
Zero-Knowledge Proxy Re-Identification Revisited

Xavier Bultel and Pascal Lafourcade

LIMOS, Université d’Auvergne

Abstract. Zero-knowledge proxy re-identification (ZK-PRI) has been introduced
by Blaze et al. in 1998 together with two other well known primitives of re-
cryptography, namely proxy re-encryption (PRE) and proxy re-signature (PRS).
A ZK-PRI allows a proxy to transform an identification protocol for Alice into
an identification protocol for Bob using a re-proof key. PRE and PRS have been
largely studied in the last decade, but surprisingly, no results about ZK-PRI have
been published since the pioneer paper of Blaze et al.. We first show the inse-
curity of this scheme: just by observing the communications Alice can deduce
Bob’s secret key. Then we give (i) definitions of the different families of ZK-PRI
(bidirectional/unidirectional and interactive/non-interactive) (ii) a formal secu-
rity model for these primitives and (iii) a concrete construction for each family.
Moreover, we show that ZK-PRI can be used to manage the acces policy to sev-
eral services that require a public key authentication.

1 Introduction

Proxy Re-Encryption (PRE), Proxy Re-Signature (PRS) and Zero-Knowledge
Proxy Re-Identification (ZK-PRI) schemes are three cryptographic primitives
that allow a delegator (Bob) to delegate his decryption, his signature or his
identification right to a delegate (Alice). The proxy does not just help Alice to
decrypt, sign or identify instead of Bob without Bob’s secret key: in PRE, the
proxy transforms (i.e., he re-encrypts) a message encrypted for Bob into another
one encrypted for Alice using a re-encryption key. In PRS, the proxy transforms
(i.e., he re-signs) a message signed by Alice into a message signed with Bob’s
secret key using a re-signature key. In ZK-PRI, the proxy transforms (i.e., he re-
identifies) an identification protocol for Alice into another one for Bob using a
re-proof key. A naı̈ve solution is to give the secret of Bob to the proxy, however
it requires a fully trusted proxy. In proxy re-cryptography, we usually consider
a semi-trusted proxy that does not collude with Alice and that cannot act alone
as Alice or Bob.

PRE, PRS and ZK-PRI have been introduced by Blaze et al. in [5]. In [15]
Ivan et al. revisit the proxy re-cryptography by introducing the notion of bidi-
rectional and unidirectional proxies: in unidirectional proxies, the delegator Bob
is able to compute the re-key alone, i.e. using only his secret key and the public
key of Alice. Authors give an unidirectional scheme for both PRE and PRS but



they do not study the case of unidirectionality in ZK-PRI. Unidirectional PRE
and PRS have led to numerous publications [1, 2, 5, 7, 14, 15, 19–21, 24]. How-
ever, surprisingly, ZK-PRI has not received the same attention. To the best of our
knowledge, the scheme given in [5] is the only one of the literature. This scheme
works as follows: Let g be a generator of a group of prime order p, Alice has
her secret a and Bob has his secret b. Alice interacts with a proxy who knows
a re-proof key rk = a/b, and the proxy interacts with a verifier who knows
the public key of Bob gb. Alice chooses a random element k ∈ Z∗p and sends
K = gk to the proxy, who forwards it to the verifier. The verifier chooses a chal-
lenge c ∈ {0, 1} and sends it to the proxy who forwards it to Alice. If c = 1 then
Alice sends z = k/a to the proxy, who computes and sends z′ = z · rk = k/b to
the verifier. Else, Alice sends z = k and the proxy sends z′ = z to the verifier. If
c = 1 the verifier checks thatK = (gb)z

′
. Else, it checksK = gz

′
. The protocol

is repeated several times. This scheme has the following security flaws:

– if Alice and the verifier collude, then they can recover the secret key of Bob
as follows: the verifier sends the challenge c = 1 and sends z′ to Alice, then
she can compute the Bob’s secret as follows k/z′ = b.

– if Alice observes the communication, then she can also recover the secret
key of Bob as follows: if the verifier sends the challenge c = 1, then by
observing the communication Alice learns z′ = k/b. Then Alice knowing k
can easily recover b the secret key of Bob by computing k/z′ = b.

Contributions: We revisit the concept of ZK-PRI by formally defining bidirec-
tional, unidirectional, interactive, and non-interactive ZK-PRI schemes. Our
second contribution is four secure ZK-PRI schemes:

– B.REΠ, a bidirectional and interactive ZK-PRI that does not have the weak-
ness of [5]. In this scheme, the delagator and the delegate only use Schnorr’s
identification protocol. Thus, it can be easily deployed in existing systems
that use authentication with this protocol. This scheme is multi-hop (i.e. it is
possible to successively transform an identification transcript several times
using several different re-proof keys).

– U.REΠ, an unidirectional and interactive ZK-PRI scheme.
– NiB.REΠ, a bidirectional and non-interactive ZK-PRI scheme.
– NiU.REΠ, an unidirectional and non-interactive ZK-PRI scheme.

Our security model is stronger than the initial model introduced in [5], since
it allows the delegate to collude with the verifier. In Appentix A we sum up
and compare the properties and the efficiency of our four schemes. Using our
two non-interactive schemes NiB.REΠ and NiU.REΠ, we naturally propose two
proxy re-signature schemes respectively bidirectional and unidirectional.
Applications: ZK-PRI scheme can be used to provide a practical mechanism
of authentication delegation. For instance, Bob manipulates sensitive data in his

2



work and he must often authenticate himself using his secret key. During his
holidays, he has to delegate his access rights to Alice. However, Bob does not
want to reveal his secret to Alice, and he wants to be able to cancel the delegation
when he wants. To solve this problem, he uses a ZK-PRI which allows Alice to
authenticate on behalf of Bob using his secret key during Bob’s holidays. Thus,
Alice, using the same algorithm and her secret, is able to authenticate herself
under Bob’s identity as long as she has access to the proxy. Until now the only
solution for solving this problem was to use the bidirectional scheme of Blaze
et al. [5], which is insecure.

Another application of ZK-PRI is access control management. For instance
a company has subscribed to several services like email, cloud storage or soft-
ware. Each time, an authentication mechanism is required for all these services
and it uses always the same login and password. Using a ZK-PRI, it is possible
to manage which person of the company has access to which services using their
own login and password: depending on his access rights, the proxy accepts or
not to help a user to authenticate for a given service. The main advantage of this
solution is that the company can manage its access policy alone, without giving
new authentication keys to the manager of the services, and without changing
the secret/public keys of its employees. Each user just needs to know his own
authentication material. It allows the delegator to not distribute several keys per
application and per user, similarly as in the proxy-based distributed encrypted
storage by Atenise et al. in [1].
Related work: In the late 80’s, Okamoto and Ohta introduce the notion of di-
vertible zero-knowledge interactive proofs [22]. This notion is pretty close to
ZK-PRI: a ZKP between a prover P and a verifier V is divertible when a third
party W can impersonate V (resp. P ) during the protocol such that P (resp. V )
cannot distinguish if he interacts with V (resp. P ) or W . Then W just random-
izes but does not transform a proof of a secret to the proof of another one. Thus,
W has no re-key and cannot be used to delegate the proving ability. ZK-PRI can
be viewed as an extension of divertible zero-knowledge proofs.

To achieve similar properties as ZK-PRI, we can use a two-party computa-
tion [17] (TPC): the delegator shares his secret over the delegate and the proxy.
Using TPC they can compute together values that allow them to identify as the
delegator. However, this generic solution is not efficient, and the delegate does
not use the same procedure to identify itself or to identify as the delegator.

In distributed and threshold zero-knowledge proofs [18] a secret is shared
into n shares, and these shares are distributed to n parties such that a threshold
number t of shares allows someone to recover the secret. Then t parties are
able to prove the knowledge of the secret together. This primitive can be used
for distributed zero-knowledge identification (DZKI). ZK-PRI can be viewed
as a particular case of DZKI since the secret of the delegator and the re-proof

3



key allow to compute the delegator’s secret key, and the delegate and the proxy
interact together to identify as the delegator. However, these schemes do not
really transform an identification transcript into another one for two different
public keys. Moreover, unidirectional proxy requires that the re-proof key is
computed from the public key of the delegate and the secret of the delegator,
and the delegate and the delegator must have a way to identify himself alone.
The delegate (resp. verifier) uses the same protocol when he interacts directly
with the verifier (resp. delegator) and when he interacts with the proxy. Actually,
the differences between DZKI and ZK-PRI are analogous to the differences
between proxy re-encryptions and threshold encryptions, and between proxy
re-signatures and threshold signatures.

To the best of our knowledge, there exists neither formal definition nor con-
crete scheme of unidirectional ZK-PRI and non-interactive ZK-PRI. Finally,
note that ZK-PRI should not be confused with proxy zero-knowledge proof de-
fined in [16]. In this primitive, the proxy helps Alice to perform a proof of
knowledge of the secret of the delegator named Bob in order to identify as Bob,
but the proxy does not transform the proof of Alice’s secret knowledge into
a proof of Bob’s secret knowledge. Indeed, in ZK-PRI, Alice must be able to
identify herself to use the proxy, and she uses the same identification protocol
to identify herself (interacting with the verifier) and to identify as Bob (interact-
ing with the proxy). Again, it is the same difference as between proxy encryp-
tion and PRE, and between proxy signature and PRS. Moreover, ZK-PRI should
not be confused with homomorphic proxy re-authenticators [8]: this primitive
is a kind of proxy re-signature that offer some additional verifiability guaran-
tees, thus it is not a kind of ZK-PRI, and it does not focus on zero-knowledge
properties.

2 Background

Notations: We denote by r $← S the random draw of r into the uniform dis-
tribution on S. Let X be a Probabilistic Polynomial-Time algorithm (PPT), we
denote by z ← X(x; r) the result z of the execution of X on input x and
on the random tape r. When it is clear from the context, we omit the param-
eter r and simply use X(x). A protocol involves at least two entities that are
modeled by PPT algorithms. We denote by P〈X(x);Y (y)〉 the execution of
the protocol P between X and Y using respectively inputs x and y. Moreover,
outX(P〈X(x);Y (y)〉) returns the output of the entity X at the end of the ex-
ecution of the protocol P. We also denote by viewX(P〈X(x);Y (y)〉) all the
values sent and received by X throughout the execution of the protocol P. We
note that out and view can be used by several entities, for example, the function
outX,Z(P〈X(x);Y (y);Z(z)〉) returns the couple (oX , oZ) such that oX (resp.

4



oZ) is the output of the entityX (resp. Z) at the end of the protocol P execution.
By convention, we use the symbol ∗ to denote a dishonest user in a protocol: by
example, P〈X(x);Y ∗(y)〉 denotes that X honestly runs the protocol but Y ∗

does not. If several dishonest entities collude then each of theses entities has
access to all information known by all other dishonest entities. When it is not
precised, we assume that dishonest entities do not collude.

Definition 1 (DL [6]). Let G be a multiplicative group of prime order p, and
g be a group element. Given an instance h ∈ G where x $← Z∗p and h =
gx, the discrete logarithm problem in (G, p, g) (DL) is to compute x. The DL
assumption states that there exists no PPT algorithm that solves DL with non-
negligible probability.

Definition 2 (FAPI2 [11]). Let G1,G2 and GT be three groups of prime order
p, e : G1 × G2 → GT be a non-degenerate bilinear pairing and g1 ∈ G1 and
g2 ∈ G2 be two group elements. Given an instance h ∈ GT where X $← G2

and e(g1, X) = h, the fixed argument pairing inversion 2 problem (FAPI2)
in (G1,G2,GT , p, g1, g2, e) is to compute X . The FAPI2 assumption states that
there exists no PPT algorithm that solves FAPI2 with non-negligible probability.

Definition 3 (BDLV). Let G1,G2 and GT be 3 groups of prime order p, e :
G1 × G2 → GT be a type 2 non-degenerate bilinear pairing and g1 ∈ G1 and
g2 ∈ G2 be two generators of G1 and G2. Given an instance (h1, h2) where
x

$← Z∗p, h1 = gx1 and h2 = g
1/x
2 , the bilinear discrete logarithm variant (BDLV)

problem in (G1,G2,GT , p, g1, g2, e) is to compute x. In appendix B, we prove
that BDLV is hard to solve under under the discrete logarithm hypothesis.

Definition 4 (ZKI [13]). An Identification scheme is a tuple of three algorithms
(Set,Gen,Proof) where Set(λ) is an algorithm that returns a setup value S ,
Gen(S ) is an algorithm that returns a pair of public/private keys (pk, sk), and
Prove is a protocol between the prover P (sk) and the verifier V (pk) where
V outputs a bit b. Such a scheme is a Zero-Knowledge Identification scheme
(ZKI) if it satisfies the three following properties for any S ← Set(λ) and
(pk, sk)← Gen(S ):
Completeness: If P knows sk, then he is able to convince V , i.e. V outputs 1:

Pr [b← outV (Proof〈P (sk);V (pk)〉) : b = 1] = 1
Soundness: If a dishonest prover P ∗ does not know sk, then he is not able to

convince V except with negligible probability:
Pr [b← outV (Proof〈P ∗(pk);V (pk)〉) : b = 1] ≤ ε(λ) where ε is a negli-
gible function.

Zero-knowledge: A dishonest verifier V ∗ learns nothing about sk except pk
during the protocol, i.e. there exists a PPT algorithm Sim, called the simu-
lator, such that for any bit-string α:

5



Pr [α∗ ← viewV ∗(Proof〈P (sk);V ∗(pk)〉) : α = α∗]
= Pr [α∗ ← Sim(pk) : α = α∗]

Honest-verifier ZKI (HZKI) is a weaker notion of ZKI which is restricted to
case where the verifier is honest, i.e. V correctly runs the protocol.

Definition 5 (NIZKI). A non-interactive identification scheme is a tuple of al-
gorithms (Set,Gen,Prove,Verify) such that Set and Gen are defined as in the
interactive case, Prove(pk, sk) outputs a proof π and Verify(pk, π) outputs a bit
b. A non-interactive zero-knowledge identification scheme (NIZKI) verifies the
following properties for any S ← Set(λ) and (pk, sk)← Gen(S ):
Completeness: Verify(pk,Prove(pk, sk)) = 1
Soundness: For any PPT adversary A:

Pr
[
π ← AProve(pk,sk)(pk); b← Verify(pk, π) : b = 1

]
≤ ε(λ) where ε is a

negligible function and π has not be generated by the oracle Prove(pk, sk).
Zero-knowledge: A proof π leaks nothing about sk except pk, i.e. there exists

a PPT simulator Sim such that for any bit-string α:
Pr [α∗ ← Prove(pk, sk) : α = α∗] = Pr [α∗ ← Sim(pk) : α = α∗]

We consider ZKIs based on DL and related problems. The Schnorr’s pro-
tocol in Fig. 1 is an honest verifier ZKI based on DL, i.e. pk = gsk where g
is a generator of a prime order group. It is known to be honest-verifier zero-
knowledge but not zero-knowledge [23]. A simple method to transform it in a
zero-knowledge protocol is to pick the challenge c in {0, 1} instead of to pick
it in Z∗p. However, it is necessary to repeat this protocol λ times for a chosen
security parameter λ.

Prover P Verifier V
sk pk = gsk

r
$← Z∗p

R = gr
R−−−−−→ c

$← Z∗p
α = r + sk · c c←−−−−−

α−−−−−→ Check that:

gα
?
= R · pkc

Fig. 1. Schnorr Protocol [23], denoted Π1.

As Schnorr’s protocol, several ZKIs
have three exchanges between the prover
and the verifier: a commitment, a chal-
lenge, and a response. Such protocols
are called sigma protocols. To transform
a sigma protocol into a NIZKI using
the Fiat-Shamir heuristic [9], it suffices
to use the digest of a hash function on
the commitment as challenge. The hash
function allows us to generate a chal-
lenge that cannot be known by the prover before his commitment. For example,
using the hash function H , this transformation on Schnorr’s protocol gives the
following NIZKI algorithms:
Prove(pk, sk): pick r $← Z∗p, compute R = gr, c = H(R) and α = r + sk · c.

Output π = (R,α).

Verify(pk, π): Compute c = H(R). If gα ?
= R · pkc then output 1, else 0.

6



Note that this version of the Fiat-Shamir transformation is not sound against a
malicious prover who can select his problem instance adaptively [4]. However,
the security of this transformation is sufficient for our identification protocols.

3 Definitions

A ZK-PRI is composed of two ZKI schemes and a protocol RProof. This pro-
tocol allows the proxy to transform a transcript of the first ZKI protocol into
a transcript of the second one for two different public keys. The proxy has a
re-proof key given by the algorithm RGen. We classify ZK-PRI as follows:
Interactive/Non-interactive: a ZK-PRI can be interactive or non-interactive
according to the interaction between the prover and the verifier of the ZKPs.
Bidirectional/Unidirectional: a ZK-PRI is bidirectional if the re-proof key that
delegates Bob’s rights to Alice is used by the proxy to delegate Alice’s rights to
Bob, and is unidirectional if the delegator generates the re-proof key alone.

We extend the zero-knowledge property for our primitive: informally, a PRI
is zero-knowledge when a collusion between the proxy and the verifier learns
nothing about the secret key of Alice and a collusion between Alice and the
verifier learns nothing about the re-proof key. Thus the scheme of Blaze et al. [5]
is not secure in our model since a collusion between Alice and the verifier learns
the secret key of Bob and can use it to deduce the re-proof key. We also extend
the soundness for ZK-PRI: in addition to the soundness of the two ZKI schemes,
it must be hard for the proxy to identify alone as Alice or Bob, i.e. using only
the re-proof key and their public keys.

Definition 6 (ZK-PRI). A ZK-PRI is a tuple of algorithms/protocols (Set,Gen1,
Gen2, Proof1,Proof2,RGen,RProof) such that for i ∈ {1, 2}:
Set(λ): It returns a setup S .
Geni(S ): It returns a a pair of public/private keys (pki, ski). Optionally, it

returns an intermediate secret wi.
Proofi: It is a protocol between the prover P (ski) and the verifier V (pki) where

V outputs a bit b.
RGen(sk1, w1, sk2, w2): It returns a re-proof key rk.
RProof: let a delegateA(sk1), a proxy P (rk, pk1, pk2) and a verifier V (pk2) be

three entities, RProof is a protocol such that A runs Proof1 with P and P
runs Proof2 with V . Note that A and V never interact during the protocol.

We denote by Ii the ZKI scheme (Set,Geni,Proofi). A ZK-PRI satisfies the
following properties for any S ← Gen(λ), (pki, ski, wi) ← Geni(S ) and
rk ← RGen(sk1, w1, sk2, w2):
Completeness: (i) I1 and I2 are complete and (ii) For honest A, P and V :

Pr [b← outV (RProof〈A(s1);P (rk, pk1, pk2);V (pk2)〉) : b = 1] = 1

7



Soundness: (i) I1 and I2 are sound and (ii) For any dishonest proxy P ∗ and
i ∈ {1, 2}:
Pr [b← outV (Proofi〈P ∗(rk, pk1, pk2);V (pki)〉) : b = 1] ≤ ε(λ) where ε
is a negligible function.

Zero knowledge: (i) I1 and I2 are zero-knowledge.
(ii) For any dishonest verifier V ∗ and any dishonest proxy P ∗, there exists
a PPT simulator Sim1 such that for any α:
Pr[α∗ ← viewP ∗,V ∗(RProof〈A(sk1);P

∗(rk, pk1, pk2);V
∗(rk, pk1, pk2)〉) :

α = α∗] = Pr[α∗ ← Sim1(rk, pk1, pk2) : α = α∗]
(iii) For any verifier V ∗ and any dishonest delegate A∗, there exists a PPT
simulator Sim2 such that for any α:
Pr[α∗ ← viewA∗,V ∗(RProof〈A∗(sk1, pk1, pk2);P (rk, pk1, pk2);
V ∗(sk1, pk1, pk2)〉) : α = α∗] = Pr[α∗ ← Sim2(sk1, pk1, pk2) : α = α∗]

We say that a ZK-PRI is bidirectional if there exists a polynomial time algorithm
that allows to compute rk′ = RGen(sk2, w2, sk1, w1) from rk. We say that a ZK-
PRI is unidirectional when the delegator is able to compute the re-proof key
alone using his secret key and the public key of the delegate. In this case, we can
replace the RGen algorithm by:
RGen(pk1, sk2, w2): It returns the re-proof key rk.
Finally honest-ZK-PRI is a weaker notion of ZK-PRI where all entities correctly
run the protocols for the zero-knowledge property.

Definition 7 (NIZK-PRI). A NIZK-PRI is a tuple of algorithms (Set,Gen1,Gen2,
Prove1,Prove2,Verify1,Verify2,RGen,RProof) such that Set, Gen1, Gen2 and
RGen are defined as in the interactive case and for i ∈ {1, 2}:
Provei(pki, ski): It returns a proof πi.
Verifyi(pki, πi): It returns a bit b.
RProve(rk, π1): It returns a proof π2 (compatible with Verify2).
We denote by Ii the NIZKI scheme (Set,Geni,Provei,Verifyi). A NIZK-PRI sat-
isfies the following properties for any S ← Gen(λ), (pki, ski, wi)← Geni(S )
and rk ← RGen(sk1, w1, sk2, w2):
Completeness: (i) I1 and I2 are complete.

(ii) Verify2(pk2,RProve(rk,Prove1(pk1, sk1))) = 1
Soundness: (i) I1 and I2 are sound (ii) for any PPT adversaryA, ∀i ∈ {1, 2}:

Pr
[
π ← AProvei(pki,ski)(rk, pk1, pk2); b← Verifyi(pki, π) : b = 1

]
≤ ε(λ)

where ε is a negligible function and π was not generated by the oracle
Provei(pki, ski).

Zero knowledge: (i) I1 and I2 are zero-knowledge.
(ii) There exists a PPT simulator Sim1 such that for any bitstring α:
Pr [α∗ ← Prove1(pk1, sk1) : α = α∗]

= Pr [α∗ ← Sim1(rk, pk1, pk2) : α = α∗]

8



Prover A Proxy P Verifier V
sk1 rk = sk2/sk1; pk1 = gsk1 ; pk2 = gsk2

pk2 = gsk2

r
$← Z∗p; R = gr

R−−−−−→ s
$← Z∗p; S = Rrk · gs S−−−−−→ c

$← Z∗p
α = r + sk1 · c

c←−−−−− c←−−−−−
α−−−−−→ If gα ?

= R · pkc1

Then β = s+ rk · α β−−−−−→ Check that:

Else abort gβ
?
= S · pkc2

Fig. 2. Protocol Π1→1 used for B.REΠ.

(iii)For any PPT adversaryA, there exists a PPT simulator Sim2 such that
for any bitstring α:
Pr [π1 ← A(sk1, pk1, pk2);α∗ ← RProve(rk, π1) : α = α∗]
= Pr [α∗ ← Sim2(sk1, pk1, pk2) : α = α∗]

The definition of unidirectional NIZK-PRI is similar as the interactive case.

In Appendix C, we give a stronger soundness definition for both ZKI and
ZK-PRI that we call strong soundness. It is closely related to the soundness
property of proofs of knowledge [13]: informally, a scheme is strongly sound
when there exists a PPT extractor such that for any prover P that has a non-
negligible probability to identify, the extractor has a non-negligible probability
to guess the secret key sk using the view of P during the Proof protocol.

4 Proxy re-ZKP constructions

We describe the four following ZK-PRI: B.REΠ a multi-hop bidirectional scheme,
U.REΠ an unidirectional scheme, NiB.REΠ a bidirectional scheme and NiU.REΠ
an unidirectional scheme. The proofs of the theorems of this section are given
respectively in Appendix D, E, F and G.

4.1 Bidirectional ZK-PRI (B.REΠ)

Building blocks: For the scheme B.REΠ, we use Schnorr’s protocol (Π1) as
first and second ZKI protocol.
Construction: Let (G, p, g) be a prime order group. We designate Alice as del-
egate and Bob as delegator. Alice (resp. Bob) knows sk1 such that pk1 = gsk1

(resp. sk2 such that pk2 = gsk2), and the re-key is rk = sk2/sk1. The scheme is
bidirectional since the proxy can compute rk−1 = 1/rk. In the re-proof protocol
(Fig. 2), Alice runs a Schnorr’s protocol as prover with the proxy, and the proxy

9



runs a Schnorr’s protocol as prover with a verifier. Alice sends her commitment
R = gr, the proxy picks s in Z∗p and computes his commitment as follows:
S = Rrk · gs. Note that since s is randomly chosen, S comes from the uniform
distribution on G. The proxy receives the challenge c and forwards it to Alice

who responds α = r+sk1 ·c. Since S = g
(r· sk2

sk1
+s), the proxy is able to compute

β = s + rk · α = s + sk2
sk1
· (r + sk1 · c) = (r · sk2sk1

+ s) + sk2 · c, which is
the correct response to the challenge c to identify as the owner of pk2 using the
commitment S.

Scheme 1 B.REΠ = (B.Set,B.Gen1,B.Gen2,Π1,Π1,B.RGen, Π1→1) is a ZK-
PRI such that Π1→1 is the protocol given in Fig. 2 and for i ∈ {1, 2}:
B.Set(λ): It returns a prime order group setup S = (G, p, g)
B.Geni(S ): It picks ski

$← Z∗p and outputs ski and pki = gski .
B.RGen(sk1,⊥, sk2,⊥): It returns rk = sk2/sk1.

The security properties of this scheme are given by the following theorem.

Theorem 2. The B.REΠ scheme is bidirectional, complete, sound and honest
zero-knowledge under the DL assumption.

4.2 Unidirectional ZK-PRI (U.REΠ)

Building blocks: We introduce the two following ZKI protocols:

Protocol Π̃1: The public key is an instance of BDLV in (G1,G2,GT , p, g1, g2, e)
and the private key is the corresponding solution. It is the same protocol as
Π1, except that the verifier knows the value g1/sk2 in addition to gsk1 .

Protocol Π2 (Fig. 3): In this protocol, the public key is an instance pk = e(g1, sk)
of FAPI2 in (G1,G2,GT , p, g1, g2, e) and the private key sk is the corre-
sponding solution. The protocol Π2 is built using the same methodology as
the Schnorr’s protocol.

Construction: The scheme Prover P Verifier V
sk pk = e(g1, sk)

s
$← Z∗p c

$← Z∗p
S = e(g1, g2)

s S−−−−−→
β = gs2 · skc

c←−−−−−
β−−−−−→ Check that:

e(g1, β)
?
= S · pkc

Fig. 3. Protocol Π2 used for U.REΠ.

U.REΠ transforms a transcript
of Π̃1 into a transcript of Π2.
The setup is a bilinear setting
(G1,G2,GT , p, g1, g2, e), sk1 and
sk2 = gw2

2 are the respective se-
crets of Alice and Bob, and the
re-key is rk = g

w2/sk1
2 . Note that

Bob has to know the value of w2

10



Prover A Proxy P Verifier V
sk1 pk1 = (h1, h2) = (gsk11 , g

1/sk1
2 ); pk2 = e(g1, g

w2
2 )

pk2 = e(g1, g
w2
2 ) ; rk = g

w2/sk1
2

r
$← Z∗p s

$← Z∗p c
$← Z∗p

R = gr1
R−−−−−→ S = e(R, rk) · e(g1, g2)s

S−−−−−→
α = r + sk1 · c

c←−−−−− c←−−−−−
α−−−−−→ If gα1

?
= R · hc1

Then β = gs2 · rkα
β−−−−−→ Check that:

Else abort e(g1, β)
?
= S · pkc2

Fig. 4. Protocol Π1→2 used for U.REΠ.

to compute the re-key rk = (g
1/sk1
2 )w2 . Alice sends her commitment gr, Bob

picks s in Z∗p and computes his commitment as follows: S = e(R, rk)·e(g1, g2)s.
The proxy receives the challenge c and forwards it to Alice who responds
α = r + sk1 · c. Since S = e(g1, g2)

(r·w2
sk1

+s), the proxy is able to compute

β = gs2 · rkα = g
s+

w2
sk1
·(r+sk1·c)

2 = g
(r·w2

sk1
+s)+w2·c

2 = g
(r·w2

sk1
+s)

2 · skc2, which is the
correct response to the challenge c for the public key pk2 = e(g1, sk2).

Scheme 2 U.REΠ = (U.Set,U.Gen1,U.Gen2, Π̃1,Π2,U.RGen,Π1→2) is a ZK-
PRI such that Π1→2 is the protocol described in Fig 4 and:
U.Set(λ): It returns a bilinear map setup S = (G1,G2,GT , p, g1, g2, e)

U.Gen1(S ): It picks sk1
$← Z∗p, sets h1 = gsk11 and h2 = g

1/sk1
2 and returns

sk1 and pk1 = (h1, h2).
U.Gen2(S ): It picks w2

$← Z∗p and returns sk2 = gw2
2 , pk2 = e(g1, sk2) and

the intermediate secret w2.
U.RGen(pk1, sk2, w2): It returns rk = hw2

2 using pk1 = (h1, h2).

The security properties of this scheme are given by the following theorem.

Theorem 3. U.REΠ is unidirectional, complete, sound and honest zero-knowledge
under the CDH, the DL and the FAPI2 assumptions.

Remark 1. B.REΠ and U.REΠ are honest zero-knowledge. As in the Schnorr’s
protocol, it is possible to design two fully zero-knowledge ZK-PRI by forcing
the verifier to choose the challenge c in {0, 1} instead of Z∗p. However, these
protocols would be less practical than B.REΠ and U.REΠ since they would have
to be repeated k times (for a chosen security parameter k). Note that there exists
constant round protocols for perfect zero-knowledge proof [12]; the design of

11



Prover P Verifier V
sk pk = gsk

r, u
$← Z∗p

R = gr; U = gu
(R,U)−−−−−−−−−−→ c, d

$← Z∗p

z = r + sk · d (c,d)←−−−−−−−−−−

µ = u+ r · c (z,µ)−−−−−−−−−−→ Check that: gµ ?
= U ·Rc

and gz ?
= R · pkd

Fig. 5. Protocol Π3 used in NiB.REΠ.

a ZK-PRI that is constant round and perfectly zero-knowledge is still an open
problem.

4.3 Bidirectional NIZK-PRI (NiB.REΠ)

Building blocks: We introduce the two following ZKP protocols:

Protocol Π3 (Fig. 5): This protocol is a modified version of Schnorr’s protocol
where the prover must know the discrete logarithm of his commitment R.
Thus, the prover uses a second Schnorr’s protocol to prove it. To do that, the
prover sends a second commitment U = gu and receives a second challenge
d. The prover uses c to prove the knowledge of r using the commitment U
and uses d to identify himself using his secret sk and the commitment R.

Protocol Π4 (Fig. 6): This protocol is a ZKI where pk = gsk is a DL instance
in (G, p, g). It is based on Π3, but it requires that the commitment is built in a
particular way. More precisely, the prover sends a first classical commitment
R = gr and receives the challenge d. As in Π3, the prover must prove
the knowledge of the discrete logarithm of his commitment R. The prover
chooses two random values t and s in Z∗p and computes S = Rt · gs. It
sends the second commitment S and proves that he knows the two values
t and s to the verifier. Then he identifies himself using his secret sk in a
Schnorr’s way using the commitment S. Note that the challenge is known by
the prover before the commitment S. However, the proof works because the
prover knows r the discrete logarithm of R (committed before the reception
of the challenge d): it can compute the value r · t+ s (which is the discrete
logarithm of S) and succeed the proof.

Using the Fiat-Shamir heuristic, we build the two non-interactive proofs
NI.Π3 and NI.Π4 from the interactive proofs Π3 and Π4 as follows.

Scheme 3 NI.Π3 = (Π3.Set,Π3.Gen,Π3.Prove,Π3.Verify) is a NIZKI where:

12



Prover P Verifier V
sk pk = gsk

a, b, r, s, t, u
$← Z∗p c, d, f

$← Z∗p
R = gr; U = gu

(R,U)−−−−−−−−−−→

µ = u+ r · c (c,d)←−−−−−−−−−−

S = gr·t+s
µ−−−−−−−−−−→ Check that:

A = Ra ; B = gb
(A,B,S)−−−−−−−−−−→ gµ

?
= U ·Rc

α = a+ t · f f←−−−−−−−−−−
β = b+ s · f
θ = s+ r · t+ sk · d (α,β,θ)−−−−−−−−−−→ Check that: gθ ?

= S · pkd

and Rα · gβ ?
= A ·B · Sf

Fig. 6. Protocol Π4 used in NiB.REΠ.

Π3.Set(λ): It returns a prime order group setup S = (G, p, g,H) where H :
{0, 1}∗ → Z∗p is a hash function.

Π3.Gen(S ): It picks sk
$← Z∗p and outputs sk and pk = gsk.

Π3.Prove(pk, sk): It picks r $← Z∗p and u $← Z∗p, computes R = gr, U = gu,
c = H(R,U, 0), d = H(R,U, 1), z = r + sk · c and µ = u + r · c, and
outputs π = (R,U, z, µ).

Π3.Verify(pk, π): It computes c = H(R,U, 0) and d = H(R,U, 1). If gµ ?
=

U ·Rc and gz ?
= R · pkd then it outputs 1, else 0.

Scheme 4 NI.Π4 = (Π4.Set,Π4.Gen,Π4.Prove,Π4.Verify) is a NIZKI where
Π4.Set = Π3.Set and Π4.Gen = Π3.Gen and:
Π4.Prove(pk, sk): This algorithm picks r, s, t, u, a and b in the uniform distri-

bution on Z∗p. It computes:

R = gr

c = H(R,U, 0)
µ = u+ r · c
A = Ra

f = H(R,U,A,B, S)
β = b+ s · f
U = gu

d = H(R,U, 1)

S = gr·t · gs
B = gb

α = a+ t · f
θ = s+ r · t+ sk · d

It outputs π = (R,U, µ, S,A,B, α, β, θ).
Π4.Verify(h, π): It computes the values c = H(R,U, 0), d = H(R,U, 1) and

f = H(R,U,A,B, S). If (gµ ?
= U · Rc), (Rα · gβ ?

= A · B · Sf ) and

(gθ
?
= S · pkd) then it outputs 1, else 0.

13



Construction: We first remark that it is not possible to use the Fiat-Shamir
transformation on our previous interactive bidirectional ZK-PRI: indeed, it is
not possible to use as challenge the hash of the delegate’s commitment R since
the proxy uses another commitment S. Then we need to use ZKI schemes such
that the same commitment is used to compute the challenge for both the delegate
and the proxy. Note that in NI.Π3 and NI.Π4, the challenge d is computed from
the same commitment pair (R,U). In NI.Π4 some other values are committed
during the protocol but the last computation of the proof uses the challenge d.
Thus we can transform a NI.Π3 proof into a NI.Π4 one. The re-prove method is
similar to the Π1→1 except that the proxy must prove that he correctly constructs
his commitment S from the delegate commitmentR. Forcing the proxy to prove
that S totally depends on the commitment R implies that the commitment must
be known after R is committed but can be revealed before that S is committed.

Scheme 5 NiB.REΠ = (Π3.Set,Π3.Gen,Π4.Gen,Π3.Prove,Π4.Prove,Π3.Verify,
Π4.Verify, B.RGen,NiB.RProve) is a NIZK-PRI where B.RGen is defined in
Scheme 1, Π3.Gen, Π3.Prove and Π3.Verify are defined in Scheme 3, Π4.Gen,
Π4.Prove and Π4.Verify are defined in Scheme 4 and:
NiB.RProve(rk, π1): Using π1 = (R,U, z, µ), this algorithm picks s, a and b in

the uniform distribution on Z∗p and computes S = Rrk ·gs,A = Ra,B = gb,
f = H(R,U,A, B,S), α = a+ rk · f , β = b+ s · f and θ = s+ z · rk. It
outputs π2 = (R,U, µ,A,B, S, α, β, θ).

The security properties of this scheme are given by the following theorem.

Theorem 4. NiB.REΠ scheme is bidirectional, complete, sound and zero-know-
ledge in the random oracle model under the DL assumption.

4.4 Unidirectional NIZK-PRI (NiU.REΠ)

Building blocks: We introduce the two following ZKI protocols:
Protocol Π̃3: pk is an instance of BDLV in (G1,G2,GT , p, g1, g2, e). It is ex-

actly the same protocol as Π3 except that the verifier knows the value g1/sk2

in addition to gsk1 .
Protocol Π5 (Fig. 7): This protocol is an adaptation of Π4 for the FAPI2 prob-

lem.
Using the Fiat-Shamir heuristic, we build non-interactive ZKIs NI.Π̃3 and NI.Π5

from the respective interactive ZKIs Π̃3 and Π5 as follows.

Scheme 6 NI.Π̃3 = (Π̃3.Set, Π̃3.Gen, Π̃3.Prove, Π̃3.Verify) is a NIZKI where:

14



Prover P Verifier V
sk pk = e(g1, sk)

a, b, r, s, t, u
$← Z∗p c, d, f

$← Z∗p
R = gr1 ; U = gu1

(R,U)−−−−−−−−−−→

µ = u+ r · c (c,d)←−−−−−−−−−−

S = e(g1, g2)
r·t+s µ−−−−−−−−−−→ Check that:

A = e(R, g2)
a ; B = e(g1, g2)

b (A,B,S)−−−−−−−−−−→ gµ1
?
= U ·Rc

α = ga+t·f2

f←−−−−−−−−−−
β = gb+s·f2

θ = gs+r·t2 · skd
(α,β,θ)−−−−−−−−−−→ Check that: e(g1, θ)

?
= S · pkd

and e(R,α) · e(g1, β)
?
= A ·B · Sf

Fig. 7. Protocol Π5 used in NiU.REΠ.

Π̃3.Set(λ): It returns a bilinear map setup S = (G1,G2,GT , p, g1, g2, e,H)
where H : {0, 1}∗ → Z∗p is a hash function.

Π̃3.Gen(S ): It picks sk
$← Z∗p, computes h1 = gsk1 and h2 = g

1/sk
2 and outputs

sk and pk = (h1, h2).
Π̃3.Prove(pk, sk): It picks r $← Z∗p and u $← Z∗p, computes R = gr1, U = gu1 ,

c = H(R,U, 0), d = H(R,U, 1), z = r + sk · c and µ = u + r · c, and
outputs π = (R,U, z, µ).

Π̃3.Verify(pk, π): Using pk = (h1, h2), it computes c = H(R,U, 0) and d =

H(R,U, 1). It returns 1 iff gµ1
?
= U ·Rc and gz1

?
= R · hd1.

Scheme 7 NI.Π5 = (Π5.Set,Π5.Gen,Π5.Prove,Π5.Verify) is a NIZKI where
Π5.Set = Π̃3.Set and:
Π5.Gen(S ): It picks w $← Z∗p and returns sk = gw2 and pk = e(g1, sk).
Π5.Prove(pk, sk): This algorithm picks r, s, t, u, a and b in Z∗p and computes:

R = gr1
c = H(R,U, 0)
µ = u+ r · c
A = e(R, g2)

a

f = H(R,U,A,B, S)

β = gb+s·f2

U = gu1
d = H(R,U, 1)

S = e(g1, g2)
r·t+s

B = e(g1, g2)
b

α = ga+t·f2

θ = gs+r·t2 · skd

It outputs π = (R,U, µ, S,A,B, α, β, θ).
Π5.Verify(pk, π): This algorithm computes c = H(R,U, 0), d = H(R,U, 1)

and f = H(R,U,A,B, S). If (gµ1
?
= U ·Rc), (e(R,α)·e(g1, β)

?
= A·B ·Sf )

and (e(g1, θ)
?
= S · pkd) then it outputs 1, else 0.

15



Construction: The last scheme NiU.REΠ is unidirectional and non-interactive.
It is obtained by merging the design of NiB.REΠ for the non-interactivity and
the design of U.REΠ for the unidirectionality.

Scheme 8 NiU.REΠ = (Π5.Set,U.Gen1,U.Gen2, Π̃3.Prove,Π5.Prove, Π̃3.Verify,
Π5.Verify, U.RGen, NiU.RProve) is a NIZK-PRI scheme where Π̃3.Prove and
Π̃3.Verify are defined in Scheme 6, Π5.Set, Π5.Prove and Π5.Verify are defined
in Scheme 7 and U.Gen1, U.Gen2 and U.RGen are defined in Scheme 2 and:
NiU.RProve(rk, π1): Using π1 = (R,U, z, µ), this algorithm picks s, a and b

in the uniform distribution on Z∗p and computes S = e(R, rk) · e(g1, g2)s,
A = e(R, g2)

a, B = e(g1, g2)
b, f = H(R,U,A,B, S), α = ga2 · rkf , β =

gb+s·f2 and θ = gs2 · rkz . It outputs the proof π2 = (R,U, µ,A,B, S, α, β, θ).

The security properties of this scheme are given by the following theorem.

Theorem 5. NiU.REΠ is unidirectional, complete, sound and zero-knowledge
in the random oracle model under the DL, the CDH and the FAPI2 assumptions.

4.5 Two Proxy Re-Signature Sechemes

The non-interactive Schnorr’s protocol can be used to design a digital signature
scheme as follows. The signer who knows the secret key sk for the public key
pk = gsk generates a non-interactive proof (gr, r + sk · H(gr,m)) using the
message m in addition to gr to generate the challenge c = H(gr,m). Since
such a proof cannot be performed by anybody who does not know the secret sk,
this method allows us to produce digital signatures which are unforgeable for
anybody who does not know the secret key sk. Applying the same method to
NiB.REΠ and NiU.REΠ, we can construct two new proxy re-signature schemes
respectively bidirectional and unidirectional. For this purpose the signer and the
proxy add the signed messagem in the hash of each challenge in both NiB.REΠ
and NiU.REΠ.

5 Conclusion

In this paper, we define the bidirectional/unidirectional and interactive/non-in-
teractive ZK-PRI. We design several proxies re-ZKP for number theory-based
cryptographic problems: a multi-hop bidirectional interactive ZK-PRI, a single-
hop unidirectional interactive ZK-PRI, a single-hop bidirectional non-interactive
ZK-PRI and a single-hop unidirectional non-interactive ZK-PRI. We also design
two new proxy re-signature schemes (bidirectional and unidirectional) from our
non-interactive proxy re-ZKP schemes. We leave as an open problem the design

16



of multi-hop unidirectional schemes and multi-hop non-interactive schemes. In
the future, it should be interesting to investigate the case of ZK-PRI based on
other cryptographic problems, or NP-complete problems.

References

1. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption schemes
with applications to secure distributed storage. In NDSS 2005. The Internet Society, Feb.
2005.

2. G. Ateniese and S. Hohenberger. Proxy re-signatures: New definitions, algorithms, and ap-
plications. In V. Atluri, C. Meadows, and A. Juels, editors, ACM CCS 05, pages 310–319.
ACM Press, Nov. 2005.

3. F. Bao, R. H. Deng, and H. Zhu. Variations of diffie-hellman problem. In ICICS, volume
6280, pages 301–312, 2003.

4. D. Bernhard, O. Pereira, and B. Warinschi. How not to prove yourself: Pitfalls of the
Fiat-Shamir heuristic and applications to Helios. In X. Wang and K. Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 626–643. Springer, Dec. 2012.

5. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography.
In K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 127–144. Springer,
May / June 1998.

6. D. Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number Theory
Symposium (ANTS), volume 1423 of LNCS. Springer, 1998. Invited paper.

7. S. S. M. Chow and R. C.-W. Phan. Proxy re-signatures in the standard model. In T.-C.
Wu, C.-L. Lei, V. Rijmen, and D.-T. Lee, editors, ISC 2008, volume 5222 of LNCS, pages
260–276. Springer, Sept. 2008.

8. D. Derler, S. Ramacher, and D. Slamanig. Homomorphic proxy re-authenticators and ap-
plications to verifiable multi-user data aggregation. Cryptology ePrint Archive, Report
2017/086, 2017. http://eprint.iacr.org/2017/086.pdf.

9. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Aug. 1987.

10. S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, Sept. 2008.

11. S. D. Galbraith, F. Hess, and F. Vercauteren. Aspects of pairing inversion. In Information
Theory, IEEE Transactions, volume 54, pages 5719 – 5728. IEEE, 2008.

12. O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems
for NP. Journal of Cryptology, 9(3):167–190, 1996.

13. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, 1989.

14. M. Green and G. Ateniese. Identity-based proxy re-encryption. In J. Katz and M. Yung,
editors, ACNS 07, volume 4521 of LNCS, pages 288–306. Springer, June 2007.

15. A. Ivan and Y. Dodis. Proxy cryptography revisited. In NDSS 2003. The Internet Society,
Feb. 2003.

16. H. Jannati1, M. Salmasizadeh, A. J. Mohajeri, and A. Moradi. Introducing proxy zero-
knowledge proof and utilization in anonymous credential systems. In Security and Commu-
nication Networks, volume 6, page 161172, 2013.

17. J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354. Springer, Aug. 2004.

17



18. M. Keller, G. L. Mikkelsen, and A. Rupp. Efficient threshold zero-knowledge with applica-
tions to user-centric protocols. In A. Smith, editor, ICITS 12, volume 7412 of LNCS, pages
147–166. Springer, Aug. 2012.

19. B. Libert and D. Vergnaud. Multi-use unidirectional proxy re-signatures. In P. Ning, P. F.
Syverson, and S. Jha, editors, ACM CCS 08, pages 511–520. ACM Press, Oct. 2008.

20. B. Libert and D. Vergnaud. Unidirectional chosen-ciphertext secure proxy re-encryption. In
R. Cramer, editor, PKC 2008, volume 4939 of LNCS, pages 360–379. Springer, Mar. 2008.

21. S. Luo, J. Hu, and Z. Chen. Ciphertext policy attribute-based proxy re-encryption. In M. So-
riano, S. Qing, and J. López, editors, ICICS 10, volume 6476 of LNCS, pages 401–415.
Springer, Dec. 2010.

22. T. Okamoto and K. Ohta. Divertible zero knowledge interactive proofs and commutative
random self-reducibility. In J.-J. Quisquater and J. Vandewalle, editors, EUROCRYPT’89,
volume 434 of LNCS, pages 134–148. Springer, Apr. 1990.

23. C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Aug. 1990.

24. J. Shao, M. Feng, B. Zhu, Z. Cao, and P. Liu. The security model of unidirectional proxy
re-signature with private re-signature key. In R. Steinfeld and P. Hawkes, editors, ACISP 10,
volume 6168 of LNCS, pages 216–232. Springer, July 2010.

18



Scheme Uni. Non-in. Multi. P. free P1 P2 V1 V2 Proxy
Blaze et al. [5] no no yes yes 1e 1e 1e 1e 0

B.REΠ no no yes yes 1e 1e 2e 2e 4e

U.REΠ yes no no no 1e 1p+ 3e 2e 1p+ 1e 2p+ 5e

NiB.REΠ no yes no yes 2e 5e 4e 7e 4e

NiU.REΠ yes yes no no 2e 2p+ 9e 4e 3p+ 4e 3p+ 8e

Fig. 8. Comparison of our schemes.

A Security and Efficiency Comparison

The table in Fig. 8 compares the properties and the efficiency of the insecure scheme
of Blaze et al. [5] and our four schemes. The first columns sum up the properties
of each scheme, namely unidirectional, non-interactive, multi-hop and pairing free.
The last columns sum up the computation cost for each entities: the delegate P1,
the delegator P2, and the respective verifiers V1 and V2. The last column gives the
computation cost for the proxy. We only evaluate the number of exponentiations
and pairing computations. We denote by e (resp. p) the computation time of an
exponentiation (resp. a pairing computation). All our schemes can be used for the
applications that we propose in Introduction. However, each of them allows a dif-
ferent compromise between security and efficiency.
Security: Unidirectional schemes are more secure than bidirectional schemes. In-
deed, since the bidirectional re-proof key generation requires the secret keys of both
the delegate and the delegator, this kind of proxy requires a fully trusted key man-
ager. Moreover, if the proxy and the delegator collude then they can deduce the
secret key of the delegate. In a practical scenario, the delegate could refuse to reveal
his secret key to the trusted re-proof key manager. In unidirectional schemes, the
delegator computes the re-proof key with the public key of the delegate, then the
secret key of the delegate is protected.
Efficency: The efficiency is evaluated by two different properties: the number of
interactions and the number of pairing computations. Thus, our two non-interactive
schemes are optimal for the number of interactions (only one interaction), and our
two bidirectional schemes are pairing free.

B Proof that BDLV is hard

Lemma 1. BDLV is hard to solve under the DL hypothesis.

Proof. Let G1,G2 and GT be three groups of prime order p, e : G1 × G2 → GT

be a type 2 non-degenerate bilinear pairing and g2 ∈ G2 be a generator. Suppose
that there exists a polynomial time algorithm A that solves the problem BDLV in
(G1,G2,GT , p, g1, g2, e) for any g1 chosen in the uniform distribution on G1. We
construct the polynomial time algorithm B that solves DL in (G2, p, g2). B receives
h2 = gx

′
2 as input. Since e is a type 2 pairing there exists a computationally efficient

morphism φ : G2 → G1 [10]. B picks a ∈ Z∗p and computes h1 = φ(ga2) and

19



g1 = φ(ha2) = φ((ga2)
x′) = hx

′
1 . Thus, g1/x

′

1 = h1, and (h1, h2) is an instance of
BDLV in (G1,G2,GT , p, g1, g2, e) with regards to the solution x = 1/x′. B runs
x′′ ← A(h1, h2) and returns 1/x′′. Note that 1/x′′ = 1/x = x′ iff A solves the
instance (h1, h2), then B solves DL in (G2, p, g2) with the same complexity and the
same probability that A solves BDLV in (G1,G2,GT , p, g1, g2, e). Note that this
proof requires the hypothesis that e is a type 2 pairing. To the best of our knowledge,
there is neither known reduction to DL in (G2, p, g2) where e is a type 3 pairing, nor
known polynomial time algorithm that solves BDLV. ut

C Strong soundness.

We present stronger soundness notions for ZKI and ZK-PRI. First, we introduce
the notion of knowledge extractor used for proofs of knowledge [13]. A knowledge
extractor is an algorithm that extracts the secret key sk from the view of any prover
who is able to identify with non-negligible probability. In this definition, the input
of the prover is not specified.

Definition 8 (Knowledge extractor).
– Let I = (Set,Gen,Proof) be a ZKI scheme. A knowledge extractor E of I is

a PPT algorithm such that for any S ← Set(λ), (pk, sk) ← Gen(S ), any
PPT prover P , any bit-string in and any non-negligible function ε1 such that:
Pr [b← outV (Proof〈P (in);V (pk)〉) : b = 1] ≥ ε1(λ)
then there exists non-negligible function ε2 such that:
Pr [v ← viewP (Proof〈P (in);V (pk)〉); s← E(v) : s = sk] ≥ ε2(λ)

– LetN = (Set,Gen,Prove,Verify) be a NIZKI scheme. A knowledge extractor E
of N is a PPT algorithm such that for any S ← Set(λ), (pk, sk) ← Gen(S ),
any PPT algorithmA, any bit-string in and any non-negligible function ε1 such
that:
Pr
[
π ← AProve(pk,sk)(in); b← Verify(pk, π) : b = 1

]
≥ ε1(λ)

where π was not produced by the oracle Prove(pk, sk), then there exists a non-
negligible function ε2 such that:
Pr
[
v ← viewA(AProve(pk,sk)(in)); s← E(v) : s = sk

]
≥ ε2(λ)

We present the secret security. A ZKI is secret secure if it is hard to compute a
secret key from the corresponding public key. A ZK-PRI is secret secure if it is hard
to compute the delegate or the delegator secret key using the corresponding public
keys and the re-proof key.

Definition 9 (Secret Security).
– We say that a ZKI (or NIZKI) is secret secure when for S ← Gen(λ) and
(pk, sk)← Gen(S ) we have, for all PPT adversaries A:
Pr [s← A(pk) : s = sk] ≤ ε(λ) where ε is negligible.

20



– We say that a bidirectional (resp. unidirectional) ZK-PRI is secret secure when
for any S ← Gen(λ), any (pki, ski, wi) ← Geni(S ) for i ∈ {1, 2} and any
rk ← RGen(sk1, w1, sk2, w2) (resp. rk ← RGen(pk1, sk2, w2)), we have, for
all PPT adversariesA: Pr[sk← A(rk, pk1, pk2) : sk1 = sk∨ sk2 = sk] ≤ ε(λ)
where ε is negligible.

A ZKI is strongly sound when it is secret secure and it admits a knowledge
extractor. A ZK-PRI is strongly sound when it is secret secure and the two corre-
sponding ZKI are strong sound.

Definition 10 (Strong soundness).
– We say that a ZKI (or NIZKI) denoted I is strongly sound when (i) there exists

a PPT extractor E for I and (ii) I is secret secure.
– Let P = (Set,Gen1,Gen2, Proof1,Proof2,RGen,RProof) be a ZK-PRI. We

denote by Ii for i ∈ {1, 2} the ZKI scheme (Set,Geni,Proofi). We say that P is
strongly sound when (i) I1 and I2 are both strongly sound and (ii) P is secret
secure.

– Let Q = (Set, Gen1,Gen2, Prove1,Prove2,Verify1Verify2,RGen,RProof) be
a NIZK-PRI. We denote by Ii for i ∈ {1, 2} the NIZKI scheme (Set, Geni,
Provei,Verifyi). We say that P is strongly sound when (i) I1 and I2 are both
strongly sound and (ii) Q is secret secure.

We show that the strong soundness implies the soundness for both ZKI and ZK-
PRI. The idea is that, when a scheme is strong sound, someone who does not know
the exact value of the secret key cannot identify. Thus the scheme is sound even if
the adversary has some additional information that does not trivially leak the secret
key.

Lemma 2. A strongly sound ZKI (or NIZKI) is sound.

Proof. We give the proof for interactive ZKI, the non-interactive case can be proven
in a similar way. Suppose that there exists a ZKI denoted I = (Set,Gen, Proof) that
is strongly sound but not sound, we have the following hypothesis:
1. There exists a knowledge extractor E for I .
2. I is secret secure.
3. I is not sound.

Using Hypothesis 3, we deduce that there exists a PPT prover P ∗ such that for any
S ← Set(λ) and (pk, sk)← Gen(S ):
Pr [b← outV (Proof〈P (pk);V (pk)〉) : b = 1] ≥ ε1(λ)
where ε1 is not negligible. Using Hypothesis 1, we deduce that:
Pr [v ← viewP (Proof〈P ∗(pk);V (pk)〉); s← E(v) : s = sk] ≥ ε2(λ)
where ε2 is not negligible. We show how to build a PPT adversaryA that breaks the
secret security of I with non-negligible probability using P ∗ and E :

– A receives pk as input.

21



– A runs v ← viewP (Proof〈P ∗(pk);V (pk)〉) and s← E(v).
– A returns s.

Then s = sk with non-negligible probability, which contradicts Hypothesis 2. ut

Lemma 3. A strongly sound ZK-PRI (or NIZK-PRI) is sound.

Proof. We give the proof for bidirectional interactive ZK-PRI, the unidirectional
and non-interactive case can be proven in a similar way. Suppose that there exists
a ZK-PRI denoted P = (Set,Gen1,Gen2, Proof1,Proof2,RGen, RProof) that is
strongly sound but not sound. We set Ii = (Set,Geni,Proofi) for i ∈ {1, 2}. We
have the following hypothesis:
1. Ii is strongly sound for i ∈ {1, 2} (there exists a knowledge extractor Ei for Ii

and Ii is secret secure).
2. P is secret secure.
3. P is not sound.

Not that Ii is sound for i ∈ {1, 2} from Hypothesis 1 and Lemma 2. Since P is
not sound, we deduce that there exists a PPT proxy P ∗ such that for S ← Gen(λ),
(pki, ski, wi)← Geni(S ) for i ∈ {1, 2} and rk ← RGen(sk1, w1, sk2, w2):
Pr [b← outV (Proofi〈P ∗(rk, pk1, pk2);V (pki)〉) : b = 1] ≥ ε1(λ)
where ε1 is non-negligible. Using the knowledge extractor Ei, we have:
Pr [v ← viewP (Proof〈P ∗(rk, pk1, pk2);V (pk)〉); s← E(v) : s = sk] ≥ ε2(λ)
where ε2 is non-negligible. We show how to build a PPT adversary A that breaks
the secret security of P with non-negligible probability using P ∗ and Ei:

– A receives (rk, pk1, pk2) as input.
– A runs v ← viewP (Proof〈P ∗(rk, pk1, pk2);V (pk)〉) and s← E(v).
– A returns s.

Then s = ski with non-negligible probability, which contradicts Hypothesis 2. ut

D Security proofs of B.REΠ

Theorem 2. The B.REΠ scheme is bidirectional, complete, sound and honest
zero-knowledge under the DL assumption.

Proof (Theorem 2). We denote by Ii for i ∈ {1, 2} the ZKI scheme (B.Set,B.Geni,
Π1). Note that these two ZKIs are the Schnorr’s protocol that is complete, strongly
sound and honest-verifier zero-knowledge [23]. To prove that B.REΠ is sound, we
prove that it is strongly sound (Lemma 3), i.e. we prove that Ii is strongly sound for
i ∈ {1, 2} and that B.REΠ is secret secure.
Bidirectional: The scheme is bidirectional since for any re-proof keys rk and rk′

such that rk← RGen(sk1,⊥, sk2,⊥) and rk′ ← RGen(sk2,⊥, sk1,⊥), rk = sk2/sk1
and 1/rk = sk1/sk2 = rk′.
Completeness: (i) I1 and I2 are complete. (ii) Suppose that a delegate Alice using

22



the secret sk1, a proxy knowing the appropriate re-proof key rk = sk2/sk1 and a ver-
ifier knowing pk2 = gsk2 honestly run the protocol Π1→1. Then Alice sendsR = gr

to the proxy, the proxy sends S = Rrk · gs to the verifier, the verifier generates the
challenge c, Alice computes α = r+ sk1 · c and the proxy computes β = s+ rk ·α.

Then gβ = gs+rk·α = gs · grk·r · g
sk2
sk1
·sk1·c = S · (gsk2)c = S · pk2

c and the verifier
outputs 1.
Honest zero-knowledge: (i) I1 and I2 are honest-verifier zero-knowledge. (ii)
Since I1 is honest-verifier zero-knowledge, there exists a simulator Sim such that
the outputs of Π1 follow the same probability distribution that the outputs of Sim.
We show how to build the simulator Sim1(rk, pk1, pk2): this algorithm runs Sim
to generate the transcript (R, c, α), picks s $← Z∗p and computes S = Rrk · gs
and β = s + rk · α. Sim1 outputs τ = (R,S, c, α, β). Knowing rk, the simulator
perfectly simulates the proxy behavior and the outputs of Sim1 follow the same
distribution as the real protocol Π1→1 (Fig. 2). (iii) We show how to build the sim-
ulator Sim2(sk1, pk1, pk2): it picks r $← Z∗p, c

$← Z∗p and β $← Z∗p and computes

R = gr, α = r + sk1 · c and S = gβ

pkc2
. It returns the transcript τ = (R,S, c, α, β).

As τ is the transcript of a valid proof and β comes from the uniform distribution on
Z∗p, the outputs of Sim2 follow the same distribution as the real protocol Π1→1.
Secret secure: Suppose that there exists a PPT adversaryA that breaks the secret se-
curity of B.REΠ with non-negligible probability ε(λ). We show how to build a PPT
algorithm B that breaks DL in (G, p, g) with non-negligible probability ε(λ)/2. B
receives pk0 = gsk0 for unknown sk0. It picks rk0

$← Z∗p and computes pk1 = pkrk00

and rk1 = 1/rk0. It picks b $← {0, 1}, runs sk← A(rkb, pkb, pk1−b) and returns sk.
We set rk0 = sk1/sk0, then pk1 = gsk1 and rk1 = sk0/sk1. IfAwins his experiment
then it returns sk0 or sk1 with non-negligible probability. Then Pr[sk0 ← B(pk0)] =
ε(λ)/2.
Soundness: B.REΠ is strongly sound since I1 and I2 are strongly sound and B.REΠ
is secret secure.

ut

E Security proofs of U.REΠ

Definition 11 (DCDH [3]). Let G be a multiplicative group of prime order p and
g ∈ G be a generator. Given an instance h = (ga, gb) for unknown a, b $← Z∗p, the
divisible computational Diffie-Hellman (DCDH) problem in (G, p, g) is to compute
ga/b. The divisible computational Diffie-Hellman hypothesis states that there exists
no polynomial time algorithm that solves DCDH with non-negligible probability.
This problem is equivalent to the computational Diffie-Hellman problem [3].

Lemma 4. ZKIs schemes (U.Set,U.Gen1, Π̃1) and (U.Set,U.Gen2,Π2) (Fig. 3) are
complete, strongly sound, and honest-verifier zero-knowledge under the respective
assumptions DL and FAPI2.

23



Proof. The proofs of the properties of (U.Set,U.Gen1, Π̃1) are implied by the proofs
of Schnorr’s protocol. The proof of (U.Set,U.Gen2,Π2) is done in five steps:
Secret security: Since the public key is an instance of BDLV and the secret key is
the corresponding solution, breaking the secret security of this ZKI is equivalent to
solve the BDLV problem which is hard under the DL assumption (Lemma 1).
Completeness: Suppose that a prover P using the secret sk and a verifier knowing
pk = e(g1, sk) honestly run the protocol. P sends S = e(g1, g2)

s, receives c and
computes β = gs2 · skc. Then e(g1, β) = e(g1, g

s
2 · skc) = e(g1, g

s
2) · e(g1, sk)c =

S · pkc.
Knowledge extractor: We consider a prover who is able to convince a verifier
V (pk) for several challenges with non-negligible probability, and we build a PPT
knowledge extractor for this ZKI. Supposing that P is able to respond to two dif-
ferent challenges c0 and c1 for the same commitment S, then P is able to com-
pute β0 and β1 such that e(g1, β0) = S · pkc0 and e(g1, β1) = S · pkc1 . We have
(S, c0, c1β0, β1) ∈ v where v is the view of P during the session. We build the
following extractor E(v): this extractor computes sk = (β1/β0)

1/(c1−c0). We show
that sk is the secret key corresponding to pk since:

e(g1, sk) = e(g1,
β1
β0
)1/(c1−c0) = e(g1,β1)

e(g1,β0)

1/(c1−c0)
=
(
S·pkc1
S·pkc0

)1/(c1−c0)
= pk.

Strong soundness: The ZKI is secret secure and it admits a knowledge extractor,
then it is strongly sound (Lemma 2).
Honest zero-knowledge: We construct the following simulator Sim(pk). It picks
β

$← G2 and c $← Z∗p, computes S = e(g1, β)/pkc and the outputs τ = (S, c, β). As
τ is the transcript of a valid proof and β and c comes from the uniform distribution
on Z∗p, outputs of Sim follow the same distribution as the real protocol. ut

Theorem 3. U.REΠ is unidirectional, complete, sound and honest zero-knowledge
under the CDH, the DL and the FAPI2 assumptions.

Proof (Theorem 3). We denote by I1 and I2 the two ZKI schemes I1 = (U.Set,U.Gen1,
Π̃1) and I2 = (U.Set,U.Gen2,Π2). To prove that U.REΠ is sound, we prove that it
is strongly sound (Lemma 3), i.e. we prove that Ii is strongly sound for i ∈ {1, 2}
and that U.REΠ is secret secure.
Completeness: (i) I1 and I2 are complete (Lemma 4). (ii) Suppose that a dele-
gate Alice knowing the secret sk1, a proxy knowing the appropriate re-proof key
rk = sk

1/sk1
2 and a verifier knowing pk2 = e(g1, sk2) honestly run the protocol

RProof. Alice sends R = gr2 to the proxy, the proxy sends S = e(R, rk) · e(g1, g2)s
to the verifier, the verifier generates the challenge c. Alice computes α = r+ sk1 · c
and the proxy computes β = gs2 · rkα. Then e(g1, β) = e(g1, g2)

s · e(g1, rk)α =
e(g1, g2)

s · e(gr1, rk) · e(g1, sk2)
c = S · e(g1, sk2)

c = S · pkc2 and the verifier outputs
1.
Honest zero-knowledge: (i) I1 and I2 are both honest-verifier zero-knowledge

24



(Lemma 4). (ii) Since I1 is honest-verifier zero-knowledge, there exists a simulator
Sim such that the outputs of Π̃1 follow the same probability distribution that the
outputs of Sim. We show how to build the algorithm Sim1(rk, pk1, pk2): this simu-
lator runs Sim(pk1) to generate the transcript (R, c, α), picks s $← Z∗p and computes
S = e(R, rk) ·e(g1, g2)s and β = gs2 · rkα. Sim1 outputs τ = (R,S, c, α, β). Know-
ing rk, the simulator perfectly simulates the proxy behavior and the outputs of Sim1
follow the same distribution as the real protocol Π1→2 (Fig. 4). (iii) We show how
to build Sim2(sk1, pk1, pk2): the simulator picks r $← Z∗p, c

$← Z∗p and β $← G2,
and computesR = gr1, α = r+sk1 ·c and S = e(g1, β)/pkc2. It returns the transcript
τ = (R,S, c, α, β). As τ is the transcript of a valid re-proof and β comes from the
uniform distribution on G2, the outputs of Sim2 follow the same distribution that
the real protocol Π1→2 (Fig. 4).
Secret secure: Suppose that there exists an adversary A that breaks the secret se-
curity. We first show that the probability that A outputs the delegate’s secret key
sk1 is negligible. We then show that the probability that A outputs the delegator’s
secret key sk2 is also negligible, and we conclude that A has a negligible probabil-
ity to break the secret security of the scheme, which contradicts our hypothesis. Let
G1,G2 and GT be three groups of prime order p and e : G1 ×G2 → GT be a type
2 non-degenerate bilinear pairing:

– We suppose that there exists a polynomial time algorithm A that computes
the delegate’s secret key sk1 from his public key pk1, a re-proof key rk and
the public key of the corresponding delegator pk2. Then we show how to con-
struct an algorithm B that breaks BDLV. B receives the challenge (h1, h2) that
is an instance of BDLV in (G1,G2,GT , p, g1, g2, e). It sets pk1 = (h1, h2),
(pk2, sk2, w2) ← Geni(S ) and rk ← RGen(pk1, sk2, w2,). Then B runs sk ←
A(rk, pk1, pk2) and outputs sk. Thus if A wins his experiment then h1 = gsk1
and h2 = g

1/sk
2 , and B outputs the correct answer. Finally, B breaks BDLV with

non-negligible probability.
– We suppose that there exists a polynomial time algorithm A that computes the

delegator’s secret key sk2 from his public key pk2, a re-proof key rk and the
public key of the corresponding delegate pk1. Then we show how to construct
an algorithm B that breaks DCDH. B receives the challenge (A,B) that is an
instance of DCDH in (G2, p, g2). Since e is a type 2 pairing there exists a mor-
phism φ : G2 → G1. Then B picks a $← Z∗p and computes g1 = φ(Ba)
and h1 = φ(ga2). He computes the delegate public key pk1 = (h1, B), the
re-proof key rk = A and the delegator public key pk2 = e(h1, rk). Then B
runs C ← A(rk, pk1, pk2) and outputs C. There exist sk1 and w2 such that
B = g

1/sk1
2 and A = g

w2/sk1
2 . We observe that h1 = φ(ga2) = φ(Ba·sk1) =

φ(Ba)sk1 = gsk11 , rk = g
w2/sk1
2 and e(h1, rk) = e(g1, g2)

sk1·w2
sk1 = e(g1, g

w2
2 ).

Therefore (pk1, pk2, rk) is a valid challenge for the experiment ofA. Then, ifA

wins the experiment, C = g
sk1·w2

sk1
2 = gw2

2 and B wins the attack.

25



We conclude thatA have a non-negligible probability to break the secret security of
the scheme, which contradicts our hypothesis.
Soundness: U.REΠ is strongly sound since I1 and I2 are strongly sound (Lemma 4)
and U.REΠ is secret secure. ut

F Security proofs of NiB.REΠ

Lemma 5. The ZKI scheme (Π3.Set,Π3.Gen,Π3) (Fig. 5) is complete, strongly
sound, and honest-verifier zero-knowledge under the DL assumption.

Proof. Completeness: Suppose that a prover P using the secret sk and a verifier
knowing pk = gsk honestly run the protocol. P sends R = gr and U = gu to the
verifier, the verifier generates the challenge (c, d), P computes z = r + sk · d and
µ = u+ r · c. Then gz = gr · gsk·d = R · pkd and gµ = gu · gr·c = U · Rc and the
verifier outputs 1.
Secret security: Since the public key is an instance of DL and the secret key is
the corresponding solution, breaking the secret security of this ZKI is equivalent to
break the DL assumption.
Knowledge extractor: We consider a prover who is able to convince a verifier
V (pk) for several challenges with non-negligible probability, and we build a PPT
knowledge extractor for this ZKI. Supposing that P is able to respond to two dif-
ferent challenges (c0, d0) and (c1, d1) for the same commitment (R,U). Then P is
able to compute z0 and z1 such that gz0 = R · pkd0 and gz1 = R · pkd1 . We have
(R,U, c0, c1, z0, z1) ∈ v where v is the view of P during the session. We build the
following extractor E(v): this extractor computes sk = z1−z0

d1−d0 . We show that sk is
the secret key corresponding to pk since:

gsk = g(z1−z0)/(d1−d0) =
(
gz1
gz0

)1/(d1−d0)
=
(
R·pkd1
R·pkd0

)1/(d1−d0)
= pk.

Strong soundness: The scheme is secret secure and it admits a knowledge extrac-
tor, then it is strongly sound (Lemma 2).
Honest zero-knowledge: We construct the following simulator Sim(pk). It picks
z

$← Z∗p, µ
$← Z∗p, c

$← Z∗p and d
$← Z∗p, and computes R = gz/pkd and

U = gµ/Rc. It outputs τ = (R,U, c, d, z, µ). As τ is the transcript of a valid proof
and z and µ come from the uniform distribution on Z∗p, the outputs of Sim follow
the same distribution as the real protocol. ut

Lemma 6. The ZKI scheme (Π3.Set,Π4.Gen,Π4) (Fig. 6) is complete, strongly
sound, and honest-verifier zero-knowledge under the DL assumption.

Proof. Completeness: Suppose that a prover P knowing the secret sk and a verifier
knowing pk = gsk honestly runs the protocol. Then, using the three challenges c, d
and f , P generates the following values during the protocol: a, b, r, s, t, u $← Z∗p,
R = gr, U = gu, µ = u + r · c, S = gr·t+s, A = Ra, B = gb, α = a + t · f ,

26



β = b+ s · f and θ = s+ r · t+ sk · d. Then, gµ = gu · gr·c = U ·Rc, Rα · gβ =
Ra · gb ·Rt·f · gs·f = A ·B · Sf and gθ = gs+r·t · gy·d = S · pkd. Then the verifier
outputs 1.
Secret security: As in Lemma 5.
Knowledge extractor: We consider a prover who is able to convince a verifier
V (pk) for several challenges with non-negligible probability, and we build a PPT
knowledge extractor for this ZKI. Supposing that P is able to perform the proof for
any two different first challenges (c0, d0) and (c1, d1) using the same commitments
R and U and:

– any two second challenges f0,0 and f0,1 using the same first challenge (c0, d0)
and the same commitments (R,U, S0, A0, B0);

– any two second challenges f1,0 and f1,1 using the same first challenge (c1, d1)
and the same commitments (R,U, S1, A1, B1).

Then P is able to compute µ0, µ1, α0,0, β0,0, θ0,0, α0,1, β0,1, θ0,1, α1,0, β1,0, θ1,0,
α1,1, β1,1 and θ1,1 such that:

gµ0 = U ·Rc0 (1)

gµ1 = U ·Rc1 (2)

gθ0,0 = S0 · pkd0 (3)

gθ0,1 = S0 · pkd0 (4)

gθ1,0 = S1 · pkd1 (5)

gθ1,1 = S1 · pkd1 (6)

Rα0,0 · gβ0,0 = A0 ·B0 · S
f0,0
0 (7)

Rα0,1 · gβ0,1 = A0 ·B0 · S
f0,1
0 (8)

Rα1,0 · gβ1,0 = A1 ·B1 · S
f1,0
1 (9)

Rα1,1 · gβ1,1 = A1 ·B1 · S
f1,1
1 (10)

We have (R, U , S0, A0, B0, α0,0, β0,0, θ0,0, α0,1, β0,1, θ0,1, S1, A1, B1, α1,0,
β1,0, θ1,0, α1,1, β1,1, θ1,1) ∈ v where v is the view of P during the session. We build
the following extractor E(v): first it sets r = µ0−µ1

c0−c1 . Using equations (1) and (2), we

have gr = g
µ0−µ1
c0−c1 =

(
U ·Rc0
U ·Rc1

) 1
c0−c1 = R. Using equations (7), (8), (9) and (10), we

haveR
α0,0−α0,1
f0,0−f0,1 ·g

β0,0−β0,1
f0,0−f0,1 = S0 andR

α1,0−α1,1
f1,0−f1,1 ·g

β1,0−β1,1
f1,0−f1,1 = S1. Then, E computes

s0 = r·α0,0−α0,1

f0,0−f0,1 +
β0,0−β0,1
f0,0−f0,1 and s1 = r·α1,0−α1,1

f1,0−f1,1 +
β1,0−β1,1
f1,0−f1,1 . We have gs0 = S0 and

gs1 = S1. Equations (3), (4), (5), (6) imply that θ0,0 = θ0,1. We set θ0 = θ0,0 = θ0,1.

Similarly, θ1 = θ1,0 = θ1,1. We deduce that g
θ0−θ1
d0−d1 =

(
S0
S1

) 1
d0−d1 · pk. Finally, the

extractor E returns the value sk = θ0−θ1
d0−d1 +

s1−s0
d0−d1 . We show that sk is the secret key

corresponding to pk since gsk = g
θ0−θ1
d0−d1

+
s1−s0
d0−d1 =

(
S0
S1

) 1
d0−d1 ·pk ·

(
S1
S0

) 1
d0−d1 = pk

Strong soundness: The scheme is secret secure and it admits a knowledge extrac-
tor, then it is strongly sound (Lemma 2).
Honest zero-knowledge: We construct the following simulator Sim(pk). It picks
c, d, f, µ, α, β, θ

$← Z∗p and R,A $← G. Then it computes S = gθ/pkd, U = gµ/Rc

andB = (Rα·gβ)/(A·Sf ). It outputs the transcript τ = (R,U, c, d, f, µ, S,A,B, α,
β, θ). As τ is the transcript of a valid proof and µ, α, β and θ come from the uniform

27



distribution on Z∗p, outputs of Sim follow the same distribution as the real protocol.
ut

Lemma 7. NI.Π3 and NI.Π4 are non-interactive, complete, sound, and zero-knowledge
under the DL assumption in the random oracle model.

Proof. This lemma is a direct implication of Lemma 5 and Lemma 6. ut

Theorem 4. NiB.REΠ scheme is bidirectional, complete, sound and zero-know-
ledge in the random oracle model under the DL assumption.

Proof (Theorem 4). Bidirectionality and secret security proofs are similar to the
scheme B.REΠ (proof of Theorem 2). We set I1 = (Π3.Set,Π3.Gen,Π3.Prove,
Π3.Verify) and I2 = (Π3.Set,Π4.Gen,Π4.Prove,Π4.Verify). Note that I1 = NI.Π3

and I2 = NI.Π4.
Completeness: (i) I1 and I2 are complete according to the Lemma 7. (ii) Let π1
be a proof of NI.Π3 outputted by Π3.Prove(pk1, sk1) which is computed as follows:
we pick r $← Z∗p and u $← Z∗p, we compute R = gr, U = gu, c = H(R,U, 0),
d = H(R,U, 1), z = r + sk1 · c and µ = u + r · c. Finally, π1 = (R,U, z, µ).
Using rk = sk2/sk1, the algorithm NiB.RProve(rk, π1) computes π2 as follows: it
picks s, a and b in the uniform distribution on Z∗p and it computes S = Rrk · gs,
A = Ra, B = gb, f = H(R,U,A,B, S), α = a + rk · f , β = b + s · f and
θ = s + z · rk. Then π2 = (R,U, µ,A,B, S, α, β, θ). Thus, using pk2 = gsk2 , we
have: gµ = gu · gr·c = U · Rc; Rα · gβ = Ra · gb · Rrk·f · gs·f = A · B · Sf ;
gθ = gs+r·rk · gsk2·d = S · pkd2. Then the Π4.Verify(pk2, π2) outputs 1.
Soundness: U.REΠ is strongly sound since I1 and I2 are strongly sound (Lemma 4)
and U.REΠ is secret secure.
Zero-knowledge: (i) NI.Π3 and NI.Π4 are zero-knowledge (Lemma 7). (ii) Since
NI.Π3 is zero-knowledge, there exist a simulator Sim such that the outputs of Π3.Prove
follow the same probability distribution that the outputs of Sim. We show how
to build Sim1(rk, pk1, pk2): this simulator runs Sim(pk1) to generate the proof
π1 and computes a second proof π2 = NiB.RProve(rk, π1). Then Sim1 outputs
τ = (π1, π2). Knowing rk, the simulator perfectly simulates the proxy behavior
and the outputs of Sim1 follow the same distribution as the real algorithms Prove1
and RProof. (iii) We show how to build Sim2(sk1, pk1, pk2): this simulator picks
z, c, d, f, µ, α, β, θ $← Z∗p and A $← G. Then, using the delegate instance pk1 and
the delegator instance pk2, it computes R = gz/pkd1, S = gθ/pkd2, U = gµ/Rc

and B = (Rα · gβ)/(A · Sf ). It outputs the transcript τ = (π1, π2) such that
π1 = (R,U, c, d, µ, z) and π2 = (R,U, c, d, µ, z, S,A,B, f, α, β, θ). As τ is the
transcript of a valid re-proof and µ, α, β, and θ come from the uniform distribu-
tion on Z∗p, the outputs of Sim2 follow the same distribution as the real algorithms
Prove1 and RProof. ut

28



G Security proofs of NiU.REΠ

Lemma 8. The ZKI schemes (Π5.Set,U.Gen1, Π̃3) and (Π5.Set,U.Gen2,Π5) (Fig. 7)
are complete, strongly sound, and honest zero-knowledge under the respective as-
sumptions BDLV and FAPI2.

Proof. The proofs for (Π5.Set,U.Gen1, Π̃3) are similar to the proofs given in Lemma 5.
We show that (Π5.Set,U.Gen2,Π5) is complete, strongly sound (it admits a knowl-
edge extractor and it is secret secure), and honest-verifier zero-knowledge:
Completeness: Suppose that a prover P (sk) and a V (pk) where pk = e(g1, sk)
honestly run the protocol. Then, using the three challenges c, d and f , P gen-
erates the following values during the protocol: a, b, r, s, t, u $← Z∗p, R = gr1,
U = gu1 , µ = u + r · c, S = e(g1, g2)

r·t+s, A = e(R, g2)
a, B = e(g1, g2)

b,
α = ga+t·f2 , β = gb+s·f2 and θ = gs+r·t2 · skd. Then, gµ1 = gu1 · gr·c1 = U · Rc,
e(R,α) · e(g1, β) = e(R, g2)

a · e(R, g2)t·f · e(g1, g2)b · e(g1, g2)s·f = A · B · Sf
e(g1, θ) = e(g1, g2)

s+r·t · e(g1, sk)d = S · pkd. Then the verifier outputs 1.
Secret security: Since the public key is an instance of BDLV and the secret key is
the corresponding solution, breaking the secret security of this ZKI is equivalent to
break the BDLV assumption.
Knowledge extractor: We consider a prover who is able to convince a verifier
V (pk) for several challenges with non-negligible probability, and we build a PPT
knowledge extractor for this ZKI. Supposing that P is able to perform the proof for
any two different first challenges (c0, d0) and (c1, d1) using the same commitments
R and U and:

– any two second challenges f0,0 and f0,1 using the same first challenge (c0, d0)
and the same commitments (R,U, S0, A0, B0);

– any two second challenges f1,0 and f1,1 using the same first challenge (c1, d1)
and the same commitments (R,U, S1, A1, B1).

Then P is able to compute µ0, µ1, α0,0, β0,0, θ0,0, α0,1, β0,1, θ0,1, α1,0, β1,0, θ1,0,
α1,1, β1,1 and θ1,1 such that:

gµ0
1 = U ·Rc0 (11)

gµ1
1 = U ·Rc1 (12)

e(g1, θ0,0) = S0 · pkd0 (13)

e(g1, θ0,1) = S0 · pkd0 (14)

e(g1, θ1,0) = S1 · pkd1 (15)

e(g1, θ1,1) = S1 · pkd1 (16)

e(R,α0,0) · e(g1, β0,0) = A0 ·B0 · S
f0,0
0 (17)

e(R,α0,1) · e(g1, β0,1) = A0 ·B0 · S
f0,1
0 (18)

e(R,α1,0) · e(g1, β1,0) = A1 ·B1 · S
f1,0
1 (19)

e(R,α1,1) · e(g1, β1,1) = A1 ·B1 · S
f1,1
1 (20)

We have (R, U , S0, A0, B0, α0,0, β0,0, θ0,0, α0,1, β0,1, θ0,1, S1, A1, B1, α1,0,
β1,0, θ1,0, α1,1, β1,1, θ1,1) ∈ v where v is the view of P during the session. We build
the following extractor E(v): first it sets r = µ0−µ1

c0−c1 . Using equations (11) and (12),

we have: gr1 = g
µ0−µ1
c0−c1
1 =

(
U ·Rc0
U ·Rc1

) 1
c0−c1 = R. Using equations (17), (18), (19) and

29



(20), we have:
(
e
(
R,

α0,0

α0,1

)
· e
(
g1,

β0,0
β0,1

)) 1
f0,0−f0,1 =

(
A0·B0·S

f0,0
0

A0·B0·S
f0,1
0

) 1
f0,0−f0,1

=

S0 and
(
e
(
R,

α1,0

α1,1

)
· e
(
g1,

β1,0
β1,1

)) 1
f1,0−f1,1 =

(
A1·B1·S

f1,0
1

A1·B1·S
f1,1
1

) 1
f1,0−f1,1

= S1. Then,

E sets s0 =
(
α0,0

α0,1

) r
f0,0−f0,1 ·

(
β0,0
β0,1

) 1
f0,0−f0,1 and s1 =

(
α1,0

α1,1

) r
f1,0−f1,1 ·

(
β1,0
β1,1

) 1
f1,0−f1,1 .

We have e(g1, s0) = S0 and e(g1, s1) = S1. Equations (13), (14), (15), (16) im-
ply that θ0,0 = θ0,1. We set θ0 = θ0,0 = θ0,1. Similarly, θ1 = θ1,0 = θ1,1. We

have: e
(
g1,
(
θ0
θ1

) 1
d0−d1

)
=
(
S0
S1

) 1
d0−d1 · pk. Finally, E(v) computes and returns

sk =
(
θ0·s1
θ1·s0

) 1
d0−d1 . We show that sk is the secret key corresponding to pk since:

e(g1, sk) = e
(
g1,
(
θ0·s1
θ1·s0

)) 1
d0−d1 =

(
e(g1,θ0)·e(g1,s1)
e(g1,θ1)·e(g1,s0)

) 1
d0−d1 =

(
S0·pkd0 ·S1

S1·pkd1 ·S0

) 1
d0−d1

= pk.
Strong soundness: The scheme is secret secure and it admits a knowledge extrac-
tor, then it is strongly sound (Lemma 2).
Honest zero-knowledge: We construct the following simulator Sim(pk). It picks
c, d, f, µ, α, β, θ

$← Z∗p and R,A
$← G. Then it computes S = e(g1, θ)/pkd,

U = gµ1 /R
c and B = (e(R,α) · e(g1, β))/(A ·Sf ). It outputs τ = (R,U, c, d, f, µ,

S,A,B, α, β, θ). As τ is the transcript of a valid proof and µ, α, β and θ come from
uniform distributions, outputs of Sim follow the same distribution as the real proto-
col. ut

Lemma 9. NI.Π̃3 and NI.Π5 are non-interactive, complete, sound, and zero-knowledge
under the respective assumptions BDLV and FAPI2 in the random oracle model.

Proof. This lemma is a direct implication of Lemma 8. ut

Theorem 5. NiU.REΠ is unidirectional, complete, sound and zero-knowledge
in the random oracle model under the DL, the CDH and the FAPI2 assumptions.

Proof (Theorem 5). The scheme is unidirectional by construction. Secret security
proof is similar to the scheme U.REΠ (proof of Theorem 3) since it uses the same
key generation algorithms. We set the two ZKI schemes I1 = (Π5.Set,U.Gen1,
Π̃3.Prove, Π̃3.Verify) and I2 = (Π5.Set,U.Gen2,Π5.Prove, Π5.Verify). Note that
I1 = NI.Π̃3 and I2 = NI.Π5.
Completeness: (i) I1 and I2 are complete (Lemma 9). (ii) Let π1 be a proof of
NI.Π3 which is outputted by Π̃3.Prove(pk1, sk1) computed as follows: we pick r $←
Z∗p and u $← Z∗p and compute R = gr1, U = gu1 , c = H(R,U, 0), d = H(R,U, 1),

z = r + sk1 · d and µ = u + r · c. Finally, π = (R,U, z, µ). Using rk = sk
1/sk1
2 ,

the algorithm NiU.RProve(rk, π1) computes π2 as follows: it picks s, a and b in the

30



uniform distribution on Z∗p and computes S = e(R, rk) · e(g1, g2)s, A = e(R, g2)
a,

B = e(g1, g2)
b, f = H(R,U,A,B, S), α = ga2 · rkf , β = gb+s·f2 and θ = gs2 · rkz .

It outputs π2 = (R,U, µ,A,B, S, α, β, θ). Thus, using pk2 = e(g1, sk2), we have:
gµ1 = gu1 · gr·c1 = U · Rc; e(R,α) · e(g1, β) = e(R, g2)

a · e(g1, g2)b · e(R, rk)f ·
e(g1, g2)

s·f = A ·B ·Sf ; e(g1, θ) = e(g1, g2)
s · e(g1, rk)z = e(g1, g2)

s · e(g1, rk)r ·
e(g1, sk2)

c = S · pkd2. Then Π5.Verify(pk2, π2) outputs 1.
Soundness: U.REΠ is strongly sound since I1 and I2 are strongly sound (Lemma 4)
and U.REΠ is secret secure.
Zero-knowledge: (i) NI.Π̃3 and NI.Π5 are zero-knowledge (Lemma 9). (ii) Since
NI.Π̃3 is zero-knowledge, there exists a simulator Sim such that outputs of Π̃3.Prove
follow the same probability distribution that the outputs of Sim. We show how
to build Sim1(rk, pk1, pk2): this simulator runs Sim to generate the proof π1 and
computes a second proof π2 = NiU.RProve(rk, π1). Sim1 outputs τ = (π1, π2).
Knowing rk, the simulator perfectly simulates the proxy behavior and the outputs of
Sim1 follow the same distribution as the real algorithms Prove1 and RProof. (iii)
We show how to build Sim2(sk1, pk1, pk2): this simulator picks z, c, d, f, µ, α, β,
θ

$← Z∗p and A
$← G. Then, using the delegate instance pk1 and the delegator

instance pk2, it computes R = gz1/pkd1, S = e(g1, θ)/pkd2, U = gµ1 /R
c and B =

(e(R,α) · e(g1, β))/(A · Sf ). It outputs τ = (π1, π2) using the two non-interactive
proofs π1 = (R,U, c, d, µ, z) and π2 = (R,U, c, d, µ, z, S,A,B, f, α, β, θ). As τ is
the transcript of a valid re-proof and µ, α, β and θ come from uniform distributions,
the outputs of Sim2 follow the same distribution as the real algorithms Prove1 and
RProof. ut

31


