received before the protocol started,
i.e., before S received any NewSession query from FMfPAKE.

a An entity is any internally simulated ITM such as parties or the real-world adversary as well as
ITMs outside S such as the distinguisher Z.

Fig. 31. The Simulator S for fPAKERSS

61

P0(pw ∈ Fnq) P1(pw
′ ∈ Fnq)

w
$← Fkq , c← Share(w) ∈ Fnq

s← c+ pw
s−−−−−−−−−−−−−−−−−−→ c′ ← s+ pw′

w′ ← Reconstruct(c′)
K

PAKE(w,w′)←−−−−−−−−−−−−−−−−→ K′

sk← K sk′ ← K′

Fig. 32. A First Natural Construction (with code-offset fuzzy sketch and PAKE)

H A Natural (But Failed) Approach to fPAKE

A natural idea for building a fPAKE is the use of a fuzzy extractor [DRS04, Boy04],
that allows to extract a common secret from two strings close enough, and to compose
it with a regular PAKE. This approach was introduced in [BDK+05] (Section 4). Their
protocol uses the code-offset construction of a fuzzy sketch [DRS04], a.k.a. fuzzy com-
mitment [JW99], to implement a fuzzy-extractor as a two-party primitive. It is presented
in Figure 32.

Theorem 15. The construction from Figure 32 cannot securely realize FPfPAKE.

Proof. Consider the following attack by Z. Z sends a randomly chosen pw as input to an
honest P0 and obtains a sketch s from A. It then computes c← s−pw and outputs 1 if c
is in the image of Share. In the real world, this happens with probability 1. Now assume
there is a simulator S outputting a simulated sketch s̃ in the ideal world. Since S does
not get to learn pw unless it succeeds at a TestPwd query, observe that this output may
not depend on pw except with some small (but non-negligible) probability p, namely the
probability of guessing a pass-string that makes FPfPAKE output pw. Thus, with probability
1− p ≈ 1, c̃ := s̃− pw is randomly distributed in Fnq and lies in the image of Share only
with probability 1/qmn−l. More formally, the probability that Z outputs 1 in the ideal
world is

Pr[c̃ ∈ Im(Share)] = Pr[c̃ ∈ Im(Share)|S depends on pw] · p
+ Pr[c̃ ∈ Im(Share)|S does not depend on pw] · (1− p)
≤ p+ 1/qmn−l(1− p) ≈ p.

62

	Fuzzy Password-Authenticated Key Exchange
	Introduction
	Our Contributions

	Security Model
	General Construction Using Garbled Circuits
	Building Blocks
	Oblivious Transfer (OT)
	Yao's Garbled Circuits (YGC)
	Malicious Security: A New Take on Dual Execution with Privacy-Correctness Tradeoffs

	Construction
	The Randomized Fuzzy Equality Functionality
	A Randomized Fuzzy Equality Protocol
	From Split Randomized Fuzzy Equality to fPAKE

	An Efficient Circuit f for Hamming Distance

	Specialized Construction For Hamming Distance
	Building Blocks
	Robust Secret Sharing
	Linear Codes
	Implicit-Only PAKE

	Construction
	Security of fPAKE RSS
	Further Discussion: Removing Modeling Assumptions

	Comparison of fPAKE Protocols
	Ideal UC Functionalities
	Garbled Output Randomness: A New Yao's Garbled Circuit Definition
	Proof of Theorem 1
	Proof that sFRFEP is Enough to Realize FfPAKE P
	A Concrete OT
	Proof of Theorem 6
	Proof of Theorem 7
	A Natural (But Failed) Approach to fPAKE

