
3

Hardware Aspects of Montgomery Modular

Multiplication*

Colin D. Walter

Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, United Kingdom

Abstract

This chapter compares Peter Montgomery's modular multiplication

method with traditional techniques for suitability on hardware platforms.

It also covers systolic array implementations and side channel leakage.

3.1 Introduction and Summary

This chapter looks at the hardware implementation of Peter Montgomery'sMod-
ular Multiplication without Trial Division [39]. Such dedicated hardware is used
primarily for arithmetic over the rational integers Z with a very large modulus
N , including the prime �eld GF (p) case when N = p is prime. For simplicity,
it is assumed that all the arithmetic here is over the integers. There are in-
creasingly important applications over large �nite �elds. However, apart from
simpler carry propagation when the �eld characteristic is very small, the main
issues covered here have similar solutions. The interested reader might start by
consulting [28, 46, 3, 1, 35] for this case.

Because of the overhead of translating to and from the Montgomery domain
([5], �2.2), use of Montgomery's method is, for the most part, in cryptography
where exponentiation is a central operation and the cost of the translation can
be amortised over all the modular multiplications in the exponentiation. Di�e-
Hellman key exchange, RSA, DSA, ElGamal encryption and their elliptic curve
equivalents are chief among the applications [11, 45, 40, 14, 38, 27, 21]. This
justi�es the concentration on instances over Z where the modulus N is a large
integer, typically with 1024 or more bits. A consequence of this is that, with
representations in radix r, processing a regular digit position in the long number
arithmetic should be as e�cient as possible and, in the notation of [5], Algm. 2,

*This material has been published as Chapter 3 in [4]. It makes a number of references to
Chapter 2, which is also available as [5].
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2 Hardware Aspects of Montgomery Modular Multiplication

the determination of the multiple q of N which has to be added to, or subtracted
from, the running total1 C should not slow down such processing.

Although not used exclusively, Montgomery's method should be the pre-
dominant one for modular multiplication in the applications above. We will
consider the reasons for its already widespread adoption by comparing it with
classical techniques, demonstrating how it �ts in well with standard word sizes
whereas standard methods su�er from widespread contamination by over-large
digits2. The chapter is structured to provide an overview of the main acceler-
ation techniques for hardware modular multiplication and for each of these we
deduce that Montgomery multiplication is better than, or at least as good as,
classical techniques.

Many of the implementations of interest to us occur in smart cards where
side channel leakage is a signi�cant threat. Consequently, the �nal part of this
chapter is a study of the security issues that arise from the use of Montgomery's
method and how they can be mitigated.

At the other end of a secure transaction involving a smart card there is
probably a server performing a large number of simultaneous cryptographic
processes for many secure transactions, and so requiring the capability of very
high throughput. This can be achieved using a systolic array and, for such a
context, Montgomery's algorithm is really the only sensible choice.

The target hardware could be one of a wide variety of di�erent possibilities.
Among these there are small smart-card cryptographic co-processors with a
single 8- or 16-bit multiplier, ARM-based processors, single core and multi-core
Single Instruction Multiple Data (SIMD) processors with pipelined multipliers,
systolic arrays with substantial processing power in each processing element,
and Application Speci�c Integrated Circuits (ASICs) which may process all bits
of the modulus in parallel. The variety means that allowance must be made for
all possible ways of implementing the basic arithmetic operations which appear
in a description of Montgomery's modular multiplication method, particularly
addition and scalar multiplication, and indeed including consideration of number
representations (such as redundant ones) which are alternatives to the usual
binary. The low level programming of these architectures was covered in the
previous chapter [5]. Here we consider the hardware itself, particularly the size
of the digit×digit multiplier, how to increase clock speed, and the e�ects of bus
width and communications.

1As in Algm. 0, P is used here in this chapter rather than the C of [5].
2 Where classical methods are still used, the reason is often ascribed to the di�culty of

translating inputs to the Montgomery domain, i.e. mapping A to Ã ≡ AR mod N where R
is the Montgomery radix − see [5], �2.2. This requires computing and storing R2 mod N .
However, if the public exponent E is known and the exponentiation is to the power D
where DE ≡ 1 mod φ(N), then this reason is spurious. Speci�cally, start by computing
1E−1 using Montgomery multiplication. Then U ≡ R2−E mod N is obtained if E > 2.
This generally requires only a small number of multiplications as E is typically a small
Fermat prime. Next Montgomery-multiply A and U to obtain AR1−E mod N . Rais-
ing this to the power D > 1 using Montgomery multiplication yields (AR1−E)DR1−D ≡
ADRD(1−E)+(1−D) ≡ ADR mod N . The usual post-processing of Montgomery-multiplying
by 1 then yields AD mod N , as required, and Montgomery representations have been avoided.
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3.2 Historical Remarks

By the late 1980s, RSA encryption had been in the public domain for a dozen or
so years and was regarded as more secure for encryption than DES because aca-
demic mathematicians had failed to make signi�cant progress in factoring large
numbers despite considerable e�ort and there were mathematically unfounded
suspicions than IBM had built some weaknesses into DES that would allow
the NSA to crack ciphertexts more easily than could the general public. Con-
sequently, there was great interest in implementing RSA not just for military
purposes but also to provide better security in the banking sector where card
payment at point of sale was already very well established using hand-written
signatures for veri�cation but only plain text data transmission. There was an
expanding market which made it commercially viable to develop point of sale
terminals containing RSA for secure data transmission, and which was shortly
going to expand to smart cards. Then, �smart� cards were used only in prepaid
telephone applications and contained essentially no security. The market for
them was yet to develop.

At that time RISC-based processors such as the ARM2 with its 32-bit mul-
tiplier did not yet yield acceptable performance for software implementations of
RSA. ASIC cryptographic co-processors with a full battery of hardware accel-
eration techniques and the most e�cient algorithms were required to yield the
necessary encryption speeds of at most several seconds. (A fraction of a sec-
ond is required nowadays.) Peter Montgomery's then recently published work
[39] on modular multiplication played, and continues to play, a signi�cant role
in achieving user-acceptable encryption and signing speeds, perhaps now more
than ever with the proliferation of RFID tags and embedded cryptographic de-
vices in an increasingly security-conscious world.

3.3 Montgomery's Novel Modular Multiplication

Algorithm

Modular Multiplication without Trial Division was published in 1985 [39] and
provided a more e�cient way of implementing the necessary arithmetic histori-
cally at exactly the right time. Indeed, it arose out of the need to speed up RSA.
The details are given in Algorithms 1 and 2 of the previous chapter [5], and the
reader is encouraged to renew familiarity with the methods and the notation
provided there. For convenience, the second of these algorithms is reproduced
here as Algorithm 0.

As the title of the paper suggests, Montgomery's technique avoids the delay
caused by the usual trial-and-error method of determining which multiple q of
the modulus N needs to be subtracted from partial products P , replacing that
trial division with an exact digit×digit multiplication. Readers will be familiar
with the schoolbook method of long division in which the �rst few decimal digits
of N and P are used in a trial-and-error manner to determine the �rst digit q
of the quotient P/N . The �rst estimate q′ is used to compute P − q′N and it is

https://eprint.iacr.org/2017/1057.pdf#page=4&search=''Algorithm''
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4 Hardware Aspects of Montgomery Modular Multiplication

Algorithm 0 The radix-r interleaved Montgomery multiplication algorithm.
Compute (AB)R−1 modulo the odd modulus N given the Montgomery radix
R = rn and using the pre-computed Montgomery constant µ = −N−1 mod r.
The modulus N is such that rn−1 ≤ N < rn and r and N are co-prime.

Input: A =
∑n−1

i=0 air
i, B,N such that 0 ≤ ai < r, 0 ≤ A,B < R.

Output: P ≡ (AB)R−1 mod N such that 0 ≤ P < N .
1: P ← 0
2: for i = 0 to n− 1 do
3: P ← P + aiB
4: q ← µP mod r
5: P ← (P + qN)/r
6: end for

7: if P ≥ N then

8: P ← P −N
9: end if

10: return P

then re�ned to the correct value q depending on whether the result is less than
0 or ≥ N . Similarly, with hardware rather than human processors, the base is
a power of 2 such as 216 or 232 rather than 10, but the problem is otherwise
identical for the multi-digit numbers appearing in RSA. As explained in the
previous chapter [5], Peter Montgomery's method replaces this usual hit-or-miss
technique with an exact calculation which depends only on the lowest digit of the
partial product and the modulus � see Algm. 0. Although there is the penalty of
scaling inputs and outputs to or from their Montgomery representations in the
Montgomery domain ([5], �2.2), there are other advantages. For example, the
exact process at each digit iteration means much more straightforward �rmware
which is both easier to verify and takes up less ROM. Furthermore, subtraction
can ususally be completely eliminated. This has the signi�cant commercial value
of much less likelihood of company critical errors in the implementation as well
as shorter time-to-market and smaller die size.

3.4 Standard Acceleration Techniques

The reason for emphasising the commercial and implementation advantages of
Peter Montgomery's algorithm is that the mathematical advantages are often
over-stated in the literature. Indeed, with the use of appropriate implementation
techniques, the overall complexity seems to be asymptotically exactly the same
as for classical modular reduction techniques when the argument size increases.
The main disadvantage is that, unlike Montgomery's algorithm, traditional tech-
niques are ill-matched to standard hardware word sizes, bus widths and multi-
plier sizes. However, before reaching that conclusion, let us review all the normal
hardware acceleration techniques applicable in the traditional computation of
A·B mod N and consider their analogues in the Montgomery computation of

https://eprint.iacr.org/2017/1057.pdf#page=6&search=''2.2''
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ABR−1 mod N . Most of these were enumerated in [13] and they are covered in
detail in the following sub-sections. This comparison will show where the main
di�erences are in the complexity of implementing the arithmetic components.
Chief among these is the determination and use of the quotient digit q which is
covered in �3.7. There are usually signi�cant di�erences between the two algo-
rithms for this aspect when the hardware multiplier is already provided rather
than custom-built: most digit-level multipliers are ill-adapted to processing the
slightly larger digits encountered in classical algorithms.

At the cutting edge of the fastest or most e�cient implementations, it is
the �ne detail which becomes important, such as the critical path length, the
number of load and write operations, loop unrolling, the types of register and
memory used, and the area devoted to wiring. The interested reader is referred
to the vast research literature such as [36] for this more detailed level of coverage.
Further, we omit consideration of enhancements which make modular squaring
faster than modular multiplication. Instead, we con�ne ourselves to what is
su�cient in a normal commercial setting, ignoring also minor costs such as
those for loop establishment and index calculations. Several of the acceleration
techniques are already covered in the previous chapter [5], there being no clear
boundary between what is hardware and what is software. Some techniques
involved the choice of moduli with particular properties such as sparseness (of
non-zero bits) − see [5], �3. In this chapter it is assumed that the hardware needs
to process any modulus, and so inputs may need to be transformed �rst in order
to bene�t from the previously mentioned techniques. Such transformations are
described in detail.

Although �e�ciency� is measured here in terms of Time or Area×Time, in
many portable and some RFID devices the predominant issue is energy con-
sumption. For cryptographic applications, the choice of cryptosystem combined
with the use of dedicated rather than general purpose hardware is critical in
reducing the energy used. At the hardware level the use of �elds with small
characteristic saves power in a multiplier by reducing the switching activity due
to propagating carries. Secondly, careful algorithm design to reduce memory ac-
cess is also very helpful, and is applicable to time e�ciency as well. Thirdly, one
can employ fast multiplication techniques such as Karatsuba-Ofman [24, 18, 25].
However, for the most e�cient use of the space available in this chapter, the
discussion of energy e�ciency is limited to this paragraph!

3.5 Shifting the Modulus N

The Classical Algorithm

When using the traditional algorithm (see Alg. 1) it is advisable to shift the
modulus N up so that its most signi�cant bit always has the same position in
the hardware (normally the top bit of a register). This left alignment allows
moduli with di�erent numbers of bits to be processed in a more standard way,
reducing combinational logic and ROM code. Identical adjusting shifts are made

https://eprint.iacr.org/2017/1057.pdf#page=12&search=''3''


6 Hardware Aspects of Montgomery Modular Multiplication

Algorithm 1 A radix-r interleaved classical modular multiplication algorithm
to compute A ·B mod N .

Input: A =
∑n−1

i=0 air
i, B,N such that 0≤ai<r, 0 ≤ A,B < N < rn.

Output: P ≡ A ·B mod N such that 0 ≤ P < N .
1: P ← 0
2: for i = n− 1 downto 0 do
3: P ← rP + ai ·B
4: q ≈ bP/Nc (a lower approxn to the greatest integer ≤ P/N)
5: P ← P − q ·N
6: end for

7: while P ≥ N do

8: P ← P −N
9: end while

10: return P

to A or B and reversed in the output. If S is the power of 2 corresponding to
the number of bit positions in the shift then the new values to use for A and N
are AS and NS. So the correct result is obtained by computing

(A ·B) mod N = S−1((AS ·B) mod NS)

in which S−1 is the shift back down.
For e�ciency, the quotient digit q in line 4 of Alg. 1 is generally computed

from only the top bits of P and N . So, if n′ is the value of the top bits of
the register containing N which are used for this, then the shift up means that
n′ has a more limited range of values. In particular, the top bit of n′ being
non-zero keeps its value well away from zero and so provides an upper limit to
q, whose de�nition includes a division by n′ or n′+1. We look at the de�nition
and computation of q in more detail in �3.7.

Montgomery

For completeness, it is worth observing that there is an analogue of this classical
technique for Montgomery multiplication which is slightly more than just the
right alignment of the modulus and operands. It makes the Montgomery method
generally applicable instead of only in circumstances where the modulus is prime
to the radix r of the number representation.

If we take N to be a general modulus as in the classical case, then any
common factor S with the computation base r needs to be removed before
applying Montgomery's reduction technique. Replacing N by N ′ = S−1N is
the analogous shifting down process. With binary representations, S is a power
of 2, N ′ is odd, and the lowest non-zero bit of N ′ is the bottom one in its
register. The Montgomery multiplication is then done modulo N ′.

For RSA and ECC analogues, N is odd and certainly prime to any conceiv-
able computing base. Hence N does not generally require to be shifted down
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in this way, and the normal right alignment corresponds to no shift, i.e. S = 1.
Nevertheless, with this action Montgomery can be used for general moduli.

To complete the computation after the shift adjustment requires application
of the Chinese Remainder Theorem (CRT) for the co-prime moduli N ′ and S.
This is best done after exiting from the Montgomery domain ([5], �2.2). Using
Garner's formula [17] we have

(A·B) mod N = (A·B) mod N ′ +N ′T

where
T = (N ′−1 mod S)((A·B) mod S − (A·B) mod N ′) mod S

Of course, here T is probably calculated very easily even in the most general
setting so that the overhead is low. This is because mod S selects the lowest
bits of a number to base r. In particular, if S divides the computation base
r, then T is a single digit computed from the lowest digit of each of A, B
and N ′. A similar process of adjusting the modulus can be applied to any
modular arithmetic, not just to modular multiplication, thereby enabling the
Montgomery modular reduction technique to be used just as easily in a general
setting.

From here onwards it is assumed that the shifting described in this section
is performed. Consequently, the highest or lowest bit of N , as appropriate, is
assumed to be 1 in all future discussion.

3.6 Interleaving Multiplication Steps with Mod-

ular Reduction

As already noted in [5], �2.1, instead of computing the product A·B �rst and
then performing the reduction modulo N , it is advisable to interleave modular
subtractions at each shift-and-add step during the normal calculation of the
product. This means the partial product stays roughly the size of the modulus
N rather than being as large as A·B. This saves register space. The term
integrated is often used for this technique, as opposed to separated, which is
when the modular reduction is performed after the multiplication.

However, the product can be computed in two main ways. The easier to
organise and more uniform is the operand scanning technique in which the partial
product P is increased by aiB, with i being decremented or incremented at each
iteration step according to whether the classical or Montgomery algorithm is
being used: P ← P+aiB. This is how it is computed in the two algorithms 0
and 1 above. Alternatively, the product scanning technique accumulates all the
digit products ajbi−j (j=0, 1, 2, . . . ) at the ith step, again with i decremented
or incremented at each step: P ← P+

∑
j ajbi−jr

i for digit base r [12, 19].
For both these alternatives, there is the choice of whether to alternate be-

tween the multiplication steps and the reduction steps P ← P ± qN at a digit
level, or at a limb level − the level of the outermost loop over multiplier digits.
These are referred to as the �nely integrated and coarsely integrated operand

https://eprint.iacr.org/2017/1057.pdf#page=6&search=''2.2''
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or product scanning techniques respectively (FIOS and CIOS for operand scan-
ning). The details of the di�erent possibilities have been much studied by Ç. Koç
and others [29, 36]3. The reader is referred to those publications for further
details. Here, as in Algorithms 0 and 1, we concentrate on CIOS where the
multiplication steps P ← P+aiB alternate with reduction steps P ← P ± qN .
(C is used in [5] for the partial product rather than the P here.) However, other
processing orders can be bene�cial in processing carries and preventing pipeline
stalls on certain hardware architectures with SIMD operations [48].

For product scanning, the successive quotient digits q have to be stored. This
makes its area requirements greater than for operand scanning. Consequently,
interleaved multiplication using operand scanning is generally preferred and that
is what is described in this chapter. On the other hand, Liu and Groÿschädl [36]
note that product scanning requires fewer store instructions on an Atmega128
with 32 registers, and they use it for speed.

Readers who wish to perform the multiplication independently in advance of
the reduction, or perform just a Montgomery reduction, can still use the contents
of this chapter almost verbatim. As with hardware multiplication, a library
modular multiplication routine is often best presented as a modular multiply-
accumulate operation since the initial partial product is almost as easily set to
the value of the accumulate argument as to zero. That can be done by a very
minor modi�cation of Algorithm 0. So, for a modular reduction only, readers
just need to omit the step P ← P+aiB (i.e. set A = 0 or B = 0) after initialising
P to the product value which, in this case, may initially have many more digits
than N .

3.7 Accepting Inaccuracy in Quotient Digits

This section takes a close look at the de�nition and computation of the quo-
tient digit q in order to highlight the main di�erence between the traditional
and Montgomery algorithms. It is primarily this di�erence which makes Mont-
gomery the preferred method in the majority of high-end commercial crypto-
graphic applications, whether in hardware or software. Readers are invited to
skim or skip the technical details of the following sub-section on the traditional
modular multiplication algorithm and head straight for the sub-section �3.7.3 on
Montgomery's method unless and until they have the need to check the math-
ematics or perform similar calculations themselves! A �nal summary in �3.7.4
covers what is necessary to appreciate the value of Peter's contribution.

3[29] claims that FIOS requires more digit level additions and reading/writing operations,
making it slower than CIOS. This occurs in their algorithm because of an extra digit addition
to incorporate the upper word from the �rst multiply-accumulate digit operation (MAC).
However, this extra addition can be avoided by having two carry digit variables instead of one
and incorporating one carry into each of the two multiply-accumulate operations as occurs in
the MACs of their CIOS version. Thus, the algorithms should use the same number of each
type of digit operation.
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3.7.1 Traditional

The aim of the acceleration technique in this section is to simplify the hard-
ware logic for calculating q so that it is much faster. This is achieved in two
ways. One is to replace the division by N in line 4 of the classical Algorithm
1 with a multiplication by a pre-calculated N−1. Multiplication is faster than
division, so this improves the speed. The other aid is to approximate the long
numbers P and N−1 by using only their most signi�cant digits. The shortened
multiplication will also speed up the calculation of q. Recognition of the use of
such an approximation process is given by writing �q ≈ . . . � in the algorithm.
The resulting method is generally known either as Barrett reduction [2] or as
Quisquater's method [23], depending on the details of the approximations. The
more general version here appeared in [54] and later in [8, 9, 10, 26], and it
allows more control over how large P might become.

These simpli�cations lead to an occasionally slightly inaccurate value for
bP/Nc. However, with care they can be used in every multiplication step with-
out any correcting adjustment until after the main loop terminates. Clearly,
if too low a multiple of N is subtracted on one iteration, a compensating sub-
traction needs to be made at some future point. Hence the �digit� q may have
to be larger than the natural bound of the base r which is being used for the
number representations. The larger digit then compensates for the inaccuracy
of the previous choice of quotient digit. At the end of Algorithm 1, conditional
subtractions have been added in case P has grown to be larger than N .

Let us denote by p′ and n′inv the approximations to P and N−1 which will
be used in de�ning q. They will turn out to be just two or three bits longer
than a radix-r digit. For convenience, assume r is a power of 2 and let us aim
at k-bit approximations for some small k that we have yet to determine. De�ne
Z (for �Zwei�) as the power of 2 such that

2k−1Z < N ≤ 2kZ (1)

Then the most signi�cant few bits of the inverse N−1 are given by

n′inv = b22kZ/Nc (2)

that is, the greatest integer equal to or less than 22kZ/N . Bounds on n′inv are
easily deduced from these de�nitions: n′inv ≤ 22kZ/N < 22kZ/2k−1Z = 2k+1

and n′inv+1 > 22kZ/N ≥ 22kZ/2kZ = 2k, so that

2k ≤ n′inv < 2k+1 (3)

Thus n′inv has exactly k+1 bits, the leading bit being 1.
Next, let us write Pmid for the value of P which is used in the calculation

of q (Algorithm 1, line 4). To reduce Pmid modulo N , the bits we need from P
for the approximation p′ are those above the position of the top bit of N plus
one or two more to make q accurate enough. This is fewer bits than given by
bPmid/Zc, so let

p′ = bPmid/zZc (4)
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where z is a (small) power of 2 which will be determined shortly.
The new, approximate de�nition for q is then the following:

q = bp′·n′invz/22kc (5)

Note the symmetry here with the de�nition (10) of q for Montgomery's algo-
rithm: a product of the top bits of P and N−1 is taken rather than a product
of the bottom bits of these quantities. Note also that the integer division by
22k in (5) is trivial in hardware logic so that, as in Montgomery's algorithm,
q is essentially determined just by a multiplication. Thirdly, note that, as in
computing n−10 , the cost of computing n′inv is almost immaterial since n′inv
will only be computed once for each fresh modulus N . First, n′inv can be ap-
proximated using just the top few digits of N , and then that value incremented
until (2) holds.

From (5), q ≤ p′·n′invzZ/22kZ ≤ Pmidn
′
inv/2

2kZ ≤ Pmid/N , so the partial
product P does not become negative in line 5 of Alg. 1. This establishes 0 as
a lower bound on P throughout execution of the algorithm. As each of these
comparisons could be equalities, this is in some sense the best approximation
we can employ to maintain this lower bound4.

3.7.2 Bounding the Partial Product

The next task is to establish a common upper bound B on the value Pend of the
partial product at the beginning and end of each iteration. This bound depends
on the number of input bits which are used in calculating q. The more bits are
taken, the more accurate q is, and so the lower the value of B can be made.

As the bound B must be preserved from one iteration to the next, we require

Pend ≤ B ⇒ rPend+aiB−qN ≤ B (6)

for each digit ai in A. To determine a suitable value B easily, we now switch from
discrete, integer arithmetic and allow continuous real-valued quantities for the
variable P . As will be clear from the argument below, the value of B obtained
in that context will certainly work for the integer case.

The most di�cult case to satisfy (6) is when the approximation q is smallest
compared with the correct value, B is the least upper bound, and Pend and
aiB are maximal. With Pmid the value used to calculate q as in �3.7.1, this
would occur for the following values at the point when q is evaluated: Pend = B,
q = (p′n′invz−22k+1)/22k, ai = r−1, B = N−1, Pmid = p′zZ+zZ−1 and
(n′inv+1)N = 22kZ. Note that the graph of Pmid−qN is like the teeth of a saw,
increasing at the same rate as Pmid, but stepping down each time q increases
by 1. The restriction on the form of Pmid is to ensure we select a value at the

4Signed numbers are usually avoided in modular arithmetic and they are avoided here.
However, if we wanted the output to be the residue of least absolute value instead of the least
non-negative, we might take the nearest integer approximation in the de�nitions rather than
greatest integer below. This would sometimes cause P to be negative and a new negative lower
bound would need to be established in the same way as is done next for the upper bound.
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top of one of the teeth as these are the worst cases for satisfying (6). The values
of these maxima increase with P because q is de�ned using the upper bound
22kZ/n′inv for N instead of N itself. So under these conditions the maximum
value for P at the start of the loop will lead to the maximum output value at
the end of the loop. Hence, the selection of B as the least upper bound means
that B will also be the value at the end of the iteration. Substituting in these
values at the beginning and end of the iteration,

Pmid − qN = p′zZ+zZ−1− (p′n′invz−22k+1)N/22k = B
Pmid = p′zZ+zZ−1 = rB+(r−1)N

(7)

Eliminating B and N from the equations (7) and ignoring the relatively small
terms which are not multiples of Z yields

p′z =
(r−1)(n′inv+1)z + (2r−1)22k − r

n′inv+1−r
(8)

As the numerator is positive, and p′ is non-negative, the denominator must be
positive. Hence n′inv ≥ r, which is expected because n′inv must provide q with
at least as many bits of accuracy as in a digit.

The more bits chosen for n′inv, the better the approximation for q and so
the lower the bound B. A good choice is to take n′inv with three more bits than
a digit, i.e. 4r ≤ n′inv < 8r so that 2k = 4r by (3). Then plugging the above
value for p′z into the second equation of (7) and using (n′inv+1)N = 22kZ to
eliminate k yields an upper bound on Pend of

(r−1)zZ−Z+(2−r−1)(n′inv+1)N

n′inv+1−r
+ zZ − (1−r−1)N

which is easily determined to be less than

(r−1)zZ−Z+(2r−1)N
3r+1

+ zZ +N =
5r

3r+1
N +

4rz−1
3r+1

Z (9)

Using the property 2rZ < N which holds for this case, this in turn is less than
2N for z = r in the case of r = 2, and always less than 2N for z = 1

2r. Thus
2N is always an upper bound on the output of each iteration in the modular
multiplication for some z. This yields Pmid < 2rN+(r−1)(N−1) < 3rN as a
bound on the size of register needed for P . Then the property q ≤ Pmid/N
means q < 3r and so q has at most two more bits than a digit. Moreover, N <
4rZ yields Pmid < 12r2Z = 12rzZ or 24rzZ for z = r or z = 1

2r respectively.
So p′ will be 4 or 5 more bits than a digit.

Appropriate adjustments to these calculations can easily be made for di�er-
ent scenarios, such as i) if B is not fully reduced but has another upper bound
than N (such as R or 2N), ii) if some of the quantities have carry-save repre-
sentations that lead to di�erent bounds on their values, iii) if the multiplication
is completed before any reduction, or iv) N has a special form or �xed, known
value.
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Clearly, once derived, the classical modular multiplication algorithm has a
straight-forward formula for the multiple q of N which needs to be subtracted.
It is only mildly tedious to determine in the above manner i) the best number of
bits to use in the calculation and ii) an upper bound on the partial product to
ensure su�cient register space is made available. However, the fact that q and
the inputs to its calculation are generally larger by several bits than the radix
r means that the built-in hardware multiplier and bus width may be too small
for computing q and qN in the most obvious, convenient way.

3.7.3 Montgomery

By contrast, the determination, calculation, storage and use of q is much easier
in Montgomery's Algorithm 0: the value of q is simply

q = −p0/n0 mod r (10)

Unlike the classical case, all the operations here involve quantities which are
within the normal digit range [0, r−1]. So fewer bits are required from N−1

and P for computing q than in the classical case, and a standard digit×digit
multiplier su�ces for computing qN . As with the traditional algorithm, the
de�nition of q using short division is replaced by one involving multiplication:

q = p0·ninv where ninv = −n0−1 mod r (11)

It is clear by induction that 2N is an upper bound on the value of P at the
end of each iteration and so also at the end of the loop when B < N and the
digits of A are from a non-redundant representation, i.e. in the range [0, r−1].
However, for several reasons, we need to look at this bound again later because
the inputs A and B are more likely to be bounded above by 2N rather than N .

3.7.4 Summary

This section has highlighted one of the key problems with the classical algorithm
that makes Montgomery's algorithm so much easier to implement: checking the
details of the classical algorithm and implementing it are more complex. In
particular, the value of q is typically two bits larger than a normal digit and
so requires a larger hardware multiplier and perhaps more clock cycles or wider
buses than normal. On the other hand, in Montgomery's algorithm bounds are
easily established, q has a normal digit size, and standard multipliers and buses
can be used.

Although the computation of q and the cost of the scalar multiplication q·N
are slightly more expensive for the classical algorithm, this needs to be compared
with the cost of scaling the inputs and output from Montgomery's algorithm.
In the case of RSA exponentiation, these costs are fairly similar if the multiplier
can be chosen accordingly. However, with a �xed digit-sized multiplier, the extra
bits in q make the classical algorithm more expensive to design, more complex
to implement, hungrier in its �rmware area, slower to execute, more prone to
implementation errors, and therefore overall less pro�table and generally less
desirable to choose.
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3.8 Using Redundant Representations

The use of redundant representations enables digit calculations to be done in
parallel. Typically this employs a carry-save representation in order to avoid
the problems of carry propagation exhibited by the decimal addition of 1 to
999...9 or the subtraction of 1 from 100...0. This is the problem that forces all
our schoolbook arithmetic to be done from the least signi�cant digit to the most
signi�cant. However, with a carry-save representation the carries (or borrows)
are absorbed by the next digit up as part of the next operation instead of the
current one. Then carries only need to be propagated at the end of all the
arithmetic.

An addition of two base r digits x and y in the range [0, r−1] creates a result
in the range [0, 2r−2] which is stored as a base r digit s (the save part) and
an over�ow bit c (the carry part) such that x+y = s+rc. Fortunately, this
addition also has space to incorporate a carry bit c′ from a previous addition in
the position below: x+y+c′ is in the range [0, 2r−1] and so it too can be split
into a one bit carry and a save digit. This means long number additions can
easily be done in any order, not just from least to most signi�cant digit but also,
for example, from most to least signi�cant digit or all together in parallel, or a
number of digit additions in parallel using whatever resources are available. In
an ASIC the extra combinational logic and wiring for one extra bit per digit is
not too signi�cant.

Similarly, a multiplication of two base r digits x and y creates a result in
the range [0, (r−1)2] which is split into two digits s and c such that x·y =
s+rc. More generally, the operation is usually implemented in hardware as
a multiply-accumulate (MAC) operation which will add in one or two further
digits: MAC(x, y, d, e) = x·y+d+e generates an output in the range [0, r2−1]
and can therefore also be represented in a two-digit carry-save form (s, c) whose
value is s+rc. Thus, the carry from one MAC of the form x·y+z can be accumu-
lated by the next digit position up when it performs a similar MAC operation on
the next clock cycle. As with additions, this means long number scalar (limb)
multiplications such as P ← P+ai·B can easily be done from least to most sig-
ni�cant digit, but also that a succession of long number scalar multiplications
P ← P+ai·B, i = 0, 1, . . . can have their digits processed in parallel, with each
scalar multiplication absorbing the carries from the previous such operation.

The use of parallel digit operations implies signi�cant hardware resources for
long integer operations, with adders, multipliers, memory and registers required
for a number of digit positions. These are available to a limited extent in
multi-core processors and more widely on FPGA boards and ASICs. However,
the usual count of logic gates is insu�cient as a measure of area complexity.
This is because there can be signi�cant wiring overheads to consider as well
since some data needs to be broadcast simultaneously to all digit positions
which are performing operations. For example, when modular multiplication
digits are computed in parallel, the multiplier and quotient digits ai and q need
to be broadcast to each digit position. Whereas the digits ai are known in
advance and can be queued ready for use, the digits q may only be known on
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the previous cycle and require immediate broadcast to all computing elements
with consequent heavy wiring cost.

Traditional

In the classical algorithm with a standard number representation, if we want
to avoid computing the top digits twice the determination of q can only be
easily made once the carries have been fully propagated. This limits the faster
computation of the modular product even if additional computing elements are
available. However, with a carry-save representation, additional multipliers can
be used for parallel digit operations or digits can be processed most signi�cant
�rst provided an approximation is used for q that doesn't require the carry-
up to be known. In section �3.7 we saw how approximate values can be used
satisfactorily. As carries from lower positions have almost no impact on the
computation of the top digit or so of P , and only one or two more bits than
the top digit are used in order to choose q, the adjustments to the argument
in �3.7 to accommodate a redundant representation are minimal, with only a
minor increase in the maximum value of P if no other action is taken.

Montgomery

In Montgomery's algorithm q does not depend on the completion of any carry
propagation. Hence multiple computing elements can be used in parallel with
ease if a carry-save representation is used. However, there is still one signi�cant
carry to take care of, and this can lead to bubbles (which are when computing
elements are left with nothing to do). Speci�cally, if one takes the iteration
boundary to be when q is calculated, then one loop iteration of the interleaved
Algorithm 0 computes �rst q and then P ← (P+q·N)r−1+ai·B. Thus, as well
as the lowest digit of ai·B, the next value of q depends on the digits with index
1 from P+q·N plus any carry from its digits of index 0.

In both algorithms we see that latency − the time from input to output −
can be reduced by employing redundancy when more hardware resources are
available. The carry propagation need only be done after the �nal operation
of a cryptographic function, not during or after every constituent arithmetic
operation although, as we will see later, executing some limited intermediate
carry propagation can be very useful to reduce the size of carries. However,
as q is on the critical path, even with additional resources both methods are
potentially held up while q is computed and distributed to all the computing
elements.

3.9 Changing the Size of the Hardware Multiplier

Suppose �rst that there is no choice over the available integer multiplier because
the hardware platform or multiplier design is �xed. Typically, the multiplier will
perform a multiply-accumulate (MAC) operation a·b+d or perhaps a·b+d+e
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where a, b, d and e are single words. Then the multiplier may be used more
e�ciently by supplying the modular multiplication arguments A and B divided
into digits which don't adhere to the word boundaries. In particular, if digits
have fewer bits than the word size, carries may be incorporated within a word
without any over�ow. This is very helpful for a carry-save representation and a
standard square multiplier may be able to process these values and the over-sized
q from the traditional algorithm in one go.

As noted in the previous section, the accumulate part conveniently accom-
modates carries from long integer multiplications. However, the multiplier may
not be square (i.e. the above MAC inputs a and b could have di�erent lengths),
and may indeed allow several extra bits above the word size for each argument in
order to deal with over�ows more e�ciently or to enable better rounding when
used for �oating point operations. When a carry-save representation is used,
any available extra bits in multiplier arguments can be valuable in processing
carries.

There may be several multipliers which can be operated in parallel on the
chip using a SIMD architecture. Combined in this way, they should operate as a
single non-square multiplier enabling several words/digits of long integer argu-
ments to be processed simultaneously in a single MAC operation a·b+d where
a and b now have di�erent numbers of bits but which is actually split over the
multipliers. Consequently, in order to make the best use of the multiplier(s),
we need the �exibility to consider the arguments of (A·B) mod N to have re-
presentations with di�erent bases which may or may not match the word size
or multiples of it [22, 43].

However, if there is a choice of multiplier, then one has to balance costs such
as power and �oor area against any advantages of the various choices as well
as noting that, while a larger multiplier reduces the number of clock cycles, it
may increase the depth of the hardware that has to be driven so that each clock
tick is longer. Hardware synthesis tools, such as those provided by Synthesys,
include Intellectual Property (IP) Blocks for parametrisable multipliers, thereby
enabling ASIC designers to choose their own MAC operation circuitry without
having to design it themselves. A v×w-bit multiplier will have area approxi-
mately proportional to vw and critical path depth proportional to log(vw) plus
the register delay and set-up and hold times.

As observed in �3.8, having a second argument that can be accumulated in a
MAC operation is useful. If the multiplier is non-square, i.e. has multiplier and
multiplicand inputs a and b with di�erent numbers v and w of bits respectively,
then its maximum output for a·b is (2v−1)(2w−1) = (2v2w−1) − (2v−1) −
(2w−1). So it is possible to accumulate arguments d and e of v and w bits
respectively without over�owing the v+w bits necessary for the output. When
performing a scalar multiplication ai·B where ai has v bits and B is partitioned
into w-bit digits, each use of the multiplier performs a v- by w-bit multiplication,
and accumulates both the save value of w bits from the previous operation at
that position and the carry of v bits from the MAC on the previous position.

At the extreme, an n×1-bit multiplier is just an adder; dispensing with a
multiplier is a possible optimisation. Without a multiplier but registers that
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can hold all of A, B and N , the clock speed in a cryptographic co-processor can
usually be increased substantially. In the early days of ASICs for RSA crypto-
graphy, the fastest chips often used base 4 for A and, rather than employing a
multiplier, just added in B and 2B to the partial product as required by the
two-bit digits of A. However, besides initialisation, multiplication, additions and
subtractions, the modular multiplication algorithms include reading and writing
to various types of memory and other movement of data as well as comparisons,
incrementing of counters and instruction processing. Some of these rather than
the multiplier may limit clock speed, or even dominate overall performance by
using many clock cycles.

If Montgomery's modular reduction is used then the multiplication require-
ments are marginally less than for the traditional algorithm. Speci�cally, q has
around two fewer bits, which may make the scalar multiplication q·B less ex-
pensive (see �3.7). Multipliers may require more area if the number of bits in
the arguments is increased, but their throughput and depth of combinational
logic should be logarithmic in the number of bits. Consequently, adding two
bits to an argument (and to the bus) to accommodate the classical algorithm
may not alter the time a cryptographic process takes. However, the power and
area requirements will be marginally increased.

3.10 Shifting an Operand

In this section we start to make progress on the earlier computation of q so
that its calculation ceases to be a bottleneck. Speci�cally, we want to ensure
that none of the hardware devoted to the long number operations P ← P+ai·B
and P ← P±q·N is lying idle while q is computed and broadcast to where it is
needed.

Traditional

In the classical Algorithm 1, the determination of q is on the critical path.
The operation P ← P−q·N cannot start until q is known. Therefore, any
simpli�cation in computing q has the potential to improve the latency of the
modular multiplication.

Let us shift up the multiplicand A and the modulusN by several digits before
the modular multiplication starts, and perform a compensating shift down at
the end. So we calculate

((AS·B) mod (SN))/S

where S is the power of r corresponding to the shift. The output is still equal to
(A·B) mod N but the inputs to the calculation of q now come from several digits
higher up in the registers. Using asi, i = 0, 1, . . . , to denote the digits of AS, the
shift must be su�cient to the move the position of these input bits to above the
most signi�cant bit of each asiB. Then B is small in comparison with the new
modulus SN and addition of the digit multiple asiB in P ← rP+asi·B will only
a�ect the topmost bits used to compute q if there is a carry which propagates
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as far as the relevant top bits of P . We saw earlier that q is only computed
as an approximation to the correct value, and so it can allow for ignoring that
propagated carry. In fact, the relatively smaller value of B means that the
formula for q and the bound B in �3.7 can be improved5. The determination
of q can now be advanced to make it available without delaying the reduction
step: it can be computed after the assignment P ← P−q·N in the previous loop
iteration without waiting for the addition P ← rP+asi·B.

Surprisingly, the computational complexity is little changed although the
shift means more iterations − one more for each digit of shift. For simplicity,
let us assume that the shift is by a whole number of digits. Indeed this must be
the case if, as in �3.5, we are aligning the most signi�cant bit of the modulus with
the top bit of a digit. Because the number of non-zero digits in AS is the same
as in A, the number of digit×digit multiplications ai·bj is unchanged by the shift
if the program code can omit the steps for which the bottom digits of AS are
known always to be zero. Thus the scalar multiplication steps P ← rP+asi·B
should have the same computational complexity as before.

Now consider the cost of the reduction steps. First note that the sequence of
values q form a long integer Q such that Q ·SN is the quantity subtracted from
P by all executions of Line 5 in Algorithm 1, while AS·B is the quantity added
to P by all executions of Line 3. So AS·B −Q · SN is the output of the main
loop. Incrementing Q as necessary to account for any subtraction arising from
the �nal lines 7 to 9 yields Q = bAS·B/SNc. This integer quotient is unchanged
by the shift since bAS·B/SNc = bA·B/Nc. So the value of Q is the same in
both cases. However, the two representations of Q may be di�erent as a result of
the shift. From �3.7.2, a typical de�nition of q ensures qi < 3r for each i. Hence,
both representations might di�er from the standard radix-r representation by a
borrow of up to 2 being transferred from each digit to the one below it. So there
is almost no scope for changing the number of digits in Q by the shift (unless
r is very small). Thus, as program code should ensure the same number of
digit×digit multiplications are performed calculating q·SN as q·N , the shifted
and unshifted modular multiplications can normally be expected to require the
same number of digit×digit multiplications in the modular reduction steps.

Before concluding, let us review the minor di�erences in computational com-
plexity that might arise in the modular reduction steps. Since B is smaller
compared to the modulus in the shifted case, the upper bound on P is a little
smaller, making the digits qi slightly smaller on average in that case. For certain
parameter choices, the lower bound on these digits could reduce the number of
bits they require, leading to small but real hardware and power reductions in
digit×digit multiplications. The smaller bound on P could also translate to
slightly fewer iterations of the �nal conditional subtraction in lines 7 to 9 of
Algorithm 1. On the other hand, the lower bound on digits qi may lead to
the representation of Q sometimes using one more digit than in the non-shifted
case6.

5B is smaller by about 1
3
N for the parameter choice in �3.7.2 and a one digit shift.

6Note, however, that the maximum value for the leading digit is atypical as it depends
closely on the upper bounds for A and B. If both are bounded by 2N , then Q < 4N and its
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So, overall, the main cost of this acceleration technique is just some in-
creased data movement caused by the shifting, an increased register length, not
forgetting, of course, the increased program code area to avoid the known multi-
plications by zero. However, the arithmetic digit operations have very similar
costs.

How and where does this technique improve performance? Recall that the
purpose of shifting A and N up is to enable the digits q to be calculated earlier,
and speci�cally without having to await the addition in line 3 of Algorithm
1. The value of the technique arises when several digit×digit multipliers (or
equivalent) are available to operate in parallel. One scenario might be using
a number of processing elements (PEs) in an FPGA with a pipeline of digits
in memory awaiting processing. Another would be a multi-core processor. For
simplicity, assume that the digit×digit multiplier can accept q as one of its
inputs7. Assume also that one multiplication is enough to calculate q and that
in total k multipliers are available. Then, without the shift, for each of the
n loop iterations there can be some multipliers idle while the last digits of
P ← rP+ai·B are determined and then there are k−1 multipliers that are
idle during each calculation of a quotient digit. However, with the shift and a
suitable instruction set, P ← rP+ai·B can commence while one multiplier is
computing q, so that q is ready when there are multipliers available for starting
on P ← P−q·N . Then no multipliers are idle until the end of the last loop
iteration when at most k−1 multiplier cycles may be lost rather than at least
n(k−1). Thus, at least k−1 idle PE cycles will have been saved on every iteration
except maybe the last.

Remarks. i) An alternative view of this shifting process is that the reductions
are simply delayed until q is available and, in the meanwhile, the processing of
the multiplication steps continues.

ii) Since a carry-save representation is used to enable parallel processing of k
digit positions, we could avoid performing the shift and still calculate q in time.
Thus, the scheduler could select the topmost digits of line 3 to be computed
�rst, then compute q using the next free multiplier cycles, and then complete
the execution of line 3. This way, q would be available for use in starting line
5 if there were spare multiplier cycles when �nishing the execution of line 3.
However, executing line 4 within line 3 is bound to be rather messy for both
code and data movement.

Montgomery

In Montgomery's method, the corresponding shifting technique requires making
the determination of q independent of the lowest digit of B which is used in
the step P ← P+aiB. B can be shifted up to achieve this by computing the

top digit position could only have the value 0, 1, 2 or 3.
7This property of the multiplier is desirable in an ASIC because half of all digit products

involve the quotient �digit� q, but recall that q may exceed r−1.
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Montgomery product

P ← (A � SB) mod N

where the notation � is a convenience to avoid explicitly writing in the intro-
duced power of r which depends on the number of loop iterations in Algorithm
0. This number is discussed in the next paragraph. So B is shifted rather than
A and N which were shifted in the traditional schoolbook method above. Once
more, assume the shift is by a whole number of digit places since otherwise there
are needless complications.

As in the classical case, some extra loop iterations are required to process
the larger arguments. Thus, if the original Montgomery computation requires
n iterations (the number of digits in A and B) and B is shifted up by s digits,
i.e. S = rs, then there should be n+s iterations in P ← (A�SB) mod N .
The extra s iterations process s extra digits an, an+1, . . . , an+s−1 of A which
are all zero. This means (A·Br−n) mod N is computed in the unshifted case
and (A·rsBr−n−s) modN in the case of a shift by s digits. Hence the residue
class modulo N of the output is unchanged by the shift and corresponding extra
iterations. The value of the partial product P at the end of the last iteration is
easily seen to be less than (A·BS + rn+s·N)r−n−s = (A·B + rn·N)r−n < 2N ,
which is the same upper bound as in the unshifted case. Hence the output of the
shifted algorithm satis�es all the post-conditions of the unshifted algorithm, and
is therefore acceptable as is. In fact, a more careful analysis would reveal that
the arithmetic is entirely identical, so that the outputs are the same. As noted
for the classical algorithm shift in Remark (i) above, the shift simply delays the
evaluation of q and addition of q·N relative to the addition of ai·B.

To appreciate the potential value of the shift, suppose again that there are k
hardware multipliers that can simultaneously process k digits of the long num-
ber operations P ← P+ai·B or P ← (P+q·N)/r. If the three steps of each loop
iteration are performed sequentially using the multipliers as they become avail-
able, then up to k−1 may again be idle waiting while one multiplier computes q
before P ← (P+q·N)/r can commence. The solution to this bottleneck requires
earlier scheduling of the computation of q. Without the shift, it would have to
take place somewhere in the middle of performing P ← P+ai·B once the lowest
digits have been obtained. But, as with Remark (ii) above for the classical al-
gorithm, this would be messy to implement. It is far cleaner to perform a shift
so that the determination of q can precede P ← P+ai·B.

Such a solution can also cater for the case when the hardware processes all
digit positions of P ← P+ai·SB and P ← (P+q·N)/r in parallel and sepa-
rate circuitry is used to �nd q. Then, to process one loop iteration requires
a depth of hardware equal to two multipliers in each digit position above the
shift. However, below the shift position only the depth of a single digit×digit
multiplier is required since the corresponding digits of SB are zero. This gives
the time needed to compute q without delaying the rest of the hardware [13].
Moreover, each further shift by one digit provides additional time to calculate
and broadcast the quotient digits.

In one sense the overall computational complexity is essentially the same
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with the shift as without: the same digit×digit products need to be formed −
the extra such products involve an operand digit which is known to be zero and
so can be programmed out. The advantage in hardware is that it is much easier
to avoid resources being idle while quotient digits are computed. Thus time
is reduced. However, as in the case of shifting for the classical algorithm, the
number of data movements and other minor operations has increased slightly.
Thus the shifting technique applies equally well to the two algorithms.

Remarks. i) Whilst a shift of about one digit position seems su�cient for both
the classical and Montgomery algorithms, a larger shift enables the computation
of q to start even earlier and results in more time being available for its calcu-
lation and broadcasting to all digit positions when digit operations are done in
parallel.

ii) For large moduli and large numbers of multipliers, the wiring, multiplexers
and power for distributing the value of q can become a signi�cant cost that
might take several clock cycles and needs to be factored into any measure of cir-
cuit complexity. Such wiring may lead to design and implementation problems
arising from routing issues and noise from crosstalk. However, shifting inputs
as above is free of any need for further pre- and post-processing of I/O.

3.11 Pre-computing Multiples of B and N

A much-valued and widely used method for increasing the speed of many com-
putations is to pre-compute and store frequently used values [13, 42]. Including
tables of pre-computed values is a space-time trade-o�. It reduces algorithmic
time by computing repeatedly used data once beforehand instead of every time
it is required. The cost is the increased area taken up by the memory used
for the data. Here, if we have some control over the design of the multiplier,
which may be the case with an ASIC, the digit multiplier can be personalised
into essentially an adder of a subset of pre-computed values aB and qN . This
adapted multiplier should then execute faster than a general multiplier. When
memory for the pre-computed values is very cheap or available and otherwise
unused and access to it is fast, this makes good sense.

If only a very small number of bits of A are processed in one clock tick, then
every possible value of aB and qN or aB±qN could be pre-computed and stored
in a look-up table (LUT). As the same digits a and q will turn up frequently,
the repeated re-computation of aB and qN would be completely avoided. Then
each iteration of either modular multiplication algorithm would require just one
or two additions and no multiplier. However, in practice a and q can be only at
most two or three bits in size before the space requirement becomes prohibitive.

For larger radices r = 2w, simply storing the w shifted values 2iB and
2iN , i = 0, . . . , w−1 is not so expensive and may save valuable computing time
and power when shifting itself takes time. If the necessary shifts cost virtually
nothing (such as when hard-wired into an ASIC) then storing a small number
of other combinations, such as B, 3B, N , and 3N , can be worthwhile. Then,
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for example, P+ai·B can be formed by adding in shifted copies of B and 3B as
necessary for every pair of bits in ai.

The advantages of using a LUT depend critically on the extent to which the
technique shortens the critical path length or reduces the power consumption,
and these will vary enormously between di�erent implementations. Selecting
and loading the required multiples of B and N itself takes time. There are also
many di�erent types of memory, some fast but expensive such as register space
and others cheap but slow.

These techniques apply equally well and in exactly the same way to both
classical and Montgomery modular multiplication, but may or may not be ap-
plicable in a particular context.

3.12 Propagating Carries & Carry-Save Inputs

For a modular multiplication we will always assume the modulus input N is
in a standard non-redundant form, i.e. its digits are in the range [0, r−1] for
some radix r. This is because its conversion to such a form will be cheaper than
the extra processing involved in the modular multiplication using a redundant
carry-save form, as described in �3.8. However, redundancy may be desirable
to allow in one or both of the other inputs, i.e. in A or B, because such a form
enables digit values to be processed independently.

When modular multiplication is used in the context of a modular exponent-
iation, the output from one modular multiplication is an input to a subsequent
such operation. If only one or at most two digit multipliers are available, then
the modular multiplication algorithm should process the partial product P se-
quentially from least to most signi�cant digit propagating carries on the way
and outputting a result in non-redundant form. This is not a problem for in-
putting to the next modular multiplication. However, since the use of carry-save
representations is helpful when a greater number of digit multipliers is available,
carry propagation may be necessary between modular multiplications unless the
modular multiplier allows inputs in redundant form.

As the hardware modular multiplier may be used for modular squaring, one
might expect that both or neither of the arguments should allow for redundant
inputs. However, the digit products in a given ai·B may be performed in par-
allel, and the scalar products ai·B (i = 0, 1, . . . , n−1 or i = n−1, n−2, . . . , 1, 0)
generated sequentially. This means the digits of operand B are required in par-
allel, but the digits of A are consumed sequentially. Thus there could be time
to convert operand A to a standard form before use but not operand B. So
sometimes only one argument may need to be allowed a redundant form, even
for modular squarings.

Clearly, a carry-save representation takes up valuable resources, adding to
the cost of reading, processing, writing and storing the output. Consequently,
although processing the carries takes time, carries should always be propagated
when there is minimal cost, such as by using any spare argument in a MAC
operation, as noted earlier. Otherwise, the propagation cost is that of one (full
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length) addition when digits are processed sequentially. In practice, this is
unlikely to be much less than the cost of a scalar multiplication a·B or q·N .
However, even a full-length, digit-parallel addition would reduce each carry-
save pair of digits to a single digit and a one bit carry. When performed on
the output from one modular multiplication, it reduces the work for the next
modular multiplication: with a full two-digit carry-save representation for B
and single digit for ai, the scalar multiplication ai·B will require 2n digit×digit
multiplications whereas reducing each digit position of B to a digit and a carry
bit cuts the work to only n digit×digit multiplications and an n-digit addition.
Indeed, the hardware multiplier might be large enough to accommodate the
carry bit as well as the digit, �3.9.

Unfortunately, in the classical algorithm, the digits of input A are consumed
from most to least signi�cant. So, if the argument A is not already in a non-
redundant form, it is not easy to convert it fully on a digit-by-digit basis before
use if time is an issue. However, A can still be converted from a two-digit carry-
save representation to a digit and carry bit representation by processing the
digits from most signi�cant to least signi�cant, thereby reducing the work of each
modular multiplication in the same way as when improving the representation
of B. There may be su�cient time and resources to do this. Then the digits
ai will have a range less than that of q and a multiplier which is large enough
to compute the products q·ni may also be su�cient for computing the ai·bj .
On the other hand, in Montgomery's algorithm the digits of A are consumed
one-by-one, least signi�cant �rst. So, if the argument A were not already in
non-redundant form, it would be easy to fully convert it just before use. This
would make the formation of ai·B cheaper and easier even than in the traditional
algorithm.

Now consider evaluating P ← P+ai·B using parallel digit operations with
B in a carry-bit representation and ai in standard binary. The products ai·bj
contribute a maximum of r2−r to each digit position if the bit carries in each bj
are shifted up to contribute 1 to the next position. So the necessary redundancy
in P will give a maximum of at least r2 in each position. This is beyond the
full extent of the carry-save representation and does not even leave room to
accumulate any carry up from the previous operation without expanding into a
third digit. Consequently, even in the Montgomery case, it is necessary either
to have a larger digit multiplier8 or to insert an extra addition into each loop
iteration in order to deal with carries when parallel digit operations are to be
performed. The situation is slightly worse for the classical algorithm where
the digit representation of ai may also have a carry bit. This emphasises the
desirability of processing digits sequentially from right to left.

Lastly, in Montgomery's algorithm the value of q depends on the lowest
digit of the partial product and this does not require carry propagation except
from the digit position deleted in the division by r. On the other hand, for the
classical algorithm the value of q depends on the top bits of the partial product,

8�Larger� is relative to the radix r. One can decrease r if the multiplier size is �xed. For
example, in a SIMD software context, Intel [22] uses 29 bits for r rather than the more natural
32.
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and its accuracy is reduced, thereby causing extra processing, if carries are not
propagated. Once again, Montgomery is more e�cient for the resources that
are typically available.

Overall, this section has illustrated the cost of allowing redundant represent-
ations internally and for the I/O of the modular multiplier. It is greater for the
traditional algorithm but is, nevertheless, still a signi�cant issue if some parallel
processing of digits is envisaged for Montgomery's algorithm.

3.13 Scaling the Modulus

The computation of q is a stumbling block for speed in the traditional algorithm,
as well as perhaps slowing down Montgomery's. As seen in �3.10, in both
cases operand scaling by shifting reduces the complexity of determining the
quotient and so has the potential to speed up the modular multiplication. On
the other hand, as observed in [5], �3.2, special moduli might be chosen to
simplify quotient digit selection. For general moduli the same e�ciency gains
as there can be achieved through scaling the modulus9 [53].

We have already noted in �3.10 that for both the traditional and Montgomery
algorithms shifting A andN relative to B makes it possible to determine q before
the addition P ← P+ai·B, and hence reduce any delay in broadcasting q to the
positions where it is needed �rst for use by a bank of multipliers. However, this
delay can be further reduced if the computation of the quotient is made easier
by scaling the modulus.

So, speci�cally, we wish to remove, or at least simplify, the multiplications
(or divisions) which occur in (5), (10) and (11). This is done by scaling N so
that the top digit or so is all one bits in the case of the classical algorithm, and
so that the bottom digit or so is all zero bits except for the lowest bit in the
case of Montgomery. To be precise (except for the possible shift in the classical
case to place the top bit at the top of a digit and in the Montgomery case to
make N odd), replace the modulus N by its multiple

N∗ = ninvN (12)

where ninv is the quantity de�ned as n
′
inv in (2) or as ninv in (11), as appropriate.

As well as this pre-processing, some post-processing is required. The �nal output
needs to be reduced modulo N , but all intervening modular arithmetic will now
use N∗.

For most choices of moduli, N∗ will now have more digits than N and so
qN∗, A, B and the partial products will be longer (by the same amount) and
more time will have to be spent computing them. The increase is about one
digit in length, and so about two more digit×digit multiplications are required
on each iteration. However, the special, simple form of an end digit of N∗ should
enable the extra digit×digit multiplication in q·N∗ to be avoided. So the cost

9Sparseness in N does not make any di�erence to the cost of quotient digit determination.
So we do not require scaled moduli for which most digits are zero.

https://eprint.iacr.org/2017/1057.pdf#page=12&search=''3.2''
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is one digit×digit multiplication, which is exactly what has been saved from
computing q. Nevertheless, this simpli�cation of q can speed up the hardware
when more than one digit position needs q immediately or multipliers are lying
idle.

Let us consider in detail the properties of the new modulus N∗ and how it
will be used. With Montgomery's technique, ninv is an odd, but standard, digit
in the range [1, r−1] and so scaling by it will provide a modulus N∗ = ninvN ≡
n∗0 ≡ n0·ninv ≡ −1 mod r which is at most one digit longer than N . So the
lowest digit of N∗ satis�es n∗inv ≡ 1 mod r and, by(10), the reduction then uses

q∗ = p0

No processing at all is required to obtain q∗.
On the other hand, in the revised schoolbook method of Algorithm 1, sup-

pose we choose n′inv to have two or three bits more than a digit, as in �3.7.1. The
scaled modulus n′invN then needs shifting (up or down) to ensure its top bit is
at the top of a digit boundary. So the length of N is increased by probably one
or two digits, but perhaps by none or three. In the exceptional case of N being
a 2-power, this shift cancels the multiplication by n′inv = 2k, so N = N∗ = 2kZ
has an unchanged number of digits and the quotient formula (5) yields

q∗ = bp′z/2kc (13)

Again, as in the Montgomery case, almost no processing is required to obtain
q∗.

We will now show this formula also holds for the classical algorithm for all
other N∗, thereby always removing the multiplication from (5). Without loss of
generality, assume (12) holds as written, with any further shift to place the top
bit on a word boundary delayed until later. Since the length of N∗ is normally
di�erent from that of N , the application of (1) to N∗ provides a new power Z∗

of 2 de�ned by
2k−1Z∗ < N∗ < 2kZ∗ (14)

The maximality of n′inv in (2) gives a tighter bound on N∗, namely

22kZ −N < n′invN < 22kZ (15)

So Z∗ = 2kZ, N∗ is exactly k bits longer than N , and the leading k bits of N∗

are all equal to 1. Also from de�nition (2), n′
∗
inv is the unique integer satisfying

22kZ∗ −N∗ < n′
∗
invN

∗ < 22kZ∗ (16)

Hence, as with the special case of a 2-power for N , n′
∗
inv = 2k because 22kZ∗ −

N∗ = 23kZ − n′invN ≤ 2k(22kZ −N) < 2kn′invN = 2kN∗ < 22kZ∗ where �rst
inequality holds by (3), the second by(15), and the third by (14). Thus (13)
holds for all cases of scaling in the classical case.

For both the classical and the Montgomery algorithms, operand scaling is
therefore an easy means of removing the multiplication from the de�nition of
q and replacing it with a simple bit selection. Note, however, that with the
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traditional algorithm, international standards for RSA cryptography already
place the top bit of N on a word boundary. The above scaling adds k bits to
N , making N∗ just more than one digit longer, and causing two more digits
of processing at many points. On the other hand, scaling in the Montgomery
case only adds one digit to the modulus length. Therefore, at least in the
classical case, modulus scaling may make more sense only as the number of
digits increases.

3.14 Systolic Arrays

A systolic array consists of a number of processing elements (PEs) for repeatedly
computing some function which itself consists of the repetition of a small number
of di�erent tasks. The PEs are arranged in a regular manner, communicate data
only locally in the direction of computation, and each performs just one of the
component tasks of the function. The input data for the function is fed in at
one end of the array whenever the function has to be evaluated, and the result is
eventually output at the opposite end. The array acts like a pipeline in the sense
that it contains several instances of the function evaluation at various stages of
completion. Such arrays can be particularly useful on servers with high volumes
of connections or for other data intensive processing.

One of the advantages of using the architecture of a systolic array is the
potential to avoid the cost of simultaneous data broadcasting (delays, wiring
and multiplexers) to a set of PEs operating in parallel and thereby to improve
Area×Time e�ciency. Although overall latency may not be improved by using
a systolic array rather than a parallel architecture, throughput can be substan-
tially increased.

There are many papers on the use of systolic arrays in cryptography. [55]
is the �rst to enable modular multiplication in a fully systolic way, i.e. using
PEs with only local connections so that there is no need for the simultaneous
broadcast of data to many PEs. Sava³ et al. [46] provide a wider view, inte-
grating the integer and characteristic 2 �eld cases, considering scalability issues
and providing simulation timings as well as a good bibliography of prior work.
In [3] Bertoni et al. apply the concept to �nite �eld extensions GF (pm)/GF (p).

Since hardware always involves a �xed number of PEs and there are rarely
su�cient of them to process all digit positions without re-use, it is necessary
to store various intermediate data in queues of digits. This aspect is covered
brie�y after describing the case where there are su�cient PEs. Freking and
Parhi [15] discuss this and the data dependencies in a little more detail for the
2-dimensional version of the array, as well as providing more possibilities for
arranging the cells.

For convenience, we will assume the PEs take a single clock cycle to perform
their operation, including reading any required data, forwarding results to the
next PE and storing data sent on by the previous PEs. We suppose also that
a PE can perform its operation on every clock cycle. In reality, there could be
a three or more stage fetch-decode-execute pipeline and some code to perform
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the PE's operation as a number of simpler instructions over many clock cycles.
This might be the case, for example, when using a Field-Programmable Gate
Array (FPGA).

3.14.1 A Systolic Array for A×B
An easy example of a 2-dimensional systolic array is one for multiplying A =∑n−1

i=0 air
i and B =

∑n−1
j=0 bjr

j using an n×n array of PEs. The example follows
multiplication by hand, starting with the least signi�cant digits of both A and
B, adding one ai·B at a time, and propagating carries upwards every time a digit
product ai·bj is added to the partial product. It outputs the digits of the �nal
product as they become known from least to most signi�cant with each addition
of an ai·B and, for convenience, it shifts down the rest of the partial product at
the same time. So, the (i, j)th processing element PEi,j (i, j≥0) contributes to
the calculation of the product digit pi+j by computing the carry-save value

ci,j+1r+si+1,j−1 ← ai·bj+si,j+ci,j (17)

and then forwarding ci,j+1 to PEi,j+1, si+1,j−1 to PEi+1,j−1, ai to PEi,j+1

and bj to PEi+1,j all at time T = 2i+j+1 relative to the �rst inputs to the
multiplication at T = 0. It is easy to see that the digit values ai, bj , si,j and
ci,j are then all received by PEi,j no later than at time 2i+j, which is in time
for their use in the above calculation. No other data need to be stored by the
PE except that two digits of B are queued ready for use by the PE rather than
one. If one ignores the digits of Q and N , this is just what happens in Fig. 1
([55], Fig. 1), where the black dots in the diagram represent latches to delay the
forwarding of digits of B (and N) by one clock tick, so they arrive exactly when
required. The diagonal dashed lines in the data dependency diagram indicate
the times at which each PE executes its operation for this multiplication. It is
clear that the data �ow is always in the direction of increasing time.

Now consider the periphery of the array. The input data from B and initial
zeros for the save digits s0,j trickle in through the top row of the array. On
the other hand, digits from A and initial zeros for the carry digits ci,0 come
through initialising the right hand column. If there were a left hand column
with index n, PEi,n would use bn=0 and si,n+1=0. Consequently PEi,n would
simply �nd ci,n+1=0 and forward si+1,n−1=ci,n to PEi+1,n−1. As this column
does no computation, it can easily be absorbed into the neighbouring column
of index n−1, to yield an n×n array, thereby saving some hardware. So, if the
number of digits in B is always bounded above by the number of PEs in a row,
it can be assumed that the actual left hand column (of index n−1) has been
slightly modi�ed in this way. In the last row with index n−1, each PEn−1,j
performs its task as normal, outputting the save digit, which is part of the �nal
result, and forwarding the carry digit to the next PE in the row. The digits pk
of the output P = A·B appear at intervals of one or two clock ticks. First, n
save values pi=si+1,−1 exit the right hand column processors PEi,0 two clock
ticks apart at times 2i+1, i=0, 1, 2, . . . , n−1. As is clear from (17), si+1,−1 does
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indeed represent a digit coe�cient of ri. Then the remaining n product digits
pn−1+j=sn,j−1 exit the last row processors PEn−1,j one clock tick apart at times
2n−1+j, j=1, 2, . . . , n, (except for p2n−1 = cn−1,n at time 3n−2 if column n is
absorbed into column n−1) and they are the coe�cients of rn−1+j .
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Figure 1: Data Flow between Modular Multn Cells ([55], Fig. 1)

It should be reasonably clear that if each PE uses its data at the correct time
and the output is collected at the appropriate time, then the array does indeed
compute A·B. Thus, for a given k, each carry digit ci,k−i, save digit si,k−i and
product ai·bk−i is processed by PEi,k−i and contributes to the coe�cient pk of
rk in the product P . The carry it generates represents a multiple of rk+1 and is
sent to a PE that deals with rk+1. The save it generates represents a multiple
of rk and is sent to the next PE that deals with rk. So the diagonal sequence of
elements PE0,k, PE1,k−1, PE2,k−2, . . . , PEk,0 computes and outputs the �nal
digit pk of the product, having added in all the necessary digit products from
A and B, propagated carries as necessary, and consumed the carries it has been
sent. An alternative row-by-row view is given by noting that the equation (17)
for a �xed i is just that for a carry-save computation of ai·B+Pr−1 where P is
the output received from the previous row, namely the result of accumulating the
inputs to rows 0 to i−1. The movement of the save digits by one PE diagonally
rightwards means P should be weighted by r−1. Thus row n−1 would compute∑n−1

i=0 air
iB = A×B if there were further columns to the right. As those extra

columns would use zeros for the digits of B with negative indices, they would
not do any computing, and instead just forward on the save digits, which we
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decided to collect earlier when they left the column of index 0. All carries have
been propagated by the time the last save digit exits the array.

Note that one multiplication is performed like a wave travelling from top
right to bottom left in the array, with only a diagonal of PEs (those along
a dashed line in the �gure) being busy performing the multiplication at any
speci�c clock time. The other PEs are free and so can be used for further multi-
plications while the �rst one is still being computed. As another multiplication
can start being fed into PE0,0 at every clock tick, and it takes 3n−2 clock ticks
before the last digit is output, the array could be performing 3n−2 multiplica-
tions simultaneously, each starting, progressing and being output one clock tick
behind the one in front.

3.14.2 Scalability

Still with the multiplication example, it is important to consider its scalability.
Typically the hardware resources will be �xed but they must be able to deal
with variable sized inputs. So, suppose the input arguments have n digits but
the array is of size s×t, perhaps with s 6= t. If s, t ≥ n then there is no problem:
A and B are simply extended to s and t digits respectively by adding zero digits
at the most signi�cant ends, the product is computed as above, and then the
�rst 2n digits of output taken as the product. As before, PEs which have zero
digits from the most signi�cant end of A or B simply �nd themselves with zero
for the carries and forward the incoming save digit, which is eventually output.
If appropriate, extra control could be put in to extract the result directly from
the nth row rather than wait until it exits row s.

However, if s < n but t ≥ n then there are insu�cient rows and the data
output from the last row has only computed Ps =

∑s−1
i=0 air

iB. This is simply
fed back into the top row as it appears digit by digit from the bottom row, and
the next set of s digits from A is used to add the next set of s products ai·B,
yielding the output P2s =

∑2s−1
i=0 air

iB. This is repeated until all the digits of
A have been used. Thus the array works like a tube by e�ectively having the
top and bottom edges joined, and the data just cycles round and round the tube
until all n digits of A have been processed.

The next case is when t < n but s ≥ n. This works in a similar way by
e�ectively connecting the left and right edges of the array so that the save digits
which exit the right side are fed back into the left side and the carry and other
digits which �ow out of the left side are fed back into the right side. This time,
each cycle across the array extends by t digits of B the proportion of each air

i·B
that has been calculated. For each iteration round the rows, the next set of t
digits of B is fed one digit at a time into the top of the array, ready for use
when the PEs need them.

In both these cases for each circuit of data round the array only one PE
of each row and one PE in each pair of adjacent columns is operating on the
multiplication. Consequently, when the data exits from a row or column all the
PEs in that row or column are free to be used in the next cycle with the next
set of s or t digits.
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Things become more complicated in the fourth case, when both s < n and
t < n. Again, the array needs to be viewed as having its opposite edges joined
together, this time joining both pairs of edges. The data cycles round the rows
and round the columns as before, but there is the potential for PEs to be busy
when needed. In particular, data may travel from PE0,t−1 back to PE0,0 at
the same time as data wants to go from PEs−1,0 back to PE0,0. So PE0,0 is in
demand from two parties. The straight-forward solution is to queue the data
exiting from one edge in a shift register until processors are free to continue the
calculation. As memory for holding digits is much cheaper than PEs, and digits
in the queue can easily be recovered su�ciently in advance not to hold up the
processing, this solution is very cost e�ective. One just has to be careful that
memory access if fast enough to keep up with the demands of the array.

3.14.3 A Linear Systolic Array
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Figure 2: Part of a Linear Systolic Array for Multiplication

A special case is when the multiplication array is only one dimensional, i.e.
s = 1 or t = 1. Assume s = 1 and n ≤ t, so that there is a single row of PEs,
as in Fig. 2, and enough PEs to process every digit of B. As described before,
the save digits coming out from the last row are fed back into the top row, but
at one position to the right. This simply means the save digits go back to the
previous PE and it corresponds to a shifting up of the partial product as each
new digit ai is processed. PEj processes digit bj as previously for column j, and
its computation is

cj+1r+sj−1 ← ai·bj+sj+cj

at time 2i+j+1. This is a contribution to the digit of index i+j. Every two
clock ticks it needs the next digit from A; hence the stream of digits a0, a1, a2, . . .
which are fed into the right hand end on alternate cycles. At the next clock
tick, PEj−1 receives sj−1, which is a coe�cient of ri+j , and adds in it and
the contribution from ai+1·bj−1, also of weight ri+j . Also at that next clock
tick, PEj+1 receives cj+1, which is a coe�cient of ri+j+1, and adds in both it
the product ai·bj+1, also of weight ri+j+1. Thus the digit×digit products, the
carries and the saves are all added into the correct total for each digit position.
Eventually the digits of A run out so that the carries all become zero, and the
save digits are passed rightwards for output. At time 2i+1, i = 0, 1, . . . , 2n−1,
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PE0 ejects the save digit s−1 of weight ri. As all relevant contributions from
A×B have been added to it, this is the value of the digit pi of the product P .

Because of pressure on chip resources, a likely scenario is that there are many
fewer PEs than digits of B, i.e. t < n, If the array is indeed too small to hold
all the digits of B then, as above, it can compute A×Bj where Bj is a t-digit
number. With some simple adjustments, it can be used iteratively to compute
P = A×B =

∑
j A×Bjr

tj where Bj is a radix rt digit of B, i.e. t radix-r
digits of B. Each iteration uses t more digits from B to generate t more digits
of output for the product P , and a carry C of n digits to be used in the next
iteration, as follows:

Crt + Pj ← C +A×Bj

for j = 0, 1, . . . This requires initialising the array to the currently incomplete
top part C of the product A×B. C is just the �rst n carries which exit the left
end of the array on alternate cycles after the �rst t cycles, and Pj is given by
the �rst t save values exiting the right end on alternate cycles. The n digits of
C need to be fed back in in parallel with re-inputting the digits of A, and this
replaces the initialisation to zero of the right hand carry-in which is performed
only for the �rst iteration. This detail was subsumed in the discussion above
for the two dimensional array.

With this set-up, the leftmost PEs are inactive at the end of a multiplication
while the t save digits of the output are passed rightwards down the array. These
digits are unchanged by the PEs because t further zero digits are supplied on
the A pipeline. However, the save digits could be extracted from the lower
edge once the �nal term involving an−1 has been added. This would allow
the following part of the multiplication (that involving the next Bj) or another
multiplication to commence immediately, resulting in each PEs being fully used
on every alternate cycle.

Of course, with each PE operating only on alternate clock ticks the array
can perform a second (independent) multiplication in the other clock cycles,
enabling the full use of its computing power.

3.14.4 A Systolic Array for Modular Multiplication

Could the array of �3.14.1 be adapted to perform an interleaved modular multi-
plication rather than just multiplication? For the classical algorithms the answer
is clearly �no� because the �rst product digits are already exiting the array by
the time any top digits are available for the determination of the multiple q
of the modulus N which should be subtracted. However, with Montgomery's
algorithm the multiple q is determined initially and then the addition of qN can
progress hand in hand with the addition of aiB and the propagation of carries.
Figure 1 illustrates how the typical PEs would work. PEi,j now calculates

ci,j+1r+si+1,j−1 ← ai·bj+qi·nj+si,j+ci,j (18)

at time T = 2i+j+1. By analogy with the multiplication case, this clearly
computes P = A×B + Q×N where Q =

∑n−1
i=0 qir

i. If Q has been chosen
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correctly, P will be a multiple of rn and the lowest n output digits can be
ignored to leave the normal Montgomery modular product.

PEi,1 PEi,0

�

�

�

�

�

�

�

@
@
@
@@R

@
@
@
@@R

@
@
@
@@R

@
@
@
@@R

? ? ? ? ?

? ? ? ? ?

ci,2

ai

qi

ci,1

ai

qi

ai

n1 b1

n1 b1

n0 ninvb0

n0 ninvb0

si,1 si,0

si+1,1 si+1,0t t t tt

t t t tt

Figure 3: The Rightmost Cells.

The rightmost column of cells needs to compute the digits qi which cause
the partial product to be divisible by r when qiN is added. So PEi,0 must also
determine qi such that its save output si+1,−1 is 0:

pi,0 ← ai·b0+si,0
qi ← pi,0·ninv mod r

ci,1r ← pi,0+qi·n0
(19)

at time T = 2i+1, where ninv is the pre-computed inverse of n0 as de�ned
in (11). Note that qi is determined after a delay of two multiplications and so
should take no longer to generate than the carry output in a standard cell of the
array. Although it looks as if ci,1 takes longer to compute, a number of methods
for simplifying this were discussed earlier in the chapter, including shifting B
up so that the �rst multiplication in (19) is eliminated (�3.10) or scaling N so
that the second and third multiplications are removed (�3.13). In an FPGA
these would reduce the time taken by PEi,0 to equal that of the other cells.
Alternatively, in an ASIC systolic array, there are considerable simpli�cations
arising i) from only having to compute the less signi�cant digit of pi,0 for input
to qi, ii) from the cancellations due to n0·ninv = −1 mod r when calculating
n0·(pi,0·ninv mod r) for input to ci,1r, and iii) from only having to compute the
more signi�cant digit of pi,0+qi·n0.

Suppose, as usual, that n is the number of digits in A, B and N , and the
array is large enough for our purposes. Then the leftmost column of cells may
need to have an index larger than n−1 because the intermediate and �nal values
of the product P are bounded above by 2N , cf (21). Moreover, as noted earlier,
this leftmost column may forward its carry directly to the next row to avoid
having an extra column of PEs for which the normal processing of a cell is
trivial.
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For the result of the modular multiplication, recall that the �rst, i.e. lowest,
n digits that the multiplication array produced are now ignored. Indeed, they
are now zero after the modular reduction, and the output lines for them have
been removed. The required digits pj = sn,j (j=0, 1, . . . ) of the Montgomery
modular product follow at times 2n−1+j (j=0, 1, . . . ) if the least signi�cant
input digits were multiplied at time 1 and the product digits are output, as
before, from the nth row of the array. If the array does not have n rows, then
adjustments are made in the same way as in �3.14.2 for the multiplication array.

As in the case of the multiplication array, further modular multiplications
can be fed serially into the array, each starting one clock cycle after the previous
one until every processing element is busy. With the �rst digit being output at
time 1 and the last at time 3n−2, there is the capacity for 3n−2 simultaneous
modular multiplications taking place in an n×n array at any one time. When,
as is usually the case, there are fewer rows or columns than digits in A or B
then, as before, any unused diagonals in the array can be allocated to the next
part of a modular product computation. More detail is given in the references
cited at the start of this section.

For a system-on-a-chip (SoC), di�erent applications compete for space and
layout can be a problem. As die sizes increase, it becomes more and more
feasible to use a systolic array with many PEs for modular multiplication, but
area is always going to be an issue. A very useful observation to reduce area is
simply to implement one rather than two multipliers in each PEi,j and to split
its function over two clock cycles ([57], eqn. 3) using an intermediate double
digit variable di,j which is computed at time T = 2i+j:

di,j ← ai·bj
ci,j+1r+si+1,j−1 ← di,j+qi·nj+si,j+ci,j

(20)

This just requires digits ai and bj to be input one clock cycle earlier. The main
carry and save digits are processed as before at time 2i+j+1. The multiplier
must now be able to add in an extra variable for which more register space
is required, and an extra control bit is needed to distinguish between the two
operations of the PE but, apart from that, the area is reduced by a factor of
almost 2. This makes it much easier to make full use of all the multipliers on
every cycle in the linear version of the array. In particular, when performing
an exponentiation in the linear (i.e. one dimensional) version of the array, the
squarings and any necessary multiplications can be performed sequentially with
no PE being idle. Moreover, the layout of a linear array can be much more easily
adapted to any odd-shaped area on the chip. [57] provides more detail and more
options for such arrays, including a discussion of applications to elliptic curve
cryptography.

There are alternative formulations of the normal schoolbook method of mul-
tiplying two numbers, and some can be adapted to interleaved modular reduc-
tions. For example, Kornerup [34] adapts [55] to a multiplier design in which two
digit×digit multiplications of A·B are performed by each PE. However, their
extra complexity does not seem to provide an improved measure of Area×Time.
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3.15 Side Channel Concerns and Solutions

One of the advantages of listening to digital rather analogue radio stations is
that switching on a light or a nearby thunder storm no longer interferes with
the quality of reception. However, this electro-magnetic phenomenon, when an
electric current is suddenly switched on or o�, led to the discovery of radio waves
and the invention of radio communication at the end of the 19th century.

During the cold war it was well-appreciated that current variation in valves
and cathode ray tube (CRT) monitors led to radio emanations which leaked
information from electrical apparatus such as computers, teletypes and tele-
phones. This led to Tempest shielding [41, 7, 52]. To a large extent, this requires
putting everything in a metal box or at least within a metal lattice − including
cables − but it also concerns input current variation, and even sound10. Con-
siderable understanding and expertise was developed by government bodies for
analysing this �side channel� leakage, undoubtedly making use of advanced sta-
tistical methods, very powerful probing tools, and unlimited computer facilities
which are still well beyond the funding means of university researchers.

Of course, the transistors used in chips are just switching devices and there-
fore radiate energy during operation just as valves do. This was also well-known
from their invention. The need for counter-measures to this lower level of leak-
age has been known for many years [51]. However, the earliest unclassi�ed
published demonstrations of successful attacks on cryptographic systems using
side channel leakage are due to Paul Kocher [32, 33]. He used timing measure-
ments of operations deduced from power variations, and the pro�le of power use
during clock cycles to determine the secret keys within a device running algo-
rithms for public key and symmetric key cryptography. Without any counter-
measures, this just required running the cryptographic operation many times
with the same data and averaging the results to reduce the noise su�ciently to
distinguish between properties of di�erent secret keys. The main di�culty in
performing a similar attack using EMR measurements (electro-magnetic radia-
tion) was the manufacture of a su�ciently small antenna − but these are readily
available in the heads used to read hard disks, for example. Success in this �eld
of EMR was demonstrated shortly after Kocher's publications by Quisquater,
Gemplus and others [44, 16].

The laboratory equipment required to perform such timing, power or EMR
measurements is not expensive, and consists mainly of an oscilloscope and a
probe. Moreover, understanding of the cause of the leakage is not always nec-
essary. For such attacks it su�ces to �nd a correlation between the secret key
and any parts of the recorded phenomena. Averaging many oscilloscope traces
is generally important to improve the signal-to-noise ratio (SNR), but it is es-
sential to select the traces to amplify the signal rather than reduce it. Some
of the more sophisticated methods for trace selection require some knowledge

10As well as the sounds made by di�erent keys on a keyboard or key pad, CPUs running at
low clock speeds used to make the case of a PC vibrate su�ciently to be able to hear when it
was performing RSA cryptography even without any listening equipment beyond the human
ear.



34 Hardware Aspects of Montgomery Modular Multiplication

of how the cryptographic algorithms are implemented in order to target times
when leakage may occur, such as when key-dependent material is moved along
a bus, and remove parts of the traces with no key-related information.

In his �rst paper [32], Kocher identi�ed conditional subtractions in modular
multiplications as a primary source of timing variations which revealed the secret
key. Bit-by-bit he reconstructed the secret exponent in RSA by observing the
frequency of the subtractions and choosing the next bit to match the observed
frequency. Kocher used known data inputs. So the immediate counter-measure
was to blind the data fed into RSA [6, 32, 37]. However, this does not solve the
problem since the average behaviour of squarings and multiplications enables
them to be distinguished without knowledge of any inputs, and the sequence of
squarings and multiplications is directly related to the exponent bits when the
usual square-and-multiply exponentiation algorithm is used.

A \ B 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Table 1: Products of residues A,B mod 5.

The theoretical basis for this was �rst published by Schindler [47] and Walter
& Thompson [61] and is easily illustrated by looking at a small modulus such
as N = 5, as in Fig. 3.15 where the reduced products are in bold. If the
reduction is done for results equal to, or above, N the ratio of subtractions for
multiplications to squarings is 8

25 : 2
5 = 4

5 in the example when we assume the
N2 possible products occur with equal frequency, and the N possible squares
also appear with equal frequency. Simply put, the average value for a square
is greater than the average value for a product and so the probability of a
subtraction is greater for a square.

For the large moduli of cryptographic applications, the exact frequencies of
the �nal conditional subtraction in line 8 of Algorithm 0 can be determined
straight-forwardly as in [60]. It requires a precise bounding interval for the
output P of the main loop of Montgomery's algorithm. This is given by

ABR−1 ≤ P < N+ABR−1 (21)

which is easily veri�ed by showing that line 3 of Algorithm 0 contributes ABR−1

to P and line 5 contributes less than N [59]. When A and B are less than N
and N < R, this is a sub-interval of [0, 2N ] with length N so that at most
one subtraction is required. In cryptographic applications, it is reasonable to
assume N is large and prime or almost prime (i.e. all or almost all natural
numbers less than N are prime to N), that A and B are uniformly distributed
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modulo N , and hence that P is uniformly distributed modulo N , or almost so,
and so is e�ectively uniformly distributed over the given interval. In that case,
the probability of the conditional subtraction is proportional to the size of the
interval [N,N+ABR−1], i.e. the probability is ABR−1N−1. Integrating this
with respect to A and B over the range [0, N ] then gives a very accurate value
for the probability of the conditional subtraction for a multiplication, namely
1
4NR

−1. Identifying A and B and integrating over A gives the probability for
a squaring as 1

3NR
−1. Fixing A and letting B occur with uniform distribu-

tion gives the probability of the subtraction for a constant multiplication by A,
namely 1

2AR
−1. Similar distinguishing probabilities hold for alternative imple-

mentations in which the condition for subtracting N is P ≥ rn rather than
P ≥ N and inputs and outputs are bounded above by rn rather than N .

So the frequency of conditional subtractions is indeed measurably greater
for squarings than for multiplications when su�cient observations are made.
Constant multiplications can also be identi�ed from each other and from squar-
ings and general multiplications by the frequencies for them. Such frequencies
reveal the sequence of multiplications, squarings and constant multiplications
in any exponentiation which uses a standard algorithm, such as the binary and
m-ary left-to-right and right-to-left algorithms. This leads to the discovery of
the secret key [60].

Consequently, where side channel attacks might be a concern it is necessary
to adopt a version of Montgomery's algorithm which does not involve a con-
ditional subtraction. This was presented in [5], �2.4. The solution is to set a
bound greater than N , say B, such that all inputs to the algorithm will be less
than B and simply perform a large enough �xed number of iterations of the
main loop to ensure the output is also less than B. Since R is increased by a
factor of r by each extra iteration, it is possible to ensure

R ≥ B2

B −N
(22)

and then the main loop output P is bounded by B because of (21). This can
then be used safely in any future modular multiplication. A typical choice is
B = 2N . This requires R ≥ 4N and therefore just one more iteration of the
main loop in most situations11. At the end of an exponentiation it also means at
most one conditional subtraction of N . However, as is readily veri�ed by setting
A = 1 in (21), this subtraction can never occur if a modular multiplication by
1 is performed to retrieve the result from the Montgomery domain [56, 20, 59].
Thus, there is no need to implement subtraction in any part of a modular ex-
ponentiation using Montgomery's algorithm, and that means hardware savings
on an ASIC.

Given that execution time should be independent of secret data in order to
decrease side channel leakage, it should also be noted that compilers may opti-
mise ROM code to eliminate unnecessary multiplications by zero and additions

11So it would be more e�cient and secure if standard key and word sizes led to R ≥ 4N >
1
2
R, giving the smallest number of iterations such that R > N , but the world is not always

ideal.

https://eprint.iacr.org/2017/1057.pdf#page=8&search=''2.4''
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of zero. Especially in the case of small radices r, this might enable su�cient
instances of q = 0 to be detected and used to recover a secret key if the input
message has not been blinded.

For comparison, there are no published claims of comparable leakage from
a classical modular multiplication algorithm if the inputs are blinded, but it is
necessary, of course, to implement subtraction. If the inputs are not blinded in
this traditional case, the exponent can be re-created bit-by-bit by reproducing
the exponentiation and choosing bits to match the observed leakage, as Kocher
did [32].

Besides the removal of conditional subtractions from a modular multiplica-
tion algorithm, it should be clear that there is a need to protect other aspects of
cryptographic exponentiation implementations from critical side channel leak-
age. In particular, squarings should ideally be made to behave in the same way
as multiplications. This may mean fetching an argument from memory for a
squaring even if it is unused or already present in a register, in order to match
behaviour for a multiplication. It may also mean taking action to ensure the
two arguments of the squaring are suitably modi�ed so that they appear to be
as di�erent as in a multiplication when passing along a bus or when used in
a multiplier. Such counter-measures are advisable since single exponentiations
can be attacked [58] − it may be unnecessary to perform many exponentiations
in order to have su�cient sections of leakage trace to average and achieve a good
signal-to-noise ratio. Often a su�cient solution is to randomise the exponent
so that averaging over many uses of the secret key removes rather than reveals
data dependency in the observed signal.

Side channel leakage, together with low power, is one of the major concerns
for implementers of hardware for cryptography. It is a vast subject. We have
merely touched on how Montgomery modular multiplication is a�ected and
provided a counter-measure to one point of leakage, namely the conditional
subtraction. With a modi�cation to remove that data-dependent subtraction,
other attacks on modular arithmetic in cryptographic hardware, such as active
ones involving fault injection, seem not to be speci�c to the choice of modular
multiplication algorithm. Counter-measures to them are then typically generic
and applicable to any choice of modular multiplication algorithm.

3.16 Logic Gate Technology

Finally, remember that using static CMOS gates is not the only choice for build-
ing circuits. Apart from other considerations, power and side channel leakage
through power variation and electromagnetic radiation (EMR) may be reduced
by using alternative technologies. Research into this has not identi�ed any
particular style as solving such problems fully. For example, Pass-Transistor
logic (PT) might be used to reduce power. However, at a minimum, a com-
plete solution to side channel leakage requires removing the possibility of hard-
ware glitches (which are data dependent and cause power surges), balancing the
amount and delay of charging (loading capacitance) and equalising gate switch-
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ing (transition counts) to make them independent of input values at every level
of the circuit. Even if it were possible, this is clearly wildly inconsistent with
any desire for area e�ciency or low power. A lower target is to balance the total
energy used over a clock cycle to make it nominally the same for all inputs of
a given program instruction. The most promising attempts at addressing this
problem use a Dual-Rail Pre-charge (DRP) logic style, such as Sense Ampli�er
Based Logic (SABL) [49] or Wave Dynamic Di�erential Logic (WDDL) [50]. So
far, results show these to be expensive and only partially e�ective for mitigating
the level of leakage.

Overall, the clearest leakage comes from data sent along the bus, and next
is probably any data which is broadcast widely at the same time to di�erent
processing elements through multiplexers. Generally, depending on the logic,
it is the Hamming weight of the data or the Hamming weight of the di�erence
between successive data values which can be determined most easily. Thus,
choice of logic gate technology depends not just on the digit multiplier but on
wider considerations.

3.17 Conclusion

Peter Montgomery's Modular Multiplication without Trial Division [39] has had
a signi�cant e�ect on the design and e�ciency of hardware for arithmetic-based
cryptography as well as providing commercial advantages arising from simpler
implementation when compared with traditional methods. In particular, quo-
tient digits stay within the normal range for non-redundant representations and
carry propagation does not need to occur before quotient digit selection. Fur-
thermore, the direction of carry propagation away from the locus of quotient
digit calculation means that Montgomery's algorithm is a natural choice for sys-
tolic arrays which can perform very e�ciently the highest volumes of decryption
and digital signing needed on SSL servers.
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