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Abstract

In this work we seek to construct collusion-resistant traitor tracing systems with small ciphertexts
from standard assumptions that also move toward practical efficiency. In our approach we will hold
steadfast to the principle of collusion resistance, but relax the requirement on catching a traitor from a
successful decoding algorithm. We define a f -risky traitor tracing system as one where the probability of
identifying a traitor is f(λ, n) times the probability a successful box is produced. We then go on to show
how to build such systems from composite order bilinear groups with assumptions close to those used in
prior works. Our core system achieves f(λ, n) = 1

n
where ciphertexts consists of three group elements

and decryption requires just two pairing operations. In addition, we show a generic way to increase f by
approximately a factor of k if we increase the size of the ciphertext and decryption time also by a factor
of k.

At first glance the utility of such a system might seem questionable since the f we achieve for short
ciphertexts is relatively small. Indeed an attacker in such a system can more likely than not get away
with producing a decoding box. However, we believe this approach to be viable for three reasons:

1. A risky traitor tracing system will provide deterrence against risk averse attackers. In some settings
the consequences of being caught might bear a high cost and an attacker will have to weigh his
utility of producing a decryption D box against the expected cost of being caught.

2. One potential use of a risky traitor tracing system is to place it in a continual use situation where
users will periodically receive fresh traitor tracing secret keys via a key refresh mechanism that is
built using standard encryption. If an attacker wishes to produce a decoder D that continues to
work through these refreshes the decoder will be taking an f risk of being caught after each key
refresh, which presents a Russian roulette situation for the attacker.

3. Finally, we can capture impossibility results for differential privacy from risky traitor tracing. Since
our ciphertexts are short (O(λ)), thus we get the negative result which matches what one would
get plugging in the obfuscation based tracing system Boneh-Zhandry [BZ14] solution into the prior
impossibility result of Dwork et al. [DNR+09].

1 Introduction

A traitor tracing [CFN94] system is an encryption system in which a setup algorithm produces a public key
pk, master secret key msk and n private keys sk1, sk2, . . . , skn that are distributed to n user devices. One
can encrypt a message m using the public key to produce a ciphertext ct which can be decrypted using any
of the private keys; however, is inaccessible by an attacker that is bereft of any keys. The tracing aspect
comes into play if we consider an attacker that corrupts some subset S ⊆ {1, . . . , n} of the devices and
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produces a decryption algorithm D that decrypts ciphertext with some non-negligible probability ε(λ) where
λ is the security parameter. An additional Trace algorithm will take as input the master secret key msk and
with just oracle access to D will identify at least one user from the corrupted set S (and no one outside
it). Importantly, any secure system must be able to handle attackers that will construct D in an arbitrary
manner including using techniques such as obfuscation.

While the concept of traitor tracing was originally motivated by the example of catching users that
created pirate decoder boxes in broadcast TV systems, there are several applications that go beyond that
setting. For example ciphertexts could be encryptions of files stored on cloud storage. Or one might use
a broadcast to transmit sensitive information to first responders on an ad-hoc deployed wireless network.
In addition, the concepts and techniques of traitor tracing have had broader impacts in cryptography and
privacy. Most notably Dwork et al. [DNR+09] showed that the existence of traitor tracing schemes leads to
certain impossibility results in the area of differential privacy [DMNS06]. Briefly, they consider the problem
of constructing a “sanitizer” A that takes in a database x1, . . . , xn of entries and wishes to efficiently produce
a sanitized summary of database that can evaluate a set of predicate queries on the database. The sanitized
database should both support giving an average of answers without too much error and the database should
be differentially private in that no one entry should greatly impact the output of the sanitization process.
The authors show that an efficient solution to such a problem is impossible to achieve (for certain parameters)
assuming the existence of a (collusion resistant) traitor tracing system. The strength of their negative results
is directly correlated with the size of ciphertexts in the traitor tracing system.

A primary obstacle in building traitor tracing systems is achieving (full) collusion resistance. There
have been several proposals [BF99, NP00, KY02, Sir06, BP08, BN08, KP10] for building systems that are
k-collusion resistant where the size of the ciphertexts grows as some polynomial function of k. These systems
are secure as long as the number of corrupted keys |S| ≤ k; however, if the size of the corrupted set exceeds
k the attacker will be able to produce a decryption box that is untraceable. Moreover, the collusion bound
of k is fixed at system setup so an attacker will know how many keys he needs to exceed to beat the system.
In addition, the impossibility results of Dwork et al. [DNR+09] only apply for fully collusion resistant
encryption systems. For these reasons we will focus on collusion resistant systems in the rest of the paper.

The existing approaches for achieving collusion resistant broadcast encryption can be fit in the framework
of Private Linear Broadcast Encryption (PLBE) introduced by Boneh, Sahai and Waters [BSW06]. In a
PLBE system the setup algorithm takes as input a security parameter λ and the number of users n. Like a
traitor tracing system it output a public key pk, master secret key msk and n private keys sk1, sk2, . . . , skn
where a user with index j is given key skj . Any of the private keys is capable of decrypting a ciphertext ct
created using pk. However, there is an additional TrEncrypt algorithm that takes in the master secret key, a
message and an index i. This produces a ciphertext that only users with index j ≥ i can decrypt. Moreover,
any adversary produced decryption box D that was created with a set of S where i /∈ S would not be able to
distinguish between encryption to index i or i+1. These properties lead to a tracing system where the tracer
measures for each index the probability that D decrypts a ciphertext encrypted (using TrEncrypt) for that
index and reports all indices i where there is a significant discrepancy between i and i+ 1. These properties
imply that such a PLBE based traitor tracing system will catch at least one user in S with all but negligible
probability and not falsely accuse anyone in S.

The primary difficulty in achieving collusion resistant traitor tracing is to do so with short ciphertext
size. There are relatively few approaches for achieving this goal. First, one can achieve PLBE in a very
simple way from public key encryption. Simply create n independent public and private key pairs from the
PKE system and lump all the individual public keys together as the PLBE public key. To encrypt one just
encrypts to each sub public key in turn. The downside of this method is that the ciphertext size grows as
O(n · λ) as each of the n users need their own slot in the PLBE ciphertext. If one plugs this into the Dwork
et al. [DNR+09] impossibility result it rules out systems with a query set Q of size 2O(n·λ) or larger. Boneh,
Sahai and Waters [BSW06] showed how ciphertexts in a PLBE system can be compressed to O(

√
n · λ)

using bilinear maps of composite order. Future variants [GKSW10, Fre10] moved this to the decision linear
assumption in prime order groups. While this was an improvement and worked under standard assumptions,
there was still a large gap between this and the ideal case where ciphertext size has only polylogarithmic
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dependence on n.
To achieve really short ciphertexts one needs to leverage heavier tools such as collusion resistant functional

encryption or indistingishability obfuscation[BGI+01, GGH+13]. For instance, a simple observation shows
that one can make a PLBE scheme directly from a collusion resistant FE scheme such as the [GGH+13].
Boneh and Zhandry [BZ14] gave a construction of PLBE from indistinguishability obfuscation. These two
approaches get ciphertexts that grow proportionally to log n and thus leading to differential privacy im-
possibility results with smaller query sets of size n · 2O(λ). However, general functional encryption and
indistinguishability obfuscation candidates currently rely on multilinear map candidates many of which have
been broken and the security of which is not yet well understood. In addition, the actual decryption time
resulting from using obfuscation is highly impractical.

Our Results. In this work we seek to construct collusion resistant traitor tracing systems with small
ciphertexts from standard assumptions geared towards practical efficiency. In our approach we will hold
steadfast to the principle of collusion resistance, but relax the requirement on catching a traitor from a
successful decoding algorithm. We define a f -risky traitor tracing system as one where the probability of
identifying a traitor is f(λ, n) times the probability a successful box is produced. We then go on to show how
to build such systems from composite order bilinear groups with assumptions close to those used in [BSW06].
Our core system achieves f(λ, n) = 1

n where ciphertexts consist of three group elements and decryption
requires just two pairing operations. In addition, we show a generic way to increase f by approximately a
factor of k at the cost of increasing the size of the ciphertext and decryption time also by a factor of k.

At first glance the utility of such a system might seem questionable since the function f we achieve for
short ciphertexts is relatively small. Indeed an attacker in such a system can more likely than not get away
with producing a decoding box. However, we believe this approach to be viable for three reasons:

1. A risky traitor tracing system will provide deterrence against risk averse attackers. In some setting
the consequences of being caught might bear a high cost and an attacker will have to weigh his utility
of producing a decryption D box against the expected cost of being caught.

2. One potential use of a risky traitor tracing system is to place it in a continual use situation where
users will periodically receive fresh traitor tracing private keys via a key refresh mechanism that is
built using standard encryption. If an attacker wishes to produce a decoder D that continues to work
through these refreshes the decoder will be taking an f risk of being caught after each key refresh,
which present a Russian roulette situation for the attacker. In this scenario we can amplify the chances
of catching such a “persistent decoder” to be negligibly close to 1. We discuss this further in our
technical overview.

3. Finally, we show that the argument of Dwork et al. applies to risky traitor tracing. Interestingly,
when we structure our argument carefully we can achieve the same negative results as when it is
applied to a standard traitor tracing system. Since our ciphertexts are short (O(λ)), thus we get the
negative result which matches what one would get plugging in the obfuscation based tracing system
Boneh-Zhandry [BZ14] solution into the prior impossibility result of Dwork et al. [DNR+09].

1.1 Technical Overview

In this section, we give a brief overview of our technical approach. We start by discussing the definitional
work. That is, we discuss existing traitor tracing definitions, mention their limitations and propose a stronger
(and possibly more useful) definition, and finally introduce a weaker notion of traitor tracing which we call
risky traitor tracing. Next, we describe our construction for risky traitor tracing from bilinear maps. Lastly,
we discuss the differential privacy negative results implied by existence of risky traitor tracing schemes.

Definitional Work. A traitor tracing system consists of four poly-time algorithms — Setup, Enc, Dec,
and Trace. The setup algorithm takes as input security parameter λ, and number of users n and generates
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a public key pk, a master secret key msk, and n private keys sk1, . . . , skn. The encrypt algorithm encrypts
messages using pk and the decrypt algorithm decrypts a ciphertext using any one of the private keys ski.
The tracing algorithm takes msk as input and is given a black-box oracle access to a pirate decoder D. It
either outputs a special failure symbol ⊥, or an index i ∈ {1, . . . , n} signalling that the key ski was used to
create the pirate decoder.

Traditionally, a traitor tracing scheme is required to satisfy two security properties. First, it must be
IND-CPA secure, i.e. any PPT adversary, when given no private keys, should not be able to distinguish
between encryptions of two different messages. Second, it is required that if an adversary, given private
keys {ski}i∈S for any set S of its choice, builds a good pirate decoding box D (that is, a decoding box that
can can decrypt encryptions of random messages with non-negligible probability), then the trace algorithm
should be able to catch one of the private keys used to build the pirate decoding box. Additionally, the trace
algorithm should not falsely accuse any user with non-negligible probability. This property is referred to as
secure traitor tracing.

Now a limitation of the traitor tracing property as traditionally defined is that a pirate box is labeled
as a good decoder only if it extracts the entire message from a non-negligible fraction of ciphertexts.1 In
numerous practical scenarios such a definition could be useless and problematic. For instance, consider
a pirate box that can always decrypt encryptions of messages which lie in a certain smaller set but does
not work on others. If the size of this special set is negligible, then it won’t be a good decoder as per
existing definitions, but might still be adversarially useful in practice. There are also other reasons why the
previous definitions of traitor tracing are problematic (see Section 3.2 for more details). To this end, we use
an indistinguishability-based secure-tracing definition, similar to that used in [NWZ16], in which a pirate
decoder is labeled to a good decoder if it can distinguish between encryptions of messages chosen by the
adversary itself. We discuss this in more detail in Section 3.2.

In this work, we introduce a weaker notion of traitor tracing called f -risky traitor tracing, where f is
a function that takes the security parameter λ and number of users n as inputs. The syntax as well as
IND-CPA security requirement is identical to that of standard traitor tracing schemes. The difference is in
the way security of tracing traitors is defined. In an f -risky system, we only require that the trace algorithm
must catch a traitor with probability at least f(λ, n) whenever the adversary outputs a good decoder. This
property is referred to as f -risky secure traitor tracing. Note that a 1-risky traitor tracing scheme is simply
a standard traitor tracing scheme, and as f decreases, this progressively becomes weaker.

Constructing Risky Traitor Tracing from Bilinear Maps. As mentioned before, our main construc-
tion uses composite order bilinear groups. Let G,GT be groups of order N = p1p2p3p4 such that there exists
a bilinear mapping e : G×G→ GT (that is, a mapping which maps (ga, gb) to e(g, g)a·b for all a, b ∈ ZN ).
Since these groups are of composite order, G has subgroups G1,G2,G3,G4 of prime order p1, p2, p3 and p4

respectively. Moreover, pairing any element in Gi with an element in Gj (for i 6= j) results in the identity
element (we will say that elements in Gi and Gj are orthogonal to each other).

At a high level, our construction works as follows. There are three key-generation algorithms: ‘less-
than’ key-generation, ‘equal’ key-generation and ‘greater-than’ key-generation. Similarly, we have three
encryption algorithms : ‘standard’ encryption, ‘less-than’ encryption and ‘less-than-equal’ encryption. Out
of these encryption algorithms, the ‘less-than’ and ‘less-than-equal’ encryptions require the master secret
key, and are only used for tracing traitors. The decryption functionality can be summarized by Table 1.

‘less-than’ keygen ‘equal’ keygen ‘greater-than’ keygen
standard enc 3 3 3

‘less-than’ enc 7 3 3

‘less-than-equal’ enc 7 7 3

Table 1: Decryption functionality for different encryption/key-generation algorithms. The symbol 3 denotes
that decryption works correctly, while 7 denotes that decryption fails.

1The tracing algorithm only needs to work when the pirate box is a good decoder.
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The master secret key consists of a ‘cutoff’ index i chosen uniformly at random from {1, . . . , n}. For
any index j < i, it uses the ‘less-than’ key-generation algorithm to generate keys. For j > i, it uses the
‘greater-than’ key-generation algorithm, and for j = i, it uses the ‘equal’ key-generation algorithm. The
ciphertext for a message m is a ‘standard’ encryption of m. From Table 1, it is clear that decryption works.
The trace algorithm tries to identify if the cutoff index i is used by the pirate box D. It first checks if D
can decrypt ‘less-than’ encryptions. If so, then it checks if D can decrypt ‘less-than-equal’ encryptions. If D
works in the ‘less-than’ case, but not in the ‘less-than-equal’ case, then the trace algorithm identifies index
i as one of the traitors.

Let us now look at how the encryption/key generation algorithms work at a high level. The public key in
our scheme consists of g1 ∈ G1 and e(g1, g1)α, while the master secret key has the cut-off index i, element α,
as well as generators for all subgroups of G. The ‘less-than’ keys are set to be gα1 ·w3 ·w4, where w3, w4 are
random group elements from G3,G4 respectively. The ‘equal’ key is gα1 · w2 · w4, where w2 ← G2, w4 ← G4.
Finally, the ‘greater-than’ key has no G2 or G3 terms, and is set to be gα1 · w4.

The ‘standard’ encryption of message m is simply (m · e(g1, g1)α·s, gs1). In the ‘less-than’ and ‘less-than-
equal’ ciphertexts, the first component is computed similarly but the second component is modified. For
‘less-than’ encryptions, the ciphertext is (m · e(g1, g1)α·s, gs1 · h3), where h3 is a uniformly random group
element in G3. For ‘less-than-equal’ encryptions the ciphertext is (m · e(g1, g1)α·s, gs1 · h2 · h3), where h2 and
h3 are uniformly random group elements in G2 and G3 respectively.

To decrypt a ciphertext ct = (ct1, ct2) using a key K, one must compute ct1/e(ct2,K). It is easy to verify
that the keys and encryptions follow the decryption behavior described in Table 1. For instance, an ‘equal’ key
K = gα1 ·w2 ·w4 can decrypt a ‘less-than’ encryption (m · e(g1, g1)α·s, gs1 ·h3) because e(ct2,K) = e(g1, g1)α·s.
However, an ‘equal’ key cannot decrypt a ‘less-than-equal’ ciphertext ct = (m · e(g1, g1)α·s, gs1 · h2) because
e(ct2,K) = e(g1, g1)α·s · e(h2, w2).

Given this construction, we need to prove two claims. First, we need to show that no honest party is
implicated by our trace algorithm; that is, if an adversary does not receive key for index i, then the trace
algorithm must not output index i. We show that if an adversary does not have key for index i, then the
pirate decoding box must not be able to distinguish between ‘less-than’ and ‘less-than-equal’ encryptions
(otherwise we can break the subgroup-decision assumption on composite order bilinear groups). Next, we
show that if an adversary outputs a pirate decoding box that works with probability ρ, then we can identify
a traitor with probability ρ/n. To prove this, we show that if ρi denotes the probability that the adversary
outputs a ρ-functional box and i is the cutoff-index, then the sum of all these ρi quantities is close to ρ.
More details are provided in Section 4.2.

Relation to BSW traitor tracing scheme. Boneh, Sahai and Waters [BSW06] constructed a (fully)
collusion-resistant traitor tracing scheme with O(

√
n ·λ) size ciphertexts. The BSW construction introduced

the private linear broadcast encryption (PLBE) abstraction, showed how to build traitor tracing using PLBE,
and finally gave a PLBE construction using composite-order bilinear groups.

Our framework deviates from the PLBE abstraction in that we only support encryptions to two adjacent
indices (that is, if i is the cutoff index, then we only support encryptions to either i or i − 1) and index
0. As a result, the trace algorithm can only trace index i. Our proof uses composite order assumptions
similar to those used in [BSW06]. The main difficulty in our proof argument is that encrypting to index j
is not defined for indices j /∈ {0, i − 1, i}. As a result, we need to come up with a new way to link success
probabilities across different setups and weave into an argument.

Negative Results for Differential Privacy. Given a database D = (x1, x2, . . . , xn) ∈ Xn, in which each
row represents a single record of some sensitive information contributed by an individual and each record
is an element in the data universe X , the problem of privacy-preserving data analysis is to allow statistical
analyses of D while protecting the privacy of individual contributors. The problem is formally defined in
the literature by representing the database with a sanitized data structure s that can be used to answer all
queries q in some query class Q with reasonable accuracy, with the restriction that the sanitization of any
two databases D,D′ which differ at only a single position are indistinguishable. In this work, we will focus
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on counting (or statistical) queries. Informally, a counting query q on a database D tells what fraction of
records in D satisfy the property associated with q.

Dwork et al. [DNR+09] first showed that secure traitor tracing schemes can be used to show hardness
results for efficient differentially private sanitization. In their hardness result, the data universe is the private
key space of traitor tracing scheme and the query space is the ciphertext space. A database consists of n
private keys and each query is associated with either an encryption of 0 or 1. Formally, for a ciphertext ct,
the corresponding query qct on input a private key sk outputs the decryption of ct using sk. They show that
if the underlying traitor tracing scheme is secure, then there can not exist sanitizers that are simultaneously
accurate, differentially private, and efficient. At a very high level, the idea is as follows. Suppose there
exists an efficient sanitizer A that, on input D = (sk1, . . . , skn) outputs a sanitization s. The main idea is
to use sanitizer A to build a pirate decoding box such that the tracing algorithm falsely accuses a user with
non-negligible probability, thereby breaking secure traitor traitor property. Concretely, let B be an attacker
on the secure tracing property that works as follows — B queries for private keys of all but ith party, it then
uses sanitizer A to generate sanitization s of the database containing all the queried private keys, and finally
it outputs the pirate decoding box as the sanitization evaluation algorithm which has s hardwired inside and
on input a ciphertext ouputs its evaluation given sanitization s.2

To prove that the tracing algorithm outputs i (with non-negligible probability) given such a decoding
box, Dwork et al. crucially rely on the fact that A is differentially private. First, they show that if an
adversary uses all private keys to construct the decoding box, then the tracing algorithm always outputs
an index and never aborts.3 Then, they argue that there must exist an index i such that tracing algorithm
outputs i with probability p ≥ 1/n. Finally, to complete the claim they show that even if ith key is removed
from the database, the tracing algorithm will output i with non-negligible probability since the sanitizer is
differentially private with parameters ε = O(1) and δ = o(1/n).

In this work, we show that their analysis can be adapted to risky traitor tracing as well. Concretely, we
show that f -risky secure traitor tracing schemes can be used to show hardness results for efficient differentially
private sanitization, where f directly relates to the differential privacy parameters. At a high level, the proof
strategy is similar, i.e. we also show that an efficient sanitizer could be used to build a good pirate decoding
box. The main difference is that now we can only claim that if an adversary uses all private keys to
construct the decoding box, then (given oracle access to the box) the tracing algorithm outputs an index
with probability at least f , i.e. the trace algorithm could potentially abort with non-negligible probability.
Next, we can argue that there must exist an index i such that tracing algorithm outputs i with probability
p ≥ f/n. Finally, using differential privacy of A we can complete the argument. An important caveat in the
proof is that since the lower bounds in the probability terms have an additional multiplicative factor of f ,
thus f -risky traitor tracing could only be used to argue hardness of differential privacy with slightly lower
values of parameter δ, i.e. δ = o(f/n).

However, we observe that if the risky traitor tracing scheme additionally satisfies what we call “singular
trace” property, then we could avoid the 1/n loss. Informally, a risky scheme is said to satisfy the singular
trace property if the trace algorithm always outputs either a fixed index or the reject symbol. One could
visualize the fixed index to be tied to the master secret and public keys. Concretely, we show that f -risky
traitor tracing with singular trace property implies hardness of differential privacy for δ = o(f), thereby
matching that achieved by previous obfuscation based result of [BZ14]. We describe our hardness result in
detail in Section 5.2.

Amplifying the Probability of Tracing — Using Risky Traitor Tracing in a Continuous Setting.
While an f -risky traitor tracing system by itself gives a small probability of catching a traitor, there can be
ways to deploy it that increase this dramatically. We discuss one such way informally here. Suppose that we
generate the secret keys sk1, sk2, . . . , skn for a risky traitor tracing system and in addition generate standard
secret keys SK1, . . . ,SKn. In this system an encryptor can use the traitor tracing public key pk to compute

2Technically, the decoding box must round the output of evaluation algorithm in order to remove evaluation error.
3In the full proof, one could only argue that tracing algorithm outputs an index with probability at least 1 − β where β is

the accuracy parameter of sanitizer A.
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a ciphertext. A user i will use secret key ski to decrypt. The system will allow this to continue for a certain
window of time. (Note during the window different ciphertexts may be created by different users.) Then at
some point in time the window will close and a new risky tracing key pk′ and secret keys sk′1, sk′2, . . . , sk′n
will be generated. The tracing secret keys will be distributed by encrypting each sk′i under the respective
permanent secret key SKi. And the encryptors will be instructed to only encrypt using the new public key
pk′. This can continue for an arbitrary number of windows followed by key refreshes. Note that each key
refresh requires O(nλ) size communication.

Consider an attacker that wishes to disperse a stateless decoder D that is capable of continuing to
work through multiple refresh cycles. Such a “persistent decoder” can be traced with very high probability
negligibly close to 1. The tracing algorithm must simply give it multiple key refreshes followed by calls to
the Trace algorithm by the risky property it will eventually pick one that can trace one of the contributors.

We emphasize that care must be taken when choosing the refresh size window. If the window is too
small the cost of key refreshes will dominate communication — in one extreme if a refresh happens at the
frequency that ciphertexts are created then the communication is as bad as the trivial PLBE system. In
addition, dispersing new public keys very frequently can be an issue. On the other hand if a refresh window
is very long, then an attacker might decide there is value in producing a decoding box that works only for
the given window and we are back to having only an f(λ, n) chance of catching him.

1.2 Additional Related Work

Our traitor tracing system allows for public key encryption, but requires a master secret key to trace users as
do most works. However, there exists exceptions [Pfi96, PW97, WHI01, KY03, CPP05, BW06, BZ14] where
the tracing can be done using a public key. In a different line of exploration, Kiayias and Yung [KY02] argue
that a traitor tracing system with higher overhead can be made “constant rate” with long enough messages.
Another interesting point in the space of collusion resistant systems is that of Boneh and Naor [BN08]. They
show how to achieve short ciphertext size, but require private keys that grow quadratically in the number
of users as O(n2λ). In addition, this is only achievable assuming a perfect decoder. If the decoder D works
with probability δ then the secret key grows to O(n2λ/δ2). Furthermore, the system must be configured
a-priori with a specific δ value and once it is set one will not necessarily be able to identify a traitor from
a box D that works with smaller probability. Such systems have been called threshold traitor tracing
systems [NP98, CFNP00]. Both [NP98, CFNP00] provide combinatorial and probabilistic constructions in
which the tracing algorithm is guaranteed to work with high probability, and to trace t traitors they get
private keys of size O(t·log n). In contrast we can capture any traitor strategy that produces boxes that work
with any non-negligible function ε(λ). Chor et al. [CFNP00] also considered a setting for traitor tracing in
which the tracing algorithm only needs to correctly trace with probability 1− p, where p could the scheme
parameter. However, this notion has not been formally defined or explored since then.

Dwork et al. [DNR+09] first showed that existence of collusion resistant traitor tracing schemes implies
hardness results for efficient differentially private sanitization. In their hardness result, the database consists
of n secret keys and each query is associated with an encryption of 0/1. Thus, the size of query space depends
on the size of ciphertexts. Instantiating the result of Dwork et al. with the traitor tracing scheme of Boneh
et al. [BSW06], we get that under assumptions on bilinear groups, there exist a distribution on databases
of size n and a query space of size O(2

√
n·λ) such that it is not possible to efficiently sanitize the database

in a differentially private manner.
Now the result of Dwork et al. gives hardness of one-shot sanitization. A one-shot sanitizer is supposed

to produce a summary of an entire database from which approximate answers to any query in the query
set could be computed. A weaker setting could be where we consider interactive sanitization, in which the
queries are fixed and given to the sanitizer as an additional input and the sanitizer only needs to output
approximate answers to all those queries instead of a complete summary. Ullman [Ull13] showed that, under
the assumption that one-way functions exist, there is no algorithm that takes as input a database of n records
along with an arbitrary set of about O(n2) queries, and approximately answers each query in polynomial
time while preserving differential privacy. Ullman’s result differs from the result of Dwork et al. in that it
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applies to algorithms answering any arbitrary set of O(n2) queries, whereas Dwork et al. show that it is
impossible to sanitize a database with respect to a fixed set of O(2

√
n·λ) queries.

Recently a few works [BZ14, KMUZ16] have improved the size of query space for which (one-shot)
sanitization is impossible from O(2

√
n·λ) to n · O(2λ) to poly(n).4 [BZ14] showed the impossibility by first

constructing a fully collusion resistant scheme with short ciphertexts, and later simply applying the Dwork et
al. result. On the other hand, [KMUZ16] first construct a weakly secure traitor tracing scheme by building on
top of PLBE abstraction, and later adapt the Dwork et al. impossibility result for this weaker variant. These
works however assume existence of a stronger cryptographic primitive called indistinguishability-obfuscator
(iO)[BGI+01, GGH+13]. Currently we do not know of any construction of iO from a standard cryptographic
assumption. In this work, we are interested in improving the state-of-the-art hardness results in differential
privacy based on standard assumptions.

2 Preliminaries

Notations. For any set X , let x ← X denote a uniformly random element drawn from the set X . Given
a PPT algorithm D, let AD denote an algorithm A that uses D as an oracle (that is, A sends queries to D,
and for each query x, it receives D(x)).

2.1 Bilinear Groups and Assumptions

In this work, we will use composite order bilinear groups for our main construction. Let G,GT be two
groups of order N . A bilinear map e : G×G→ GT is an efficiently computable function mapping two group
elements of G to a group element in GT and satisfying the following properties:

• Bilinearity : ∀g ∈ G, a, b ∈ ZN , e(ga, gb) = e(g, g)ab

• Non-Degeneracy : e(g, g) 6= 1GT for g 6= 1G, where 1G and 1GT are the identity elements of G and GT
respectively.

We will now present different assumptions on composite order bilinear groups. First, we will present the
a generalization of the subgroup decision assumption introduced by Bellare, Waters and Yilek [BWY11].
Essentially they introduce a framework to capture a class of assumptions related to subgroup decision. From
this class one can use their notation to capture a particular non-interactive assumption. We will be using
the syntax and notations from [BWY11].

Let Bilin-Genk be a PPT algorithm that is parameterized by k, takes as input a security parameter λ
and returns ((p1, p2, . . . , pk) , N,G,GT , e(·, ·)), where pi’s are primes such that pi ∈ {2λ−1, . . . , 2λ − 1} for
all i ∈ {1, 2, . . . , k}, N =

∏
i pi, G and GT are groups of order N and e : G × G → GT is a non-degenerate

bilinear map. For any set S ⊆ {1, 2, . . . , k}, let GS ⊆ G denote the (unique) subgroup of order
∏
i∈S pi. For

any S ⊆ {1, 2, . . . , k}, using {pi}i∈S , one can sample a uniformly random element from GS .

Assumption 1 (General Subgroup Decision Assumption). Consider the experiment Expt-GSD, parameter-
ized by Bilin-Genk and PPT algorithm A, defined in Figure 1.

We say that the General Subgroup Decision holds with respect to Bilin-Genk if for any PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, AdvA(λ) =

∣∣Pr [1← Expt-GSDBilin-Genk,A(λ)]− 1
2

∣∣ ≤
negl(λ).

We will also need an additional assumption on composite order bilinear groups. This assumption is
similar to “Assumption 3” of [LW10], but captured in a general framework like [BWY11].

Assumption 2 (Subgroup Decision Assumption in Target Group). Consider the experiment Expt-SDT,
parameterized by Bilin-Genk and PPT algorithm A, defined in Figure 2.

4In this work, we only focus on the size of query space.
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Experiment Expt-GSDBilin-Genk,A(λ)

1. Challenger chooses ((p1, . . . , pk), N,G,GT , e(·, ·)) ← Bilin-Genk(1λ). It sends (N,G,GT , e(·, ·)) to the
adversary.

2. The adversary sends two subsets S0, S1 ⊆ {1, 2, . . . , k}. The challenger chooses b ← {0, 1}, g ← GSb
and sends g to A.

3. The adversary then queries for polynomially many random elements from subgroups of its choice. For
each queried set S ⊆ {1, 2, . . . , k} such that either (S∩S0 = S∩S1 = ∅) or (S∩S0 6= ∅ and S∩S1 6= ∅),
the challenger sends h← GS to A.

4. Finally, after polynomially many queries, the adversary sends its guess b′. The experiment outputs 1
if b = b′, else it outputs 0.

Figure 1: Experiment Expt-GSD

Experiment Expt-SDTBilin-Genk,A(λ)

1. Challenger chooses ((p1, . . . , pk), N,G,GT , e(·, ·)) ← Bilin-Genk(1λ). The challenger also chooses
α, s← ZN and g1 ← G{1}. It sends (N,G,GT , e(·, ·)) to the adversary.

2. The adversary then sends a set S1, S2 ⊆ {2, . . . , k} such that S1 ∩ S2 6= ∅. The challenger chooses
u, v ← GS1 , w ← GS2 . It also chooses b← {0, 1}. If b = 0, it sets T = e(g1, g1)α·s, else it sets T ← GT .
The challenger sends (gα1 · u, v, gs1 ·w, T ). The adversary sends its guess b′. The experiment outputs 1
if b = b′, else it outputs 0.

Figure 2: Experiment Expt-SDT

We say that the Subgroup Decision Assumption in Target Group holds with respect to Bilin-Genk if
for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, AdvA(λ) =∣∣Pr [1← Expt-SDTBilin-Genk,A(λ)]− 1

2

∣∣ ≤ negl(λ).

Finally, we state the Bilinear Diffie Hellman assumption for composite order groups. This is similar to the
BDDH assumption for prime order groups, except that the challenge elements are chosen from a subgroup.

Assumption 3. We say that the Bilinear Decision Diffie Hellman assumption holds with respect to Bilin-Genk
if for any PPT adversary A = (A1,A2), there exists a negligible function negl(·) such that for all λ ∈ N,∣∣∣∣∣∣∣∣Pr

b← A2(σ,N,G,GT , g, h1, h2, h3, Ub) :

((p1, . . . , pk) , N,G,GT , e(·, ·))← Bilin-Genk(1λ)
(S, σ)← A1(1λ); g ← GS ; a, b, c← ZN
h1 = ga, h2 = gb, h3 = gc

U0 = e(g, g)abc, U1 ← GT , b← {0, 1}

− 1

2

∣∣∣∣∣∣∣∣
is at most negl(λ).

3 Risky Traitor Tracing

In this section, we will first introduce the traditional definition of traitor tracing based on that given by Boneh,
Sahai and Waters [BSW06]. We provide a “public key” version of the definition in which the encryption
algorithm is public, but the tracing procedure will require a master secret key. Our definition will by default
capture full collusion resistance.

A limitation of this definition is that the tracing algorithm is only guaranteed to work on decoders that
entirely decrypt encryptions of randomly selected messages with non-negligible probability. We we will
discuss why this definition can be problematic and then provide an indistinguishability based definition for
secure tracing.

Finally, we will present our new notion of risky traitor tracing which captures the concept of a trace
algorithm that will identify a traitor from a working pirate box with probability close to f(λ, n). Our main
definition for risky traitor tracing will be a public key one using the indistinguishability; however we will also
consider some weaker variants that will be sufficient for obtaining our negative results in differential privacy.
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3.1 Public Key Traitor Tracing

A traitor tracing scheme with message space M consists of four PPT algorithms Setup,Enc,Dec and Trace
with the following syntax:

(msk, pk, (sk1, . . . , skn)) ← Setup(1λ, 1n) : The setup algorithm takes as input the security parameter
λ, number of users n, and outputs a master secret key msk, a public key pk and n secret keys
sk1, sk2, . . . , skn.

ct ← Enc(pk,m ∈ M) : The encryption algorithm takes as input a public key pk, message m ∈ M and
outputs a ciphertext ct.

y ← Dec(sk, ct) : The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs
y ∈M∪ {⊥}.

i ← TraceD(msk, 1y) : The tracing algorithm takes a parameter y ∈ N (in unary) as input, has black box
access to an algorithm D, and outputs an index i ∈ {1, 2, . . . , n} ∪ {⊥}.

Correctness For correctness, we require that if ct is an encryption of message m, then decryption of ct
using one of the valid secret keys must output m. More formally, we require that for all λ ∈ N, n ∈ N,
(msk, pk, (sk1, . . . , skn))← Setup(1λ, 1n), m ∈M, ct← Enc(pk,m) and i ∈ {1, 2, . . . , n}, Dec(ski, ct) = m.

Security A secure traitor tracing scheme must satisfy two security properties. First, the scheme must
be IND-CPA secure (that is, any PPT adversary, when given no secret keys, cannot distinguish between
encryptions of m0,m1). Next, we require that if an adversary, using some secret keys, can build a pirate
decoding box, then the trace algorithm should be able to catch one of the secret keys used to build the pirate
decoding box. In this standard definition, the trace algorithm identifies a traitor if the pirate decoding
box works with non-negligible probability in extracting the entire message from an encryption of a random
message.

Definition 3.1 (IND-CPA security). A traitor tracing scheme T = (Setup,Enc,Dec,Trace) is IND-CPA secure
if for any PPT adversary A = (A1,A2), polynomial n(·), there exists a negligible function negl(·) such that
for all λ ∈ N, |Pr[1← Expt-IND-CPATA(1λ, 1n)]− 1/2| ≤ negl(λ), where Expt-IND-CPAT ,A is defined below.

• (msk, pk, (sk1, . . . , skn))← Setup(1λ, 1n(λ))

• (m0,m1, σ)← A1(pk)

• b← {0, 1}, ct← Enc(pk,mb)

• b′ ← A2(σ, ct). Experiment outputs 1 iff b = b′.

Definition 3.2 (Secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) a traitor tracing scheme. For
any polynomial n(·), non-negligible function ε(·) and PPT adversary A, consider the following experiment
ExptTA,n,ε(λ):

•
(
msk, pk,

(
sk1, . . . , skn(λ)

))
← Setup(1λ, 1n(λ)).

• D ← AO(·)(pk)

• i∗ ← TraceD(msk, 11/ε(λ)).

Here, O(·) is an oracle that has {sk1, sk2, . . . , skn(λ)} hardwired, takes as input an index i ∈ {1, 2, . . . , n(λ)}
and outputs ski. Let S be the set of indices queried by A. Based on this experiment, we will now define the
following (probabilistic) events and the corresponding probabilities (which is a function of λ, parameterized
by A, n, ε):
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• Good-Decoder : Pr[D(ct) = m | m←M, ct← Enc(pk,m)] ≥ ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

• Cor-Tr : i∗ ∈ S
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : i∗ ∈ {1, 2, . . . , n} \ S
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be secure if for every PPT adversary A, polynomials n(·), p(·) and
non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N such
that ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥ Pr -G-DA,n,ε(λ)− negl2(λ).

3.2 Indistinguishability Security Definition for Traitor Tracing Schemes

A limitation of the previous definition is that the tracing algorithm is only guaranteed to work on decoders
that entirely decrypt a randomly selected message with non-negligible probability. This definition can be
problematic for the following reasons.

• First, there could be pirate boxes which do not extract the entire message from a ciphertext, but
can extract some information about the message underlying a ciphertext. For example, a box could
paraphrase English sentences or further compress an image. Such boxes could be very useful to own
in practice yet the tracing definition would give no guarantees on the ability to trace them.

• Second, a pirate decoder may not be very successful in decrypting random ciphertexts, but can decrypt
encryptions of messages from a smaller set. In practice the set of useful or typical messages might indeed
fall in a smaller set.

• Finally, if the message space is small (that is, of polynomial size), then one can always construct
a pirate decoder which succeeds with non-negligible probability and can not get caught (the pirate
decoder box simply outputs a random message for each decryption query. If M is the message space,
then decryption will be successful with probability 1/|M|). Since such a strategy does not use any
private keys, it cannot be traced. Therefore the above definition is only sensible for superpolynomial
sized message spaces.

To address these issues, we provide a stronger definition, similar to that used in [NWZ16], in which a
pirate decoder is successful if it can distinguish between encryptions of messages chosen by the decoder itself.
For this notion, we also need to modify the syntax of the Trace algorithm. Our security notion is similar to
the one above except that an attacker will output a box D along with two messages (m0,m1). If the box
D is able to distinguish between encryptions of these two messages with non-negligible probability then the
tracing algorithm can identify a corroborating user.

TraceD(msk, 1y,m0,m1): The trace algorithm has oracle access to a program D, it takes as input a master
secret key msk, y (in unary) and two messages m0,m1. It outputs i ∈ {1, 2, . . . , n} ∪ {⊥}.

Definition 3.3 (Ind-secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) be a traitor tracing scheme. For
any polynomial n(·), non-negligible function ε(·) and PPT adversaryA, consider the experiment Expt-TTTA,n,ε(λ)
defined in Figure 3. Based on this experiment, we will now define the following (probabilistic) events and
the corresponding probabilities (which is a function of λ, parameterized by A, n, ε):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

• Cor-Tr : i∗ ∈ S
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].
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• Fal-Tr : i∗ ∈ {1, 2, . . . , n} \ S
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be ind-secure if for every PPT adversary A, polynomials n(·), p(·)
and non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N
satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥ Pr -G-DA,n,ε(λ)− negl2(λ).

Experiment Expt-TTTA,n,ε(λ)

•
(
msk, pk,

(
sk1, . . . , skn(λ)

))
← Setup(1λ, 1n(λ)).

• (D,m0,m1)← AO(·)(pk)

• i∗ ← TraceD(msk, 11/ε(λ),m0,m1).

Here, O(·) is an oracle that has {sk1, sk2, . . . , skn(λ)} hardwired, takes as input an index i ∈ {1, 2, . . . , n(λ)}
and outputs ski. Let S be the set of indices queried by A.

Figure 3: Experiment Expt-TT

3.3 Risky Traitor Tracing

In this section, we will introduce the notion of risky traitor tracing. The syntax is same as that of ind-secure
traitor tracing. However, for security, if the adversary outputs a good decoder, then the trace algorithm will
catch a traitor with probability f where f is a function of λ and the number of users.

Definition 3.4 (f -risky secure traitor tracing). Let f : N×N→ [0, 1] be a function and T = (Setup,Enc,Dec,Trace)
a traitor tracing scheme. For any polynomial n(·), non-negligible function ε(·) and PPT adversary A, con-
sider the experiment Expt-TTTA,n,ε(λ) (defined in Figure 3). Based on this experiment, we will now define the
following (probabilistic) events and the corresponding probabilities (which are functions of λ, parameterized
by A, n, ε):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

• Cor-Tr : i∗ ∈ S
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : i∗ ∈ {1, 2, . . . , n} \ S
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be f -risky secure if for every PPT adversary A, polynomials n(·),
p(·) and non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N
satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥ Pr -G-DA,n,ε(λ) ·f(λ, n(λ))−
negl2(λ).

We also define another interesting property for traitor tracing schemes which we call “singular” trace.
Informally, a scheme satisfies it if the trace algorithm always outputs either a fixed index or the reject symbol.
The fixed index could depend on the master secret and public keys. Below we define it formally.

Definition 3.5 (Singular Trace). A traitor tracing scheme T = (Setup,Enc,Dec,Trace) is said to satisfy
singular trace property if for every polynomial n(·), λ ∈ N, keys (msk, pk, (sk1, . . . , skn)) ← Setup(1λ, 1n),
there exists an index i∗ ∈ {1, . . . , n} such that for every poly-time algorithm D, parameter y ∈ N, any two
messages m0,m1,

Pr[TraceD(msk, 1y,m0,m1) ∈ {i∗,⊥}] = 1,

where the probability is taken over random coins of Trace.
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3.4 Private Key Traitor Tracing

We will now present different security notions for private key encryption schemes with risky traitor tracing.
Here, the master secret key is used for encrypting messages, generating secret keys for parties and tracing
traitors. The first security notion will be a private key analog of Definition 3.4, where the adversary also
gets encryption queries before it sends the pirate decoding box. In the second notion, the adversary does
not get any encryption queries. While this definition is weaker than the first notion (and may not capture
practical scenarios), it suffices for our differential privacy application.

First, we will present the syntax for private key traitor tracing. A private key traitor tracing scheme for
message space M consists of the following algorithms.

(msk, (sk1, . . . , skn))← Setup(1λ, 1n) : The setup algorithm takes as input the security parameter λ, number
of users n, and outputs a master secret key msk and n secret keys sk1, sk2, . . . , skn.

ct← Enc(msk,m ∈M) : The encryption algorithm takes as input a master secret key pk, message m ∈M
and outputs a ciphertext ct.

y ← Dec(sk, ct) : The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs
y ∈M∪ {⊥}.

i ← TraceD(msk, 1y) : The tracing algorithm takes a parameter y ∈ N (in unary) as input, has black box
access to an algorithm D, and outputs an index i ∈ {1, 2, . . . , n} ∪ {⊥}.

The correctness property is similar to that in the public key setting.

3.4.1 Security

Definition 3.6 (Private Key f -risky secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) be a private
key traitor tracing scheme. For any polynomial n(·), non-negligible function ε(·) and PPT adversary A,
consider the experiment Expt-TT-privTA,n,ε(λ) (described in Figure 4). Based on this experiment, we will
now define the following (probabilistic) events and the corresponding probabilities (which is a function of λ,
parameterized by A, n, ε):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

• Cor-Tr : i∗ ∈ S
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : i∗ ∈ {1, 2, . . . , n} \ S
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A private key traitor tracing scheme T is said to be f -risky secure if for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·)
such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥
Pr -G-DA,n,ε(λ) · f(λ, n(λ))− negl2(λ).

Definition 3.7 (Private Key No-Query f -risky secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) be a
private key traitor tracing scheme. For any polynomial n(·), non-negligible function ε(·) and PPT adversary
A, consider the experiment Expt-TT-privTA,n,ε(λ) (described in Figure 4), except that the adversary A does
not have access to the encryption oracle O2. Based on this experiment, we can define the following (proba-
bilistic) events Good-Decoder, Cor-Tr, Fal-Tr and the corresponding probabilities Pr -G-DA,n,ε, Pr -Cor-TrA,n,ε,
Pr -Fal-TrA,n,ε respectively.

A private key traitor tracing scheme T is said to be no-query f -risky secure if for every PPT adversary
A, polynomials n(·), p(·) and non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·)
such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥
Pr -G-DA,n,ε(λ) · f(λ, n(λ))− negl2(λ).
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Experiment Expt-TT-privTA,n,ε(λ)

•
(
msk,

(
sk1, . . . , skn(λ)

))
← Setup(1λ, 1n(λ)).

• (D,m0,m1)← AO1(·),O2(·)()

• i∗ ← TraceD(msk, 11/ε(λ),m0,m1).

Here, O1(·) is an oracle that has {sk1, sk2, . . . , skn(λ)} hardwired, takes as input an index i ∈ {1, 2, . . . , n(λ)}
and outputs ski. Let S be the set of indices queried by A.
The oracle O2(·) is the encryption oracle that has msk hardwired, takes a message m as input, and outputs
Enc(msk,m).

Figure 4: Experiment Expt-TT-priv

4 Public Key Traitor Tracing Scheme

We will now present our public key traitor tracing scheme.

4.1 Construction

Let Bilin-Gen4 be a group generator that takes as input security parameter λ, parameterized by number
of prime-order subgroups k = 4, and outputs ((p1, p2, p3, p4), N,G,GT , e(·, ·)), where p1, p2, p3, p4 are λ-bit
primes, G is a group of order N = p1p2p3p4 with subgroups G{1},G{2},G{3},G{4} of order p1, p2, p3, p4

respectively. The group GT is a target group of order N and e is an efficient (non-degenerate) bilinear
function.

Setup(1λ, 1n): The setup algorithm first chooses ((p1, p2, p3, p4),G,GT , e(·, ·)) ← Bilin-Gen4(1λ). Next, it
chooses gj ← G{j} for 1 ≤ j ≤ 4, α← ZN and sets mpk = (e(g1, g1)α, g1).

The key generation algorithm then chooses an index i∗ ← {1, 2, . . . , n} and sets the master secret key
to be msk = (i∗, α, g1, g2, g3, g4).

To choose the secret keys, it uses the KeyGenless, KeyGeneq and KeyGengr algorithms defined below.

KeyGenless(msk): It chooses t, u← ZN and sets sk = gα1 · gt3 · gu4 .

KeyGeneq(msk): It chooses t, u← ZN and sets sk = gα1 · gt2 · gu4 .

KeyGengr(msk): It chooses u← ZN and sets sk = gα1 · gu4 .

For each j ∈ {1, 2, . . . , i∗−1}, it sets the secret key skj ← KeyGenless(msk). It sets ski∗ ← KeyGeneq(msk).
Finally, for all j ∈ {i∗ + 1, . . . , n}, it sets skj ← KeyGengr(msk).

Enc(mpk,m): Let mpk = (A, g1). The encryption algorithm first chooses s← Zp1 and sets ct = (m ·As, gs1).

Dec(sk, ct): Let ct = (C0, C1). The decryption algorithm outputs C0/e(C1, sk).

TraceD(msk, 1y,m0,m1): Let msk = (α, g1, g2, g3, g4) and ε = b1/yc.
To define the trace algorithm, we need to first define two encryption algorithms Encless and Encleq.

Encless(msk,m): This encryption algorithm outputs ciphertexts which have group elements from
G{1,3}. It chooses s, v ← ZN and outputs ct = (m · e(g1, g1)αs, gs1 · gv3).

Encleq(msk,m): This encryption algorithm outputs ciphertexts which have group elements from
G{1,2,3}. It chooses s, u, v ← ZN and outputs ct = (m · e(g1, g1)αs, gs1 · gu2 · gv3).

The trace algorithm first sets T = λ · n/ε. Let countleq = countless = 0. For j = 1 to T , the trace
algorithm computes the following:

14



1. It chooses bj ← {0, 1} and computes ctlessj ← Encless(msk,mbj ) and sends ctlessj to D. If D outputs

bj , set countless = countless + 1, else set countless = countless − 1.

2. It chooses cj ← {0, 1} and computes ctleqj ← Encless(msk,mcj ) and sends ctleqj to D. If D outputs

cj , set countleq = countleq + 1, else set countleq = countleq − 1.

If countless − countleq > T · (ε/4n), output i∗, else output ⊥.

Correctness Let msk = (e(g1, g!)
α, g1), msk = (α, g1, g2, g3, g4, i), skj = gα1 · g

tj
3 · g

uj
4 for j < i, ski =

gα1 · g
ti
2 · g

ui
4 and skj = gα1 · g

uj
4 for j > i. Fix any message m ∈ M. The encryption of m with randomness

s ∈ ZN is ct = (m · e(g1, g1)α·s, gs1). For index j < i, Dec(skj , ct) = m · e(g1, g1)α·s/e(gα1 · g
tj
3 · g

uj
4 , gs1) = m.

For index i, Dec(ski, ct) = m · e(g1, g1)α·s/e(gα1 · g
ti
2 · g

ui
4 , gs1) = m. For index j > i, Dec(skj , ct) = m ·

e(g1, g1)α·s/e(gα1 · g
uj
4 , gs1) = m.

Singular Trace Property Note that our scheme satisfies the singular trace property defined in Defini-
tion 3.5. The trace algorithm either outputs i (which is chosen during setup, and is part of msk), or outputs
⊥.

4.2 Proof of Security

4.2.1 IND-CPA Security

First, we will show that the traitor tracing scheme is IND-CPA secure. The following proof is similar to the
security proof for El-Gamal encryption scheme.

Theorem 4.1. Assuming the Bilinear Decisional Diffie Hellman assumption (Assumption 3), the traitor
tracing scheme described above is IND-CPA secure (Definition 3.1).

Proof. Suppose there exists a PPT adversary A that has advantage ε in the IND-CPA security game. Then
we can use A to build a PPT algorithm B that breaks the BDDH assumption with advantage ε.

The reduction algorithm first sends set S = {1}, and receives (N,G,GT , e(·, ·), g, A,B,C,R) from the
BDDH challenger, where g is a uniformly random element of G{1}, A = ga, B = gb, C = gc and R =

e(g, g)abc or a uniformly random element in GT . The reduction algorithm implicitly sets α = ab by setting
mpk = (e(A,B), g). Next, it receives messages m0,m1 from the adversary A. The reduction algorithm
chooses b← {0, 1} and sends ct = (mb · R,C) to the adversary. The adversary sends a bit b′. If b = b′, the
reduction algorithm guesses that R = e(g, g)abc, else it guesses that R is uniformly random.

Note that if R = e(g, g)abc, then the reduction algorithm perfectly simulates the IND-CPA game. If R is
uniformly random, then A has zero advantage in this game. As a result, if A can win the IND-CPA game
with advantage ε, then B breaks the BDDH assumption with advantage ε.

4.2.2 False-Trace Probability

Next, we will show that an honest party will not be implicated by our trace algorithm with non-negligible
probability.

Theorem 4.2. For every PPT adversary A, polynomials n(·), p(·) and non-negligible function ε(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Fal-TrA,n,ε(λ) ≤ negl(λ),

where Pr -Fal-TrA,n,ε(·) is as defined in Definition 3.4.
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Proof. Given any pirate decoder boxD, let ptypeD = Pr[D(ct) = b : ct← Enctype(msk,mb)] for type ∈ {less, leq},
where the probability is taken over bit b, random coins of decoder D and randomness used during encryption.
Let Diff-Adv denote the event when the advantage of decoder D in distinguishing “less” encryptions of m0

and m1 is ε/8n more than its advantage in distinguishing “leq” cipheretexts. Formally, let

Diff-Adv : plessD − p
leq
D > ε/8n.

First, note that we could rewrite the probability of a false trace as

Pr[Fal-Tr] ≤ Pr[Fal-Tr | Diff-Adv] + Pr[Fal-Tr ∧ Diff-Adv].

To bound the overall probability of a false trace, we start by showing that Pr[Fal-Tr |Diff-Adv] ≤ negl1(λ) by
using a simple Chernoff bound. Next, we show that Pr[Fal-Tr | Diff-Adv] ≤ negl2(λ) by relying on subgroup
hiding assumption, i.e. a computational argument. These two lemmas together imply that Pr -Fal-TrA,n,ε(λ)
is also bounded by a negligible function.

Lemma 4.1. There exists a negligible function negl1(·) such that for every adversary A, all λ ∈ N,

Pr[Fal-Tr | Diff-Adv] ≤ negl1(λ).

Proof. Consider the binary random variables Xtype for type ∈ {less, leq} defined as

Xtype =

{
1 with probability ptypeD ,

0 otherwise.

Let Z be another random variable defined as Z = X less −X leq. Now using linearity of expectation, we can
write that

E[Z | Diff-Adv] ≤ ε/8n.

Also, we know that the tracing algorithm estimates E[Z] by independently sampling T = λ · n/ε elements
from the distribution induced by Z. In other words, in each trial it first computes a single less and leq
encryptions of messages m0 and m1 using uniform randomness, then it uses the pirate box D to decrypt
each cipheretext and sets the value of sampled variable appropriately. Let zi be the sampled value in ith

trial. Now we know that countless − countleq =
∑T
i=1 zi. Thus, we can write that

Pr[Fal-Tr | Diff-Adv] = Pr

[
T∑
i=1

zi > T · ε/4n | Diff-Adv

]
.

Using Chernoff bound, we can bound the above probability as

Pr[Fal-Tr | Diff-Adv] ≤ e−Tε/16n.

Substituting T = λ · n/ε, we get Pr[Fal-Tr | Diff-Adv] ≤ 2−O(λ) = negl(λ). This completes the proof.

Lemma 4.2. Assuming the subgroup hiding assumption (Assumption 1), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl2(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr[Fal-Tr ∧ Diff-Adv] ≤ negl2(λ).

Here, the events Fal-Tr and Diff-Adv are parameterized by the adversary A.
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Proof. Suppose, on the contrary, there exists a PPT adversary A such that Pr[Fal-Tr ∧ Diff-Adv] = η(λ),
where η is non-negligible. Then we can construct a reduction algorithm B that breaks the subgroup hiding
assumption.

The reduction algorithm B sends challenge sets S0 = {3} and S1 = {2, 3} and gets group element T ,
together with N,G,GT , e(·, ·), where T ∈ GS0

or T ∈ GS1
. Next, it queries for generators of G{1},G{3} and

G{4}, and receives g1, g3, g4 respectively.
It first chooses α← ZN , chooses i← {1, 2, . . . , n} and computes mpk using g1, α. Next, it computes the

secret keys using g1, g3, g4. Concretely, if it is queried for secret key corresponding to i, then the reduction
algorithm outputs a uniformly random bit and quits. (hence it does not require generator for G{2}). For

j < i, it chooses tj , uj ← ZN and sets skj = gα1 ·g
tj
3 ·g

uj
4 . For j > i, it chooses tj ← ZN and sets skj = gα1 ·g

tj
4 .

Finally, after all queries, the adversary sends a pirate box D and messages m0,m1.
The reduction algorithm first computes an estimate of Diff-Adv. It sets countless = count = 0 and

z = λ · n/ε. For k = 1 to z, it does the following: it chooses sk, vk ← ZN and bk ← {0, 1}, sets ctk =
(mbk · e(gα1 , g

sk
1 ), gsk1 · T vk). If D(ctk) = bk, it sets count = count + 1, else it sets count = count − 1. Next,

it chooses s′k, v
′
k ← ZN and b′k ← {0, 1}, sets ct′k = (mb′k

· e(gα1 , g
s′k
1 ), g

s′k
1 · g

v′k
3 ). If D(ct′k) = b′k, it sets

countless = countless + 1, else it sets countless = countless − 1. Finally, if countless − count > ε/16n, B guesses
that T ∈ GS1 , else it guesses that T ∈ GS0 .

First, note that Pr[B guesses T ∈ GS1
| T ∈ GS0

] ≤ (1/2) Pr[A sends i as query | T ∈ GS0
] + negl(λ).

This is because if A does not query for index i and T ∈ GS0
, then the expected value of countless−count = 0.

As a result, using Chernoff bounds, we can argue that the probability that Pr[B guesses T ∈ GS1
| T ∈

GS0 ∧ i not queried] ≤ 2−O(λ). Also, Pr[A sends i as query | T ∈ GSb ] = Pr[A sends i as query ], i.e. it is
independent of bit b, becasue the adversary A does not receive T . Thus, Pr[B guesses T ∈ GS1 | T ∈ GS0 ] ≤
(1/2) Pr[A sends i as query] + negl(λ). Below we compute Pr[B guesses T ∈ GS1

| T ∈ GS1
].

Pr[B guesses T ∈ GS1 | T ∈ GS1 ]

=
1

2
Pr[A sends i as query | T ∈ GS1

]

+ Pr[B guesses T ∈ GS1 ∧ A does not send i as query | T ∈ GS1 ]

Now from construction of our reduction algorithm, we know that

Pr[B guesses T ∈ GS1
∧ A does not send i as query | T ∈ GS1

] ≥ Pr[Fal-Tr ∧ Diff-Adv].

Therefore, the reduction algorithm B’s advantage could be written as

Pr[B wins] = Pr[B guesses T ∈ GS1
| T ∈ GS1

]− Pr[B guesses T ∈ GS1
| T ∈ GS0

]

≥ Pr[Fal-Tr ∧ Diff-Adv]− negl(λ) ≥ η(λ)− negl(λ).

This concludes our proof.

4.2.3 Correct-Trace Probability

We will first introduce some notations for our security proof. For any γ ∈ [0, 1/2], a decoding box D is said
to be γ-Dist for messages m0,m1 if

Pr[D(ct) = b : b← {0, 1}, ct← Enc(mpk,mb)] ≥ 1/2 + γ.

Similarly, a decoding box D is said to be γ-Distless for messages m0,m1 if

Pr[D(ct) = b : b← {0, 1}, ct← Encless(msk,mb)] ≥ 1/2 + γ.

17



Finally, we say that D is γ-Distleq for messages m0,m1 if

Pr[D(ct) = b : b← {0, 1}, ct← Encleq(msk,mb)] ≥ 1/2 + γ.

For any adversary A and polynomial n(·), we define experiment MakeBoxA,n(λ, i) (see Figure 5). The
experiment takes as input a security parameter λ, index i ∈ {1, 2, . . . , n(λ)} and outputs a decoding box D
and two messages m0,m1.

Experiment MakeBoxA,n(λ, i)

1. Challenger chooses ((p1, p2, p3, p4), N,G,GT , e(·, ·)) ← Bilin-Gen4(1λ), gj ← G{j} for j ∈ {1, 2, 3, 4}
and α← ZN . It sets mpk = (e(g1, g1)α, g1) and sends mpk to A.

2. The set S represents the keys queried by A. For each queried index j ∈ S, if j < i, the challenger
computes skj ← KeyGenless(msk); if j = i, the challenger computes ski ← KeyGeneq(msk); else, for
j > i, it computes skj ← KeyGengr(msk) and sends skj .

3. The adversary finally outputs a pirate decoding box D and messages m0,m1. The output of the
experiment is (D,m0,m1).

Figure 5: Experiment MakeBoxA,n(λ, i)

Using the MakeBox experiment, we can define the following probabilities, parameterized by γ ∈ [0, 1],
and a function of λ, i:

Pr -Good-DecA,n,γ(λ, i) = Pr [D is γ-Dist for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ, i)]

Pr -Good-DecleqA,n,γ(λ, i) = Pr
[
D is γ-Distleq for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ, i)

]

Pr -Good-DeclessA,n,γ(λ, i) = Pr
[
D is γ-Distless for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ, i)

]

Pr -GapA,n,γ(λ, i) = Pr

[
∃ δ ∈ [0, 1/2] s.t.

D is δ-Distless∧
D is not (δ − γ)-Distleq

: (D,m0,m1)← MakeBoxA,n(λ, i)

]
These probabilities are defined over all the random coins chosen by the challenger and adversary A during

MakeBoxA,n(λ, i) experiment.
First, we will show that Pr -G-DA,n,ε is related to Pr -Gap via the following relation.

Theorem 4.3. Let A be a PPT adversary, n(·), p(·) polynomials and ε(·) a non-negligible function. There
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),∑

i

Pr -GapA,n,ε/4n (λ, i) ≥ Pr -G-DA,n,ε(λ)− negl(λ).

Next, we will show that Pr -Cor-TrA,n,ε is related to Pr -Gap via the following relation.

Theorem 4.4. Let A be a PPT adversary, n(·), p(·) polynomials and ε(·) a non-negligible function. There
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Cor-TrA,n,ε(λ) ≥

(∑
i Pr -GapA,n,ε/4n(λ, i)

)
n(λ)

− negl(λ).

Observe that combing above two theorems, we get that our scheme is a 1/n-risky secure traitor tracing
scheme. We will now prove these theorems in the following subsections.
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4.2.4 Proof of Theorem 4.3

For notational simplicity, we will skip the dependence of n and ε on λ. Also, we will skip the subscripts A
and n when they are clear from the context.

Outline of the proof. At a high level, this proof can be divided into the following steps:

• We first show that Pr -Good-Declessε−ε/2n(1) ≈ Pr -G-DA,n,ε and Pr -Good-Declessε−ε(n+1)/2n(n+ 1) ≈ 0 (see
Observation 4.1, Lemma 4.3 and Lemma 4.4).

• From this, it follows that ∃ Γ ⊆ {1, 2, . . . , n} such that for all i ∈ Γ, Pr -Good-Declessε−ε·i/2n(i) −
Pr -Good-Declessε−ε·(i+1)/2n(i + 1) > 0 and the sum of these differences is at least Pr -G-DA,n,ε − negl
(see Observation 4.2).

• Next, we show Pr -Good-Decleqε−ε·(i+1)/2n+ε/4n(i) ≈ Pr -Good-Declessε−ε·(i+1)/2n(i+ 1) (see Lemma 4.5).

• After this, we relate Pr -Gap(i) to Pr -Good-Decless(i) and Pr -Good-Decleq(i). We show

Pr -Gapε/4n(i) ≥ Pr -Good-Declessε−ε·i/2n(i)− Pr -Good-Decleqε−ε·(i+1)/2n+ε/4n(i) (see Lemma 4.6)

≈ Pr -Good-Declessε−ε·i/2n(i)− Pr -Good-Declessε−ε·(i+1)/2n(i+ 1)

• As a result, we can conclude that∑
i

Pr -Gapε/4n(i) ≥
∑
i∈Γ

Pr -Gapε/4n(i)

≥
∑
i∈Γ

(
Pr -Good-Declessε−ε·i/2n(i)− Pr -Good-Declessε−ε·(i+1)/2n(i+ 1)

)
≥ Pr -G-DA,n,ε − negl

First, we have the following observation.

Observation 4.1. For every adversary A, polynomial n(·) and λ ∈ N, there exists an i∗ ∈ {1, 2, . . . , n(λ)}
such that Pr -Good-DecA,n,ε(λ, i

∗) ≥ Pr -G-DA,n,ε(λ).

This observation simply follows from the fact that Pr -G-DA,n,ε(λ) = (1/n)
∑
i Pr -Good-DecA,n,ε(λ, i),

and therefore, there exists some index i∗ such that Pr -Good-DecA,n,ε(λ, i
∗) ≥ Pr -G-DA,n,ε(λ).

Lemma 4.3. Assuming the subgroup decision assumption (Assumption 1), for any PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for
all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Good-Declessε−ε/2n (λ, 1) ≥ Pr -Good-Decε(λ, i
∗)− negl(λ) ≥ Pr -G-DA,n,ε(λ)− negl(λ).

Proof. Let ρ1(λ) = Pr -Good-Decε(λ, i
∗) and ρ2(λ) = Pr -Good-Declessε−ε/2n (λ, 1). In order to show that ρ1−ρ2

is negligible in λ, we will define a sequence of hybrid events, and show that the difference in their probabilities
is at most negligible in λ.

Hybrid Hyb1 This experiment is similar to that associated with Good-Decoderε, except that all keys for
indices j < i∗ are generated using KeyGengr. The adversary must finally output a pirate box D and two
messages m0,m1 such that D can distinguish between (normal) encryptions of m0 and m1 with advantage
at least γ1 = ε− ε/8n. Let ρHyb1(λ) denote the probability that A outputs a pirate box D that is γ1-Dist for
m0,m1.
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Hybrid Hyb2 This experiment is similar to that associated witho Good-Decoderε, except that the keys
corresponding to index i∗ is also generated using KeyGengr. The adversary must finally output a pirate box
D and two messages m0,m1 such that D can distinguish between (normal) encryptions of m0 and m1 with
advantage at least γ2 = ε− ε/6n. Let ρHyb2(λ) denote the probability that A outputs a pirate box D that is
γ2-Dist for m0,m1.

Hybrid Hyb3 This experiment is similar to that associated with Hyb2, except that the key for index i = 1
is generated using KeyGeneq; all other keys are generated using KeyGengr. The adversary must finally output
a pirate box D and two messages m0,m1 such that D can distinguish between (normal) encryptions of m0

and m1 with advantage at least γ3 = ε− ε/4n. Let ρHyb3(λ) denote the probability that A outputs a pirate
box D that is γ3-Dist for m0,m1.

Claim 4.1. Assuming the subgroup decision assumption (Assumption 1), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl1(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρ1(λ)− ρHyb1(λ) ≤ negl1(λ).

Proof. Suppose ρ1 − ρHyb1 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage.

First, B sends its challenge sets S0 = {3, 4}, S1 = {4} and it receives T , where T ∈ GS0 or T ∈ GS1 .
Next, it queries for the generators for G{1},G{2} and G{4}, and receives g1, g2, g4 respectively. The reduction
algorithm first chooses α← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1 and T to construct keys for
indices less than i∗; that is, it chooses uj ← ZN and sets skj = gα1 · Tuj as the secret key for index j < i∗.
For the i∗ index, it uses g1, g2 and g4; that is, it chooses ui∗ , ti∗ and sets ski∗ = gα1 · g

ui∗
2 · gti∗4 . Finally, for

indices j > i∗, the reduction algorithm uses g1 and g4 and sets skj = gα1 · g
uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction
algorithm sets γ = ε−ε/16n, z = λ ·n/ε and tests whether D is a γ-Dist box for m0,m1 using simple counting
based estimation. Concretely, it first sets count = 0. For k = 1 to z, it chooses bk ← {0, 1}, sk ← ZN and sets
ctk = (mbk · e(g1, g1)α·sk , gsk1 ). Next, if D(ctk) = bk, it sets count = count + 1, else it sets count = count− 1.
Finally, after the z iterations, if count > γ · z, then B guesses that T ∈ GS0

, else it guesses that T ∈ GS1
.

Let us now compute the reduction algorithm’s advantage. First, note that if T ← GS0 then the key for
indices j < i∗ corresponds to a KeyGenless key, and if T ∈ GS1 , then it corresponds to a KeyGengr key (we
use the Chinese Remainder Theorem to argue that {(gα1 · g

uj
3,4)j : g1 ← G1, g3,4 ← G{3,4}, uj ← ZN} is

statistically indistinguishable from {(gα1 ·g
uj
3 ·g

vj
4 ) : g1 ← G{1}, g3 ← G{3}, g4 ← G{4}, uj ← ZN , vj ← ZN}).

Similarly, using Chinese Remainder Theorem, we can argue that the ciphertexts computed by the re-
duction algorithm are indistinguishable from (normal) ciphertexts. We will now analyse B′s advantage in
breaking the subgroup decision assumption.

Pr[B guesses T ∈ GS0
| T ∈ GS0

]

= Pr[count > γ · z | T ∈ GS0
]

≥ Pr[A outputs ε-Dist box D ∧ count > γ · z | T ∈ GS0
]

≥ Pr[A outputs ε-Dist box D | T ∈ GS0
]

− Pr[A outputs ε-Dist box D ∧ count ≤ γ · z | T ∈ GS0
]

≥ Pr -Good-Decε(λ, i
∗)

− Pr[count ≤ γ · z | T ∈ GS0
∧ A outputs ε-Dist box D]

≥ ρ1 − 2−O(λ).

The last inequality follows by applying a Chernoff bound similar to that in Lemma 4.1. Next, let us analyse
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the probability that B guesses T ∈ GS0 when T ∈ GS1 .

Pr[B guesses T ∈ GS0 | T ∈ GS1 ]

= Pr[count > γ · z | T ∈ GS1 ]

≤ Pr[A does not output (ε− ε/8n)-Dist box D ∧ count > γ · z | T ∈ GS1 ]

+ Pr[A outputs (ε− ε/8n)-Dist box D ∧ count > γ · z | T ∈ GS1 ]

≤ Pr[count > γ · z | T ∈ GS1 ∧ A does not output (ε− ε/8n)-Dist box D] + ρHyb1

≤ 2−O(λ) + ρHyb1 .

As before, the last inequality follows by applying a Chernoff bound. Thus, combining above bounds, we get
that

Pr[B wins] = Pr[B guesses T ∈ GS0
| T ∈ GS0

]− Pr[B guesses T ∈ GS0
| T ∈ GS1

]

≤ ρ1 − ρHyb1 − negl(λ).

Therefore, since the subgroup decision assumption holds over G, thus we can conclude that ρ1 − ρHyb1 ≤
negl1(λ) for some negligible function negl(·).

Claim 4.2. Assuming the subgroup decision assumption (Assumption 1), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl2(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb1(λ)− ρHyb2(λ) ≤ negl2(λ).

Proof. Suppose ρHyb1−ρHyb2 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage. The proof of this claim is
similar to that of Claim 4.1.

First, B sends its challenge sets S0 = {2, 4}, S1 = {4} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1},G{3} and G{4}, and receives g1, g3, g4 respectively. The reduction
algorithm first chooses α ← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1 and g4 to construct keys
for indices less than i∗; that is, it chooses uj ← ZN and sets skj = gα1 · g

uj
4 as the secret key for index j < i∗.

For the i∗ index, it uses g1 and T ; that is, it chooses ui∗ and sets ski∗ = gα1 ·Tui∗ . Finally, for indices j > i∗,
the reduction algorithm uses g1 and g4 and sets skj = gα1 · g

uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction
algorithm sets γ = ε − ε/7n, z = λ · n/ε, count = 0. Next, it tests whether D is a γ-Dist box for m0,m1.
For k = 1 to z, it chooses bk ← {0, 1}, sk ← ZN , sets ctk = (mbk · e(g1, g1)α·sk , gsk1 ) and if D(ctk) = bk, it
sets count = count + 1, else it sets count = count− 1. Finally, after the z iterations, if count > γ · z, then B
guesses that T ∈ GS0

, else it guesses that T ∈ GS1
.

The analysis of B’s advantage is similar to that in proof of Claim 4.1.

Claim 4.3. Assuming the subgroup decision assumption (Assumption 1), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl3(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb2(λ)− ρHyb3(λ) ≤ negl3(λ).

Proof. Suppose ρHyb2−ρHyb3 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage. The proof of this claim is
similar to that of Claim 4.1.

First, B sends its challenge sets S0 = {4}, S1 = {2, 4} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1},G{3} and G{4}, and receives g1, g3, g4 respectively. The reduction
algorithm first chooses α ← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1 and T to construct the
secret key for i = 1. It sets sk1 = (gα1 · T ). Finally, for indices j > 1, the reduction algorithm uses g1 and g4

and sets skj = gα1 · g
uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction
algorithm sets γ = ε − ε/5n, z = λ · n/ε, count = 0. Next, it tests whether D is a γ-Dist box for m0,m1.
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For k = 1 to z, it chooses bk ← {0, 1}, sk ← ZN , sets ctk = (mbk · e(g1, g1)α·sk , gsk1 ) and if D(ctk) = bk, it
sets count = count + 1, else it sets count = count− 1. Finally, after the z iterations, if count > γ · z, then B
guesses that T ∈ GS0

, else it guesses that T ∈ GS1
.

The analysis of B’s advantage is similar to that in proof of Claim 4.1.

Claim 4.4. Assuming the subgroup decision assumption (Assumption 1), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl3(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb3(λ)− ρ2(λ) ≤ negl3(λ).

Proof. Suppose ρHyb3 − ρ2 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage. The proof of this claim is
similar to that of Claim 4.1.

First, B sends its challenge sets S0 = {1}, S1 = {1, 3} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1}, G{2} and G{4}, and receives g1, g2, g4 respectively. The reduction
algorithm first chooses α← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1, g2 and g4 to construct keys
for index 1; that is, it chooses t1, u1 ← ZN and sets sk1 = gα1 · g

t1
2 · g

u1
4 . For indices j > 1, the reduction

algorithm uses g1 and g4 and sets skj = gα1 · g
uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction
algorithm sets γ = ε − ε/3n, z = λ · n/ε, count = 0. Next, it tests whether D is a γ-Dist box for m0,m1.
For k = 1 to z, it chooses bk ← {0, 1}, sk ← ZN , sets ctk = (mbk · e(g1, T )α·sk , T sk) and if D(ctk) = bk, it
sets count = count + 1, else it sets count = count− 1. Finally, after the z iterations, if count > γ · z, then B
guesses that T ∈ GS0 , else it guesses that T ∈ GS1 .

The analysis of B’s advantage is similar to that in proof of Claim 4.1.

Lemma 4.4. Assuming the subgroup hiding in target group assumption (Assumption 2), for any PPT
adversary A, polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·)
such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Good-DeclessA,ε− ε·(n+1)
2n

(λ, n+ 1) ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that ρ = Pr -Good-DeclessA,ε− ε·(n+1)
2n

(λ, n+ 1) is non-

negligible in λ. The adversary A receives keys generated by KeyGenless (that is, all the secret keys have
G{1,3,4} group elements), and must output a pirate box D and messages m0,m1 such that D can distinguish

between encryptions of m0 and m1 generated using Encless with probability at least κ = ε − ε·(n+1)
2n . We

will show that A can be used to build a PPT algorithm B that breaks Assumption 2 with non-negligible
advantage.

The reduction algorithm first sends S1 = {3, 4} and S2 = {3}. It receives (g1, h1, h2, h3, T ) from the
challenger, where h1 = gα1 · u, h3 = gs1 · w, g1 ∈ G{1}, u, h2 ∈ GS1

, w ∈ GS2
and T is either e(g1, g1)α·s or a

uniformly random element in GT . It sets mpk = (e(g1, h1), g1). It responds to the secret key queries using
h1, h2; that is, the secret key for j is skj = (h1 · h

uj
2 ) for some randomly chosen uj . Note that elements from

G{2} are not required since all keys are created using KeyGenless.
Finally, it receives a pirate box D and m0,m1. The reduction algorithm sets γ = ε/8 and count = 0.

Next, it tests whether D is a γ-Distless box for m0,m1. Concretely, for k = 1 to λ/ε, it chooses bk ← {0, 1},
tk, vk ← ZN , sets ctk = (mbk · e(g

tk
1 , h1), gtk1 · wvk) and if D(ctk) = bk, it sets count = count + 1, else sets

count = count− 1. If count < λ/8, the reduction algorithm outputs a uniformly random bit.
Otherwise, it uses D to break Assumption 2. It chooses b ← {0, 1}, computes ct = (mb · T, h3). If

D(ct) = b, it guesses that T = e(g1, g1)α·s. Else it guesses that T is uniformly random.
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First, note that the keys are distributed as output of KeyGenless algorithm. This argument follows from
the Chinese Remainder Theorem, since

{(gα1 · w · h
uj
2 )j : γ, γ′, δ, δ′, uj ← ZN , w = gγ3 · gδ4, h2 = gγ

′

3 · gδ
′

4 } ≡ {(gα1 · g
γj
3 · g

δj
4 )j : γj , δj ← ZN}

If T is a uniformly random element in GT , then D cannot distinguish between m0 · T and m1 · T .
Therefore, Pr[B guesses T = e(g1, g1)α·s | T is random ] = 1/2. Next, we will analyse the probability B’s
guess is correct if T = e(g1, g1)α·s. Let event BoxAδ denote the event that A outputs a δ-Distless box D.
Recall κ = ε− ε · (n+ 1)/2n.

Pr[B guesses correctly | T = e(g1, g1)α·s]

= Pr[B guesses correctly ∧ BoxAκ | T = e(g1, g1)α·s]

+ Pr[B guesses correctly ∧ BoxAε/16 ∧ ¬BoxAκ | T = e(g1, g1)α·s].

+ Pr[B guesses correctly ∧ ¬BoxAε/16 | T = e(g1, g1)α·s].

First, let us analyse the probability of B correctly guessing when A outputs a κ-Distless box.

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ BoxAκ ]

= Pr[count ≥ λ/8 ∧D(ct) = b | T = e(g1, g1)α·s ∧ BoxAκ ]

+
1

2
Pr[count < λ/8 | T = e(g1, g1)α·s ∧ BoxAκ ].

Using Chernoff bounds, we have that

Pr
[
count < λ/8 | T = e(g1, g1)α·s ∧ BoxAκ

]
= negl(λ).

Also, we know that Pr
[
D(ct) = b | BoxAκ

]
≥ 1

2 + κ. Thus, we can conclude that

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ BoxAκ ] ≥ 1

2
+ κ− negl(λ). (1)

Next, let us analyse the probability of B correctly guessing when A outputs an ε/16-Distless box.

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ]

= Pr[count ≥ λ/8 ∧D(ct) = b | T = e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ]

+
1

2
Pr[count < λ/8 | T = e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ].

Let x be the probability that count ≥ λ/8 when A outputs such a box. Concretely, let x = Pr[count < λ/8 |T
= e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ]. Given this we can write that

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ]

≥ x ·
(

1

2
+

ε

16

)
+ (1− x) · 1

2
≥ 1

2
.

(2)

Next, let us analyse the probability of B correctly guessing when A does not output an ε/16-Distless box.

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ ¬BoxAε/16]

= Pr[count ≥ λ/8 ∧D(ct) = b | T = e(g1, g1)α·s ∧ ¬BoxAε/16]

+
1

2
Pr[count < λ/8 | T = e(g1, g1)α·s ∧ ¬BoxAε/16].
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Again, using Chernoff bounds, we have that

Pr
[
count ≥ λ/8 | T = e(g1, g1)α·s ∧ ¬BoxAε/16

]
= negl(λ).

Thus, we can conclude that

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ ¬BoxAε/16] ≥ 1

2
− negl(λ). (3)

Finally, we also have that

Pr
[
BoxAκ | T = e(g1, g1)α·s

]
= Pr -Good-DeclessA,κ (λ, n+ 1) = ρ.

Combining above fact with Equations 1, 2 and 3, we get that

Pr[B guesses correctly | T = e(g1, g1)α·s] ≥ 1

2
+ ρ · κ− negl(λ).

As a result, the advantage of B in breaking Assumption 2 is at least ρ ·κ−negl(λ). This completes the proof.

From the above lemmas, it follows that Pr -Good-Declessε−ε/2n(λ, 1) − Pr -Good-Declessε−ε(n+1)/2n(λ, n + 1) ≥
Pr -G-DA,n,ε(λ)− negl(λ). This brings us to the following observation.

Observation 4.2. For any PPT adversary A, non-negligible function ε(·), polynomials n(·), p(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), there exists a subset
Γ ⊆ {1, 2, . . . , n} such that Pr -Good-Declessε−ε·i/2n(λ, i)− Pr -Good-Declessε−ε·(i+1)/2n(λ, i+ 1) > 0 and∑

i∈Γ

(
Pr -Good-Declessε−ε·i/2n(λ, i)− Pr -Good-Declessε−ε·(i+1)/2n(λ, i+ 1)

)
≥ Pr -G-DA,n,ε(λ)− negl(λ).

The next lemma will prove that Pr -Good-Decless(i+ 1) and Pr -Good-Decleq(i) are approximately equal.

Lemma 4.5. For any PPT adversary A, polynomials n(·), p(·) and non-negligible function ε(·), there exists
a negligible function negl(·) such that for all i ∈ {1, 2, . . . , n}, λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Good-Decleq
ε− ε·(i+1)

2n + ε
4n

(λ, i) ≤ Pr -Good-Decless
ε− ε·(i+1)

2n

(λ, i+ 1) + negl(λ).

Proof. Let ρ1(λ) = Pr -Good-Decleq
ε− ε·(i+1)

2n + ε
4n

(λ, i) and ρ2(λ) = Pr -Good-Decless
ε− ε·(i+1)

2n

(λ, i+ 1).

Let Expt1 denote the first scenario, and Expt2 the second one. The only differences in the two scenarios
are as follows:

Key for user i in the first scenario is generated using KeyGeneq, while in the second scenario, it is generated
using KeyGenless.

Key for user i + 1 in the first scenario is generated using KeyGengr, while in the second scenario, it is
generated using KeyGeneq.

The decoder in the first scenario must distinguish between Encleq encryptions with advantage at least

ε− ε·(i+1)
2n + ε

4n , while the decoder in the second scenario must distinguish between encryptions generated

using Encless with advantage at least ε− ε·(i+1)
2n .

We will construct two hybrid experiments, and show that consecutive hybrid experiments are computa-
tionally indistinguishable.

24



Hybrid Hyb1: This is identical to Expt1, except that the key for user i is generated using KeyGenless. The
key for user i+ 1 is generated using KeyGengr and the decoder must distinguish between Encleq encryptions

with advantage at least γ1 = ε − ε·(i+1)
2n + ε

8n . Let ρHyb1(λ) denote the probability that the decoder output

can distinguish between Encleq encryptions with advantage at least γ1.

Hybrid Hyb2 This is identical to Hyb1, except that decoder must distinguish between Encless encryptions

with advantage at least γ2 = ε− ε·(i+1)
2n + ε

16n . Let ρHyb2(λ) denote the probability that the decoder output

can distinguish between Encless encryptions with advantage at least γ2.

Claim 4.5. Assuming the subgroup decision assumption (Assumption 1), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl1(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρ1(λ)− ρHyb1(λ) ≤ negl1(λ).

Proof. Suppose ρ1 − ρHyb1 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage.

First, B sends its challenge sets S0 = {2, 4}, S1 = {3, 4} and it receives T , where T ∈ GS0
or T ∈

GS1 . Next, it queries for the generators for G{1}, G{2,3}, G3,4 and G{4}, and receives g1, g2,3, g3,4 and g4

respectively. The reduction algorithm first chooses α← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1

and g3,4 to construct keys for indices less than i; that is, it chooses uj ← ZN and sets skj = gα1 · g
uj
3,4 as the

secret key for index j < i. For the ith index, it uses g1 and T ; that is, it sets ski = gα1 ·T . Finally, for indices
j > i, the reduction algorithm uses g1 and g4 and sets skj = gα1 · g

uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and messages m0,m1. The
reduction algorithm sets γ = ε − ε · (i + 1)/2n + ε/6n, z = λ · n/ε and tests whether D is a γ-Distless

box for m0,m1. The reduction algorithm first sets count = 0. For k = 1 to z, it chooses bk ← {0, 1},
sk, tk ← ZN , sets ctk = (mbk · e(g1, g1)α·sk , gsk1 · g

tk
2,3) and if D(ctk) = bk, it sets count = count + 1, else it

sets count = count − 1. Finally, after the z iterations, if count > γ · z, then B guesses that T ∈ GS0
, else it

guesses that T ∈ GS1 .
Let us now compute the reduction algorithm’s advantage. First, note that if T ← GS0 then the key

for index i corresponds to a KeyGeneq key, and if T ∈ GS1
, then it corresponds to a KeyGenless key. For

indices j < i, the adversary gets KeyGenless keys (we use the Chinese Remainder Theorem to argue that
{(gα1 ·g

uj
3,4)j : g1 ← G1, g3,4 ← G{3,4}, uj ← ZN} is statistically indistinguishable from {(gα1 ·g

uj
3 ·g

vj
4 ) : g1 ←

G{1}, g3 ← G{3}, g4 ← G{4}}). Similarly, for all indices j > i, the keys are generated using KeyGengr.
Similarly, using Chinese Remainder Theorem, we can argue that the ciphertexts computed by the reduc-

tion algorithm are indistinguishable from Encleq ciphertexts. The analysis of B’s advantage is similar to that
in proof of Claim 4.1.

Claim 4.6. Assuming the subgroup decision assumption (Assumption 1), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·),there exists a negligible function negl2(·) such that for
all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb1(λ)− ρHyb2(λ) ≤ negl2(λ).

Proof. Suppose ρHyb1−ρHyb2 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage.

First, B sends its challenge sets S0 = {2, 3}, S1 = {3} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1}, G{3}, G{4}, and receives g1, g3, g4 respectively. First, it chooses
α← ZN and sends mpk = (e(g1, g1)α, g1) to A. Next, it receives key queries from A, and it uses g1, g3 and

g4 to construct keys. For indices j ≤ i, it chooses uj , tj ← ZN and sets skj = gα1 · g
uj
3 · g

tj
4 . For indices j > i,

the reduction algorithm chooses tj ← ZN and sends skj = gα1 · g
tj
4 . Finally, after all secret key queries, the

reduction algorithm receives pirate box D and m0,m1. It sets γ = ε− ε · (i+ 1)/2n+ ε/12n, z = λ · n/ε and
count = 0.
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For k = 1 to z, the reduction algorithm chooses bk ← {0, 1}, sk, tk ← ZN , sets ctk = (mbk ·e(g1, g1)α·sk , gsk1 ·
T tk) and checks if D(ctk) = bk. If so, it sets count = count + 1, else it sets count = count − 1. After the z
iterations, B checks if count > γ · z. If so, then B guesses that T ∈ GS0

, else it guesses that T ∈ GS1
.

First, note that the secret keys sent to A are identically distributed as in Hyb1 and Hyb2 experiments.
Using the Chinese Remainder Theorem, we can argue that if T ← GS0

, then the z ciphertexts constructed
are distributed as z encryptions generated using Encleq; if T ← GS1

, then the z ciphertexts are distributed
as z encryptions using Encless. The analysis of B’s advantage is similar to that in proof of Claim 4.1.

Claim 4.7. Assuming the subgroup decision assumption (Assumption 1), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl3(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb2(λ)− ρ2(λ) ≤ negl3(λ).

Proof. Suppose ρHyb2 − ρ2 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage.

First, B sends its challenge sets S0 = {4}, S1 = {2, 4} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1}, G{3}, G{4}, and receives g1, g3, g4 respectively.

The reduction algorithm first chooses α ← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1 and
g3 and g4 to construct keys for indices less than or equal to i; that is, it chooses uj , tj ← ZN and sets

skj = gα1 · g
uj
3 · g

tj
4 as the secret key for index j ≤ i. For the (i+ 1)th index, it uses g1 and T ; that is, it sets

ski+1 = gα1 · T . Finally, for indices j > i+ 1, the reduction algorithm uses g1 and g4 and sets skj = gα1 · g
uj
4

for randomly chosen uj ← ZN .
After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction

algorithm sets γ = ε− ε · (i+ 1)/2n+ ε/32n, z = λ · n/ε and tests whether D is a γ-Distless box for m0,m1.
The reduction algorithm first sets count = 0. For k = 1 to z, it chooses bk ← {0, 1}, sk, tk ← ZN , sets
ctk = (mbk · e(g1, g1)α·sk , gsk1 ·g

tk
3 ) and if D(ctk) = bk, it sets count = count + 1, else it sets count = count−1.

Finally, after the z iterations, if count > γ · z, then B guesses that T ∈ GS0
, else it guesses that T ∈ GS1

.
The analysis of B’s advantage is similar to that in proof of Claim 4.1.

Lemma 4.6. For any PPT adversary A, polynomial n(·) and non-negligible function ε(·), all λ ∈ N,

Pr -Gapε/4n(λ, i) ≥ Pr -Good-Declessε−ε·i/2n(λ, i)− Pr -Good-Decleqε−ε·i/2n−ε/4n(λ, i).

Proof. Recall that Pr -Gap is defined as below

Pr -GapA,n,ε/4n(λ, i) = Pr

[
∃ δ ∈ [0, 1/2] s.t.

D is δ-Distless∧
D is not (δ − ε

4n )-Distleq
: (D,m0,m1)← MakeBoxA,n(λ, i)

]
.

Now we can also write that

Pr -GapA,n,ε/4n(λ, i) ≥ max
δ∈[0,1/2]

Pr

[
D is δ-Distless∧
D is not (δ − ε

4n )-Distleq
: (D,m0,m1)← MakeBoxA,n(λ, i)

]
.

We also know that for any δ ∈ [0, 1/2],

Pr

[
D is δ-Distless∧
D is not (δ − ε

4n )-Distleq
: (D,m0,m1)← MakeBoxA,n(λ, i)

]
≥ Pr

[
D is δ-Distless : (D,m0,m1)← MakeBoxA,n(λ, i)

]
− Pr

[
D is (δ − ε

4n
)-Distleq : (D,m0,m1)← MakeBoxA,n(λ, i)

]
≥ Pr -Good-Declessδ (λ, i)− Pr -Good-Decleqδ−ε/4n(λ, i).
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Finally substituting δ = ε− ε · i/2n, we get

Pr -Gapε/4n(λ, i) ≥ Pr -Good-Declessε−ε·i/2n(λ, i)− Pr -Good-Decleqε−ε·i/2n−ε/4n(λ, i).

This concludes the proof.

4.2.5 Proof of Theorem 4.4

We need to show that for any PPT adversary A, polynomials n(·), p(·), non-negligible function ε(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Cor-TrA,n,ε(λ) ≥
∑
i Pr -GapA,n,ε/4n(λ, i)

n(λ)
− negl(λ).

First, consider the following events TrA,n,ε and Tr′A,n,ε, parameterized by A, n, ε. The event Tr is similar
to Cor-Tr, except that the output of the trace should be in {1, 2, . . . , n} (in particular, it is not required that
the output be in the set S of keys queried). Let ρless = Pr[b ← D(ct) : b ← {0, 1}, ct ← Encless(msk,mb)]
and ρleq = Pr[b← D(ct) : b← {0, 1}, ct← Encleq(msk,mb)].

The event Tr′ is defined similar to Tr, except we say that Tr′ occurs if D is ε-Dist box and ρless−ρleq > ε/4n.
Note that the only difference between Tr and Tr′ is that in Tr, the challenger computes an estimates ρ̂less
and ρ̂leq of ρless, ρleq (respectively), and checks if ρ̂less − ρ̂leq > ε/8n.

Now, using Chernoff bounds, it follows that Pr[TrA,n,ε] ≥ Pr[Tr′A,n,ε]− 2−O(λ). Next, it follows from the

definitions of Pr[Tr′A,n,ε] and Pr -GapA,n,γ that Pr[Tr′A,n,ε] =
∑
i Pr -GapA,n,ε/4n(λ, i)/n.

Finally, note that

Pr[Cor-Tr] = Pr[Tr]− Pr[Tr ∧ Trace outputs i /∈ S]

= Pr[Tr]− Pr[Fal-Tr]

≥ Pr[Tr]− negl1(λ) (using Theorem 4.2)

≥ Pr[Tr′]− 2−O(λ) − negl1(λ)

≥
∑
i

Pr -GapA,n,ε/4n(λ, i)

n
− negl(λ).

This concludes the proof.

5 Hardness of Differentially Private Sanitization

In this section, we show that the Dwork et al. [DNR+09] result works even if the traitor tracing scheme is
f -risky secure. This, together with our construction in Section 4.1, results in a hardness result with query
set size 2O(λ) and based on assumptions over composite order bilinear groups. First, we introduce some
differential privacy related preliminaries following the notations from [KMUZ16]. Next, we describe our
hardness result.

5.1 Definitions

Differentially Private Algorithms. A database D ∈ Xn is a collection of n rows x1, . . . , xn, where each
row is an element of the date universe X . We say that two databases D,D′ ∈ X ∗ are adjacent, denoted
by D ∼ D′, if D′ can be obtained from D by the addition, removal, or substitution of a single row (i.e.,
they differ only on a single row). Also, for any database D ∈ Xn and index i ∈ {1, 2, . . . , n}, we use D−i
to denote a database where the ith element/row in D is set removed. At a very high level, an algorithm is
said to be differentially private if its behavior on all adjacent databases is similar. The formal definition is
provided below.
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Definition 5.1 (Differential Privacy [DMNS06]). Let A : Xn → Sn be a randomized algorithm that takes
a database as input and outputs a summary. A is (ε, δ)-differentially private if for every pair of adjacent
databases D,D′ ∈ Xn and every subset T ⊆ Sn,

Pr[A(D) ∈ T ] ≤ eε Pr[A(D′) ∈ T ] + δ.

Here parameters ε and δ could be functions in n, the size of the database.

Accuracy of Sanitizers. Note that any algorithm A that always outputs a fixed symbol, say ⊥, already
satisfies Definition 5.1. Clearly such a summary will never be useful as the summary does not contain any
information about the underlying database. Thus, we also need to specify what it means for the sanitizer
to be useful. As described before, in this work we study the notion of differentially private sanitizers that
give accurate answers to statistical queries.5 A statistical query on data universe X is defined by a binary
predicate q : X → {0, 1}. Let Q = {q : X → [0, 1]} be a set of statistical queries on the data universe X .

Given any n ∈ N, database D ∈ Xn and query q ∈ Q, let q(D) =

∑
x∈D q(x)

n
.

Before we define accuracy, we would like to point out that the algorithm A might represent the summary
s of a database D is any arbitrary form. Thus, to extract the answer to each query q from summary s, we
require that there exists an evaluator Eval : S ×Q → [0, 1] that takes the summary and a query, and outputs
an approximate answer to that query. As in prior works, we will abuse notation and simply write q(s) to
denote Eval(s, q), i.e. the algorithm’s answer to query q. At a high level, an algorithm is said to be accurate
if it answers every query to within some bounded error. The formal definition follows.

Definition 5.2 (Accuracy). For a set Q of statistical queries on X , a database D ∈ Xn and a summary
s ∈ S, we say that s is α-accurate for Q on D if

∀q ∈ Q, |q(D)− q(s)| ≤ α.

A randomized algorithm A : Xn → S is said to be an (α, β)-accurate sanitizer if for every database D ∈ Xn,

Pr
A’s coins

[A(D) is α-accurate for Q on D] ≥ 1− β.

The parameters α and β could be functions in n, the size of the database.

Efficiency of Sanitizers. In this work, we are interested in asymptotic efficiency, thus we introduce a
computation parameter λ ∈ N. The data universe and query space, both will be parameterized by λ; that is,
for every λ ∈ N, we have a data universe Xλ and a query space Qλ. The size of databases will be bounded
by n = n(λ), where n(·) is a polynomial. Now the algorithm A takes as input a database Xnλ and output a
summary in Sλ, where {Sλ}λ∈N is a sequence of output ranges. And, there is an associated evaluator Eval
that takes a query q ∈ Qλ and a summary S ∈ Sλ and outputs a real-valued answer. The definitions of
differential privacy and accuracy readily extend to such sequences.

Definition 5.3 (Efficiency). A sanitizer A is efficient if, on input a database D ∈ Xnλ , A runs in time
poly(λ, log(|Xλ|), log(|Qλ|)), as well as on input a summary s ∈ Sλ and query q ∈ Qλ, the associated
evaluator Eval runs in time poly(λ, log(|Xλ|), log(|Qλ|)).

5.2 Hardness of Efficient Differentially Private Sanitization from Risky Traitor
Tracing

In this section, we prove hardness of efficient differentially private sanitization from risky traitor tracing
schemes. The proof is an adaptation of the proofs in [DNR+09, Ull13, KMUZ16] to this restricted notion.

5Statistical queries are also referred as counting queries, predicate queries, or linear queries in the literature.
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At a high level, the idea is to set the data universe to the secret key space and each query will be asso-
ciated with a ciphertext such that answer to a query on any secret key will correspond to the output of
decryption of associated ciphertext using the secret key. Now to show hardness of sanitization we will prove
by contradiction. The main idea is that if there exists an efficient (accurate) sanitizer, then that could be
successfully used as a pirate box in the traitor tracing scheme. Next, assuming that the sanitizer satisfies
differential privacy, we can argue that the sanitizer could still be a useful pirate box even if one of keys in
the database is deleted, however the tracing algorithm will still output the missing key as a traitor with
non-negligible probability, thereby contradicting the property that the tracing algorithm incorrectly traces
with only negligible probability.

Below we state the formal theorem and give a proof. Later we also show to get a stronger hardness result
if the underlying risky traitor tracing schemes also satisfies “singular trace” property (Definition 3.5).

5.2.1 Hardness from Risky Traitor Tracing

Theorem 5.1. If there exists a f -risky secure private-key no-query traitor tracing scheme T = (Setup,Enc,Dec,Trace)
(Definition 3.7), then there exists a data universe and query family {Xλ,Qλ}λ such that there does not any
sanitizer A : Xnλ → Sλ that is simultaneously — (1) (ε, δ)-differentially private, (2) (α, β)-accurate for
query space Qλ on Xnλ , and (3) computationally efficient — for any ε = O(log λ), α < 1/2, β = o(1) and
δ ≤ f · (1− β)/4n.

Proof. Let T = (Setup,Enc,Dec,Trace) be a traitor tracing scheme with key space {Kλ}λ, message space
{0, 1} and ciphertext space {Cλ}λ. For any λ ∈ N, the data universe is set to be Xλ = Kλ, and the
distribution on databases is defined as Xnλ =

{
D : (msk, (sk1, . . . , skn))← Setup(1λ, 1n), D = (sk1, . . . , skn)

}
.

In the sequel, to sample the database, we will simply write (msk, D) ← Setup(1λ, 1n). Each query in the
query space is associated with a ciphertext ct, and the output of any query qct corresponds to the decryption
of associated ciphertext using the input secret key. Formally, Qλ = {Dec(·, ct) : ct ∈ Cλ}, i.e. for every
qct ∈ Qλ, qct(sk) = Dec(sk, ct).

Let A be a computationally efficient algorithm such that it is (ε, δ)-differentially private and (α, β)-
accurate for query space Qλ on Xnλ . From (α, β)-accuracy of A we can write that for every (msk, D) ←
Setup(1λ, 1n) and every ciphertext ct ∈ Cλ, the following holds

Pr
A’s coins

[|qct(A(D))− qct(D)| ≤ α] ≥ 1− β. (4)

Now from the correctness property of traitor tracing scheme, we know that for every ciphertext ct ←
Enc(msk, b), qct(D) = b. This is because qct(D) =

(∑
sk∈D qct(sk)

)
/n and for every sk, Dec(sk, ct) = b. Also,

since α < 1/2 we can conclude that for every (msk, D)← Setup(1λ, 1n) and every ciphertext ct← Enc(msk, b),
the following holds

Pr
A’s coins

[dEval(A(D), qct)c = b] ≥ 1− β. (5)

Consider an adversary B that plays the f -risky ind-secure tracing game with scheme T . Adversary B runs
as follows. During key query phase, B queries the tracing scheme challenger for all n secret keys sk1, . . . , skn.
Next, it runs the sanitizer A on all n keys with uniformly random coins. In other words, it generates a
summary s as s← A(D) where D = (sk1, . . . , skn). Finally, B outputs Eval(s, ·) as the pirate decoding box,
i.e. the evaluation algorithm with summary s hardwired. Note that B is efficient because A is efficient.

Using the previous equation, we can conlude that adversary B outputs a “good decoder” with probability
at least 1− β. Formally, we can write that for every non-negligible function ε,

Pr -Good-DecTB,n,ε(λ) ≥ 1− β. (6)

Now since the scheme T is f -risky secure where f = f(n, λ), we also get that

Pr -Cor-TrTB,n,ε(λ) ≥ f · (1− β)− negl(λ), (7)

29



where negl is a negligible function. Since B queries for all n keys, thus whenever there is a “correct trace”
in this scenario, the trace algorithm outputs an index in [n]. Therefore, we can write that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D) and Trace’s coins

[
TraceEval(s,·)(msk) ∈ [n]

]
≥ Pr -Cor-TrTB,n,ε(λ) ≥ f · (1− β)− negl(λ). (8)

Next, we can claim that there exists an index i∗ ∈ [n] such that the trace algorithm, given Eval(s, ·) as the
pirate box, outputs index i∗ with probability at least f · (1 − β)/n, as otherwise it would contradict the
previous lower bound. Formally, we can say that there exists i∗ ∈ [n] such that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D) and Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ f · (1− β)

n
− negl(λ). (9)

Let Smsk,D,i∗ ⊆ Sλ be the set of summaries such that for every summary s in that set, the probability of
trace algorithm outputting index i∗ given Eval(s, ·) as the pirate box is at least f/n2. Formally, for a given
msk, D, i∗,

Smsk,D,i∗ :=

{
s : Pr

Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ f

n2

}
. (10)

Now, using the previous two equations, we could claim the following -

Pr
(msk,D)←Setup(1λ,1n)

A’s coins

[A(D) ∈ Smsk,D,i∗ ] ≥
f · (1− β)

2n
. (11)

By (ε, δ)-differential privacy of A, we have that

Pr
(msk,D)←Setup(1λ,1n)

A’s coins

[A(D−i∗) ∈ Smsk,D,i∗ ] ≥ e−ε
(
f · (1− β)

2n
− δ
)
≥ e−ε · f · (1− β)

4n
. (12)

Finally, combining above equation with the definition of set Smsk,D,i∗ , we get that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D−i∗ ) and Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ e−ε · f · (1− β)

4n
× f

n2
. (13)

Now this violates the f -risky security of the traitor tracing scheme. Concretely, consider an adversary B∗
that runs as follows. During key query phase, B∗ queries the tracing scheme challenger for all but i∗th secret
key, i.e., {ski}i6=i∗ . Next, it runs the sanitizer A on these n − 1 keys with uniformly random coins, i.e. it
generates a summary s as s← A(D−i∗) where D = (sk1, . . . , skn). Finally, B∗ outputs Eval(s, ·) as the pirate
decoding box, i.e. the evaluation algorithm with summary s hardwired. Note that B∗ is efficient because A
is efficient. Now using the previous equation we can conclude that

Pr -Fal-TrTB∗,n,1/2(λ) ≥ e−ε · f2 · (1− β)

4n3
. (14)

In other words, the probability B∗ leads to a “faulty trace” is non-negligible. However, since T is f -risky
secure, the probability of a faulty trace should be negligible in the security parameter. Thus, this leads to a
contradiction completing the proof.
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5.2.2 Hardness from Risky Traitor Tracing with Singular Trace

Theorem 5.2. If there exists a f -risky secure private-key no-query traitor tracing scheme T = (Setup,Enc,Dec,Trace)
(Definition 3.7) satisfying singular trace property (Definition 3.5), then there exists a data universe and query
family {Xλ,Qλ}λ such that there does not any sanitizer A : Xnλ → Sλ that is simultaneously — (1) (ε, δ)-
differentially private, (2) (α, β)-accurate for query space Qλ on Xnλ , and (3) computationally efficient — for
any ε = O(log λ), α < 1/2, β = o(1) and δ ≤ f · (1− β)/4.

Proof. The proof of this theorem is similar to that of Theorem 5.1, therefore we only highlight the equa-
tions/components that are modified. First, the database, query space and input spaces are all identical.
Thus, the proof is identical until Equation (7). Next, since the traitor tracing scheme T is f -risky secure as
well as satisfies the singular trace property, thus we could directly conclude that there exists i∗ ∈ [n] such
that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D) and Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ f · (1− β)− negl(λ). (15)

In other words, we can avoid a 1/n loss due to the singular trace property. The remaining proof is almost
identical. The only modification is that all the lower bounds in Equations 10, 11 and 12 get tighter by a factor
of n, i.e. the degree of n in the denominator in all of them can be reduced by 1. With these modifications
we can conclude that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D−i∗ ) and Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ e−ε · f · (1− β)

4
× f

n
. (16)

And, finally if we consider the same adversary B∗ as in previous proof, then we can conclude that

Pr -Fal-TrTB∗,n,1/2(λ) ≥ e−ε · f2 · (1− β)

4n
. (17)

Thus, this leads to a contradiction completing the proof.

5.2.3 Hardness from Subgroup Decision Assumptions

Combining Theorem 5.2 with Theorems 4.2, 4.3 and 4.4, we get the following corollary.

Corollary 5.1. Assuming subgroup decision (Assumption 1) and subgroup hiding in target group assump-
tions (Assumption 2), there exists a data universe and query family {Xλ,Qλ}λ such that there does not
any sanitizer A : Xnλ → Sλ that is simultaneously — (1) (ε, δ)-differentially private, (2) (α, β)-accurate for
query space Qλ on Xnλ , and (3) computationally efficient — for any ε = O(log λ), α < 1/2, β = o(1) and
δ ≤ (1− β)/4n.

6 Amplifying the Trace Success Probability

In this section, we will show a generic transformation to amplify any traitor tracing scheme’s success proba-
bility. In particular, given two traitor tracing schemes, one being fA-risky and the other one being fB-risky,
we show how to combine them to obtain an (fA + fB − fA · fB)-risky traitor tracing scheme. We will focus
on public key traitor tracing schemes; our transformation can also be applied to private-key traitor tracing
schemes.
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6.1 Construction

Let TA = (SetupA, EncA, DecA, TraceA) be an fA-risky secure traitor tracing scheme for message space M,
and TB = (SetupB , EncB , DecB , TraceB) an fB-risky secure traitor tracing scheme for M. We will now
describe a new traitor tracing scheme T = (Setup, Enc, Dec, Trace) for message space M.

Setup(1λ, 1n): The setup algorithm chooses (mpkA,mskA, (skA,1, . . . , skA,n))← SetupA(1λ, 1n) and (mpkB ,
mskB , (skB,1, . . ., skB,n)) ← SetupB(1λ, 1n). It sets mpk = (mpkA,mpkB), msk = (mskA,mskB) and
for j ∈ {1, 2, . . . , n}, skj = (skA,j , skB,j).

Enc(mpk,m): Let mpk = (mpkA,mpkB). The encryption algorithm chooses r ← M, computes ctA ←
EncA(mpkA,m⊕ r) and ctB ← EncB(mpkB , r). It sets ct = (ctA, ctB).

Dec(sk, ct): Let sk = (skA, skB) and ct = (ctA, ctB). The decryption algorithm computes xA ← DecA(skA, ctA),
xB ← DecB(skB , ctB) and outputs xA ⊕ xB .

TraceD(msk, 1y,m0,m1): Let msk = (mskA,mskB) and ε = 1/y. Consider the routines Test-Good-A and
Test-Good-B (defined in Figure 6 and Figure 7) which take as input r ∈ M and a ciphertext, and
outputs 0/1.

Routine Test-Good-A(r, ctB)

Inputs: r ∈M, ciphertext ctB
Output: 0/1

1. Set count = 0 and z = λ · n/ε. For j = 1 to z, do the following:

(a) Choose b← {0, 1}, compute ctA,j ← EncA(mpkA,mb⊕r). If D(ctA,j , ctB) = b, count = count+1.

If count/z > 1/2 + ε/3, output 1, else output 0.

Figure 6: Routine Test-Good-A(r, ctB)

Routine Test-Good-B(r, ctA)

Inputs: r ∈M, ciphertext ctA
Output: 0/1

1. Set count = 0 and z = λ · n/ε. For j = 1 to z, do the following:

(a) Choose b← {0, 1}, compute ctB,j ← EncB(mpkB ,mb⊕r). If D(ctA, ctB,j) = b, count = count+1.

If count/z > 1/2 + ε/3, output 1, else output 0.

Figure 7: Routine Test-Good-B(r, ctA)

The above routines will be useful for building a pirate decoder for TraceA and TraceB respectively. The
trace algorithm first builds a pirate decoder for TraceA and uses TraceA to trace a traitor. If TraceA
returns an index i ∈ {1, 2, . . . , n}, then the algorithm outputs i. Else, it constructs a different pirate
decoder for TraceB and uses TraceB to trace a traitor.

Trace attempt using TraceA :

1. The trace algorithm first searches for an rA ∈M and ciphertext ctB such that Test-Good-A(rA, ctB) =
1. Let rA = ⊥, ctB = ⊥.

For i = 1 to λ·n/ε, it chooses ri ←M, sets cti ← EncB(mpkB , r
i) and checks if Test-Good-A(ri, cti) =

1. If so, it sets rA = ri, ctB = cti and exits loop.

If rA = ⊥, then quit trace attempt using TraceA.
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2. Consider the following pirate decoder DA for TA. The decoder has ctB hardwired. On input
ciphertext ctA, it outputs D(ctA, ctB). The trace algorithm sets mA,0 = m0⊕rA, mA,1 = m1⊕rA
and computes z ← TraceDAA (mskA, 1

4y,mA,0,mA,1).

3. If z 6= ⊥, output z. Else, perform trace attempt using TraceB .

Trace attempt using TraceB : This is similar to the trace attempt using TraceB , except that the
trace algorithm now builds a pirate decoding box for TraceB .

1. The trace algorithm searches for an rB ∈M and ciphertext ctA such that Test-Good-B(rB , ctA) =
1. Let rB = ⊥, ctA = ⊥.

For i = 1 to λ·n/ε, it chooses ri ←M, sets cti ← EncA(mpkA, r
i) and checks if Test-Good-B(ri, cti) =

1. If so, it sets rB = ri, ctA = cti and exits loop.

If rB = ⊥, then quit trace attempt using TraceB .

2. Consider the following pirate decoder DB for TB . The decoder has ctA hardwired. On input
ciphertext ctB , it outputs D(ctA, ctB). The trace algorithm sets mB,0 = m0⊕rB , mB,1 = m1⊕rB
and computes z ← TraceDBB (mskB , 1

4y,mB,0,mB,1).

3. If z 6= ⊥, output z.

Correctness The correctness of this scheme follows from the correctness of schemes TA and TB .

6.2 Security

In this section, we will show that our scheme is IND-CPA and (fA + fB − fA · fB)-risky secure.

IND-CPA Security

Lemma 6.1. Assuming TA is IND-CPA secure, T is also IND-CPA secure.

Proof. Suppose there exists a PPT adversary A such that Pr[1← Expt-IND-CPAT ,A(1λ, 1n)]−1/2 = η, where
η is non-negligible. We will construct a reduction algorithm B such that Pr[1← Expt-IND-CPATA,B(1λ, 1n)]−
1/2 = η.

The reduction algorithm receives mpkA from the IND-CPA challenger. It then chooses (mskB , mskB ,
(skB,1, . . ., skB,n)) ← Setup(1λ, 1n), sets mpk = (mpkA,mpkB) and sends it to A. The adversary A then
sends two messages m0,m1. The reduction algorithm chooses r ←M. It sets m0,A = m0⊕r, m1,A = m1⊕r
and sends (m0,A,m1,A) to the challenger. The reduction algorithm receives ctA from the challenger. It
computes ctB ← EncB(mpkB , r) and sends ct = (ctA, ctB) to A. The attacker sends its guess b′, and the
reduction algorithm forwards it to the challenger.

If the adversary’s guess is correct, then so is the reduction algorithm’s guess. Therefore, B breaks the
IND-CPA security of TA with advantage η.

False-Trace Probability

Lemma 6.2. Assuming TA is an fA-risky secure traitor tracing scheme, and TB is an fB-risky secure traitor
tracing scheme, for every PPT adversary A, polynomials p(·), n(·) and non-negligible function ε(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤
negl(λ).

Proof. Let S denote the set of key queries made by the adversary. We define the following events :

• F1 : TraceA outputs an index i ∈ {1, 2, . . . , n} \ S

• F2 : TraceA outputs ⊥ and TraceB outputs an index i ∈ {1, 2, . . . , n} \ S
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Clearly, Pr -Fal-TrA,n,ε = Pr[F1] + Pr[F2]. We will show an upper bound on Pr[F1] and Pr[F2] using the
security of TA and TB respectively.

Claim 6.1. Assuming TA is an fA-risky secure traitor tracing scheme, for every PPT adversary A, poly-
nomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl1(·) such that for all
λ ∈ N satisfying ε(λ) > 1/p(λ), Pr[F1] ≤ negl1(λ).

Proof. Suppose, on the contrary, there exists a PPT adversary A, polynomial n(·) and non-negligible func-
tions ε, η such that Pr[F1] ≥ η(λ). We will show that there exists a non-negligible function εA and a PPT
reduction algorithm B that queries for set S, outputs a decoding box DA and two messages mA,0,mA,1 such

that Pr[TraceDAA (mskA, 1
1/εA ,mA,0,mA,1) ∈ {1, 2, . . . , n} \ S] ≥ η(λ).

The reduction algorithm B first receives mpkA from the challenger. It chooses (mpkB , (skB,1, . . . , skB,n))←
SetupB(1λ, 1n) and sends mpk = (mpkA,mpkB) to A.

Next, it receives secret key queries from A. For query corresponding to index i, the reduction algorithm
sends the same query to challenger. It receives skA,i, and it sends ski = (skA,i, skB,i) to A.

Finally, after all the queries, the adversary A sends a pirate decoding box D together with messages
m0,m1. The reduction algorithm sets T = λ · n/ε. For i = 1 to T , it chooses ri ← M, computes ctiB ←
EncB(mpkB , r

i) and checks if Test-Good-A(ri, ctB) = 1. If no pair exists, it outputs an empty decoding box.
Else, let (rA, ctB) be the first such pair. The reduction algorithm uses (rA, ctB) and decoder box D to define
DA and mA,0,mA,1. It sets mA,0 = m0 ⊕ rA and mA,1 = m1 ⊕ rA. The pirate box DA has ctB hardwired,
and it takes as input a ciphertext ct and outputs D((ct, ctB)). B sends DA,mA,0,mA,1 to the challenger.

Now, if Pr[F1] ≥ η(λ), then Pr[TraceDAA (mskA, 1
4/ε,mA,0,mA,1) ∈ {1, 2, . . . , n} \ S] ≥ η(λ).

Claim 6.2. Assuming TB is an fB-risky secure traitor tracing scheme, for every PPT adversary A, polyno-
mials p(·), n(·) and non-negligible function ε(·), there exists a negligible function negl1(·) such that for all
λ ∈ N satisfying ε(λ) > 1/p(λ), Pr[F2] ≤ negl1(λ).

The proof of this claim is identical to the previous one. Here, the reduction algorithm gets TB parameters
from the challenger, and generates the TA parameters by itself. On receiving the decoding box D, it first
tries TraceA by itself. If this trace works, it quits. Else, it computes the box DB and messages mB,0,mB,1

and sends them to the challenger.

Correct-Trace Probability First, we need to define some probabilistic events. In order to do so, let us
recall the security game for traitor tracing.

1. Challenger chooses (mpk = (mpkA,mpkB), msk = (mskA,mskB), (sk1 = (skA,1, skB,1), . . ., skn =
(skA,n, skB,n)))← Setup(1λ, 1n) and sends mpk to A.

2. Adversary queries for secret keys. For each queried index i ∈ {1, 2, . . . , n}, the challenger sends ski.

3. Let S denote the set of keys queried by A. The adversary then sends a pirate decoding box D and two
messages m0,m1.

4. Challenger first uses TraceA. In order to do this, it must build a pirate box DA for scheme TA and find
two messages mA,0 and mA,1 for DA. It does the following:

(a) Let T = λ · n/ε. For i = 1 to T , it chooses ri ←M, computes ctiB ← EncB(mpkB , r
i) and checks

if Test-Good-A(ri, ctiB) = 1. If no pair exists, it quits this step. Else, let (rA, ctB) be the first such
pair.
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(b) Challenger uses (rA, ctB) and decoder box D to define DA and mA,0,mA,1. It sets mA,0 = m0⊕rA
and mA,1 = m1⊕ rA. The pirate box DA has ctB hardwired, and it takes as input a ciphertext ct

and outputs D((ct, ctB)). The challenger then computes zA ← TraceDAA (mskA, 1
4/ε,mA,0,mA,1).

If zA 6= ⊥, it outputs zA and quits.

5. Challenger then uses TraceB . As before, it must build a pirate box DB for scheme TB and find two
messages mB,0 and mB,1 for DB . It does the following:

(a) Let T = λ · n/ε. For i = 1 to T , it chooses ri ←M, computes ctiA ← EncA(mpkA, r
i) and checks

if Test-Good-B(ri, ctiA) = 1. If no pair exists, it quits this step. Else, let (rB , ctA) be the first
such pair.

(b) Challenger uses (rB , ctA) and decoder box D to define DA and mB,0,mB,1. It sets mB,0 = m0⊕rB
and mB,1 = m1⊕ rB . The pirate box DB has ctA hardwired, and it takes as input a ciphertext ct

and outputs D((ctA, ct)). The challenger then computes zB ← TraceDBB (mskB , 1
4/ε,mB,0,mB,1).

If zB 6= ⊥, it outputs zB .

We will define the following events, and the corresponding probabilities. These probabilities are param-
eterized by the adversary A, polynomial n(·) and non-negligible ε(·), and a function of λ. For simplicity of
notations, we will skip the the dependence on A, n and ε.

• Good-Decoder : D distinguishes between encryptions of m0 and m1 with advantage ε

• QuitA : No (rA, ctB) pair found in Step 4a;

• Good-DecoderA : DA distinguishes between encryptions of mA,0 and mA,1 with advantage ε/4

• TraceA-Succ : zA ∈ S

• TraceA-Fail : QuitA or zA = ⊥

• QuitB : No (rB , ctA) pair found in Step 5a

• Good-DecoderB : DB distinguishes between encryptions of mB,0 and mB,1 with advantage ε/4

• TraceB-Succ : zB ∈ S

From the above defined events, it follows that the trace algorithm traces a traitor if one of the following
two events occur:

E1 : TraceA-Succ
OR

E2 : (TraceA-Fail ∧ TraceB-Succ)

As a result, since these events are mutually exclusive, Pr[Cor-Tr] = Pr[E1] + Pr[E2]. We will now analyse
Pr[E1] and Pr[E2] separately.

Theorem 6.1. Assuming TA is an fA-risky secure traitor tracing scheme, for any PPT adversary A, poly-
nomials p(·), n(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for all
λ ∈ N satisfying ε(λ) > 1/p(λ), Pr[E1] ≥ fA(λ, n) · Pr[Good-Decoder]− negl(λ).

Proof. First, using the fact that TA is an fA-risky secure traitor tracing scheme, we can relate the probability
of event E1 to the probability of outputting a good pirate box for TA.

Claim 6.3. Assuming TA is an fA-risky secure traitor tracing scheme, for every PPT adversary A, poly-
nomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for all
λ ∈ N satisfying ε(λ) > 1/p(λ), Pr[E1] ≥ fA(λ, n) · Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA]− negl(λ).
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Proof. We will use the PPT adversary A to build a reduction algorithm B that interacts with a TA challenger
and A, and outputs a pirate decoding box DA and messages mA,0,mA,1.

The reduction algorithm B first receives mpkA from the challenger. It chooses (mpkB , (skB,1, . . . , skB,n))←
SetupB(1λ, 1n) and sends mpk = (mpkA,mpkB) to A.

Next, it receives secret key queries from A. For query corresponding to index i, the reduction algorithm
sends the same query to challenger. It receives skA,i, and it sends ski = (skA,i, skB,i) to A.

Finally, after all the queries, the adversary A sends a pirate decoding box D together with messages
m0,m1. The reduction algorithm sets T = λ · n/ε. For i = 1 to T , it chooses ri ← M, computes ctiB ←
EncB(mpkB , r

i) and checks if Test-Good-A(ri, ctiB) = 1. If no pair exists, it outputs an empty decoding box.
Else, let (rA, ctB) be the first such pair. The reduction algorithm uses (rA, ctB) and decoder box D to define
DA and mA,0,mA,1. It sets mA,0 = m0 ⊕ rA and mA,1 = m1 ⊕ rA. The pirate box DA has ctB hardwired,
and it takes as input a ciphertext ct and outputs D((ct, ctB)). B sends DA,mA,0,mA,1 to the challenger.

Now, using the security of TA, it follows that there exists a negligible function negl(·),

Pr[TraceDAA (mskA, 1
4/ε,mA,0,mA,1) ∈ S ∧ QuitA]

≥ fA(λ, n) · Pr[QuitA ∧ Good-DecoderA]− negl(λ).

Since Pr[QuitA ∧ Good-DecoderA] ≥ Pr[QuitA ∧ Good-DecoderA ∧ Good-Decoder], it follows that

Pr[E1] ≥ fA(λ, n) · Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA]− negl(λ).

Next, we will show that Pr[Good-Decoder]−Pr[Good-Decoder∧QuitA∧Good-DecoderA] is at most a negligible
function in λ. First, note that

Pr[Good-Decoder] = Pr[Good-Decoder ∧ QuitA] + Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA]

+ Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA].

Therefore, it suffices to show that Pr[Good-Decoder∧QuitA] and Pr[Good-Decoder∧QuitA∧Good-DecoderA]
are both bounded by negligible funtions.

Lemma 6.3. There exists a negligible function negl(·) such that for all λ ∈ N, Pr[Good-Decoder ∧QuitA] ≤
negl(λ).

Proof. Let REncA and REncB denote the space of random coins used by EncA and EncB respectively and for
any decoder D, let GoodD ⊆M×REncB denote the set of coins such that for every (r, r′) ∈ GoodD,

Pr

[
D(ctA, ctB) = b :

b← {0, 1}, ctA ← EncA(mpkA,mb ⊕ r)
ctB = EncB(mpkB , r; r

′)

]
≥ 1 + ε

2
.

Using a Markov argument, we know that if D is “good decoder”, i.e. it distinguishes between encryptions of
m0 and m1 with advantage at least ε, then |GoodD| is at least |M| · |REncB | · ε/2. Concretely, we have that

Pr[(r, r′) ∈ GoodD | Good-Decoder] ≥ ε/2.

Below we show that if (r, r′) ∈ GoodD, then with all but negligible probability, Test-Good-A accepts r and
corresponding ciphertext ctB .

Claim 6.4. There exists a negligible function negl(·) such that for every decoder D, all λ ∈ N, (r, r′) ∈
GoodD,

Pr [Test-Good-A(r,EncB(mpkB , r; r
′)) = 1] ≥ 1− negl(λ).
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The proof of above claim follows from Chernoff bounds and is similar to the proof of Lemma 4.1. Now, we
analyse Pr[Good-Decoder∧QuitA]. Note that the event QuitA occurs if no (r, r′) is found after λ ·n/ε samples,
such that Test-Good-A(r, ctB) = 1 where ctB = EncB(mpkB , r; r

′). We argue that this event happens with
at most negligible probability. First, we partition the event Good-Decoder ∧ QuitA into two sub-events:

No-Good-Pair : Good-Decoder ∧ None of the (r, r′) sampled are in Good

Test-Good-A-Fail : Good-Decoder ∧ Some sample (r, r′) ∈ Good ∧ Test-Good-A rejects (r, r′)

From the definition of the events, it follows that Pr[Good-Decoder∧QuitA] = Pr[No-Good-Pair]+Pr[Test-Good-A-Fail].
Let us first analyse Pr[No-Good-Pair]. Recall that

Pr[(r, r′) ∈ GoodD | Good-Decoder] ≥ ε/2.

As a result, the probability of not finding (r, r′) ∈ Good after T = λ/ε samples is at most (1−ε/2)T ≤ 2−O(λ),
which is negligible in λ. Next, from Claim 6.4, it follows that there exists a negligible function negl2(·) such
that for all λ ∈ N, Pr[Test-Good-A-Fail] ≤ negl2(λ). Thus, we get that Pr[Good-Decoder ∧ QuitA] ≤ negl(λ).

Lemma 6.4. There exists a negligible function negl(·) such that for all λ ∈ N,

Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA] ≤ negl(λ).

Proof. Let BadD ⊆ M× REncB denote the set of coins such that for every (r, r′) ∈ BadD, decoder DA =
D(·,EncB(mpkB , r; r

′)) is a “bad” decoder for system A, i.e. DA is not an (ε/4)-Dist decoder for mA,0,mA,1.
Using Chernoff bounds, we get that for every decoder D, (r, r′) ∈ BadD,

Pr [Test-Good-A(r,EncB(mpkB , r; r
′)) = 1] ≤ 2−O(λ).

Now note that while tracing using TraceA, routine Test-Good-A is independently run T = λ · n/ε times.
Using a union bound, we get that the probability Test-Good-A accepts a pair (r, r′) ∈ BadD, in any of those
T tries, is at most T · 2−O(λ) = negl(λ). Thus, we can conclude that Pr[QuitA ∧ Good-DecoderA] ≤ negl(λ).
This completes the proof.

From the above two lemmas, we can conclude that there exists a negligible function negl(·) such that for
all λ ∈ N, Pr[E1] ≥ fA(λ, n) · Pr[Good-Decoder]− negl(λ). Similarly, we show a lower bound on Pr[E2] next.

Theorem 6.2. Assuming TB is an fB-risky secure traitor tracing scheme, for any PPT adversary A, poly-
nomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for all
λ ∈ N satisfying ε(λ) ≥ 1/p(λ),

Pr[E2] ≥ fB(λ, n) · Pr[Good-Decoder ∧ TraceA-Fail].

Proof. The proof of this theorem will follow a similar structure as the proof of Theorem 6.1. First, using the
fact that TB is an fB-risky secure traitor tracing scheme, we can relate the probability of event E2 to the
probability of outputting a good pirate box for TB .

Claim 6.5. Assuming TB is an fB-risky secure traitor tracing scheme, for every PPT adversary A, polyno-
mial n(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for all λ ∈ N,
Pr[E2] ≥ fB(λ, n) · Pr[Good-Decoder ∧ TraceA-Fail ∧ QuitB ∧ Good-DecoderB ]− negl(λ).

Proof. We will use the PPT adversary A to build a reduction algorithm B that interacts with a TB challenger
and A, and outputs a pirate decoding box DB and messages mB,0,mB,1.

The reduction algorithm B first receives mpkB from the challenger. It chooses (mpkA, (skA,1, . . . , skA,n))←
SetupA(1λ, 1n) and sends mpk = (mpkA,mpkB) to A.
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Next, it receives secret key queries from A. For query corresponding to index i, the reduction algorithm
sends the same query to challenger. It receives skB,i, and it sends ski = (skA,i, skB,i) to A. Let S denote the
set of keys queried.

Finally, after all the queries, the adversary A sends a pirate decoding box D together with messages
m0,m1. The reduction algorithm first ‘simulates’ the tracing of traitors using TraceA. It performs Trace
attempt using TraceA (that is, Step 4). If it successfully traces an index i ∈ S, then the reduction algorithm
quits (that is, it outputs an empty tracing box).

Else, the reduction algorithm sets T = λ · n/ε. For i = 1 to T , it chooses ri ← M, computes ctiA ←
EncA(mpkA, r

i) and checks if Test-Good-B(ri, ctA) = 1. If no pair exists, it outputs an empty decoding box.
Else, let (rB , ctA) be the first such pair. The reduction algorithm uses (rB , ctA) and decoder box D to define
DB and mB,0,mB,1. It sets mB,0 = m0 ⊕ rB and mB,1 = m1 ⊕ rB . The pirate box DB has ctA hardwired,
and it takes as input a ciphertext ct and outputs D((ctA, ct)). B sends DB ,mB,0,mB,1 to the challenger.

Now, from security of TB , it follows that

Pr[E2] = Pr[TraceDBB (mskB , 1
4/ε,mB,0,mB,1) ∈ S ∧ TraceA-Fail ∧ QuitB ]

≥fB(λ, n) · Pr[TraceA-Fail ∧ QuitB ∧ Good-DecoderB ]− negl(λ)

≥fB(λ, n) · Pr[TraceA-Fail ∧ QuitB ∧ Good-DecoderB ∧ Good-Decoder]− negl(λ).

This concludes the proof.

Next, in order to show that Pr[Good-Decoder∧ TraceA-Fail∧ QuitB∧ Good-DecoderB ] ≥ Pr[Good-Decoder∧
TraceA-Fail]−negl(λ), it suffices to show that Pr[Good-Decoder∧ TraceA-Fail∧ QuitB ] and Pr[Good-Decoder∧
TraceA-Fail∧ QuitB∧ Good-DecoderB ] are both bounded by some negligible funtions.

Lemma 6.5. There exists a negligible function negl(·) such that for all λ ∈ N, Pr[Good-Decoder∧TraceA-Fail∧
QuitB ] ≤ negl(λ).

Proof. The proof of this lemma is very similar to the proof of Lemma 6.3, so we will briefly list the modifi-
cations required.

The set of“good” coins corresponding to a decoder D will now be defined as GoodD ⊆M×REncA such
that for every (r, r′) ∈ GoodD,

Pr

[
D(ctA, ctB) = b :

b← {0, 1}, ctB ← EncB(mpkB ,mb ⊕ r)
ctA = EncA(mpkA, r; r

′)

]
≥ 1 + ε

2
.

Next, using a Markov argument, we will argue that fraction of coins in GoodD for a good decoder is at least
ε/2. For completing this argument, the following observation will be important.

Observation 6.1. For any m ∈M, the following distributions are identical:

{(m⊕ r, r) : r ←M} ≡ {(r,m⊕ r) : r ←M}

The rest of the proof will be identical in which we will first argue that Test-Good-B accepts all (r, r′) ∈
GoodD with all but negligible probability. Next, we will divide the event Good-Decoder∧TraceA-Fail∧QuitB
into two sub-events as before and argue that they both occur with at most negligible probability.

Lemma 6.6. There exists a negligible function negl(·) such that for all λ ∈ N,

Pr[Good-Decoder ∧ TraceA-Fail ∧ QuitB ∧ Good-DecoderB ] ≤ negl(λ).
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The proof of this lemma is identical to that of Lemma 6.4. Combining the above lemmas, we get that there
exists a negligible function negl(·) such that for all λ ∈ N, Pr[E2] ≥ fB(λ, n)·Pr[Good-Decoder∧TraceA-Fail]−
negl(λ).

Combining Theorem 6.1 and Theorem 6.2, we can compute the ‘riskyness’ of our traitor tracing scheme.
Concretely, we get that

Pr[E1] + Pr[E2]

≥Pr[E1] + fB(λ, n) · Pr[Good-Decoder ∧ TraceA-Fail]− negl1(λ)

= Pr[E1] + fB(λ, n) · (Pr[Good-Decoder]− Pr[E1]− Pr -Fal-TrA,n,ε(λ))− negl1(λ)

≥Pr[E1] · (1− fB(λ, n)) + fB(λ, n) · Pr[Good-Decoder]− negl2(λ)

≥fA(λ, n) · Pr[Good-Decoder] · (1− fB(λ, n)) + fB(λ, n) · Pr[Good-Decoder]− negl3(λ)

≥ (fA(λ, n) + fB(λ, n)− fA(λ, n) · fB(λ, n)) · Pr[Good-Decoder]− negl3(λ)

This concludes the proof.
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