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Abstract

We present new constructions of round-efficient, or even round-optimal, Multi-
Party Computation (MPC) protocols from Oblivious Transfer (OT) protocols. Our
constructions establish a tight connection between MPC and OT: In the setting of
semi-honest security, for any k ≥ 2, k-round semi-honest OT is necessary and complete
for k-round semi-honest MPC. In the round-optimal case of k = 2, we obtain 2-round
semi-honest MPC from 2-round semi-honest OT, resolving the round complexity of semi-
honest MPC assuming weak and necessary assumption. In comparison, previous 2-round
constructions rely on either the heavy machinery of indistinguishability obfuscation or
witness encryption, or the algebraic structure of bilinear pairing groups. More generally,
for an arbitrary number of rounds k, all previous constructions of k-round semi-honest
MPC require at least OT with k′ rounds for k′ ≤ bk/2c.

In the setting of malicious security, we show: For any k ≥ 5, k-round malicious OT
is necessary and complete for k-round malicious MPC. In fact, OT satisfying a weaker
notion of delayed-semi-malicious security suffices. In the common reference string model,
for any k ≥ 2, we obtain k-round malicious Universal Composable (UC) protocols from
any k-round semi-malicious OT and non-interactive zero-knowledge. Previous 5-round
protocols in the plain model, and 2-round protocols in the common reference string
model all require algebraic assumptions such as DDH or LWE.

At the core of our constructions is a new framework for garbling interactive circuits.
Roughly speaking, it allows for garbling interactive machines that participates in inter-
actions of a special form. The garbled machine can emulate the original interactions
receiving messages sent in the clear (without being encoded using secrets), and reveals
only the transcript of the interactions, provided that the transcript is computationally
uniquely defined. We show that garbled interactive circuits for the purpose of constructing
MPC can be implemented using OT. Along the way, we also propose a new primitive of
witness selector that strengthens witness encryption, and a new notion of zero-knowledge
functional commitments.
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1 Introduction
A Multi-Party Computation (MPC) protocol allows m mutually distrustful parties to securely
compute a functionality f(x̄) of their corresponding private inputs x̄ = x1, ..., xm, such that party
Pi receives the i-th component of f(x̄). The semi-honest security guarantees that honest-but-curious
parties who follow the specification of the protocol learn nothing more than their prescribed outputs.
The stronger malicious security guarantees that even malicious parties who may deviate from the
protocol, cannot learn more information nor manipulate the outputs of the honest parties. MPC
protocols for computing general functionalities are central primitives in cryptography and have been
studied extensively. An important question is: “how many rounds of interactions do general MPC
protocols need, and under what assumptions?”

The round complexity of 2-Party Computation (2PC) was resolved more than three decades ago:
Yao [Yao82,Yao86] gave a construction of general semi-honest 2PC protocols that have only two
rounds of interaction (where parties have access to a simultaneous broadcast channel1), using garbled
circuits and a 2-message semi-honest Oblivious Transfer (OT) protocol. The round complexity is
optimal, as any one-round protocol is trivially broken. Moreover, the underlying assumption of
2-message semi-honest OT is weak and necessary2.

In contrast, constructing round-efficient MPC protocols turned out to be more challenging. The
first general construction [GMW87] requires a high number of rounds, O(d), proportional to the depth
d of the computation. Later, Beaver, Micali, and Rogaway (BMR) reduced the round complexity
to a constant using garbled circuits [BMR90]. However, the exact round complexity of MPC
remained open until recently. By relying on specific algebraic assumptions, a recent line of works
constructed i) 2-round MPC protocols relying on trusted infrastructure (e.g., a common reference
string) assuming LWE [AJL+12,MW16,CM15,BP16,PS16] or DDH [BGI16,BGI17,BGI+18], and
ii) 2-round protocols in the plain model from indistinguishability obfuscation or witness encryption
with NIZK [GGHR14,GP15,CGP15,DKR15,GLS15], or bilinear groups [GS17]. However, all these
constructions heavily exploit the algebraic structures of the underlying assumptions, or rely on the
heavy machinery of obfuscation or witness encryption.

The state-of-the-art for malicious security is similar. Garg, Mukherjee, Pandey, Polychroni-
adou [GMPP16] showed that 4 round is optimal for malicious MPC. So far, there are constructions
of i) 5-round protocols from DDH [ACJ17], and ii) 4-round protocols from subexponentially secure
DDH [ACJ17], or subexponentially secure LWE and adaptive commitments3 [BHP17]. In general,
for any number of round k, all known constructions of semi-honest or malicious MPC require at
least k′ round OT for k′ ≤ bk/2c. We ask the question,

Can we have round-optimal MPC protocols from weak and necessary assumptions?

We completely resolve this question in the semi-honest setting, constructing 2-round semi-honest
MPC from 2-round semi-honest OT, and make significant progress in the malicious setting, con-
structing 5-round malicious MPC from 5-round delayed-semi-malicious OT, a weaker primitive than

1Using the simultaneous broadcast channel, every party can simultaneously broadcast a message to all other parties.
A malicious adversary can rush in the sense that in every round it receives the messages broadcast by honest parties
first before choosing its own messages. In the 2PC setting, if both parties receive outputs, Yao’s protocols need
simultaneous broadcast channel.

2A 2-round OT protocol consists of one message from the receiver, followed by another one from the sender. It is
implied by 2-round 2PC protocols using the simultaneous broadcast channel.

3That is, CCA commitments introduced in [CLP10].
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malicious OT. Our results are obtained via a new notion of garbling interactive circuits. Roughly
speaking, classical garbling turns a computation, given by a circuit C and an input x, into another
one (Ĉ, x̂) that reveals only the output C(x). Our new notion considers garbling a machine partici-
pating in an interaction: Let C (with potentially hardcoded input x) be an interactive machine
that interacts with an oracle O, which is a non-deterministic algorithm that computes its replies to
C’s messages, depending on some witnesses w̄. Garbling interactive machine turns C into Ĉ, which
can emulate the interaction between C and O, given the witnesses w̄ in the clear (without any
secret encoding). It is guaranteed that Ĉ reveals only the transcript of messages in the interaction
and nothing else, provided that the transcript is computationally uniquely defined, that is, it is
computationally hard to find two different witnesses w̄, w̄′ that lead to different transcripts.

1.1 Our Contributions

Semi-Honest Security: We construct 2-round semi-honest MPC protocols in the plain model
from 2-round semi-honest OT. Our construction can be generalized to an arbitrary number of
rounds, establishing a tight connection between MPC and OT: For any k, k-round OT is necessary
and complete for k-round MPC.4

Theorem 1.1 (Semi-Honest Security). For any k ≥ 2, there is a k-round semi-honest MPC protocol
for any functionality f , from any k-round semi-honest OT protocol.

The above theorem resolves the exact round complexity of semi-honest MPC based on weak and
necessary assumptions, closing the gap between the 2-party and multi-party case. In the optimal
2-round setting, by instantiating our construction with specific 2-round OT protocols, we obtain
2-round MPC protocols in the plain model from a wide range of number theoretic and algebraic
assumptions, including CDH [BM90], factoring [BM90],5 LWE [PVW08],6 and constant-noise LPN
with a sub-exponential security [GKM+00, YZ16]. This broadens the set of assumptions that
round-optimal semi-honest MPC can be based on.
Malicious Security: Going beyond semi-honest security, we further strengthen our protocols
to achieve the stronger notion of semi-malicious security, as a stepping stone towards malicious
security. Semi-malicious security proposed by [AJL+12] considers semi-malicious attackers that
follow the protocol specification, but may adaptively choose arbitrary inputs and random tapes for
computing each of its messages. We enhance our semi-honest protocols to handle such attackers.

Theorem 1.2 (Semi-Malicious Security). For any k ≥ 2, there is a k-round semi-malicious MPC
protocol for any functionality f , from any k-round semi-malicious OT protocol.

Previous semi-malicious protocols have 3 rounds based on LWE [AJL+12,BHP17], or 2 rounds
based on bilinear maps [GS17]. We obtain the first 2-round construction from any 2-round semi-
malicious OT, which is necessary and can be instantiated from a variety of assumptions, including

4We recall that for MPC, we suppose that parties have access to a simultaneous broadcast channel. Furthermore a
k-round OT with simultaneous broadcast channel can be transformed into a k-round OT where each round consists a
single message or flow either from the receiver to the sender or the other way round. This is because in the last round
there is no point for the receiver to send a message to the sender.

5This follows from the fact that CDH in the group of quadratic residues is as hard as factoring [Shm85,McC88,
BBR97].

6The scheme in [PVW08] uses a CRS, but in the semi-honest setting, the sender can generate the CRS and send it
to the receiver.
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DDH [NP01], QR, and N-th residuosity [HK12]. Furthermore, following the compilation paradigms
in recent works [AJL+12, BHP17, ACJ17], we immediately obtain maliciously secure Universal
Composable (UC) protocols in the common reference string model [Can01,CLOS02], using non-
interactive zero-knowledge (NIZK).

Corollary 1.3 (Malicious Security in the CRS Model). For any k ≥ 2, there is a k-round malicious
UC protocol in the common reference string model for any functionality f , from any k-round
semi-malicious OT protocol and NIZK.

Moving forward to malicious MPC protocols in the plain model, we show that, for any k ≥ 5,
k-round malicious MPC protocols can be built from k-round delayed-semi-malicious OT, which is
implied by k-round malicious OT.

Theorem 1.4 (Malicious Security in the Plain Model). For any k ≥ 5, there is a k-round malicious
MPC protocol for every functionality f , from any k-round delayed-semi-malicious OT protocol.

This theorem is obtained by first showing that our k-round semi-malicious MPC protocols satisfy
a stronger notion of delayed-semi-malicious security, when instantiated with a k-round OT protocol
satisfying the same notion. Here, delayed-semi-malicious security guards against a stronger variant
of semi-malicious attackers, and is still significantly weaker than malicious security. For instance,
delayed-semi-malicious OT provides only indistinguishability-based privacy guarantees, whereas
malicious OT supports extraction of inputs and simulation. In the second step, we transform our
k-round delayed-semi-malicious MPC protocols into k-round malicious MPC protocols, assuming
only one-way functions. This transformation relies on specific structures of our protocols. In
complement, we also present a generic transformation that starts with any (k − 1)-round delayed
semi-malicious MPC protocol.

Previous 5-round malicious protocols rely on LWE and adaptive commitments [BHP17], or
DDH [ACJ17]. Our construction weakens the assumptions, and in particular adds factoring-based
assumptions into the picture. Our result is one-step away from constructing round-optimal malicious
MPC from weak and necessary assumptions. So far, 4-round protocols can only be based on
subexponential DDH [ACJ17] or subexponential LWE and adaptive commitments [BHP17]. A clear
open question is constructing 4-round malicious MPC from 4-round OT.
Garbled Interactive Circuits, and More: Along the way of constructing our MPC protocols,
we develop new techniques and primitives that are of independent interest: We propose a new
notion of garbling interactive circuits, a new primitive of witness selector that strengthens witness
encryption [GGSW13], and a new notion of zero-knowledge functional decommitment. Roughly
speaking,

• As mentioned above, garbling interactive machine transforms an interactive machine C talking
to a non-deterministic oracle O(w̄) using some witnesses, into a garbled interactive machine
Ĉ that upon receiving the witnesses w̄ in the clear (without any secret encoding) reveals
the transcript of the interaction between C and O(w̄) and nothing else, provided that the
transcript is computationally uniquely defined.

• Witness selector strengthens witness encryption [GGSW13] in the dimension that hiding holds
when it is computationally hard to find a witness that enables decryption, as opposed to when
no such witnesses exist.
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• Finally, we enhance standard (computationally binding and computationally hiding) com-
mitment schemes with the capability of partially opening a commitment c to the output
f(v) of a function f evaluated on the committed value v, where the commitment and partial
decommitment reveal nothing more than the output f(v).

To construct 2-round MPC, we use garbled interactive circuits and functional commitments to
collapse rounds of any multi-round MPC protocols down to 2, and implement garbled interactive
circuits using witness selector and classical garbled circuits. Our technique generalizes the novel ideas
in recent works on constructing laconic OT from DDH [CDG+17], identity based encryption from
CDH or factoring [DG17,BLSV17], and 2-round MPC from bilinear pairing [GS17]. These works can
be rephrased as implementing special-purpose garbled interactive circuits from standard assumptions,
and applying them for their specific applications. In this work, we implement the garbled interactive
circuits, witness selector, and functional commitments needed for our constructions of MPC, from
OT. The generality of our notions gives a unified view of the techniques in this and prior works.

1.2 Organization

We start with an overview of our techniques in Section 2. Then, after some classical preliminaries in
Section 3, we formally define garbled interactive circuit schemes in Section 4. In Section 5, we build
2-round semi-honest MPC protocols from any semi-honest MPC protocols and (zero-knowledge)
functional commitment scheme with an associated garbled interactive circuit scheme. In Section 6,
we define witness selector schemes and show that they imply garbled interactive circuit schemes.
We conclude the construction of 2-round semi-honest MPC protocols from 2-round OT by building
a functional commitment scheme with witness selector from any 2-round OT in Section 7. We
generalize our constructions to the semi-malicious setting in Section 8 and to the multi-round setting
in Section 9. Finally, we show how to construct malicious MPC protocols in Section 10.

2 Overview
Garg et. al. [GGHR14] introduced a generic approach for collapsing any MPC protocol down
to 2 rounds, using indistinguishability obfuscation [BGI+01,GGH+13]. Later, Gordon, Liu, and
Shi [GLS15] showed how to perform round collapsing using garbled circuits, witness encryption,
and NIZK. Very recently, Garg and Srinivasan [GS17] further showed how to do collapse rounds
using garbled protocols, which can be implemented from bilinear pairing groups. In this work, we
perform round collapsing using our new notion of garbled interactive circuits; this notion is general
and enables us to weaken the assumption to 2-round OT. (See Section 2.8 for a more detailed
comparison with prior works.) Below, we give an overview of our construction in the 2-round setting;
construction in the multi-round setting is similar.

2.1 Round-Collapsing via Obfuscation

The basic idea is natural and simple: To construct 2-round MPC protocols for a function f , take any
multi-round MPC protocols for f , referred to as the inner MPC protocols, such as, the Goldreich-
Micali-Wigderson protocol [GMW87], and try to eliminate interaction. Garg, Gentry, Halevi, and
Raykova (GGHR) [GGHR14] showed how to do this using indistinguishability obfuscation. The idea
is to let each player Pi obfuscate their next-step circuit Nexti(xi, ri, ?) in an execution of the inner
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MPC protocol Π for computing f , where Nexti(xi, ri, ?) has Pi’s private input xi and random tape ri
hardcoded, and produces Pi’s next message m`

i in round `, on input the messages m̄<` = {m`′
j }j,`′<`

broadcast by all parties in the previous rounds,

Nexti(xi, ri, m̄<`) = m`
i . (1)

Given all obfuscated circuits {iO(Next(xi, ri, ?)j)}, each party Pi can emulate the execution of Π in
its head, eliminating interaction completely.

The above idea achieves functionality, but not security. In fact, attackers, given the obfuscated
next-step circuits of honest parties, can evaluate the residual function f({xi}honest i, ?) with the
inputs of honest parties hardcoded, or even evaluate honest parties’ next-step circuits on arbitrary
“invalid” messages. To avoid this, the protocol requires each party to commit to its input and random
tape in the first round, ci R← COM(xi, ri). Then, in the second round, each party obfuscates an
augmented next-step circuit AugNexti that takes additionally a NIZK proof π`′j for each message m`′

j

it receives, and verifies the proof π`′j that m`′
j is generated honestly from inputs and random tapes

committed in cj (it aborts otherwise). This way, only the unique sequence of honestly generated
messages is accepted by honest parties’ obfuscated circuits. In the security proof, by the security of
indistinguishability obfuscation and NIZK, this unique sequence can even be hardcoded into honest
parties’ obfuscated circuits, enabling simulation using the simulators of the inner MPC protocols.

2.2 Garbled Interactive Circuits

The fact that it suffices and is necessary that the honest parties’ obfuscated circuits only allow
for a single meaningful “execution path” (determined by the unique sequence of honest messages),
suggests that we should rather use garbling instead of obfuscation for hiding honest parties’ next-step
circuits. However, the challenge is that the next-step circuits Nexti are not plain circuits: They are
interactive in the sense that they takes inputs (i.e., MPC messages) generated by other parties that
cannot be fixed at time of garbling. To overcome the challenge, we formalize the MPC players as
interactive circuits, and propose a new notion called Garbled Interactive Circuits (GIC).
Interactive Circuits: The interaction with an interactive circuit is captured via a non-deterministic
(poly-size) oracle O that on inputs a query q and some witness w returns an answer a = O(q, w)
(or ⊥ if w is not accepting). (Note that O is non-deterministic in the sense that without a valid
witness, one cannot evaluate O.) An interactive circuit iC consists of a list of L next-step circuits
{iC`}`∈[L]. Its execution with oracle O on input a list of witnesses w̄ = {w̄`} proceeds in L iterations
as depicted in Fig. 1: In round `, iC on input the state st`−1 output in the previous round, as well
as the answers ā`−1 = {a`−1

k } from O to queries q̄`−1 = {q`−1
k } produced in the previous round,

outputs the new state st` and queries q̄` = {q`k}, and a (round) output o`.

∀`, iC(st`−1, ā`−1) = (st`, q̄`, o`) , where ∀k, a`−1
k = O(q`−1

k , w`−1
k ) .

The output of the execution is the list of round outputs ō = {o`}`, and the transcript of the execution
is the list of all queries, answers, and outputs trans(iC, w̄) = {(q̄`, ā`, o`)}`. In the case that any
oracle answer is a`k = ⊥, the execution is considered invalid. For simplicity of this high-level overview,
we consider only valid executions and valid transcript; see Section 4 for more details.
Garbled Interactive Circuit Scheme: A Garbled Interactive Circuit (GIC) scheme GiC allows
us to garble an interactive circuit îC R← GiC.Garble(iC), s.t.
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ā2 q̄L−1
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Figure 1: Execution of an interactive circuit iC with witnesses w̄

Correctness: We can evaluate îC with the oracle O and a list w̄ of witnesses (in the clear) to
obtain each round output o` = GiC.Eval(iC, w̄<`). This significantly differs from classical
garbling techniques where inputs of the computation must be encoded using secrets (such as,
mapping them to corresponding input keys or labels).

Simulation Security for Unique Transcripts Distribution: Security guarantees that îC re-
veals only the transcript of execution, including all outputs, queries, and answers, and nothing
else, that is, it can be simulated by ĩC R← GiC.Sim(trans), provided that there is a unique
transcript of execution.

The requirement on unique transcript is necessary, otherwise, security is ill-defined as there may
exist different transcripts produced by using different witnesses, and the simulator cannot hardcode
them all. Furthermore, garbled interactive circuit schemes are meant to be different from obfuscation
and hides only a single execution path. To formalize this, there are two options:

• Statistically Unique Transcript. The easier option is requiring simulation security only
for interactive circuits iC that have unique transcript no matter what witnesses are used, that
is, for all w̄, w̄′, trans(iC,O, w̄) = trans(iC,O, w̄′). This is, however, a strong requirement.

• (Default:) Computationally Unique Transcript. The more general option is con-
sidering a distribution iD over (iC, w̄) that has computationally unique transcripts, in the
sense that given (iC, w̄), it is hard to find w̄′ that leads to a different valid transcript,
trans(iC,O, w̄) 6= trans(iC,O, w̄′).7

GIC for a computational or statistical unique-transcript distribution ensures:{
GiC.Garble(iC) : (iC, w̄) R← iD

}
≈{

GiC.Sim(trans(iC,O, w̄)) : (iC, w̄) R← iD
}

7The distribution may output some additional auxiliary information, and it is hard to find witnesses that lead to a
different valid transcript even given the auxiliary information. See Section 4 for more details.
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Looking ahead, our 2-round MPC protocols from 2-round semi-honest oblivious transfer crucially
rely on the stronger notion of GIC for computationally unique transcripts. If using GIC for
statistically unique transcripts, we would need a 2-round OT protocol where the receiver’s message
statistically binds its input bit, which is not a necessary assumption for constructing 2-round
semi-honest MPC protocols.

2.3 Constructing GIC from Witness Selector

We start with the warm-up case of building GIC for statistically unique transcripts by combining
plain garbled circuits and witness encryption. Witness Encryption (WE) proposed by Garg, Gentry,
Sahai, and Waters [GGSW13], enables one to encrypt a message under an instance x of an NP
language L to obtain a ciphertext ct R← WE.Enc(x,M); later this ciphertext can be decrypted
using any witness w of x, M = WE.Dec(ct,w). The idea of combining garbled circuits and witness
encryption has already appeared in three recent works by Gordon, Liu, and Shi [GLS15], Cho et
al. [CDG+17], and Döttling and Garg [DG17]. Our garbled interactive circuit scheme can be viewed
as a generalization of their ideas for capturing the full power of this combination. As we explain
shortly, to handle computationally unique transcripts, we need to rely on a new primitive called
Witness Selector, which strengthens WE.8

Warm-Up: GIC for Statistically Unique Transcript from WE: To garble an interactive cir-
cuit iC = {iC`}`, a natural first attempt is garbling each next-step circuit iC` as a plain circuit, yield-
ing L garbled circuits {îC`, key`}`, where each input wire of îC` has two keys, (key`[k, 0], key`[k, 1]),
one for this input bit being 0 and one for 1. The difficulty is that, to evaluate îC`, the evaluator
must obtain keys corresponding to the honestly generated state st`−1 and answers ā`−1 produced in
the previous round; denote these keys as key`[st`−1] and key`[ā`−1].9 We show how to enable this by
modifying the garbled circuits {îC`} as follows.

• The first idea is embedding all keys key` for one garbled circuit îC` in the previous one îC`−1,
so that, îC`−1 can output directly the keys key`[st`−1] for the state st`−1 it produces. This
idea, however, does not apply for selecting keys for answers ā`−1, as îC`−1 only computes
queries q̄`−1 but not answers as it does not necessarily know the corresponding witnesses w̄`−1.

• The second idea is using WE as a “translator.” To illustrate the idea, assume that there is a
single query q`−1 and it has a Boolean answer a`−1. In this case, let îC`−1 output a pair of
WE ciphertexts (ct0, ct1), where ctb encrypts the key key`[k, b] for the answer a`−1 being b,
under the statement xb that the oracle outputs b, O(q`−1, w′b) = b, for some witness w′b. Now,
the evaluator after evaluating îC`−1 obtains ct0, ct1. Using the witness w` it receives as input,
it can decrypt the WE ciphertext ct`−1

a`−1 for a`−1 = O(q`−1, w`−1), obtaining the right key
key`[a`−1] for evaluating the next garbled circuit.

To show security, it boils down to argue that for each garbled circuit îC`, only one key for each
input wire is revealed. The security of îC`−1 ensures that only keys key`[st`−1] for the right state is
revealed. On the other hand, to argue that only keys key`[k, a`−1] for the right answers are revealed,

8We mention that the work of Döttling and Garg [DG17] defined what is called chameleon encryption scheme,
which can be viewed as a special case of our witness selector for a specific language.

9This is a slight abuse of notation, where st`−1 and ā`−1 denote both their actual values and the indices of the
corresponding input wires.
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it crucially relies on the fact that the transcript including the answer is statistically unique. Thus,
the ciphertext ct1−a`−1 is encrypted under a false statement, and by security of WE, the label
key`[k, 1− a`−1] is hidden. We emphasize that if the transcript were only computationally unique,
both WE ciphertexts ct0, ct1 would potentially be encrypted under true statements — as there may
exist two witnesses w0, w1 that make the oracle output 0 and 1, O(q`−1, w0) = 0, O(q`−1, w1) = 1,
even though it is computationally hard to find them — and the security of WE would be vacuous.
General Case: GIC from Witness Selector: To handle computationally unique transcripts,
WE is not the right tool. We propose a new primitive called Witness Selective (WS), which
strengthens WE in two ways:

Correctness: WS is defined for a non-deterministic oracle O. One can encrypt a set of keys
key = {key[k, b]}k∈[l],b∈{0,1} under a query q, ct←WS.Enc(q, key), which can later be decrypted
using a witness w revealing the keys selected according to the output a = O(q, w), that is,
{key[k, ak]}k = WS.Dec(ct, w).

Semantic Security for Unique Answers: The security guarantee is that the WS ciphertext ct
hides all the keys key[k, 1− ak], provided that a is the computationally unique answer. Clearly,
if it were easy to find two witnesses w,w′ such that, (a = O(q, w)) 6= (a′ = O(q, w′)), the
aforementioned semantic security cannot hold. Therefore, similarly to GIC, security is only
required to hold for a distribution wD over (q, w) that has computationally unique answers in
the sense that given (q, w), it is hard to find w′ that makes O output a different valid answer.
Then, {

WS.Enc(q, key) : (q, w) R← wD
}
≈{

WS.Enc(q, key) : (q, w) R← wD; a = O(q, w); ∀k, key[k, 1− ak] = 0
}
.

We can construct general GIC scheme for computationally unique transcript by replacing WE in
the warm-up construction with WS. Slightly more precisely, each garbled circuit îC`−1 outputs a
WS ciphertext ct encrypting keys {key[k, b]} for all wires corresponding to the oracle answer a`−1,
under the query q`−1 (if there are multiple queries, simply generate one WS ciphertext for each
query); then, the evaluator can use the witness w`−1 to decrypt and obtain keys {key[k, a`−1

k ]}
selected according to the oracle answer a`−1 = O(q`−1, w`−1). Since the oracle answer (as a part
of the transcript) is computationally unique, semantic security of WS ensures that the other keys
{key[k, 1− a`−1

k ]} remain hidden, and hence we can invoke the security of the garbled circuits to
argue the security of GIC.
Relation between WS, WE, and Extractable WE: As discussed above, WS is stronger than
WE. For instance, one can use WS to encrypt a set of keys key under a query q = (h, y = h(v)) for a
randomly sampled collision-resistant hash function h. With respect to the de-hashing oracle O(q, v′)
that outputs v′ if y = h(v′), a WS ciphertext reveals only keys {key[k, vk]} selected by v, and hides
others. In contrast, WE provides no security in this case. On the other hand, WS is weaker than
the notion of extractable WE [GKP+13]. Roughly speaking, extractable WE guarantees that for
every attacker A, there is an extractor E, such that, if A can decrypt a ciphertext encrypted under
statement x, then E can output a witness of x. Extractable WE implies WS, and is strictly stronger
as it requires knowledge extraction.
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We note that so far there is no construction of general-purpose WE, let alone WS or extractable
WE, from standard assumptions. This is also not the goal of this work. Instead, we show below
how to construct special-purpose WS that suffices to construct 2-round MPC protocols.

2.4 Round-Collapsing via Garbled Interactive Circuits

We now revisit the round-collapsing approach, by replacing obfuscation with garbled interactive
circuits. First, we observe that each player Pi in the inner MPC protocol can be viewed as an
interactive circuit {P `i }, interacting with an oracle O representing the other parties {Pj}, as described
in Fig. 2.

Pi as an interactive circuit {P `i }

• The non-deterministic oracle O (representing all other parties) receives queries of
form q`j = (cj , G`j), consisting of Pj ’s commitment and its next-step circuit with all
messages in the first `− 1 rounds hardcoded, G`j(?, ?) = Nextj(?, ?, m̄<`). On input
such a query and a witness w`j = (m`

j , π
`
j), O computes:

a`j = O(q`j , (m`
j , π

`
j)) =


m`
j if π`j proves that the values (xj , rj)

committed in cj satisfy m`
j = G`j(xj , rj)

⊥ otherwise
.

• P `i proceeds similarly as Nexti in Eq. (1) (page 8), except that, it additionally outputs
one query q`j = (cj , G`j) for each player Pj ’s message m`

j , and a proof π`i that its next
message is indeed m`

i . (The proof system is described later.)

P `i (xi, ri,
st`−1︷ ︸︸ ︷
m̄<`−1,

ā`−1︷ ︸︸ ︷
{m`−1

j }j) = (
st`︷︸︸︷
m̄<`,

q̄`︷ ︸︸ ︷
{q`j}j ,

o`︷ ︸︸ ︷
(m`

i , π
`
i )) ,

Figure 2: Each player Pi can be formalized as an interactive circuit Pi = {P `i }.
The important details are: In each round `, P `i obtains through the oracle O all messages

m̄`−1 = {m`−1
j }j output in the previous round, and additionally, it outputs a proof π`i that the

message m`
i it outputs is generated honestly from its input xi and random tape ri committed in ci.

The message and proof are exactly the witness w`i = (m`
i , π

`
i ) for the query q`i that players P `j make

in round ` to the oracle O for obtaining Pi’s message a`i = m`
i for the next round.

Our 2-Round MPC Protocol: Therefore, we can use a GIC scheme to garble the interactive
circuit representing each player Pi to collapse round:

1. In the first round of MPC, each Pi broadcasts a commitment ci to its input xi and random
tape ri, and

2. in the second round, each Pi sends the garbled interactive circuit P̂ i R← GiC.Garble({P `i }), and

3. each Pi emulates the execution of inner MPC in its head, by evaluating all {P̂ j} round by
round: In round `, it evaluates o`j = (m`

j , π
`
j) = GiC.Eval(P̂ j , w̄<`), using the outputs obtained
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in previous rounds as witnesses, w<` = o<` = {(m`′
k , π

`′
k )}k,`′<`. Pi obtains its output when

the inner MPC execution completes.

We observe that the transcript of execution of each {P `i } is indeed computationally unique, as the
commitments {cj} have unique committed values {xj , rj} by the computational binding property,
and lead to unique next messages {m`

j}, by the soundness of proofs {π`j}. Therefore, the GIC scheme
guarantees that the garbled interactive circuits reveals only their outputs, queries, and answers,
summing up to all commitments {cj}, inner MPC messages {m`

j}, and proofs {π`j}, all of which can
be made simulatable.
First Attempt of Instantiation: The MPC messages can be simulated by the simulator of
the inner MPC protocol. To make commitments and proofs simulatable, the easiest way is using
a standard non-interactive commitment scheme and a NIZK system, which however 1) requires
a common reference string, and 2) makes the task of instantiating the associated WS scheme
difficult. Recall that to instantiate the GIC scheme, we need a WS scheme for the oracle O described
above, which internally verifies proofs. To solve this, we resort to a zero-knowledge Functional
Commitment (FC) scheme that has a built-in special-purpose proof system. By minimizing the
security requirements on this commitment, we manage to construct it, together with an associated
WS scheme, from 2-message semi-honest OT (which is a necessary assumption). This gives 2-round
MPC protocols in the plain model from 2-message semi-honest OT.

2.5 Functional Commitment with Witness Selector from OT

A zero-knowledge functional commitment scheme FC is computationally binding and computationally
hiding, and additionally supports functional opening that is both binding and zero-knowledge. The
notion of functional commitment was previously proposed by Libert, Ramanna, and Yung [LRY16]
for inner product functions, and later generalized to general functions in [BGJS16]. Here, we
consider a stronger property, namely a zero-knowledge property. On the other hand, we do not
require commitments nor functional decommitments to be of size constant in the length of the
committed value, and our binding property only holds against semi-honest adversaries. Functional
commitments were also implicitly and informally suggested by Gorbunov, Vaikuntanathan, and
Wichs in [GVW15], as a way to interpret their new primitive: Homomorphic Trapdoor Functions
(HTDFs). HTDFs could be used to construct our functional commitments (but the converse is not
true). However, we do not know how to construct WS associated to an FC built from the HTDF
proposed in [GVW15].

Functional Opening: For a commitment c = FC.Com(v; ρ) and a circuit G, one can generate a
functional decommitment d to the output of G evaluated on the committed value v, namely
m = G(v), using the randomness ρ of the commitment c,

d = FC.FOpen(c,G,m, ρ), FC.FVer(c,G,m, d) = 1 .

We say that (m, d) is a decommitment to (c,G); here, d serves as a proof π = d that the value
committed in c evaluates to m through G in our 2-round MPC protocols.

(Semi-Honest) Functional Binding: For an honestly generated commitment c = FC.Com(v; ρ)
with random tape ρ, it is hard to find a decommitment (m′, d′) to (c,G) for a different output
m′ 6= m, even given ρ. Note this is weaker than standard computational binding, as binding
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is only required for honestly generated commitments. This corresponds to distributional
soundness of the proofs.
Simulation (i.e., Zero-Knowledge): An honestly generated commitment c R← FC.Com(v; ρ)
(with random tape ρ) and decommitment d can be simulated together, using only the output
m, (c̃, d̃) R← FC.Sim(c,G,m). This property is weaker than standard zero-knowledge, as the
statement is from a distribution and is also simulated; only a single decommitment d can be
given for each commitment, or else simulation does not work.

A WS scheme associated with FC is for the oracle OFC that on input a query (c,G) and a witness
w = (m, d), outputs m if (m, d) is a valid decommitment to (c,G), and ⊥ otherwise. The functional
binding property ensures that for any v,G, the distribution wDv,G of query q = (c,G) and
decommitment w = (m, d) for honestly generated c = FC.Com(v; ρ), produces computationally
unique oracle answer m (even given the randomness ρ as auxiliary information). Despite the fact
that functional commitments are only semi-honestly binding and one-time simulatable, we show
that, together with an associated WS scheme, they suffice to instantiate our 2-round MPC protocols.
FC from Garbled Circuits and OT: We show how to construct a functional commitment, and
its associated WS scheme, from garbled circuits and a 2-round string 2-to-1 semi-honest OT.
OT as semi-honest binding commitment: We start with observing that any string 2-to-1 semi-honest
OT gives a commitment scheme that is semi-honest binding; that is, given an honestly generated
commitment c = Com(v; ρ) using a uniformly random tape ρ, it is hard to find a decommitment
(v′, ρ′) that opens c to a different value v′ 6= v even given ρ. To see this, consider the parallelized
version of 2-to-1 string OT, where ot1 = pOT1(x; ρ) generates the first flows from OT receiver for
every bit xk, and ot2 = pOT2(ot1, {key[k, b]}) generates the second flows from OT sender for every
pair of inputs (key[k, 0], key[k, 1]). Combining ot2 with the randomness ρ used for generating the
first flows, one can act as the OT receiver to recover exactly one input key[k, xk] at each coordinate
k. We argue that the first flows ot1 = pOT1(x; ρ) is a semi-honest commitment to x. Suppose that
it is not the case and that it is easy to find a decommitment ρ′ to a different value x′ 6= x. Then a
semi-honest attacker acting as OT receiver can violate the privacy of OT sender. (However, observe
that pOT1(x) is not necessarily computationally binding, as there is no security for maliciously
generated first flows of OT.)
Functional Opening: We use garbled circuits and OT (as a semi-honest binding commitment scheme)
to enable functional opening. To commit to a value v, garble a universal circuit Uv(?) = U(v, ?)
with v hardcoded, and commit to all its input keys {key[k, b]} using pOT1:

FC.Com(v; ρ) = c = (Ûv, ot1) , where ot1[k, b] = pOT1(key[k, b]; ρ[k, b]) .
To generate a decommitment (m, d) of (c,G), simply send the keys and randomness used for
generating the OT first flows {ot1[k,G[k]]} selected by G (more formally, G[k] is the k-th bit of the
description of G which is used as input to Uv):

FC.FOpen(c,G,m, ρ) = d = {key[k,G[k]], ρ[k,G[k]]} .
Verifying a decommitment d = {key′, ρ′} w.r.t. (c,G,m) involves checking that the keys and
randomness contained in d′ generate the OT first flows selected by G, and the garbled universal
circuit Ûv evaluates to m on input these keys.

FC.FVer(c,G,m, d) = 1 iff 1) ∀k, ot1[k,G[k]] = pOT1(key′[k]; ρ′[k]) and
2) Ûv(key′) = m .
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It is easy to see that the semi-honest binding property of pOT1 implies the semi-honest functional
binding of FC, and that a pair (c, d) can be simulated relying on the security of garbled circuits and
the computational hiding property (i.e., receiver privacy) of pOT1.
WS for FC: Next, to construct a WS scheme for the oracle OFC that verifies the functional
decommitment of FC, we again use garbled circuits to “enforce and hide” this verification. To
encrypt a set of messages M[i, b′] under a query (c,G), our idea is to garble the following circuit
V that acts as FC.FVer (without checking 1)), and selects messages according to the output m if
verification passes,

V ({key′[k]}) =
{
{M[i,mi]} if Ûv({key′[k]}) = m

⊥ otherwise
. (2)

Let V̂ be the garbled circuit, and {okeyk[j, β]}j the set of keys for the input wires corresponding to
key′[k]. (For clarity, we denote keys for V̂ as okey.)

Given a decommitment d = (key′, ρ′), correct WS decryption should recover messages {M[i, G(v)i]}
selected according to the correct output G(v) if the decommitment is valid, and ⊥ if invalid. To
enable this, what is missing is a “translation mechanism” that can achieve the following: For every
k,

• Correctness: if (key′[k], ρ′[k]) is a valid decommitment to ot1[k,G[k]], it translates this pair
into input keys of V̂ corresponding to key[k,G[k]], namely {okeyk[j, key[k,G[k]]j ]}j .

• Security: the other keys {okeyk[j, 1− key[k,G[k]]j ]}j are always hidden.

With such a translation mechanism, given a valid decommitment d = {key[k,G[k]], ρ[k,G[k]]}, one
can obtain all input keys corresponding to {key[k,G[k]]}, and can evaluate V̂ with these keys to
obtain the correct output,

V̂
({
{okeyk[j, key[k,G[k]]j ]}j

}
k

)
= V ({key[k,G[k]]}k) = {M[i, G(v)i]}i . (3)

The security of the translation mechanism and garbled circuit V̂ guarantees that only the right
messages {M[i, G(v)i]} are revealed.

Our key observation is that the second flows of OT is exactly such a translation mechanism.
For every OT first flows ot1[k,G[k]] selected by G, generate the OT second flows using appropriate
input keys of V̂ as sender’s inputs,

∀k, ot2[k] R← pOT2(ot1[k,G[k]], {okeyk[j, β]}j,β) . (4)

Indeed, for every k, given a valid decommitment (key[k,G[k]], ρ′) to ot1[k,G[k]], one can act as an
OT receiver to recover input keys {okeyk [j, key[k,G[k]]j ]}j , achieving correct translation. On the
other hand, the OT sender’s security guarantees that the other keys {okeyk [j, 1− key[k,G[k]]j ]}j
remain hidden.

Summarizing the above ideas gives the following construction of WS for FC:

• WS.Enc((c,G),M): To encrypt M under (c,G), encryptor garbles the circuit V as in Equation
(2), and generates the second OT flows as in Equation (4). The WS ciphertext is ct =
(c,G, V̂ , {ot2[k]}).
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• WS.Dec(ct, d) : To decrypt ct with a decommitment d = {key′, ρ′}, the decryptor first verifies
that for every k (key′[k], ρ′[k]) is a valid decommitment of ot1[k,G[k]] in c; otherwise, abort.
Then, for every k, it acts as an OT receiver with input key′[k], randomness ρ′[k], and OT
sender’s message ot2[k] to recover input keys of V̂ corresponding to key′[k]. Finally, it evaluates
V̂ with the obtained keys and output the messages output by V̂ , as in Equation (3).

The correctness and security of the WS scheme follows directly from the correctness and security of
the translation mechanism, which are in turn implied by those of OT. See Section 7 for more details.

Combining Sections 2.1 to 2.5, we get a construction of a 2-round semi-honest MPC protocol
from any 2-round semi-honest OT protocol using round collapsing for an inner MPC protocol.

2.6 Extension to Semi-Malicious and Malicious Security in the CRS model

Toward achieving malicious security, we first achieve semi-malicious security. Roughly speaking,
a semi-malicious party Pj generates its messages according to the protocol using arbitrarily and
adaptively chosen inputs and random tapes. This is formalized by letting Pj “explain” each message
m`
j it sends with a pair of input and random tape consistent with it, on a special witness tape. In

the two-round setting, the challenge in simulating the view of Pj lies in simulating honest parties’
first messages without knowing any secret information of Pj . This is because Pj may rush to see
honest parties’ first messages before outputting its own message, input, and random tape. (Observe
that this is not an issue for semi-honest security, as the simulator learns the inputs and random
tapes of corrupted parties first.)

Recall that in our 2-round protocols, each party Pi sends functional commitments ci to its input
and random tape (xi, ri) in the first round, which are later partially decommitted to reveal Pi’s
messages m in the inner MPC protocol. The simulation property of the functional commitment
scheme FC ensures that the commitment and decommitment can be simulated together using just
the message. However, this is insufficient for achieving semi-malicious security, as the simulator
must simulate commitments in the first round with no information. To overcome this problem, we
strengthen the simulatability of FC to equivocability, that is, simulation takes the following two steps:
First, a commitment c̃ is simulated with no information, and later it is equivocated to open to any
output m w.r.t. any circuit G. Instantiating our 2-round MPC protocols with such an equivocal
functional commitment scheme, and other primitives that are semi-maliciously secure (e.g., using
a semi-maliciously secure multi-round MPC protocol, and 2-round OT protocol), naturally “lift”
semi-honest security to semi-malicious security.

With a simple idea, we can transform any simulatable functional commitment scheme FC into
an equivocal one eFC: Let (OT1,OT2) be the sender and receiver’s algorithms of a 2-out-of-1 OT
scheme.

• To commit to v, generate a FC commitment c to v, and then commit to each bit ci twice using
the algorithm OT1, yielding the eFC commitment:

ec = {ot1[i, 0] = OT1(ci; r[i, 0]), ot1[i, 1] = OT1(ci; r[i, 1])}i .

• An eFC decommitment (ed,G(v)) to (ec,G) contains the FC decommitment (d,G(v)) to (c,G),
and the OT randomness {r[i, ci]} for generating the set of first flows {ot1[i, ci]} selected by c.
Note that for any ec generated according to the above commitment algorithm, the revealed
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OT randomness determines the commitment c, and then the FC decommitment d determines
the output G(v).

• Now, a commitment can be simulated by committing to both 0 and 1 in ec,

ẽc = {ot1[i, 0] = OT1(0; r[i, 0]), ot1[i, 1] = OT1(1; r[i, 1])}i .

To decommit ẽc to output G(v), first simulate the FC commitment and decommitment (c̃, d̃)
together using G(v), and then reveal the set of randomness {r[i, c̃i]} selected according to the
simulated commitment c̃.

The WS scheme associated with eFC can be constructed similarly as that for FC. The above idea
is conceptually simple, but leads to nested calls of pOT1 / OT1, as a FC commitment c already
contains OT first flows. This is not a problem when using 2-round OT protocols, but does not
extend to using multi-round OT. In Section 8, we present a more involved construction that avoids
nested calls.

Malicious Security in the CRS Model. Given 2-round semi-maliciously secure protocols, in
the CRS model, we can let each party prove using NIZK that each message is generated in a
semi-malicious way (i.e., according to the protocol w.r.t. some input and random tape) as done
in [AJL+12], which immediately gives Corollary 1.3 in the introduction. We refer the reader
to [AJL+12] for more details.

Extension to k Rounds. Our 2-round semi-honest or semi-malicious constructions so far can
be extended to k-round constructions, when replacing the underlying 2-round OT protocols with
semi-honest or semi-malicious k-round OT protocols. See Section 9 for more details.

2.7 Malicious Security in the Plain Model

From General (k − 1)-Round Delayed-Semi-Malicious MPC: We first show a new compilation
that turns any (k − 1)-round MPC protocol for computing f satisfying a stronger variant of semi-
malicious security, called delayed-semi-malicious security, into a k-round malicious MPC protocol
for f , assuming only one-way functions, for any k ≥ 5. Roughly speaking, a delayed-semi-malicious
party Pj acts like a semi-malicious party, except that, it only “explains” all its messages once, before
the last round (instead of explaining each of its messages after each round). This is formalized by
letting Pj output a pair of input and random tape before the last round (on its special witness
tape) which is required to be consistent with all Pj ’s messages. We say that a protocol is delayed-
semi-malicious secure if it is secure against such adversaries. (For technical reasons, we require
the protocols to have a universal simulator.) We observe that our k-round semi-malicious MPC
protocols, when instantiated with a k-round delayed-semi-malicious OT become secure against
delayed semi-malicious attackers (and admit a universal simulator).

To “lift” delayed-semi-malicious security to malicious security generically, our compilation builds
on techniques of [ACJ17]. To illustrate the idea, consider compiling our 2-round delayed-semi-
malicious MPC protocol Φ for f into a 5-round malicious MPC protocol Π for f . The basic idea
is running Φ for computing f , and restricting a malicious adversary A to act as a delayed-semi-
malicious one A′ by requiring A to prove using zero-knowledge proof of knowledge (ZKPOK) that
its messages in each round of Φ are generated correctly according to some input and random tape.
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Unlike the CRS model, ZKPOK in the plain model requires at least 4 rounds. Sequentializing
the two ZKPOK leads to a 8-round protocol. But if the ZKPOK allows for delayed-input, that is,
only the last prover’s message depends on the statement and witness, then the two ZKPOK can
be partially parallelized, leading to a 5-round protocol. In addition, in order to prevent mauling
attacks, the ZKPOK must be non-malleable. Fortunately, Ciampi, Ostrovsky, Siniscalchi, and
Visconti [COSV17] (COSV) recently constructed a 4-round delayed-input non-malleable ZKPOK
protocol from one-way functions, which suffice for our purpose. When starting from a 4-round
(instead of 2-round) protocol Φ, to obtain a 5-round malicious protocol Π, we cannot afford to
prove correctness of each round. But, if Φ is delayed-semi-malicious secure, then it suffices to prove
correctness only at the last two rounds, keeping the round complexity at 5.

Though the high-level ideas are simple, there are subtleties in the construction and proof. We
cannot use the non-malleable ZKPOK in a black-box. This is because simulation of non-malleable
ZKPOK uses rewindings and may render the Φ instance running in parallel insecure. In addition,
the COSV non-malleable ZKPOK is only many-many non-malleable in the synchronous setting, but
in Π, the non-malleable ZKPOKs are not completely synchronized (ending either at the second last
or the last round). Therefore, we use the COSV construction in a non-black-box way in Π (with
some simplification) as done in [ACJ17]. The specific property of COSV non-malleable ZKPOK that
we rely on is that simulation requires only rewinding the second and third rounds, while (witness)
extraction requires only rewinding the third and forth rounds. This means Φ would be rewound at
second/third and third/fourth rounds. The security of a generic delayed-semi-malicious protocol
may not hold amid such rewinding. However, if we start with a 4-round protocol, rewindings can be
circumvented if Π contains no messages of Φ in its third round. This means, in the rewindings of
second/third and third/fourth rounds, the simulator can simply replay messages of Φ in the main
thread, keeping the instance of Φ secure. See Section 10.3 for more details.
From Our Specific k-Round Delayed-Semi-Malicious MPC: The above transformation is
modular and general, but comes at a price — it only gives k-round malicious MPC from (k − 1)-
round delayed-semi-malicious OT, which is not necessary. To eliminate the gap, we leverage specific
structures of our k-round delayed-semi-malicious protocols, to address the rewinding issue above.
To illustrate the ideas, lets again examine the k = 5 case.

• To handle rewindings at third/fourth rounds, we observe that at the end of fourth round, each
party Pi proves using COSV non-malleable ZK that it has acted honestly in Φ according to
some input and random tape (xi, ri). If in the malicious protocol Π, each party additionally
commits to (xi, ri) in the first two rounds using a statistically binding commitment scheme
(and prove that its messages are generated honestly using the committed value). Then, as long
as the adversary cannot cheat in the non-malleable ZK proofs, its messages in the third/fourth
rounds of Φ are determined by the commitments in the first two rounds. Therefore, the
simulator can afford to continuously rewinding the adversary, until it repeats its messages in Φ
in the main execution thread. In this case, the simulator can simply replay the honest parties’
messages in Φ in the main thread.

• To handle rewindings at second/third rounds, the specific property of our protocol that we
rely on is that the first 2 rounds of Φ contains only instances of OT, whose messages do not
depend on parties’ inputs. The latter holds because of the random self-reducibility of OT
(hence, the sender and receiver can only use their inputs for generating their last messages).
To avoid rewinding these OT instances in Φ, our idea is modifying the malicious protocol Π
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as follows: In the first 2 rounds, for every OT instance OTj in Φ, Π runs two independent
OT instances OT0

j and OT1
j . In the third round, an random instance OTbjj for bj ← {0, 1}

is chosen to be continued, and the other OT1−bj
j aborted — they are referred to as the real

and shadow instances. Now in a rewinding of the second/third round, to avoid rewinding
the real OT instances, the simulator replays the OT messages in the second round, and in
the third round, continues the shadow instances OT1−bj

j and aborts the real instances OTbjj .
Importantly, since for every pair (OT0

j ,OT1
j ), the choice bj of which is real and which is shadow

is random and independent, the view of the adversary in a rewinding is identical to that in
the main execution thread. This guarantees that rewindings would succeed.
We remark that this idea does not apply in general. This is because to continue a random
instance of a general protocol Φ in the third round, parties may need to agree on that instance,
which requires coin-tossing. In contrast, our protocol Φ consists of many OT instances OTj ,
the decision of which of (OT0

j ,OT1
j ) to continue can be made locally by the party who is

supposed to send the third message of OTj in Φ.

In Section 10.4, we put the above two ideas together, which gives k-round malicious OT from
k-round delayed-semi-malicious OT.

Summary of results is provided in Fig. 3.

2.8 Related Works

We compare with prior related works [GLS15,GS17,CDG+17,DG17], and briefly discuss how they
can be rephrased as applying garbled interactive circuits. Discussion below is at a very high level.

• Gordon, Liu, and Shi [GLS15] constructed 2-round MPC protocols from general purpose
witness encryption and NIZK. Their technique can be viewed as using garbled circuits and
general-purpose witness encryption to implement garbled interactive circuits with statistically
binding transcripts. As discussed above, to use the latter to collapse rounds of multi-round
MPC protocols, the MPC messages must be statistically unique, and the witness encryption
must be powerful enough to verify the correctness of messages in order to “translate” correct
messages into appropriate keys. The former is achieved by letting players commit to their
secret input and randomness using a statistically binding commitment, while the latter is
achieved using general purpose witness encryption to verify NIZK proofs of the correctness of
messages. As a result their assumptions are significantly stronger than ours.

• Garg and Srinivasan [GS17] showed how to instantiate the approach of Gordon, Liu, and
Shi [GLS15] with a special-purpose witness encryption for a specific language, which can
be implemented using bilinear pairing groups. Instead of using generic statistically binding
commitments and NIZK, they employed homomorphic proof commitments proposed by Groth,
Ostrovsky, and Sahai [GOS06] for constructing NIZK proofs based on bilinear maps. Such
commitments are additively homomorphic, and admits zero-knowledge proofs for statements
that c1, c2, c3 commits to bits x1, x2, x3 s.t. x3 = x1 NAND x2. By implementing a witness
encryption scheme for a specific language w.r.t. homomorphic proof commitments, they enable
constructing garbled interactive circuits that can verify the correctness of a message by
verifying its computation “NAND by NAND.” The homomorphic proof commitments heavily

19



2-round
semi-honest

OT
FC with WS

§7 GIC
for oracle OFC

§6 2-round
semi-honest

MPC

§5

2-round
semi-malicious

OT

semi-malicious
equivocable
FC with WS

§8.3 GIC
for oracle OFC

§6 2-round
semi-malicious

MPC

§8.2 2-round
malicious

MPC (CRS)

[AJL+12]

k-round
semi-honest

OT

k-round
FC with

des.-enc. WS

§9.1.3 des.-enc. GIC
for oracle OFC

§6/
§9.1.2

k-round
semi-honest

MPC

§9.1.4

k-round
semi-malicious

OT

k-round sm
equiv. FC with
des.-enc. WS

§9.2 des.-enc. GIC
for oracle OFC

§6/
§9.1.2

k-round
semi-malicious

MPC

§9.2 k-round
malicious

MPC (CRS)

[AJL+12]

k-round
malicious

OT

k-round dsm
equiv. FC with
des.-enc. WS

§10.1 des.-enc. GIC
for oracle OFC

§6/
§9.1.2

k-round
dsm
MPC

§10.2

(k + 1)-round
malicious
MPC

§10.3
k≥4

(generic)

k-round
malicious
MPC

§10.4
k≥5

• “des.-enc. WS/GIC” stands for “designated-encryptor WS/GIC”, which is an extension of WS/GIC where the
encryptor/garbler is allowed to have some extra information.

• “sm equiv. FC” stands for “semi-malicious equivocable FC”.
• “dsm” stands for “delayed-semi-malicious”.
• “dsm equiv. FC” stands for “delayed-semi-malicious equivocable FC”.

Figure 3: Summary of results

exploits the algebraic structure of bilinear maps, whereas in this work we rely on the weaker
general assumption of OT.
Garg and Srinivasan defined the beautiful notion of garbled protocols, which generalize the
classical garbled circuits to the setting of protocols. Roughly speaking, each party in a
protocol Π can independently and locally garble their inputs and next step functions, so that,
when all input encodings, garbled next step functions and their appropriate input labels are
collected, one can obtain the transcript of the protocol Π when executed with the plain inputs,
and nothing else. The abstraction of garbled protocol is at a level higher than our garbled
interactive circuits, which focuses on a single interactive circuits that may or may not a part
of protocol. In particular, the latter can be used to implement the former. Working at a
lower abstraction level has the benefit of wider applicability, as we illustrate below, garbled
interactive circuits can be used to “explain” the ideas in recent constructions of laconic OT
and IBE, which has nothing to do with protocols. It also provides more flexibility: Our
construction in the 2-round setting, can be easily extended to the multi-round setting. Lastly,
to the best of our knowledge, this is the first definition of garbling, where the information
revealed is computationally, rather than, statistically unique, which allowed us to work with
OT that only computationally binds receiver’s inputs. This computational perspective may

20



be interesting to other applications.

• Garg et al. [CDG+17] constructed laconic OT from DDH in the CRS model, which allows a
receiver to commit to a large input D (of length M) via a short message. Subsequently, a
single short message by a sender allows the receiver to learn mD[i], where the messages m0,
m1 and the location i ∈ [M ] are dynamically chosen by the sender. In their construction, the
receiver’s message is simply the root h of a Merkle hash tree over D. To enable the receiver to
recover mD[i], the sender essentially sends a garbled interactive circuit îC that has h, i,m0,m1
hardcoded inside, and interacts with a de-hashing oracle O that on input a hash h′ returns a
pre-image of h′. By interacting with O, îC can verify that the i’th bit of D is indeed D[i] and
then reveal only mD[i] as its output.

• Döttling and Garg [DG17] constructed Identity-Based Encryption (IBE) and Hierarchical
Identity-Based Encryption (HIBE) from CDH or factoring. In IBE, a secret key skid is
associated with an identity id ∈ {0, 1}n, as well as a ciphertext ctid. Decrypting a ciphertext
ctid with the matching secret key skid reveals the encrypted message m. Otherwise, the
message remains hidden, even to an adversary that has obtained keys for adaptively chosen
identities different from id. In an inefficient version of their construction, the setup algorithm
samples 2n public secret key pairs {p̄kid, s̄kid}id∈{0,1}n of a basic public key encryption scheme,
and outputs a master public key mpk that is the root h of a Merkle hash tree over the 2n
public keys {pkid}. A ciphertext of m with id is a garbled interactive circuit îC that has
h, id,m hardcoded in and interacts with a de-hash oracle O. By interacting with O, îC can
verify that the i’th public key is indeed pkid and outputs an encryption of m under pkid. A
secret key skid contains the hash values of the nodes on the path from the root to the leaf p̄kid,
and their siblings, together with the secret key s̄kid. Using the hash values, the decryptor
can evaluate îC, and then decrypt the output ciphertext of m using skid. So far, the setup
algorithm runs in exponential time. To make the scheme efficient, Döttling and Garg used a
hash function that is equivocable, so that the scheme does not need to generate the entire
Merkle tree at setup, but can “equivocate” the path to each pkid at key generation time
efficiently.

3 Preliminaries
The security parameter is denoted λ. We recall the notion of polynomial-size circuit classes and
families, together with the notion of statistical and computational indistinguishability in Section 3.1.

For the sake of simplicity, we suppose that all circuits in a circuit class have the same input
and output lengths. This can be achieved without loss of generality using appropriate paddings.
We recall that for any S-size circuit class C = {Cλ}λ∈N, there exists a universal poly(S)-size circuit
family {Uλ}λ∈N such that for any λ ∈ N, any circuit C ∈ Cλ with input and output lengths n, l, and
any input x ∈ {0, 1}n, Uλ(C, x) = C(x).

3.1 Circuit Classes and Indistinguishability

Circuit Classes and Families: We recall the definitions of circuit classes and families.
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Definition 3.1 (Class of S-Size Circuits). Let S be a function from N to N, a S-size circuit class is
a family of sets C = {Cλ}λ∈N of circuits, satisfying that every circuit C ∈ Cλ has size at most S(λ).
A poly-size circuit class is a S-size circuit class for some polynomial S.

Let n and l be functions from N to N. We say that C has input and/or output length n and l, if
every circuit C ∈ Cλ has input and/or output length n(λ) and l(λ).

For the sake of simplicity, we suppose that all circuits in Cλ have the same input and output
lengths. This can be achieved without loss of generality using appropriate paddings.
Statistical and Computational Indistinguishability: A function negl : N→ N is negligible if
for any polynomial p : N→ N, for any large enough λ ∈ N, negl(λ) < 1/p(λ).

Definition 3.2 (Indistinguishability). Let S = {Sλ}λ∈N be an ensemble of subsets of {0, 1}∗,
where every element in set Sλ has length poly(λ). Then ensembles X = {Xλ,w}λ∈N,w∈Sλ and
Y = {Yλ,w}λ∈N,w∈Sλ are statistically (resp., computationally) indistinguishable, denoted as X ≈s Y
(resp., X ≈ Y ), if for any arbitrary-size (resp., polynomial-size) circuit family D = {Dλ}λ∈N and
any polynomial-size sequence of index {wλ ∈ S}λ∈N, there exists a negligible function negl such
that, for every λ ∈ N,

|Pr [Dλ(wλ, Xλ,wλ) = 1]− Pr [Dλ(wλ, Yλ,wλ) = 1]| ≤ negl(λ) .

Two statistically indistinguishable ensembles are also said to be statistically close.

3.2 Garbled Circuit

Definition 3.3 (Garbled Circuit). Let C = {Cλ}λ∈N be a poly-size circuit class with input and
output lengths n and l. A garbled circuit scheme GC for C is a tuple of four polynomial-time
algorithms GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim):

Input Labels Generation: key R← GC.Gen(1λ) generates input labels key = {key[i, b]}i∈[n],b∈{0,1}
(with key[i, b] ∈ {0, 1}κ being the input label corresponding to the value b of the i-th input
wire) for the security parameter λ, input length n, and input label length κ;

Circuit Garbling: Ĉ R← GC.Garble(key, C) garbles the circuit C ∈ Cλ into Ĉ;

Evaluation: y = GC.Eval(Ĉ, key′) evaluates the garbled circuit GC.Garble using input labels key′ =
{key′[i]}i∈[n] (where key′[i] ∈ {0, 1}κ) and returns the output y ∈ {0, 1}l;

Simulation: (key′, C̃) R← GC.Sim(1λ, y) simulates input labels key′ = {key′[i]}i∈[n] and a garbled
circuit C̃ for the security parameter λ and the output y ∈ {0, 1}l;

satisfying the following security properties:

Correctness: For any security parameter λ ∈ N, for any circuit C ∈ Cλ, for any input x ∈ {0, 1}n,
for any key in the image of GC.Gen(1λ) and any Ĉ in the image of GC.Garble(key, C):

GC.Eval(Ĉ, {key[i, xi]}i∈[n]) = C(x) .
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Simulatability: The following two distributions are computationally indistinguishable:{
({key[i, xi]}i∈[n], Ĉ) : key R← GC.Gen(1λ);

Ĉ R← GC.Garble(key, C)

}
λ,C∈Cλ,x∈{0,1}n

,

{
(key′, Ĉ) : (key′, C) R← GC.Sim(1λ, C(x))

}
λ,C∈Cλ,x∈{0,1}n

.

We recall that garbled circuit schemes can be constructed from one-way functions.
For the sake of simplicity, if x ∈ {0, 1}n and key = {key[i, b]}i∈[n],b∈{0,1}, we define key[x] =

{key[i, xi]}i∈[n]. We extend this notation when the input is a tuple: for example, if x = (u, v) ∈
{0, 1}n1 × {0, 1}n2 , we define key[u] = {key[i, ui]}i∈[n1] and key[v] = {key[n1 + i, vi]}i∈[n2]. We
also abuse notation and define key[[u]] (resp., key[[v]]) to be the 2n1 (resp., 2n2) input labels
corresponding to the input wires for u and v: key[[u]] = {key[i, b]}i∈[n1],b∈{0,1} and key[[v]] =
{key[n1 + i, b]}i∈[n2],b∈{0,1}. This notation is also used for key′ = {key[i]}i∈[n]: key′[[u]] = {key′[i]}i∈[n1]
and key′[[v]] = {key′[n1 + i]}i∈[n2].

3.3 Multiparty Computation Protocols

We recall the definition of semi-honest multi-party computation (MPC) protocols essentially
from [Gol04].

3.3.1 Syntax

Definition 3.4 (Functionality). Let N be a positive integer. An N -party functionality f is a
deterministic function from ⋃

κ∈N ({0, 1}κ)N to ({0, 1}∗)N .

For any i ∈ [N ], we write fi(x̄) the i-th element of the output tuple of f on input x̄ ∈⋃
κ∈N ({0, 1}κ)N . For any I ⊆ [N ], we write fI(x̄) = {fi(x̄)}i∈I . Similarly, x̄I = {xi}i∈I .
We consider MPC protocols where at each round `, each party Pi broadcasts a message m`

i to
all the other parties.

Definition 3.5 (MPC Protocol). Let N be a positive integer, L = L(λ) a polynomial in the security
parameter, and f an N -party functionality. An L-round MPC protocol Π for f is a tuple of two
deterministic polynomial-time algorithms Π = (Next,Output):

Next Message: m`
i = Nexti(1λ, xi, ri, m̄<`) is the message broadcasted by party Pi for i ∈ [N ]

in round ` ∈ [L], on input xi ∈ {0, 1}κ, on random tape ri ∈ {0, 1}R, after receiving the
messages m̄<` = {m`′

j }j∈[N ],`′<`, where m
`′
j is the message broadcasted by party Pj on round

`′ ∈ [`− 1], and where the input length κ and random tape length R are polynomial in the
security parameter λ;

Output: yi = Outputi(1λ, xi, ri, m̄) is the output of party Pi for i ∈ [N ], on input xi ∈ {0, 1}κ, on
random tape ri ∈ {0, 1}R, after receiving the messages m̄ = {m`

j}j∈[N ],`∈[L] as defined above;

satisfying the following property:
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Correctness: For any security parameter λ ∈ N, for any inputs (x1, . . . , xN ) ∈ ({0, 1}κ)N ,

Pr
[ {

Outputi(1λ, xi, ri, m̄)
}
i∈[N ]

6= f(x1, . . . , xN ) : r̄ R← ({0, 1}R)N
]

= 0 ,

where m`
i = Nexti(1λ, xi, ri, m̄<`) for i ∈ [N ] and ` ∈ [L].

Definition 3.6 (View and Output). Let N be a positive integer. Let f be an N -party functionality.
Let Π = (Next,Output) be an MPC protocol for f . Let I ⊆ [N ].

• The view of parties {Pi}i∈I during an execution of Π with security parameter λ, input length
κ, inputs x̄ = (x1, . . . , xN ) ∈ ({0, 1}κ)N , random tapes r̄ = (r1, . . . , rN ) ∈ ({0, 1}R)N is:

ViewI(1λ, x̄, r̄) = (x̄i, r̄I , m̄) ,

where m̄ is defined as in Definition 3.5.

• The output of the protocol for the parties {Pi}i∈I is:

OutputI(x̄, r̄) = {yi}i∈I ,

where yi = Outputi(1λ, xi, ri, m̄).

In the sequel, the unary representation 1λ of the security parameter λ is often omitted from the
parameters of Next, Output, and View to simplify notation.

3.3.2 Security against Semi-Honest Adversaries

Definition 3.7 (Security against Semi-Honest Adversaries). Let N be a positive integer. Let f be
an N -party functionality. Let Π be an MPC protocol for f . Then Π is secure against semi-honest
adversaries if there exists a probabilistic polynomial-time algorithm Sim such that for the following
two distributions are computationally indistinguishable:{(

ViewI(1λ, x̄, r̄), OutputI(x̄, r̄)
)

: r̄ R← ({0, 1}R)N
}
λ,I⊆[N ],x̄

,{(
Sim(1λ, I, x̄I , fI(x̄)), fI(x̄)

)}
λ,I⊆[N ],x̄

.

3.3.3 Security against Malicious Adversaries

We now recall the notion of security against malicious adversary. We focus on the case with static
corruptions and security with abortion. We also recall that we assume that parties have access to a
simultaneous broadcast channel.

We first need to define the notions of ideal execution IdealI,Sim(1λ, x̄) against a simulator Sim
simulating malicious parties {Pi}i∈I and of real execution RealI,A(1λ, x̄) against an adversary A
playing the roles of malicious parties {Pi}i∈I . Simulators Sim are defined as non-uniform expected-
poly-time interactive Turing machines while adversaries A are defined as non-uniform poly-time
interactive Turing machines.
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Ideal Execution. IdealI,Sim(1λ, x̄) is defined by playing the following game with the simulator
Sim:

1. The simulator is given I and x̄I .

2. The simulator chooses a vector x̄′I = {x̄′i}i∈I intuitively corresponding to the extracted inputs
of the malicious parties. We set x′i = xi for i ∈ Ī, where Ī = [N ] \ I corresponds to the set of
honest parties. As usual, x̄′ = {x̄′i}i∈[N ].

3. The simulator is given fI(x̄′).

4. The simulator can then decide to abort or proceed. If it aborts, we set ȳĪ = (⊥, . . . ,⊥),
otherwise, we set ȳĪ = fĪ(x̄′).

5. IdealI,Sim(1λ, x̄) is defined as (ȳĪ , z) where z is the output of the simulator.

Real Execution. RealI,A(1λ, x̄) is defined by running the MPC protocol where the adversary A
controls the malicious parties {Pi}i∈I while the honest parties {Pi}i∈Ī follow the protocol. It is
then defined as the pair (ȳĪ , z), where ȳĪ is the vector of outputs of the honest parties while z is
the output of the adversary. The adversary can be rushing: in each round, it can wait for all the
messages from the honest parties before sending its own messages.

Definition 3.8 (Malicious Security). Let N be a positive integer. Let f be an N -party functionality.
Let Π be an MPC protocol for f . Then Π is secure against malicious adversaries if for any non-
uniform poly-time interactive Turing machine A, there exists a non-uniform expected-poly-time
interactive Turing machine Sim = {Simλ}λ∈N such that:

{IdealI,Sim(1λ, x̄)}λ,I,x̄ ≈ {RealI,A(1λ, x̄)}λ,I,x̄ .

3.3.4 Security against Semi-Malicious Adversaries

A semi-malicious adversary [AJL+12] A is similar to a malicious adversary, except that after each
round, it has to write on a special witness tape, pairs (xi, ri) of input xi and randomness ri explaining
all the messages of the malicious party Pi, for each i ∈ I. The witnesses given in each round do not
need to be consistent, and the adversary is rushing: in each round, it can choose its message and
witness (xi, ri) after having seen the messages of the other parties.

More formally, we define RealsmI,A(1λ, x̄) as RealI,A(1λ, x̄) except that if at some round ` one
witness is invalid, then honest parties all abort (do not send any more messages) and output ⊥.

Definition 3.9 (Semi-Malicious Security). Let N be a positive integer. Let f be an N -party
functionality. Let Π be an MPC protocol for f . Then Π is secure against malicious adversaries if
for any non-uniform poly-time interactive Turing machine A (with an extra witness tape), there
exists a non-uniform poly-time interactive Turing machine Sim such that:

{IdealI,Sim(1λ, x̄)}λ,I,x̄ ≈ {RealsmI,A(1λ, x̄)}
λ,I,x̄

.
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3.3.5 Delayed-Semi-Malicious Security

Haitner [Hai08] introduced the notion of defensible security for constructing malicious OT from
semi-honest OT in a black-box way. In his definition, a defensible adversary is one that outputs
at the end of the protocol execution a “defense,” which is a pair of input and randomness, and
is valid if an honest player with this pair of input and randomness would produce exactly the
same messages as what the adversary has sent. In other words, a defensible adversary is like a
semi-malicious adversary, except that it only needs to provide a witness (as defined above) at the
end of the execution. Haitner then gave an indistinguishability-based definition of OT privacy
against defensible adversaries.

In this work, we consider a variant of defensible adversaries, called delayed-semi-malicious who
are required to provide a witness in the second last round, and security only holds if this witness
explains the messages of the corrupted players in all rounds. Furthermore, we define simulation-based
security against these adversaries with a universal simulator that can simulate the view of the
adversaries by interacting them as black-box in a straight-line. In slightly more detail,
• The real world is defined identically as the real world for semi-malicious security, except that,

the adversary A is only required to provide a witness in the second last round, that is, round
L − 1. If the witness is invalid w.r.t. messages of the corrupted players in the first L − 1
rounds, then honest parties all abort (do not send any more messages) and output ⊥ after
round L− 1. In addition, if the witness is invalid w.r.t. messages of the corrupted parties in
the last round L, then honest parties again output ⊥. Realdef

I,A(1λ, x̄) denotes the outputs of
honest players and the adversary.

• The ideal world is defined identically as the ideal world for semi-malicious security, except that,
the universal simulator Sim on input (1λ, I) interacts with adversary A (as a black-box) in a
straight line, and receives the witness that A outputs after round L− 1. IdealI,Sim↔A(1λ, x̄)
denotes the output of honest players and Sim.

Definition 3.10. Let N be a positive integer. Let f be an N -party functionality. Let Π be an
MPC protocol for f . Then Π is delayed-semi-maliciously secure if there exists a non-uniform
expected-poly-time interactive Turing machine Sim, such that, for every non-uniform poly-time
interactive Turing machine A:

{IdealI,Sim↔A(1λ, x̄)}λ,I ≈ {Realdef
I,A(1λ, x̄)}

λ,I,x̄
.

4 Definition of Garbled Interactive Circuit Schemes
In this section, we define Garbled Interactive Circuit (GIC) schemes. An overview is provided in
Section Section 2.2.

4.1 Interactive Circuits

We start by defining non-deterministic oracles and interactive circuits.
Definition 4.1 (Non-Deterministic Oracles). A non-deterministic oracle O is a circuit that takes
as input a pair of bitstrings (q, w) ∈ {0, 1}n×{0, 1}m, called query and witness respectively, and the
output is a l-bit string or a special element ⊥, called answer : O(q, w) ∈ {0, 1}l ∪ {⊥}. A poly-size
non-deterministic oracle family is an ensemble of poly-size non-deterministic oracles O = {Oλ}λ∈N .
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Definition 4.2. Let O be a non-deterministic oracle. An L-round interactive circuit iC = {iC`}`∈[L]
with oracle O consists of a list of L next-step circuits.

Execution of iC with O on Witnesses w̄: An execution of iC with O and a list of witnesses
w̄ = {w̄`}`∈[L] proceeds in L iterations as follows: In round ` ∈ [L], the next-step circuit iC`

on input the state st`−1 (output in the previous round) and answers ā`−1 = {a`−1
k }k (to queries

q̄`−1 = {q`−1
k }k produced in the previous round), outputs a new state st`, queries q̄` = {q`k}k, and a

(round) output o`,

(st`, q̄`, o`) =
{

iC`(st`−1, ā`−1) if ∀k, a`−1
k = O(q`−1

k , w`−1
k ) 6= ⊥

(⊥,⊥,⊥) otherwise
.

The execution terminates after L rounds, or whenever ⊥ is output. By convention, st0 and q̄0 are
empty strings.

We say that an execution is valid if it terminates after L rounds without outputting ⊥. We
call the list of witnesses w̄ the witnesses of the execution. The output of the execution is the list
of round outputs, denoted as out(iC,O, w̄) = ō = {o`}`∈[L]. The transcript of the execution is the
list of queries, answers, and outputs, denoted as trans(iC,O, w̄) = {q̄`, ā`, o`}`∈[L]. (If the execution
outputs ⊥ in round `, q̄`′ = ā`

′ = o`
′ = ⊥ for all `′ ≥ `.) Finally, we say that iC has size S if the

total size of all circuits are bounded by S. In the rest of the paper, when the oracle O is clear from
the context, we often omit it in the notations and write out(iC, w̄) and trans(iC, w̄).

4.2 Garbling Interactive Circuits

As mentioned above, an important difference between GIC schemes and classical garbled circuit
schemes is that to evaluate a garbled (plain) circuit, one must obtain encoded inputs, whereas a
garble interactive circuit can be evaluated with its oracle O on input an arbitrary list of witnesses,
without encoding. This provides a more powerful functionality, but poses an issue on security:
There may exist different lists of witnesses w̄, w̄′ that lead to executions with completely different
transcripts. In this case, it is unclear how simulation can be done. To circumvent this, we only
require the security of the garbling scheme to hold for distributions iD of interactive circuits iC and
witnesses w̄ (with potentially some auxiliary information aux) that have computationally unique
transcripts trans(iC,O, w̄), in the sense that (given aux) it is hard to find another list of witnesses
w̄′ that leads to an inconsistent transcript trans(iC,O, w̄), where inconsistency means:

Definition 4.3 (Consistent Transcripts). We say that two transcripts {q̄`, ā`, o`}`∈[L] and {q̄′`, ā′`, o′`}`∈[L]
are consistent if for every ` ∈ [L], (q̄`, ā`, o`) = (q̄′`, ā′`, o′`), or one of them is (⊥,⊥,⊥). Otherwise,
we say that the two transcripts are inconsistent.

Note that one can always produce a list of invalid witnesses that lead to an invalid execution.
Therefore, difference due to outputting ⊥ does not count as inconsistency. Next, we formally define
these distributions that produce unique transcripts.

Definition 4.4 (Unique-Transcript Distribution). Let O = {Oλ}λ∈N be a non-deterministic oracle
family. Let iD = {iDλ,id}λ∈N,id be an ensemble of efficiently samplable distributions over tuples
(iC, w̄, aux). We say that iD is a (computationally) unique-transcript distribution for O, if
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Valid Execution: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), and any (iC, w̄, aux) in the support
of iDλ,id, the execution of iC with Oλ and w̄ is valid.

Computationally Unique Transcript: For any poly-size circuit family A = {Aλ}λ, any sequence
of indices {idλ}λ, there is a negligible function negl, such that for any λ:

Pr
[
trans(iC,Oλ, w̄′) and trans(iC,Oλ, w̄) are inconsistent :

(iC, w̄, aux) R← iDλ,idλ ; w̄′ R← Aλ(iC, w̄, aux)
]
≤ negl(λ) .

It is a statistically unique-transcript distribution if the second property holds for any arbitrary-size
circuit family A = {Aλ}λ.

Now, we are ready to define GIC schemes.

Definition 4.5 (Garbled Interactive Circuit Schemes). Let O = {Oλ}λ∈N be a non-deterministic
oracle family, and iD = {iDλ,id}λ∈N,id be a unique-transcript distribution for O. A garbled interactive
circuit scheme for (O, iD) is a tuple of three polynomial-time algorithms GiC = (GiC.Garble,GiC.Eval,
GiC.Sim):

Garbling: îC R← GiC.Garble(1λ, iC) garbles an interactive circuit iC into a garbled interactive
circuit îC;

Evaluation: o` = GiC.Eval(îC, w̄<`) evaluates a garbled interactive circuit îC with a partial list of
witness w̄<`, and outputs the `-th round output o`;

Simulation: ĩC R← GiC.Sim(1λ, T ) simulates a garbled circuit ĩC from a transcript T of an execution;

satisfying the following properties:

Correctness: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), any (iC, w̄, aux) in the support of iDλ,id,
it holds that

Pr
[
{GiC.Eval(îC, w̄<`)}`∈[L] = out(iC,Oλ, w̄) : îC R← GiC.Garble(1λ, iC)

]
= 1 ;

Simulatability: The following two distributions are computationally indistinguishable:{
(iC, w̄, aux, îC) : (iC, w̄, aux) R← iDλ,id;

îC R← GiC.Garble(1λ, iC)

}
λ,id

,

{
(iC, w̄, aux, ĩC) : (iC, w̄, aux) R← iDλ,id;

ĩC R← GiC.Sim(1λ, trans(iC,Oλ, w̄))

}
λ,id

.

Remark 4.6. In this paper, we always consider perfect correctness for all primitives for the sake
of simplicity. We could relax this notion to correctness up to a negligible error probability if, in
addition, we ask that no non-uniform poly-time adversary can generate inputs and randomness
which would not satisfy the correctness property, with non-negligible probability. In other words, in
the case of GIC schemes, semi-maliciously generated GIC should satisfy the correctness property
(except with negligible probability). This additional property is not needed for our semi-honest
constructions.
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Remark 4.7. Note that the above notion of garbled interactive circuit scheme is defined for a
non-deterministic oracle family and an associated unique-transcript distribution. We can also
consider a uniform version, where the oracle is defined to be a single non-deterministic uniform
algorithm. The uniform version would suffice for our application of constructing 2-round MPC
protocols. We however choose to define the non-uniform version since it is stronger, and fits better
with the garbling.

5 2-Round Semi-Honest MPC Protocols
In this section, we present our construction of 2-round semi-honest MPC protocols. For that purpose,
we first introduce the notion of functional commitment. We then show the MPC construction.

5.1 New Tool: Functional Commitment

Definition 5.1 ((Zero-Knowledge) Functional Commitment). Let G = {Gλ}λ∈N be a poly-size circuit
class. A (zero-knowledge) functional commitment scheme FC for G is a tuple of four polynomial-time
algorithms FC = (FC.Com,FC.FOpen,FC.FVer,FC.Sim):

Commitment: c = FC.Com(1λ, v; ρ) generates a commitment c of v ∈ {0, 1}n using random tape
ρ ∈ {0, 1}τ , for the security parameter λ, where the random tape length τ is polynomial in λ;

Functional Opening: d = FC.FOpen(c,G, v, ρ) derives from the commitment c and the random
tape ρ used to generate it, a functional decommitment d of c to y = G(v) for G ∈ Gλ;

Functional Verification: b = FC.FVer(c,G, y, d) outputs b = 1 if d is a valid functional decom-
mitment of c to y for G ∈ Gλ; and outputs b = 0 otherwise;

Simulation: (c, d) R← FC.Sim(1λ, G, y) simulates a commitment c together with a functional de-
commitment d of c to y for G ∈ Gλ;

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any v ∈ {0, 1}n, for any circuit G ∈ Gλ, for
any ρ ∈ {0, 1}τ , it holds that if c = FC.Com(1λ, v; ρ), then:

FC.FVer(c,G,G(v),FC.FOpen(c,G, v, ρ)) = 1 ;

Semi-Honest Functional Binding: For any polynomial-time circuit family A = {Aλ}λ∈N, there
exists a negligible function negl, such that for any λ ∈ N, for any v ∈ {0, 1}n, for any circuit
G ∈ Gλ:

Pr
[
FC.FVer(c,G, y, d) = 1 and y 6= G(v) :

ρ R← {0, 1}τ ; c = FC.Com(1λ, v; ρ); (y, d) R← Aλ(1λ, c, v, ρ)
]
≤ negl(λ) ;

Simulatability: The following two distributions are computationally indistinguishable:{
(c, d) : ρ R← {0, 1}τ ; c R← FC.Com(1λ, v; ρ);

d = FC.FOpen(c,G, v, ρ)

}
λ,G,v

,{
(c, d) : (c, d) R← FC.Sim(1λ, G,G(v))

}
λ,G,v

.
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Note that the simulatability property implies the standard hiding property of commitments, if
each circuit class Gλ contains a constant circuit: Consider indeed any constant circuit C(x) = α, the
fact that (c, d) can be simulated from C and α implies that c hides the message committed inside.

Let us now define the non-deterministic oracle family associated to FC.

Definition 5.2. Let G = {Gλ}λ∈N be a poly-size circuit class. Let FC = (FC.Com,FC.FOpen,FC.FVer,
FC.Sim) be a functional commitment scheme for G. We define the following associated non-
deterministic oracle family OFC = {OFC

λ }λ∈N:

OFC
λ ((c,G), (y, d)) =

{
y if FC.FVer(c,G, y, d) = 1
⊥ otherwise;

5.2 Construction of 2-Round Semi-Honest MPC

Tools: Let f be an arbitrary N -party functionality.10 To construct a 2-round semi-honest MPC
protocol Π̃ for f , we rely on the following tools:

• A semi-honestly secure L-round MPC protocol Π = (Next,Output) for f . We will refer to this
protocol the “inner MPC protocol”.
Recall that Next is next message function that computes the message broadcasted by party Pi
in round `, m`

i = Nexti(xi, ri, m̄<`), on input xi and random tape ri, after receiving messages
m̄<` = {m`′

j }j∈[N ],`′<` broadcasted by parties Pj on previous rounds. And Output is the output
function that computes the output of party Pi, yi = Outputi(xi, ri, m̄), after receiving all the
messages m̄ = {m`

j}j∈[N ],`∈[L]. The security parameter λ is an implicit parameter 1λ of Next
and Output.

• A functional commitment scheme FC = (FC.Com,FC.FOpen,FC.FVer,FC.Sim) for the class
of all S-size circuits with a sufficiently large polynomial bound S. We denote by OFC the
associated non-deterministic oracle family defined in Definition 5.2.

• A garbled interactive circuit scheme GiC = (GiC.Garble,GiC.Eval) for the oracle OFC and the
unique-transcript distribution iD = {iDλ,id}λ∈N,id that we define later.

We will show that using the constructions in Sections 6 and 7, we can construct the two last tools
from 2-round (semi-honest) OT. With the above tools, our 2-round MPC protocol Π̃ = (Ñext, Õutput)
for f proceed as follows:
The First Round: Each party Pi computes its first message m̃1

i = Ñexti(xi, r̃i, ∅), using security
parameter λ, input xi, random tape r̃i, and no messages, as follows.

1. Take a sufficient long substring ri of r̃i as the random tape for running the inner MPC protocol
Π.

2. Commit L times to (xi, ri) using the functional commitment scheme FC: for ` ∈ [L], c`i =
FC.Com(1λ, (xi, ri); ρ`i), where all the ρ`i ’s (and ri) are non-overlapping substrings of r̃i.

10Formal definitions of MPC protocol and N -party functionality are provided in Section 3.3.
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3. Broadcast the first message m̃1
i = {c`i}`∈[L], and keep {ρ`i}`∈[L] secret.

The Second Round: Each party Pi computes its second message m̃2
i = Ñexti(xi, r̃i, {m̃1

j}j∈N ),
using all first messages {m̃1

j}j∈N as follows:

1. Garble the interactive circuit iCi = {iC`i}`∈[L] defined in Fig. 4:

îCi R← GiC.Garble(1λ, iCi) .

2. Broadcast the second message m̃2
i = îCi.

The Interactive Circuit iCi

Constants: 1λ, `, xi, ri, the `-th commitments c`j for each party Pj (part of the first
message m̃1

j ), and the randomness ρ`i used in commitment c`i .
Inputs: (st`−1, ā`−1) where for ` > 1:
• The state st`−1 = m̄<`−1 contains the inner MPC messages of the first `− 1 rounds.

• The answers a`j = m`−1
j are the answers of the non-deterministic oracle OFC to

the queries q`j = (c`−1
j , G`−1

j ), for j ∈ [N ], where the circuit G`−1
j is defined by

G`−1
j (?, ?) = Nextj(?, ?, m̄<`−1).

These inputs define m̄<`.
Procedure:

1. Define the circuit G`j as G`j(?, ?) = Nextj(?, ?, m̄<`), for j ∈ [N ].

2. Compute the `-th message of Pi in the inner MPC:
m`
i = Nexti

(
xi, ri, m̄

<`
)
.

3. Compute the associated functional decommitment of c`i :
d`i = FC.FOpen(c`i , G`i , (xi, ri), ρ`i).

4. Compute the next queries: for every j ∈ [N ], q`j = (c`j , G`j).

5. Define the next state to be st` = m̄<` and the output to be o`i = (m`
i , d

`
i).

Output: (st`, q̄`, o`i).

Figure 4: The interactive circuit iCi
The Output Function: Each party Pi computes its output yi = Õutputi(xi, r̃i, {m̃1

j , m̃
2
j}j∈[N ]),

using all first and second messages {m̃1
j , m̃

2
j}j∈N as follows. Proceed in L iterations to evaluate

the N garbled circuits {îCj}j∈[N ] in parallel. Before iteration ` ∈ [L] starts, the following invariant
holds:
Invariant: After the first (`− 1) iterations, Pi has obtained for every j ∈ [N ] and every `′ < `:

• the inner MPC message m`′
j generated in the `′-th round by party Pj , and
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• the associated functional decommitment d`′j of c`′j for the circuit G`′j (?, ?) = Nextj(?, ?, m̄<`′).

We define w̄<` = {w`′j }j,`′<` = {(m`′
j , d

`′
j )}

`′<`
.

In the first round ` = 1, all these messages and functional decommitments are empty. Thus,
the invariant holds initially. With the above, Pi does the following in iteration `: for every j ∈ [N ]:
(m`

j , d
`
j) = o`j = GiC.Eval(îCj , w̄<`).

After all L iterations, Pi obtains the set of all messages m̄, and computes the output by invoking
the output function of the inner MPC protocol: yi = Outputi (xi, ri, m̄).
Unique-Transcript Distribution: We now define the unique-transcript distribution iD =
{iDλ,id}λ∈N,id (for the garbled interactive circuit iCi) as follows: id = (i, x̄, r̄, m̄) and iDλ,id is

(iCi, w̄, ρ̄ = {ρ`j}j,`) :

∀j ∈ [N ], ∀` ∈ [L],
ρ`j

R← {0, 1}|ρ`j |; c`j = FC.Com(1λ, (xj , rj); ρ`j);
G`j(?, ?) = Nextj(?, ?, m̄<`);
d`j = FC.FOpen(c`j , G`j , (xj , rj), ρ`j);

w̄ = {w`j = (m`
j , d

`
j)}j,`;

iCi defined in Fig. 4


.

The unique-transcript property follows from the semi-honest functional binding property of FC
thanks to Lemmas 6.4 and 7.2.
Security: We have the following theorem.

Theorem 5.3. If the inner MPC Π = (Next,Output) is correct and secure against semi-honest
adversaries, if the functional scheme FC is correct, semi-honest functional binding, and simulatable,
if the garbled interactive circuit scheme GiC is correct and simulatable, then the MPC protocol
defined above is correct and secure against semi-honest adversaries.

Proof of Theorem 5.3. Correctness is straightforward. Let us prove security against semi-honest
adversaries.

We need to exhibit a polynomial-time simulator of the view of any subset I ⊆ [N ] of corrupted
parties, namely:

ṼiewI(1λ, I, x̄, ˜̄r) = (x̄I , ˜̄rI , ˜̄m)
where ˜̄r = {r̃i}i∈[N ] are honestly-generated random tapes of the parties. We recall that x̄I = {xi}i∈I
and ˜̄rI = {r̃i}i∈I .

The simulator first run the simulator of the inner MPC protocol and get (r̄I , m̄). It then
simulates all the messages ˜̄m together with the random tapes ˜̄rI of the corrupted parties as follows.

First round:

• For each corrupted party Pi with i ∈ I, generate the commitments c`i = FC.Com(1λ, (xi, ri); ρ`i)
and the first message m̃1

i = {c`i}`∈[L] as in the real protocol.

• For each honest party Pi with i /∈ I, simulate the commitments:

(c`i , d`i)
R← FC.Sim(1λ, G`i ,m`

i) ,

for ` ∈ [L] and for the circuit G`
i defined by G`−1

i (?, ?) = Nexti(?, ?, m̄<`−1). Then set the first
message m̃1

i = {c`i}`∈[L].
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Second round:

• For each corrupted party Pi with i ∈ I, generate the garbled interactive circuit îCi R←
GiC.Garble(1λ, iCi) and the second message m̃2

i = îCi, as in the real protocol.

• For each honest party Pi with i /∈ I, compute q̄` = {c`−1
j , G`−1

j }j∈[N ], w̄
` = {m`

j , d
`
j}j∈[N ], and

o` = (m`
i , d

`
i), for ` ∈ [L], and simulate the garbled interactive circuit:

ĩCi R← GiC.Sim(1λ, {q̄`, w̄`, o`}`∈[L]) .

The second message is m̃2
i = ĩCi.

We now need to prove that the simulated view is indistinguishable from the real view. More
formally we need to prove that the following two distributions are computationally indistinguishable:

D0 =
{(

ViewI(1λ, x̄, r̄), OutputI(x̄, r̄)
)

: r̄ R← ({0, 1}R)N
}
λ,I⊆[N ],x̄

,

D1 =
{(

Sim(1λ, I, x̄I , fI(x̄)), fI(x̄)
)}

λ,I⊆[N ],x̄
.

For that, we consider a sequence of N +N2 hybrids {H1,i?}i?∈[N ] and {H2,(`?,j?)}`?∈[L],j?∈[N ]:

Hybrid H1,i?: This hybrid is similar to D0 (the real protocol), except that for the second mes-
sages of parties Pi for i ≤ i? which are simulated as in D1: when i /∈ I, m̃2

i = ĩCi =
GiC.Sim(1λ, {q̄`, w̄`, o`}`∈[L]).
Let H1,0 = D0. We have the following claim.

Claim 5.4. If GiC is simulatable, then for any i? ∈ [N ], H1,i?−1 and H1,i? are computationally
indistinguishable.

Proof. First, if Pi? is corrupted (i? ∈ I), then H1,i?−1 and H1,i? are actually the same
distribution. Let us focus on the case i? /∈ I.
The only difference between H1,i?−1 and H1,i? is that m̃2

i = ĩCi is simulated in the latter
distribution. Thus, these two distributions are computationally indistinguishable if GiC is
simulatable.

Hybrid H2,(`?,j?): We consider the lexicographic order ≺ (or any linear order) over the pairs
(`?, j?) ∈ [L]× [N ], and we define (`?, j?)− to be the predecessor of (`?, j?).
The hybridH2,(`?,j?) is similar to D1 (the simulated protocol), except that for all (`, j) � (`?, j?),
c`j and d`j are generated as in the real protocol (D0):

c`j = FC.Com(1λ, (xj , rj); ρ`j); d`j = FC.FOpen(c`j , G`j ,m`
j , ρ

`
j) ,

where ρ`j is a uniform random tape.
Let H1,N = H2,(1,1)− . We have the straightforward following claim.
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Claim 5.5. If FC is simulatable, then for any (`?, j?) ∈ [L] × [N ], H2,(`?,j?)− and H2,(`?,j?)
are computationally indistinguishable.

Furthermore, the only difference between H2,(N,N) and D1 is that in the latter distribution,
the inner MPC messages m̄ are simulated by the inner MPC simulator. Thus, we have the
following claim.

Claim 5.6. If the inner MPC is secure against semi-honest adversaries, then H2,(N,N) and
D1 are computationally indistinguishable.

We remark that we do not directly use the semi-honest functional binding property of the FC
scheme, as it is implied by the simulatability property of the GIC scheme.

6 Garbled Interactive Circuit from Witness Selector
In this section, we show how to construct GIC from another tool we call witness selector, which can
be seen as generalization of witness encryption to languages defined by a non-deterministic oracle
family O. Contrary to witness encryption, each query to O may have multiple answers, as long as
at most one can be found efficiently.

We first define the notion of computationally unique-answer distribution for O and the notion
of witness selector for such a distribution. Then we show how to construct a garbled interactive
circuit scheme for (O, iD) from any witness selector for a unique-answer distribution for O which is
consistent with the unique-transcript distribution iD.

6.1 Witness Selector

Definition 6.1 (Unique-Answer Distribution). Let O be a non-deterministic oracle family. Let
wD = {wDλ,id}λ∈N,id be an ensemble of efficiently samplable distributions over tuples (q, w, aux).
We way that wD is a (computationally) unique-answer distribution for O if

Non-⊥ Answer: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), and any (q, w, aux) in the support of
wDλ,id, Oλ(q, w) 6= ⊥.

Computationally Unique Answer: For any poly-size circuit family A = {Aλ}λ∈N, for any
sequence of indices {idλ}λ, there exists a negligible function negl, such that for any λ ∈ N:

Pr
[
Oλ(q, w′) 6=⊥ and Oλ(q, w′) 6= Oλ(q, w) :

(q, w, aux) R← wDλ,idλ ; w′ R← Aλ(q, w, aux)
]
≤ negl(λ) .

It is a statistically unique-answer distribution if the second property holds for any arbitrary-size
circuit family A = {Aλ}λ.

Definition 6.2 (Witness Selector). Let O = {Oλ}λ∈N be a non-deterministic oracle family, and
wD = {wDλ,id}λ∈N,id a unique-answer distribution for O. A witness selector scheme for (O,wD) is
a tuple of two polynomial-time algorithms WS = (WS.Enc,WS.Dec):
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Encryption: ct R←WS.Enc(1λ, q,M) encrypts messages M = {M[i, b]}i∈[l],b∈{0,1} for a query q, into
a ciphertext ct, where each message has the same length |M[i, b]| = poly(λ);

Decryption: M′ = WS.Dec(ct, w) decrypts a ciphertext ct into messages M′ = {M′[i]}i∈[l] using a
witness w;

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any index id,
for any (q, w, aux) in the support of wDλ,id, for any messages M = {M[i, b]}i,b, for a = O(q, w):

Pr
[
WS.Dec(WS.Enc(1λ, q,M), w) = {M[i, ai]}i∈[l]

]
= 1 ;

Semantic Security: The following two distributions are indistinguishable:{
(q, w, aux,WS.Enc(1λ, q,M)) : (q, w, aux) R← wDλ,id

}
λ,id,M , (q, w, aux,WS.Enc(1λ, q,M′)) :

(q, w, aux) R← wDλ,id;
a = Oλ(q, w);
{M′[i, b]}i,b = {M[i, ai]}i,b


λ,id,M

.

6.2 Garbled Interactive Circuit from Witness Selector

Let O = {Oλ}λ∈N be a poly-size non-deterministic oracle family. Let iD = {iDλ,id}λ∈N,id be an
ensemble of efficiently samplable distributions over tuples (iC, w̄, aux), where iC is an L-round
interactive circuit. We suppose that iD is a unique-transcript distribution for O. To construct a
garbled interactive circuit scheme GiC = (GiC.Garble,GiC.Eval,GiC.Sim) for (O, iD), we rely on the
following tools:

• A witness selector WS = (WS.Enc,WS.Dec) for (O,wD) where wD = {wDλ,id} is a unique-
answer distribution for O, which is consistent with the unique-transcript distribution iD
(consistency is defined below in Definition 6.3).

• A garbled circuit scheme GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim) for the class of all S-size
circuits with a sufficiently large polynomial bound S.

The naive notion of consistence would be: iD is consistent with wD if each query q`k and its
associated witness w`k follow the same distribution as wD. Unfortunately, this is not sufficient as
the adversary may learn some auxiliary information. Instead, we require that for any ` and k, the
distribution of (iC, w̄, aux) R← iDλ,id can be simulated from (q, w, aux) R← wDλ,id′ (for some index id′

function of id) in such a way that q`k and w`k match q and w. More formally, we have the following
definition.

Definition 6.3 (Consistency of iD and wD). Let iD = {iDλ,id}λ∈N,id be an ensemble of efficiently
samplable distributions over tuples (iC, w̄, aux) where iC is an L-round interactive circuit. Let
wD = {wDλ∈N,id′} be an ensemble of efficiently samplable distributions over tuples (q, w, aux). The
distributions iD and wD are consistent if for any sequence of indices {`?}λ,id and {k?}λ,id, there
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exists two probabilistic polynomial-time functions g and h, such that the following two distributions
are identical: {

((iC, w̄, aux), (q`?k? , w`
?

k?)) : (iC, w̄, aux) R← iDλ,id;
{q̄`, ā`, o`}`∈[L] = trans(iC,O, w̄)

}
λ,id

,{
(h(q, w, aux), (q, w)) : (q, w, aux) R← wDλ,g(1λ,id)

}
λ,id .

We have the following straightforward lemma.

Lemma 6.4. If iD and wD are consistent and if wD is unique-answer, then iD is unique-transcript.

The construction proceeds as follows:

Garbling: îC R← GiC.Garble(1λ, iC) garbles the interactive circuit iC = {iC`}`∈[L] into îC as follows:
For ` from L to 1,

1. Generate input labels key` R← GC.Gen(1λ).
2. Garble the circuit iC.AugNext` defined in Fig. 5:

̂iC.AugNext` R← GC.Garble(key`, iC.AugNext`) .

And output îC = { ̂iC.AugNext`}`∈[L].

Evaluation: o`′ = GiC.Eval(îC, w̄<`′) evaluates the garbled interactive circuit îC with the partial
list of witnesses w̄<`′ as follows. For ` ∈ [`′], we denote by key′` the set of input labels that we
actually use to evaluate ̂iC.AugNext` (i.e., it contains one label per input wire; key′1 and key′L+1

are the empty strings). key′` is composed of two parts key′`[[st`]] and key′`[[ā`]] = {key′`[[a`k]]}k
corresponding to the input wires for st` and ā` respectively: key′` = (key′`[[st`]], {key′`[[a`k]]}k).
For ` from 1 to `′, the evaluator does the following:

1. Evaluate the garbled circuit ̂iC.AugNext`:

(key′`+1[[st`]], q̄`, c̄t`, o`) = GC.Eval( ̂iC.AugNext`, key′`) .

2. If ` < `′, for each k ∈ [|c̄t`|], decrypt ct`k using the witness w`k:

key′`+1[[a`k]] = WS.Dec(ct`k, w`k) .

And output o`′ (except if ⊥ was output before).

Simulation: ĩC R← GiC.Sim(1λ, T ) simulates a garbled interactive circuit ĩC from a transcript
T = {q̄`, ā`, o`}`∈[L] as follows. As for evaluation, for ` ∈ [L], we denote by key′` =
(key′`[[st`]], {key′`[[a`k]]}k) the set of input labels that we actually use as inputs to ̂iC.AugNext`
(i.e., it contains one label per input wire). For ` from L to 1, the simulator does the following:

1. Define key`+1 to be such that key`+1[i, b] = key′`+1[i] for all input wire i and all bits
b ∈ {0, 1}. key′L+1 and keyL+1 are empty.
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2. Encrypt the labels generated for the round `+ 1 corresponding to the answer ā`, using
the witness selector scheme: for each k,

ct`k
R←WS.Enc(1λ, q̄`, key`+1[[a`k]]) .

(For ` = L, c̄t` and key`+1 are empty.)
3. Simulate the garbling of ̂iC.AugNext`, using its outputs key′`+1[[st`]] = key`+1[st`] (for
` = L, this value is empty), q̄`+1, c̄t`, and o`:

̂iC.AugNext` R← GC.Sim(1λ, (key′`+1[[st`]], q̄`, c̄t`, o`)) .

Correctness follows immediately from the correctness properties of the witness selector WS and
of the garbled circuit scheme GC.

The Augmented Next Message Function iC.AugNext`

Constants: 1λ, `, iC`, and the keys key`+1
i? for the (`+ 1)-th garbled circuit.

Inputs: The previous state st`−1 and the answers ā`−1 (of the non-deterministic oracle O
to the queries q̄`−1).
Procedure:

1. Compute (st`, q̄`, o`) = iC`(st`−1, ā`−1). If o` = ⊥, abort and output (⊥,⊥,⊥,⊥). By
convention, st0 and ā0 are empty strings.

2. For every k ∈ [|q̄`|], generate using a hardcoded random tape:

ct`k = WS.Enc(1λ, q`k, key`+1[[a`k]]) ,

where key`+1[[a`k]] is the tuple of input labels key`+1[i, b] for all b ∈ {0, 1} and for the
input wires i corresponding to the input a`k of iC.AugNext`+1. Set c̄t` = {ct`k}k. By
convention, q̄` is empty if ` = L.

3. Select the input labels for the next step, corresponding to the new state st`:
key`+1[st`] = {key`+1[i, st`i ]}i. By convention, st` and key`+1[st`] are empty if ` = L.

Output: (key`+1[st`], q̄`, c̄t`, o`).

Figure 5: The augmented next message function iC.AugNext`

Security: We have the following theorem.

Theorem 6.5. If GC is correct and simulatable, if WS is correct and semantically secure, if wD is
unique-answer, and if iD and wD are consistent, then the garbled interactive circuit scheme GiC
defined above is correct and simulatable.

Proof of Theorem 6.5. Correctness is straightforward. Let us prove simulatability.
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Simulatability: We need to prove the computational indistinguishability of the following two
distributions:

D0 =
{

îC : (iC, w̄, aux) R← iDλ,id; îC R← GiC.Garble(1λ, iC)
}
λ,id

,

D1 =
{

ĩC : (iC, w̄, aux) R← iDλ,id; ĩC R← GiC.Sim(1λ, trans(iC,Oλ, w̄))
}
λ,id

.

For that, we introduce 2L+ 2 hybrid distributions H0,0,H0,1,H1,0,H1,1,H2,0, . . . ,HL,1:

Hybrid H`,0: This hybrid is similar to D1, except that ̂iC.AugNext>` and key>` (thus in particular
c̄t>` is not defined) are generated as in D0.
We have the following straightforward claim.

Claim 6.6. H0,0 and D0 are the same distribution.

Hybrid H`,1: For ` = 0, this hybrid is the same as H0,0.

For ` ≥ 1, this hybrid is similar to H`,0, except that: c̄t` is computed as:

ct`k
R←WS.Enc(1λ, q`k, key′′`+1[[a`k]]) ,

where key′′`+1[i, b] = key[i, a`k,j ] for each b ∈ {0, 1} and each input wire i corresponding to the
j-th bit of the input a`k in iC.AugNext`. In other words, for each input wire of the answers ā`,
instead of encrypting both possible input labels with the witness selector, we encrypt twice
the input label which is actually used.
Thanks to consistency between the distributions iD and wD, the semantic security of the
witness selector ensures that this hybrid is indistinguishable from the previous one.

Claim 6.7. If iD and wD are consistent and if WS is semantically secure, then for any
` ∈ [L], H`,0 and H`,1 are computationally indistinguishable.

Let HL+1,0 be the distribution D1. As the only difference between H`,1 and H`+1,0 is that
in the latter hybrid, ̂iC.AugNext`+1 and key`+1 are simulated via GC.Sim instead of being
generated via GC.Garble, we have the following claim.

Claim 6.8. If GC is simulatable, then for any ` ∈ {0, . . . , L}, H`,1 and H`+1,0 are computa-
tionally indistinguishable.

7 Functional Commitment with Witness Selector
In this section, we start with defining the witness selector (WS) associated with a functional
commitment scheme, which suffices for constructing the GIC schemes needed for our construction
of MPC protocols in Section 5. Then, we show how to construct a functional commitment scheme
with witness selector from any 2-round OT scheme.
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Definition 7.1. Let FC = (FC.Com,FC.FOpen,FC.FVer,FC.Sim) be a functional commitment
scheme for a poly-size circuit class G, and OFC = {OFC

λ }λ∈N the non-deterministic oracle fam-
ily associated with FC defined in Definition 5.2.

Define the following unique-answer distribution associated with FC: wDFC = {wDFC
λ,G,v} where

λ ∈ N, G ∈ Gλ, and v ∈ {0, 1}n:

wDFC
λ,G,v =

{
((c,G), (y, d), aux = ρ) : ρ R← {0, 1}τ ; c = FC.Com(1λ, v; ρ);

y = G(v); d = FC.FOpen(c,G, v, ρ)

}
.

A witness selector associated to FC is a witness selector for (OFC,wDFC).

The unique-answer property of wDFC for OFC follows from the semi-honest functional binding
property of the functional commitment FC. Furthermore, we have the following lemma.

Lemma 7.2. The distribution iD defined in Section 5.2 is consistent with wDFC.

Proof of Lemma 7.2. Let us fix the security parameter λ and the index id = (i, x̄, r̄, m̄). Let
`? ∈ [L] and j? be an integer. We show that we can simulate (iCi, w̄, ρ̄) from ((c,G), (y, d), ρ) R←
wDFC

λ,G,v for some well-chosen G and v, and such that the query q`
?

j? and its witness w`?j? in the
execution of iCi satisfy q`

?

j? = (c,G) and w`
?

j? = (y, d). For that, we choose G = G`
?

j? with
G`j?(?, ?) = Nextj?(?, ?, m̄<`?), and v = (xj? , rj?). Then we set c`?j? = c, d`?j? = d, and ρ`?j? = ρ (which
implies y = m`?

j?). Finally, we generate (c`j , ρ`j , G`j , d`j) for (j, `) 6= (j?, `?) as in iDλ,id and define
w̄ = {w`j = (m`

j , d
`
j)}j,` and iCi as in Fig. 4. The resulting distribution

{
((iCi, w̄, ρ̄ = {ρ`j}), ((c,G), (y, d))

}
is the same as: {

((iCi, w̄, aux), (q`?j? , w`
?

j?)) : (iCi, w̄, aux) R← iDλ,id;
{q̄`, ā`, o`}`∈[L] = trans(iC,O, w̄)

}
.

This is what we wanted to prove.

This means, given a functional commitment with an associated WS, we can instantiate the
construction of GIC in Section 6, which in turn can be used to instantiate the construction of MPC
protocols in Section 5.

7.1 Recall: 2-Round Oblivious Transfer

We recall the definition of 2-round OT.

Definition 7.3. A 2-round oblivious transfer (OT) is a tuple of three polynomial-time algorithms
OT = (OT.Send1,OT.Send2,OT.Output):

First Round: µ1 = OT.Send1(1λ, σ; ρ) generates the first flow µ1 (from the receiver to the sender)
for the selection bit σ ∈ {0, 1}, the security parameter λ, and the random tape ρ ∈ {0, 1}τ ,
where τ is polynomial in λ;
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Second Round: µ2 R← OT.Send2(µ1, x0, x1) generates the second flow (from the sender to the
receiver) for the messages (x0, x1) ∈ ({0, 1}k)2, where the message length k is polynomial in λ;

Output: x = OT.Output(µ2, σ, ρ) computes the output x ∈ {0, 1}k of the receiver;

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any selection bit σ ∈ {0, 1}, for any messages
(x0, x1) ∈ ({0, 1}k)2, for any ρ ∈ {0, 1}τ , it holds that:

Pr
[
µ1 = OT.Send1(1λ, σ; ρ); µ2 R← OT.Send2(µ1, x0, x1) :

xσ = OT.Output(µ2, σ, ρ)
]

= 1 ;

Receiver Privacy: The following two distributions are computationally indistinguishable:{
OT.Send1(1λ, 0; ρ) : ρ R← {0, 1}τ}

λ
,{

OT.Send1(1λ, 1; ρ) : ρ R← {0, 1}τ}
λ

;

Semi-Honest Sender Privacy: The following two distributions are computationally indistin-
guishable:{

(ρ,OT.Send2(µ1, x0, x1)) : ρ R← {0, 1}τ ; µ1 = OT.Send1(1λ, σ; ρ)
}
λ,σ,x0,x1

,{
(ρ,OT.Send2(µ1, xσ, xσ)) : ρ R← {0, 1}τ ; µ1 = OT.Send1(1λ, σ; ρ)

}
λ,σ,x0,x1

.

7.2 Functional Commitment with WS from 2-Round OT

Let G = {Gλ}λ∈N be a S-size circuit class (where S is polynomial in λ). To construct a functional
commitment scheme FC = (FC.Com,FC.FOpen,FC.FVer,FC.Sim) with an associated witness selector
WS = (WS.Enc,WS.Dec), we rely on the following tools:

• A poly-size universal circuit family {Uλ}λ∈N for G; we recall that Uλ(v,G) = G(v), for G ∈ Gλ
and v ∈ {0, 1}n.

• A garbled circuit scheme GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim) for the circuit class
{{Uλ(?, v)}v∈{0,1}n}λ∈N of partially evaluated universal circuits on any possible input v; we
recall that the input of the circuit Uλ(?, v) is a circuit G ∈ Gλ represented by a S-bit string
(G[1], . . . , G[S]) ∈ {0, 1}S .

• A garbled circuit scheme oGC = (oGC.Gen, oGC.Garble, oGC.Eval, oGC.Sim) for the class of
oS-sized circuits with a sufficiently large polynomial bound oS. The prefix “o” stands for
“outer” as this garbled circuit scheme will be used in the WS encryption procedure to garble a
circuit containing the GC.Eval.

• A 2-round OT OT = (OT.Send1,OT.Send2,OT.Output) with sufficiently large message size
k = |x0| = |x1|.11

11This is without loss of generality, as we can always repeat in parallel a 1-bit-message 2-round OT to get a
poly(λ)-bit-message 2-round OT.
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The construction proceeds as follows:

Commitment: c = FC.Com(1λ, v; ρ) commits to v ∈ {0, 1}n as follows:

1. Generate input labels key R← GC.Gen(1λ) (using a random tape derived from ρ).
2. Garble C = Uλ(?, v), which is the universal circuit partially evaluated on v: Ĉ R←

GC.Garble(key, C).
3. For each i ∈ [S], for each bit b ∈ {0, 1}, for each j ∈ [|key[i, b]|], generate a first flow
µ1
i,b,j = OT.Send1(1λ, key[i, b]j ; ρi,b,j), where key[i, b]j is the j-th bit of the input label

key[i, b] and where the random tape ρi,b,j is derived from ρ.

And returns c = (Ĉ, {µ1
i,b,j}).

Functional Opening: d = FC.FOpen(c,G, v, ρ) derives the functional decommitment d of c to
y = G(v) = Uλ(G, v) as follows: d = {key′[i], {ρ′i,j}j}i∈[S]

, where key′[i] = key[i, G[i]] and
ρ′i,j = ρi,G[i],j .

Functional Verification: FC.FVer(c,G, y, d) returns 1, if and only if for all i ∈ [S] and j ∈
[|key′[i]|]:

µ1
i,G[i],j = OT.Send1(1λ, key′[i]j ; ρ′i,j) and y = GC.Eval(Ĉ, key′) .

Simulation: (c, d) R← FC.Sim(1λ, G, y) generates the commitment c and its functional decommit-
ment d as follows:

1. Simulate the garble circuit and its partial key: (key′, C̃) R← GC.Sim(1λ, y).
2. Define key as follows: key[i, G[i]] = key′[i] and key[i, 1−G[i]] = 0|key′[i]|.
3. For each i ∈ [S], for each bit b ∈ {0, 1}, for each j ∈ [|key[i, b]|], generate a first flow
µ1
i,b,j = OT.Send1(1λ, key[i, b]j ; ρi,b,j), where key[i, b]j is the j-th bit of the input label

key[i, b] and where the random tape ρi,b,j is derived from ρ.

And sets c = (C̃, {µ1
i,b,j}) and d = {key′[i], {ρ′i,j}j}i∈[S]

, where key′[i] = key[i, G[i]] and
ρ′i,j = ρi,G[i],j .

Encryption: ct R← WS.Enc(1λ, (c,G),M) encrypts the messages M = {M[I,B]}I,B for q = (c,G)
into ct as follows:

1. For every I ∈ [l] and B ∈ {0, 1}, create the circuit:

oCI,B(key′) =
{

M[I,B] if yI = B where y = GC.Eval(Ĉ, key′),
⊥ otherwise.

2. For every I ∈ [l] and B ∈ {0, 1}, garble this circuit: okeyI,B
R← oGC.Gen(1λ) and

ôCI,B R← oGC.Garble(okey, oCI,B); we write okeyI,B[i, j, b] the key corresponding to the
j’bit of the input key′[i] of oCI,B being b (i.e., key′[i]j = b, where key′ = {key′[i]} is the
input of the circuit oCI,B).
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3. Define the OT messages: xi,j,b = {okeyI,B[i, j, b]}
I,B

.

4. Compute the second flows of the OT corresponding to the first flows µ1
i,G[i],j : µ2

i,j
R←

OT.Send2(µ1
i,G[i],j , xi,j,0, xi,j,1);

and return ct = ({ôCI,B}I∈[l],B∈{0,1}, {µ2
i,j}i∈[S],j∈[|key[i,0]|]).

Decryption: M = WS.Dec(ct, (y, d)) decrypts ct as follows:

1. For every i ∈ [S] and j ∈ [|key′[i]|], compute:

{okey′I,B[i, j]}
I,B

= xi,j,key′[i]j = OT.Output(µ2
i,j , key′[i]j , ρ′i,j) ;

2. For every I ∈ [l] and B = yI , evaluate the garble circuit ôCI,B:

M[I,B] = oGC.Eval(ôCI,B, {okey′I,B[i, j]}
i,j

)

and return M = {M[I, yI ]}I∈[l].

Correctness of the functional commitment scheme is straightforward. Correctness for the
decryption of the witness selector comes from the fact that:

{okey′I,B[i, j]}
I,B

= {okeyI,B[i, j, key[i, G[i]]j ]}I,B

and therefore oGC.Eval(ôCI,B, {okey′I,B[i, j]}
i,j

) is a correct evaluation of the garbled circuit ôCI,B
on the input key′ = {key[i, G[i]]}i∈[S], satisfying GC.Eval(Ĉ, key′) = C(G) = G(v) = y.

Security: We have the following theorem.

Theorem 7.4. If OT is correct, receiver-private, and (semi-honest) sender-private, then the func-
tional commitment scheme FC defined above is correct, semi-honest functionally binding, and
simulatable. Furthermore, the associated witness selector WS is correct and semantically secure.

Proof of Theorem 7.4. Correctness is straightforward. Let us now prove semi-honest functional
binding of FC, simulatability of FC, and semantic security of WS.
Semi-Honest Functional Binding: Semi-honest functional binding follows directly from the
semantic security of the witness selector, which we prove below. Indeed, an adversary A against
semi-honest functional binding generate a functional decommitment d to some value y for some
circuit G, on input ρ and c = FC.Com(1λ, v; ρ), such that y 6= G(v) (and d is indeed a valid functional
decommitment: FC.FVer(c,G, y, d) = 1.) This pair (y, d) can be used to decrypt any ciphertext
ct R← WS.Enc(1λ, (c,G),M) to M′ = {M[I, yI ]}I∈[l], which breaks semantic security of the witness
selector, as y 6= G(v).
Simulatability: We need to prove the computational indistinguishability of the following two
distributions:

D0 =
{

(c, d) : ρ R← {0, 1}τ ; c = FC.Com(1λ, v; ρ); d = FC.FOpen(c,G, v, ρ)
}
λ,v,G

,

D1 =
{

(c, d) : (c, d) R← FC.Sim(1λ, G,G(v))
}
λ,v,G

.
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For that, let us introduce the hybrid distribution H, where (c, d) is generated as in D0 except for
µ1
i,b,j for i ∈ [S], b = 1−G[i], and j ∈ [|key[i, b]|] that is generated as follows:

µ1
i,b,j = OT.Send1(1λ, 0; ρi,b,j) .

As ρi,b,j is never revealed, we have the following claim.

Claim 7.5. If OT is receiver-private, then D0 and H are computationally indistinguishable.

We also remark that in H, the input labels {key[i, 1−G[i]]} are never used: only the input labels
{key′[i]} = {key[i, G[i]]} are used. The only difference between H and D1 is that in H, (key′, Ĉ)
is generated honestly using GC.Garble, while in D1, it is simulated by GC.Sim. Thus we have the
following claim.

Claim 7.6. If GC is simulatable, then H and D1 are computationally indistinguishable.

Semantic Security of the Witness Selector: We need to prove the computational indistin-
guishability of the following two distributions:

D0 =

((c,G), (y, d), ρ, ct) :
ρ R← {0, 1}τ ; c = FC.Com(1λ, v; ρ);
y = G(v); d = FC.FOpen(c,G, y, ρ);
ct R←WS.Enc(1λ, (c,G),M)


λ,G,v,M

,

D1 =

((c,G), (y, d), ρ, ct) :

ρ R← {0, 1}τ ; c = FC.Com(1λ, v; ρ);
y = G(v); d = FC.FOpen(c,G, y, ρ);
{M′[I,B] = M[I, yI ]}I,B
ct R←WS.Enc(1λ, (c,G),M′)


λ,G,v,M

.

For that, we consider the following hybrid distributions:

Hybrid H1: This hybrid is similar to D0, except that the second flows of the OT protocol µ2
i,j

(generated by WS.Enc) are now generated as follows: for i ∈ [S] and j ∈ [|key[1, 0]|]:

µ2
i,j

R← OT.Send2(µ1
i,G[i],j , xi,j,key[i,G[i]]j , xi,j,key[i,G[i]]j ) .

As the first flow µ1
i,G[i],j is generated as µ1

i,G[i],j = OT.Send1(1λ, key[i, G[i]]j ; ρi,b,j , we have the
following claim.

Claim 7.7. If OT is sender-private, then D0 and H1 are computationally indistinguishable.

We recall that xi,j,b = {okeyI,B[i, j, b]}
I,B

. We remark that in this hybrid, the input labels
okeyI,B[i, j, 1− key[i, G[i]]j ] are not used. Let us write okey′I,B[i, j] = okeyI,B[i, j, key[i, G[i]]j ]

Hybrid H2: This hybrid is similar to H1 except that the garbled circuits ôCI,B and its input labels
okey′I,B[i, j] are simulated: for every I ∈ [l] and B ∈ {0, 1}:

(okey′I,B, õCI,B) R← oGC.Sim(1λ, ỹI,B) ,
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and ôCI,B is replaced by õCI,B, where:

ỹI,B = oCI,B({key[i, G[i]]}i∈[S])

=
{

M[I,B] if y′I = B where y′ = GC.Eval(Ĉ, {key[i, G[i]]}i∈[S]),
⊥ otherwise.

We have the following straightforward claim.

Claim 7.8. If oGC is simulatable, then H1 and H2 are computationally indistinguishable.

We recall that by definition of Ĉ and by correctness of garbling:

GC.Eval(Ĉ, {key[i, G[i]]}i∈[S]) = C(G) = Uλ(G, v) = G(v) = y .

In other words:

ỹI,B =
{

M[I,B] if yI = B

⊥ otherwise.

This hybrid distribution thus only depends on {M[I, yI ]}I .

Hybrid H3: This hybrid is defined with regards to D1 exactly as H1 is defined with regards to D0.
We have the two following immediate claims.

Claim 7.9. If oGC is simulatable, then H2 and H3 are computationally indistinguishable.

Claim 7.10. If OT is sender-private, then H3 and D1 are computationally indistinguishable.

8 2-Round Semi-Malicious MPC
Our construction of semi-malicious 2-round MPC is very similar to our construction of semi-honest
2-round MPC in Section 5 with the following two main differences: the functional commitment FC is
replaced by a stronger (semi-malicious) equivocable functional commitment eFC and the inner MPC
is supposed to be secure against semi-malicious adversaries instead of just semi-honest adversaries.

8.1 Semi-Malicious Equivocable FC with WS

Definition 8.1 ((Semi-Malicious) Equivocable Functional Commitment). Let G = {Gλ}λ∈N be
a poly-size circuit class. A (semi-malicious) equivocable functional commitment scheme eFC for
G is a tuple of five polynomial-time algorithms eFC = (eFC.Com, eFC.FOpen, eFC.FVer, eFC.SimC,
eFC.SimD):

Commitment: c = eFC.Com(1λ, v; ρ) is defined as FC.Com in Definition 5.1;

Functional Opening: d = eFC.FOpen(c,G, y, ρ) is defined as FC.FOpen in Definition 5.1;

Functional Verification: b = eFC.FVer(c,G, y, d) is defined as FC.FVer in Definition 5.1;
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Commitment Simulation: (c, trap) R← eFC.SimC(1λ) simulates an (equivocable) commitment c
together with a trapdoor trap;

Commitment Equivocation: d R← eFC.SimD(c, trap, G, y) equivocates the commitment c and
output a functional decommitment d of c to y for G ∈ Gλ;

satisfying the following properties:
Correctness: Defined as in Definition 5.1;

Semi-Malicious Functional Binding: For any polynomial-time circuit family A = {Aλ}λ∈N,
there exists a negligible function negl, such that for any λ ∈ N, for any v ∈ {0, 1}n, for any
circuit G ∈ Gλ, for any random tape ρ ∈ {0, 1}τ :

Pr
[
eFC.FVer(c,G, y, d) = 1 and y 6= G(v) :

c = eFC.Com(1λ, v; ρ); (y, d) R← Aλ(1λ, v, ρ)
]
≤ negl(λ) ;

Simulatability: For any polynomial-time circuit family A = {Aλ}λ∈N, there exists a negligible
function negl, such that for any λ ∈ N and for any v ∈ {0, 1}n:∣∣∣∣∣Pr

[
Aλ(st, c, d) = 1 : ρ R← {0, 1}τ ; c R← eFC.Com(1λ, v; ρ);

(st, G) R← Aλ(c); d = eFC.FOpen(c,G, v, ρ)

]
−

Pr
[
Aλ(st, c, d) = 1 : (c, trap) R← eFC.SimC(1λ);

(st, G) R← Aλ(c); d R← eFC.SimD(c, trap, G,G(v))

]∣∣∣∣∣ ≤ negl(λ) .

We remark that equivocable functional commitments are actually a generalization of functional
commitments. More formally, let eFC = (eFC.Com, eFC.FOpen, eFC.FVer, eFC.SimC, eFC.SimD) be
an equivocable functional commitment. We can define a polynomial-time algorithm FC.Sim as
follows: (c, d) R← FC.Sim(1λ, G, y) runs

(c, trap) R← eFC.SimC(1λ); d R← eFC.SimD(c, trap, G, y) .

Then FC = (eFC.Com, eFC.FOpen, eFC.FVer,FC.Sim) is a functional commitment.
As for functional commitment, let us now define the notion of witness selector associated to eFC.

Definition 8.2. Let G = {Gλ}λ∈N be a poly-size circuit class. Let eFC = (eFC.Com, eFC.FOpen,
eFC.FVer, eFC.SimC, eFC.SimD) be an equivocable functional commitment scheme for G. We define
the following associated non-deterministic oracle family OeFC = {OeFC

λ }λ∈N:

OeFC
λ ((c,G), (y, d)) =

{
y if eFC.FVer(c,G, y, d) = 1
⊥ otherwise;

and the following associated unique-answer distribution wDeFC = {wDeFC
λ,G,v,ρ} where λ ∈ N, G ∈ Gλ,

v ∈ {0, 1}n, and ρ ∈ {0, 1}τ :

wDeFC
λ,G,v,ρ =

{
((c,G), (y, d), aux = ρ) : c = FC.Com(1λ, v; ρ);

y = G(v); d = FC.FOpen(c,G, v, ρ)

}
.

Finally, a witness selector associated to eFC is a witness selector for (OeFC,wDeFC).
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The unique-answer property of wDeFC for OeFC follows from the semi-malicious functional
binding property of eFC.

We remark that for each (λ,G, v, ρ), the distribution wDeFC
λ,G,v,ρ only outputs one element with

probability 1. In other words, we can see wDeFC as a family instead of an ensemble of distributions.
Intuitively, this comes from the fact that the semi-malicious functional binding property is defined
with regards to non-uniform adversaries, so they can have hardcoded a collision for a specific tuple
(G, v, ρ) for each security parameter λ. This remark significantly simplifies the constructions and
proofs.

8.2 Construction of 2-Round Semi-Malicious MPC

Tools and Construction: The tools are similar to the ones used in the construction of the
semi-honest 2-round MPC in Section 5.2 with the following differences:

• The inner L-round MPC protocol Π = (Next,Output) for f is supposed to be secure against
semi-malicious adversaries.

• The functional commitment scheme FC is replaced by an equivocable functional commitment
scheme eFC = (eFC.Com, eFC.FOpen, eFC.FVer, eFC.SimC, eFC.SimD).

As in the semi-honest case, the garbled interactive circuit scheme GiC we need for the construction
and the equivocable functional encryption scheme eFC can be constructed from Sections 6 and 8.3.

The construction of the protocol is exactly the same.
Unique-Transcript Distribution: The associated unique-transcript distribution iD = {iDλ,id}λ∈N,id
is actually simpler as it is just a family instead of an ensemble of distributions. More precisely, the
index is id = (i, x̄, r̄, m̄, ρ̄) with ρ̄ = {ρ`j}j,`, and iDλ,id is the following distribution with a unique
element (with probability 1):

(iCi, w̄, ρ̄ = {ρ`j}j,`) :

∀j ∈ [N ], ∀` ∈ [L],
c`j = eFC.Com(1λ, (xj , rj); ρ`j);
G`j(?, ?) = Nextj(?, ?, m̄<`);
d`j = eFC.FOpen(c`j , G`j , (xj , rj), ρ`j);

w̄ = {w`j = (m`
j , d

`
j)}j,`;

iCi defined in Fig. 4


.

We have the following straightforward claim.

Claim 8.3. The distribution iD defined above is consistent with wDFC.

Security: We have the following theorem.

Theorem 8.4. If the inner MPC Π = (Next,Output) is correct and secure against semi-malicious
adversaries, if the functional commitment scheme eFC is correct, semi-malicious functional binding,
and simulatable, if the garbled interactive circuit scheme GiC is correct and simulatable, then the
MPC protocol defined above is correct and secure against semi-malicious adversaries.
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Proof. Correctness is straightforward. Let us prove security against semi-honest adversaries.
We need to exhibit a polynomial-time simulator of the view of any subset I ⊆ [N ] of corrupted

parties.
Contrary to the semi-honest case in the proof of Theorem 5.3, the simulator cannot start by

simulating the inner MPC protocol, as it does not know the input nor the random tapes of the
corrupted parties. Instead, it first simulates the commitments of the honest parties in the first round.
Then it receives the inputs xI = {xi}i∈I and random tapes of the inner MPC rI = {ri}i∈I . It uses
it to simulates the semi-malicious inner MPC, and equivocate accordingly its commitments in the
second round. The remaining of the simulation is similar to the one in the proof of Theorem 5.3.

Let us describe more formally the simulator.
First round: For each honest party Pi with i /∈ I, simulate the commitments:

(c`i , trap`i)
R← eFC.SimC(1λ) ,

for ` ∈ [L] and for the circuit G`
i defined by G`−1

i (?, ?) = Nexti(?, ?, m̄<`−1). Then set the first
message m̃1

i = {c`i}`∈[L].
The simulator then receives the commitment of the semi-malicious parties {c`i}i∈I,`∈[L] together

with the associated random tapes {ρ`i}i∈I,`∈[L] and the associated messages, i.e., the inputs x̄I and
randomness r̄I of the inner MPC: for every i ∈ I and ` ∈ [L],

c`i = eFC.Com(1λ, (xi, ri); ρ`i) .

The simulator then uses the simulator of the inner MPC to get m̄.
Second round: For each honest party Pi with i /∈ I, equivocate c`i for ` ∈ [L] as follows:

d`i
R← eFC.SimD(c`i , trap`i , Gi,m`

i) .

It then finishes as in the proof of Theorem 5.3: it computes q̄` = {c`−1
j , G`−1

j }j∈[N ], w̄
` =

{m`
j , d

`
j}j∈[N ], and o

` = (m`
i , d

`
i), for ` ∈ [L], and simulate the garbled interactive circuit:

ĩCi R← GiC.Sim(1λ, {q̄`, w̄`, o`}`∈[L]) .

The second message is m̃2
i = ĩCi.

We now need to prove that the simulation is indistinguishable from the real execution. For that,
we consider hybrids. As the proof is very similar to the proof of Theorem 5.3, we skip some steps
and compress some hybrids together. More precisely, we define the following hybrids:

Hybrid H1: This hybrid is similar to the real execution, except that the second messages m̃2
j = ĩCj

for honest parties Pj for j /∈ I, which are simulated: m̃2
j = ĩCj = GiC.Sim(1λ, {q̄`, w̄`, o`}`∈[L]).

We have the following claim.

Claim 8.5. If GiC is simulatable, then H1 is computationally indistinguishable from a real
execution.
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Hybrid H2: This hybrid is similar to the previous one, except that instead of generating {c`j , d`j}j /∈I,`∈[L]
for honest parties Pj as in the real protocol:

c`j = eFC.Com(1λ, (xj , rj); ρ`j); d`j = eFC.FOpen(c`j , G`j , rj , ρ`j) ,

(where ρ`j is a uniform random tape), we simulate them:

(c`j , trap`j)
R← eFC.SimC(1λ, (xj , rj); ρ`j); d`j

R← eFC.SimD(c`j , trap`j , G`j ,m`
j) .

We have the following straightforward claim.

Claim 8.6. If eFC is simulatable, then H1 and H2 are computationally indistinguishable.

Furthermore, the only difference between H2 and a simulated execution is that in the latter,
the inner MPC messages m̄ are simulated after seeing the random tapes and inputs of the
semi-malicious adversary (for the inner MPC). Thus, we have the following claim

Claim 8.7. If the inner MPC is secure against semi-malicious adversaries, then H2 and a
simulated execution are computationally indistinguishable.

8.3 Equivocable FC with WS from 2-Round Semi-Malicious OT

To conclude the construction of semi-malicious 2-round MPC, we need to construct an equivocable
functional commitment with witness selector from semi-malicious 2-round OT.
Semi-Malicious 2-Round OT: Let us first define the notion of semi-malicious 2-round OT.

Definition 8.8. A semi-malicious 2-round oblivious transfer (OT) is a 2-round oblivious OT (see
Definition 7.3) satisfying the following additional property:

Semi-Malicious Sender Privacy: The following two distributions are computationally indistin-
guishable: {

OT.Send2(µ1, x0, x1) : µ1 = OT.Send1(1λ, σ; ρ)
}
λ,σ,x0,x1,ρ

,{
OT.Send2(µ1, xσ, xσ) : µ1 = OT.Send1(1λ, σ; ρ)

}
λ,σ,x0,x1,ρ

.

We remark that semi-honest sender privacy is clearly implied by semi-malicious sender privacy.
The only difference between the two notions is that the former notion just needs to hold when the
first flow is honestly generated using a uniform random tape ρ R← {0, 1}τ , while the latter one needs
to hold for any random tape ρ ∈ {0, 1}τ .
Construction of Equivocable Functional Commitment: Let G = {Gλ}λ∈N be a S-size circuit
class (where S is polynomial in λ). To construct an equivocable functional commitment scheme
eFC = (eFC.Com, eFC.FOpen, eFC.FVer, eFC.SimC, eFC.SimD) with an associated witness selector
WS = (WS.Enc,WS.Dec), we rely on the same tools as in Section 7, except that we suppose the
2-round OT to also be semi-malicious sender-private.
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The construction is very similar to the one of Section 7. The semi-malicious binding property
easily follows from the semi-malicious sender privacy property of the OT. The main difficulty is
to add the equivocation property. In the construction of Section 7, first flows of the OT protocol
are used to commit to the input labels of a garbled circuit of U(?, v). The issue is that since the
garbled circuit is in the clear and the input labels are committed (in a possibly statistically binding
way), there is no way to do any equivocation. The idea is to commit both the input labels and the
garbled circuit of U(?, v) in an equivocable way (and compatible with a witness selector): for each
bit β of the input labels and of the garbled circuit, we generate two first OT flows both for the
selector bit β. The associated “decommitment” is the random tape used to generate the (β + 1)-th
(first) OT flow (i.e., the first one if β = 0 and the second one if β = 1). In a simulated commitment
generated by eFC.SimC, for each bit, the first (first) OT flow is generated for the selector bit 0,
while the second (first) OT flow is generated is generated for the selector bit 1. But a commitment
generated by a semi-malicious adversary remains binding, as even a semi-malicious adversary has to
use the same selector bit for both OTs.

More precisely, the construction is as follows:

Commitment: c = eFC.Com(1λ, v; ρ) commits to v ∈ {0, 1}n as follows:

1. Generate input labels key R← GC.Gen(1λ) (using a random tape derived from ρ).
2. Garble C = Uλ(?, v), which is the universal circuit partially evaluated on v: Ĉ R←

GC.Garble(key, C).
3. For each k ∈ [|Ĉ|], for each bit b′ ∈ {0, 1}, generate a first flow µ1

k,b′ = OT.Send1(1λ, Ĉ[k];
ρk,b′), where Ĉ[k] is the k-th bit of the garbled circuit Ĉ (seen as a bitstring) and where
the random tape ρk,b′ is derived from ρ.

4. For each i ∈ [S], for each bit b ∈ {0, 1}, for each j ∈ [|key[i, b]|], for each bit b′ ∈ {0, 1},
generate a first flow µ1

i,b,j,b′ = OT.Send1(1λ, key[i, b]j ; ρi,b,j,b′), where key[i, b]j is the j-th
bit of the input label key[i, b] and where the random tape ρi,b,j,b′ is derived from ρ.

And returns:
c = ({µ1

k,b′}k,b′ , {µ
1
i,b,j,b′}i,b,j,b′) .

Functional Opening: d = eFC.FOpen(c,G, v, ρ) derives the functional decommitment d of c to
y = G(v) = Uλ(G, v) as follows:

d = (Ĉ, {ρ′k}k, {key′[i], {ρ′i,j}j}i∈[S]
) ,

where ρ′k = ρ
k,Ĉ[k], key′[i] = key[i, G[i]], and ρ′i,j = ρi,G[i],j,key′[i].

Functional Verification: eFC.FVer(c,G, y, d) returns 1, if and only if for all i ∈ [S] and j ∈
[|key′[i]|] and k ∈ [|Ĉ|]:

µ1
k,Ĉ[k] = OT.Send1(1λ, Ĉ[k]; ρ′k) ,

µ1
i,G[i],j,key′[i]j = OT.Send1(1λ, key′[i]j ; ρ′i,j) ,

y = GC.Eval(Ĉ, key′) .
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Simulation: (c, trap) R← eFC.SimC(1λ) generates the simulated commitment c as eFC.Com, except
that:

µ1
k,b′ = OT.Send1(1λ, b′; ρk,b′) and µ1

i,b,j,b′ = OT.Send1(1λ, b′; ρi,b,j,b′) ,

i.e., the first flows µ1
k,b′ and µ1

i,b,j,b′ are for the selector bit b′ instead of Ĉ[k] and key[i, b]j . The
trapdoor trap is the random tape.

Equivocation: d R← eFC.SimD(c, trap, G, y) equivocate the commitment c by simulating (key′, C̃) R←
GC.Sim(1λ, y) and then generating the functional decommitment d similarly to FC.FOpen as
follows:

d = (C̃, {ρ′k}k, {key′[i], {ρ′i,j}j}i∈[S]
) ,

where ρ′k = ρ
k,C̃[k], key′[i] = key[i, G[i]], ρ′i,j = ρi,G[i],j,key′[i].

Encryption: ct R← WS.Enc(1λ, (c,G),M) encrypts the messages M = {M[I,B]}I,B for q = (c,G)
into ct as follows:

1. For every I ∈ [l] and B ∈ {0, 1}, create the circuit:

oCI,B(Ĉ, key′) =
{

M[I,B] if yI = B where y = GC.Eval(Ĉ, key′),
⊥ otherwise.

2. For every I ∈ [l] and B ∈ {0, 1}, garble this circuit: okeyI,B
R← oGC.Gen(1λ) and

ôCI,B R← oGC.Garble(okey, oCI,B); we write okeyI,B[k, b] (resp., okeyI,B[i, j, b]) the key
corresponding to the k-th bit of the input Ĉ of oCI,B (resp., the j-th bit of the input
key′[i] of oCI,B) being b.

3. Define the OT messages: xk,b = {okeyI,B[k, b]}
I,B

and xi,j,b = {okeyI,B[i, j, b]}
I,B

.

4. Compute the second flows of the OT corresponding to the first flows µ1
k,b′ and µ1

i,G[i],j,b′ :

µ2
k,0

R← OT.Send2(µ1
k,0, xi,j,0,⊥) ,

µ2
k,1

R← OT.Send2(µ1
k,1,⊥, xi,j,1) ,

µ2
i,j,0

R← OT.Send2(µ1
i,G[i],j,0, xi,j,0,⊥) ,

µ2
i,j,1

R← OT.Send2(µ1
i,G[i],j,1,⊥, xi,j,1) ,

where ⊥ is an arbitrary message.

And return
ct = ({ôCI,B}I∈[l],B∈{0,1}, {µ2

k,b′}k,b′ , {µ
2
i,j,b′}i,j,b′) .

Decryption: M = WS.Dec(ct, (y, d)) decrypts ct as follows:

1. For every k, compute:

{okey′I,B[k]}
I,B

= x
k,Ĉ[k] = OT.Output(µ2

k,Ĉ[k], Ĉ[k], ρ′k) .
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2. For every i and j, compute:

{okey′I,B[i, j]}
I,B

= xi,j,key′[i]j = OT.Output(µ2
i,j,key′[i]j , key′[i]j , ρ′i,j) .

3. For every I ∈ [l] and B = yI , evaluate the garble circuit ôCI,B:

M[I,B] = oGC.Eval(ôCI,B, ({okey′I,B[k]}
k
, {okey′I,B[i, j]}

i,j
))

and return M = {M[I, yI ]}I∈[l].

We have the following theorem.

Theorem 8.9. If OT is correct, receiver-private, and semi-malicious sender-private, then the
equivocable functional commitment scheme eFC defined above is correct, semi-malicious functionally
binding, and simulatable. Furthermore, the associated witness selector WS is correct and semantically
secure.

Proof. As in the proof of Theorem 7.4, correctness is straightforward and semi-malicious functional
binding follows from the semantic security of the witness selector. Furthermore simulatability of
eFC and semantic security of the witness selector WS can be proven similarly as in the proof of
Theorem 7.4.

9 k-Round Semi-Malicious MPC from k-Round OT
In this section, we generalize our constructions of 2-round MPC from 2-round OT, to constructions
of k-round MPC from k-round OT, for any k ≥ 2.

Let us first present an overview of the techniques for the semi-honest case. The semi-malicious
case is very similar. We recall that our 2-round MPC construction makes use of a functional
commitment scheme (with an associated witness selector) built from 2-round OT. k-round OT does
not seem sufficient to construct a functional commitment scheme (even without an associated witness
selector). However, if we generalize the notion of functional commitment to allow for an interactive
(k − 1)-round commitment phase, then we can achieve it from k-round OT: the construction is
similar to the one in Section 7 except that the commitment consists in the first (k − 1) flows of
the OT, where the sender of the OT (i.e., the receiver of the commitment) uses random messages.
Then, the associated witness selector proceeds similarly as in Section 7, except that instead of using
the second flow of the OT to send the input messages xi,j,b = {okeyI,B[i, j, b]}

I,B
(for some indices

i, j, and for both bits b ∈ {0, 1}), it sends the last flow (i.e., the k-th one) of the OT together with
the XOR of these messages xi,j,b = {okeyI,B[i, j, b]}

I,B
and the random messages chosen previously.

We remark that to generate the last flow of the OT protocol, the encryptor needs to know the
randomness used by the receiver of the commitment (i.e., the sender of the OT protocol). The
notions of witness selector and garbled interactive circuit need therefore to be adapted to allow for
this extra information that we call designated-encryptor information denc.

9.1 Semi-Honest Construction

In this section, we present more formally the semi-honest construction.
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9.1.1 Designated-Encryptor Witness Selector

We define a unique-answer distribution with designated-encryptor information wD = {wDλ,id}λ∈N,id
similarly as a unique-answer distribution (Definition 6.1), except that wDλ,id is a distribution
over tuples (q, w, aux, denc), instead of just (q, q, aux). The required properties are straightforward
extensions:

Non-⊥ Answer: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), and any (q, w, aux, denc) in the
support of wDλ,id, Oλ(q, w) 6= ⊥.

Computationally Unique Answer: For any poly-size circuit family A = {Aλ}λ∈N, for any
sequence of indices {idλ}λ, there exists a negligible function negl, such that for any λ ∈ N:

Pr
[
Oλ(q, w′) 6=⊥ and Oλ(q, w′) 6= Oλ(q, w) :

(q, w, aux, denc) R← wDλ,idλ ; w′ R← Aλ(q, w, aux)
]
≤ negl(λ) .

We then define a designated-encryptor witness selector similarly to a witness selector WS =
(WS.Enc,WS.Dec) (Definition 6.2), except that WS.Enc takes an additional input denc. Correctness
and semantic security are modified accordingly. The distinguisher for semantic security does not
directly see denc: it only sees it through WS.Enc(1λ, q,M, denc) or WS.Enc(1λ, q,M′, denc). This is
important as in our construction denc would reveal M or M′. More formally, the security properties
are defined as follows:

Correctness: For any security parameter λ ∈ N, for any index id, for any (q, w, aux, denc) in the
support of wDλ,id, for any messages M = {M[i, b]}i,b, for a = O(q, w):

Pr
[
WS.Dec(WS.Enc(1λ, q,M, denc), w) = {M[i, ai]}i∈[l]

]
= 1 ;

Semantic Security: The following two distributions are indistinguishable:{
(q, w, aux,WS.Enc(1λ, q,M, denc)) : (q, w, aux, denc) R← wDλ,id

}
λ,id,M , (q, w, aux,WS.Enc(1λ, q,M′, denc)) :

(q, w, aux, denc) R← wDλ,id;
a = Oλ(q, w);
{M′[i, b]}i,b = {M[i, ai]}i,b


λ,id,M

.

In the sequel, we omit the adjective “designated-encryptor,” when it is clear from context.

9.1.2 Designated-Encryptor Garbled Interactive Circuit

Definition: We extend similarly unique-transcript distributions and garbled interactive circuit
schemes. We define a unique-transcript distribution with designated encryptor information iD =
{iDλ,id}λ∈N,id similarly as a unique-transcript distribution except that iDλ,id is a distribution over
tuples (iC, w̄, aux, denc) (where denc = {denc`k}`,k has the same number of elements as w̄) instead of
just (iC, w̄, aux). The required properties (valid execution and computationally unique transcript)
are otherwise the same.
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Consistency between unique-transcript distributions and unique-answer distributions with des-
ignated encryptor information is defined as consistency in Definition 6.3, with the additional
requirements that denc`?k? from the unique-transcript distribution matches (i.e., is equal to) denc
from the unique-answer distribution and that denc`?k? is not “used only once”. More formally, the
distributions iD and wD are consistent if for any sequence of indices {`?}λ,id and {k?}λ,id, there
exists two probabilistic polynomial-time functions g and h, such that the following two distributions
are identical:{

((iC, w̄, aux, {denc`k} 6̀=`?, k 6=k?), (q`?k? , w`
?

k? , denc`?k?)) : (iC, w̄, aux, denc) R← iDλ,id;
{q̄`, ā`, o`}`∈[L] = trans(iC,O, w̄)

}
λ,id

,{
(h(q, w, aux), (q, w, denc)) : (q, w, aux, denc) R← wDλ,g(1λ,id)

}
λ,id .

It is important to remark that the function h does not take as input denc.
We then define a designated-encryptor garbled interactive circuit scheme similarly to a gar-

bled interactive circuit scheme GiC = (GiC.Garble,GiC.Eval,GiC.Sim) (Definition 6.2), except that
GiC.Garble and GiC.Sim take an additional input denc. Correctness and simulatability are modi-
fied accordingly. The distinguisher for simulatability does not directly see denc: it only sees it
through GiC.Garble(1λ, iC, denc) or GiC.Sim(1λ, trans(iC,Oλ, w̄), denc). More formally, the security
properties are defined as follows:

Correctness: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), any (iC, w̄, aux, denc) in the support of
iDλ,id, it holds that

Pr
[
{GiC.Eval(îC, w̄<`)}`∈[L] = out(iC,Oλ, w̄) : îC R← GiC.Garble(1λ, iC, denc)

]
= 1 ;

Simulatability: The following two distributions are computationally indistinguishable:{
(iC, w̄, aux, îC) : (iC, w̄, aux, denc) R← iDλ,id;

îC R← GiC.Garble(1λ, iC, denc)

}
λ,id

,

{
(iC, w̄, aux, ĩC) : (iC, w̄, aux, denc) R← iDλ,id;

ĩC R← GiC.Sim(1λ, trans(iC,Oλ, w̄), denc)

}
λ,id

.

Construction from Designated-Encryptor WS: We can construct designated-encryptor
garbled interactive circuits for a unique-transcript distribution iD from designated-encryptor witness
selector for a unique-answer distribution wD that is consistent with iD, in a similar way as in
Section 6.

The only subtlety compared to the proof of Theorem 6.5 is to ensure that when using semantic
security of WS to prove indistinguishability of hybrids, the associated designated-encrypted infor-
mation denc is only used to generate the corresponding WS ciphertext WS.Enc(1λ, q,M, denc) and
is not used anywhere else. This is enforced by the definition of consistency between iD and wD,
which ensures that each denc is only used once.

9.1.3 k-Round Interactive Functional Commitment

Definition: We define a k-round functional commitment scheme as follows.
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Definition 9.1 (k-Round Interactive Functional Commitment). Let G = {Gλ}λ∈N be a poly-
size circuit class. A k-round interactive functional commitment scheme iFC for G is a tuple of
two polynomial-time interactive Turing machines and three polynomial-time algorithms iFC =
(iFC.S, iFC.R, iFC.FOpen, iFC.FVer, iFC.Sim):

Commitment is performed via a (k − 1)-round interaction between a sender iFC.S on input the
message to be committed v and with a random tape ρ ∈ {0, 1}τ and a receiver iFC.R on
random tape ρ′ ∈ {0, 1}τ ′ . The resulting commitment c = 〈iFC.S(1λ, v; ρ), iFC.R(1λ; ρ′)〉 is the
transcript of the interaction;

Functional Opening: d = iFC.FOpen(c,G, y, ρ) is defined as FC.FOpen in Definition 5.1;

Functional Verification: b = iFC.FVer(c,G, y, d) is defined as FC.FVer in Definition 5.1;

Simulation: (c, d, ρ′) = iFC.Sim(1λ, G, y) is defined as FC.Sim in Definition 5.1, except that it also
outputs the randomness ρ′ used by the receiver;

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any v ∈ {0, 1}n, for any circuit G ∈ Gλ, for
any ρ ∈ {0, 1}τ , for any ρ′ ∈ {0, 1}τ ′ , it holds that, if c = 〈iFC.S(1λ, v; ρ), iFC.R(1λ; ρ′)〉, then:

iFC.FVer(c,G,G(v), iFC.FOpen(1λ, G, v, ρ)) = 1 ;

Semi-Honest Functional Binding: For any polynomial-time circuit family A = {Aλ}λ∈N, there
exists a negligible function negl, such that for any λ ∈ N, for any v ∈ {0, 1}n, for any circuit
G ∈ Gλ:

Pr
[
FC.FVer(c,G, y, d) = 1 and y 6= G(v) : ρ R← {0, 1}τ ; ρ′ R← {0, 1}τ ′ ;

c = 〈iFC.S(1λ, v; ρ), iFC.R(1λ; ρ′)〉; (y, d) R← Aλ(1λ, c, v, ρ)
]
≤ negl(λ) ;

Semi-Honest Simulatability: The following two distributions are computationally indistinguish-
able:{

(c, d, ρ′) : ρ R← {0, 1}τ ; ρ′ R← {0, 1}τ ′ ; c = 〈iFC.S(1λ, v; ρ), iFC.R(1λ; ρ′)〉;
d = FC.FOpen(c,G, v, ρ)

}
λ,G,v

,{
(c, d, ρ′) : (c, d, ρ′) R← FC.Sim(1λ, G,G(v))

}
λ,G,v

.

The associated non-deterministic oracle family OiFC and unique-answer distribution (with
designated-encryptor information) wDiFC for iFC are defined similarly to the ones for functional
commitments in Definition 5.2, except that c = FC.Com(1λ, v; ρ) is replaced by c = 〈iFC.S(1λ, v; ρ),
iFC.R(1λ; ρ′)〉 and that denc is set to ρ′.
Construction from k-Round OT: We can construct a k-round functional commitment with
an associated designated-encryptor witness selector from a k-round OT with semi-honest sender
privacy and semi-honest receiver privacy. Let us first define more formally such OT protocols.
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Definition 9.2. A k-round oblivious transfer (OT) is a tuple of two polynomial-time interactive
Turing machines OT = (OT.S,OT.R) where (t, x) = 〈OT.S(1λ, x0, x1; ρ),OT.R(1λ, σ; ρ′)〉 is the pair
composed of the transcript t and the output x of the receiver after interaction between the sender
OT.S with messages (x0, x1) ∈ ({0, 1}k)2 and randomness ρ ∈ {0, 1}τ , and the receiver OT.R with
selection bit σ ∈ {0, 1} and randomness ρ′ ∈ {0, 1}τ ′ , satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any selection bit σ ∈ {0, 1}, for any messages
(x0, x1) ∈ ({0, 1}k)2, for any ρ ∈ {0, 1}τ and ρ ∈ {0, 1}τ ′ , it holds that:

Pr
[
xσ = x : ρ R← {0, 1}τ ; ρ′ R← {0, 1}τ ′ ; (t, x) = 〈OT.S(1λ, x0, x1; ρ),OT.R(1λ, σ; ρ′)〉

]
= 1 ;

Semi-Honest Receiver Privacy: The following two distributions are computationally indistin-
guishable:{

(t, ρ) : ρ R← {0, 1}τ ; ρ′ R← {0, 1}τ ′ ; (t, x) = 〈OT.S(1λ, x0, x1; ρ),OT.R(1λ, 0; ρ′)〉}
λ,x0,x1

,{
(t, ρ) : ρ R← {0, 1}τ ; ρ′ R← {0, 1}τ ′ ; (t, x) = 〈OT.S(1λ, x0, x1; ρ),OT.R(1λ, 1; ρ′)〉}

λ,x0,x1
;

Semi-Honest Sender Privacy: The following two distributions are computationally indistin-
guishable:{
(t, x, ρ′) : ρ R← {0, 1}τ ; ρ′ R← {0, 1}τ ′ ; (t, x) = 〈OT.S(1λ, x0, x1; ρ),OT.R(1λ, σ; ρ′)〉}

λ,x0,x1,σ
,{

(t, x, ρ′) : ρ R← {0, 1}τ ; ρ′ R← {0, 1}τ ′ ; (t, x) = 〈OT.S(1λ, xσ, xσ; ρ),OT.R(1λ, σ; ρ′)〉}
λ,x0,x1,σ

.

Then, the construction is similar to the one in Section 7, except that the commitment uses the
first (k − 1) flows of the OT protocols instead of the first flow, as explained in the overview of this
section. The commitment receiver plays the role of the OT sender, while the commitment sender
plays the role of the OT receiver. The designated-encryptor information consists of all the random
tapes of the OT senders, in all the OT protocols. The garbled circuits used in the constructions can
be sent in any of the flows going from the OT receiver to the OT sender.

Witness selector encryption uses the last flows of the OT protocols. We recall that the messages
to be sent in an OT can always be input just in the last flow, because the OT sender can always
use random messages at the beginning and provide the XOR of these random messages and of the
real messages in the last flow.

9.1.4 Semi-Honest k-Round MPC

Combining the previous tools, we can easily construct a semi-honest k-round MPC from any
semi-honest k-round OT, following the construction in Section 5, with the following difference: each
party Pi needs to commit its input and random tape L times to each party (including itself to
make the protocol more symmetric for the sake of simplicity; that means each party does L ·N
commitments), instead of just L times in total. The reason is that now a commitment is done to a
specific party, the commitment receiver, and only this commitment receiver knows the associated
designated-encryptor information.
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9.2 Semi-Malicious Construction

We can extend the previous construction to the semi-malicious case similarly as what we did in
Section 8. More precisely, we can construct a semi-malicious k-round MPC from a semi-malicious
inner MPC (with an arbitrary number of rounds) and a semi-malicious k-round OT.

Contrary to the 2-round case, the unique-answer distribution wD = {wDλ,id}λ,id does not contain
a single element for each (λ, id). Actually, we even need the index id to also contain a non-uniform
poly-time interactive Turing machine A corresponding to the semi-malicious adversary playing
the role of the sender in the commitment (i.e., the receiver in the OT protocol). Apart from this
subtlety, the construction is essentially a merge of the constructions in Sections 8 and 9.1.

Let us give more details. Instead of using a k-round interactive functional commitment scheme,
we use a k-round semi-malicious equivocable interactive functional commitment scheme

Definition 9.3 (k-Round Semi-Malicious Equivocable Interactive Functional Commitment). Let
G = {Gλ}λ∈N be a poly-size circuit class. A k-round semi-malicious equivocable interactive functional
commitment (eiFC) scheme eiFC for G is a tuple of three polynomial-time interactive Turing
machines and three polynomial-time algorithms eiFC = (eiFC.S, eiFC.R, eiFC.SimC, eiFC.FOpen,
eiFC.FVer, eiFC.SimD):

Commitment is performed via a (k − 1)-round interaction between a sender eiFC.S on input the
message to be committed v and with a random tape ρ ∈ {0, 1}τ and a receiver eiFC.R on
random tape ρ′ ∈ {0, 1}τ ′ . The resulting commitment c = 〈eiFC.S(1λ, v; ρ), eiFC.R(1λ; ρ′)〉 is
the transcript of the interaction;

Functional Opening: d = eiFC.FOpen(c,G, y, ρ) is defined as FC.FOpen in Definition 5.1;

Functional Verification: b = eiFC.FVer(c,G, y, d) is defined as FC.FVer in Definition 5.1;

Commitment Simulation is performed via a (k − 1)-round interaction between a simulated
sender eiFC.SimC and a non-uniform poly-time interactive Turing machine A: (c, trap) R←
〈eiFC.SimC(1λ), A(1λ)〉 where c is the transcript of the interaction and trap is an additional
output of eiFC.SimC;

Commitment Equivocation: d R← eiFC.SimD(c, trap, G, y) equivocates the commitment c and
output a functional decommitment d of c to y for G ∈ Gλ;

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any v ∈ {0, 1}n, for any circuit G ∈ Gλ, for
any ρ ∈ {0, 1}τ , for any ρ′ ∈ {0, 1}τ ′ , it holds that, if c R← 〈eiFC.S(1λ, v; ρ), eiFC.R(1λ; ρ′)〉,
then:

eiFC.FVer(c,G,G(v), eiFC.FOpen(1λ, G, v, ρ)) = 1 ;

Semi-Malicious Functional Binding: For any non-uniform poly-time interactive Turing ma-
chine A with the semi-malicious property defined below, there exists a negligible function negl,
such that for any λ ∈ N:

Pr
[
eiFC.FVer(c,G, y, d) = 1 and y 6= G(v) :

ρ′ R← {0, 1}τ ′ ; (c, (v, ρ)) = 〈A(1λ), eiFC.R(1λ; ρ′)〉; (G, y, d) R← A(1λ)
]
≤ negl(λ) .
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The adversary A is allowed to keep a state between the interaction with eiFC.R and the guess
stage. Furthermore it is supposed to be semi-malicious, namely, after each message sent to
eiFC.R, it also outputs a valid witness (v, ρ) explaining all the previous messages. As with
semi-malicious adversaries for MPC, witnesses at each round do not need to be consistent.
The last round witness is the second output of 〈A(1λ), eiFC.R(1λ; ρ′)〉.

Semi-Malicious Simulatability: For any non-interactive poly-time interactive Turing machine
A, there exists a negligible function negl, such that for any λ ∈ N :∣∣∣∣∣Pr

[
A(d) = 1 : ρ R← {0, 1}τ ; c R← 〈eiFC.S(1λ, v; ρ), A(1λ)〉;

G R← A(1λ); d = eiFC.FOpen(c,G, v, ρ)

]
−

Pr
[
A(d) = 1 : (c, trap) R← 〈eFC.SimC(1λ), A(1λ)〉;

G R← A(1λ); d R← eFC.SimD(c, trap, G,G(v))

]∣∣∣∣∣ ≤ negl(λ) .

We then define the non-deterministic oracle family OeiFC associated to eiFC as OFC to FC. Finally,
we need to define the unique-answer distribution wDeiFC = {wDeFC

λ,A}, where λ ∈ N and A is a
non-uniform poly-time interactive Turing machine (as in the semi-malicious functional binding
property), by defining wDeFC

λ,A to be:12

((c,G), (y, d), aux = ρ, denc = ρ′) :
ρ′ R← {0, 1}τ ′ ;
(c, (v, ρ)) = 〈A(1λ), eiFC.R(1λ; ρ′)〉;
G R← A(1λ); y = G(v); d = FC.FOpen(c,G, v, ρ)

 .

Furthermore, we define k-round semi-malicious OT schemes similarly as in Definition 9.2, except
that semi-honest receiver privacy and semi-honest sender privacy are replaced by the following
properties:

Semi-Malicious Receiver Privacy: The following two distributions are computationally indis-
tinguishable: {

st : ρ′ R← {0, 1}τ ′ ; (t, x, st) = 〈A(1λ),OT.R(1λ, 0; ρ′)〉}
λ,A

,{
st : ρ′ R← {0, 1}τ ′ ; (t, x, st) = 〈A(1λ),OT.R(1λ, 1; ρ′)〉}

λ,A
;

where A is a semi-malicious adversary playing the role of the sender (and outputting a state
st), i.e., A outputs a witness (x0, x1, ρ) after each message it sends to the receiver (as usual,
witnesses need to explain all the previous messages but do not need to be consistent with each
other);

Semi-Malicious Sender Privacy: The following two distributions are computationally indistin-
guishable: {

st : ρ R← {0, 1}τ ; (t, x, st) = 〈OT.S(1λ, x0, x1; ρ), A(1λ)〉}
λ,x0,x1

,{
st : ρ R← {0, 1}τ ; (t, x, st) = 〈OT.S′(1λ, x0, x1; ρ), A(1λ)〉}

λ,x0,x1
;

12For the security definitions to make sense, we suppose that the polynomial bounding the time of A is fixed.
Another way to look at it would be to consider that the index contains a circuit Aλ, which can interact like an
interactive Turing machine.
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where A is a semi-malicious adversary playing the role of the receiver and OT.S′ acts as OT.S
except that before the last round it reads the witness tape (σ, ρ′) of the adversary and uses
as OT messages (xσ, xσ) instead of (σ0, σ1). We recall that we assume w.l.o.g. that the OT
messages are only used to generate the last round of the OT protocol and thus OT.S′ does
not need to know them before.

A k-round semi-malicious eiFC with a WS can be constructed from a k-round semi-malicious
OT. The construction is a straightforward merge of the ones in Section 8.2 and in Section 9.1.3.
A k-round semi-malicious OT is defined similarly as a k-round OT (Definition 9.2) except that
semi-honest receiver privacy and semi-honest sender privacy are replaced by semi-malicious ones: a
semi-malicious adversary plays the role of the sender and of the receiver (respectively). In the case
of sender privacy, the adversary playing the receiver can choose x0 and x1 after the last flow of the
receiver (i.e., the (k − 1)-th flow). We recall that without loss of generality, we suppose that the
inputs x0 and x1 of the sender are only used in the last flow.

Then from a k-round semi-malicious eiFC with WS, we can construct GIC (with designated-
encrypted information) as in Section 9.1.2. And from this, following Section 9.1.4, we can construct
a k-round semi-malicious MPC (if we start from a semi-malicious inner MPC, instead of just a
semi-honest one). The security proof is very similar.

9.3 Extension to Malicious Security in the CRS Model

In the CRS model, we can let each party prove using NIZK that each message is generated in a
semi-malicious way (i.e., according to the protocol w.r.t. some input and random tape) as done
in [AJL+12], which immediately gives Corollary 1.3 in the introduction — For any k ≥ 2, there is a
k-round malicious UC protocol in the common reference string model for any functionality f , from
any k-round semi-malicious OT protocol and NIZK.

10 k-Round Malicious MPC from k-Round OT
Following the overview in Section 2.6, we construct k-round malicious MPC from k-round malicious
OT, as follows: we first construct a k-round delayed-semi-malicious MPC (see Section 3.3.5) from
k-round OT. Then, we show how to transform this specific k-round delayed-semi-malicious MPC
into a k-round malicious MPC. We also show a (slightly simpler) generic transformation from any
k-round delayed-semi-malicious MPC into a (k + 1)-round malicious MPC.

The first part uses similar ideas as our semi-malicious MPC construction in Section 9.2 and
requires us to define the notion of malicious equivocable interactive functional commitment (eiFC)
with WS.

10.1 Delayed-Semi-Malicious Equivocable Interactive FC with WS

A delayed-semi-malicious eiFC is similar to a semi-malicious eiFC defined in Definition 9.3 except
that

1. semi-malicious functional binding is replaced by delayed-semi-malicious functional binding
and holds against delayed-semi-malicious adversaries (instead of semi-malicious ones), when
we view an eiFC as a k-round protocol with (k − 1) rounds for the commitment phase and
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1 round for the opening phase. Concretely, the adversary A only needs to output a witness
(v, ρ) at the end of the interaction with eiFC.R;

2. semi-malicious simulatability is replaced by delayed-semi-malicious simulatability and holds
against delayed-semi-malicious adversaries (instead of semi-malicious ones), which are in this
context equivalent the same as malicious adversaries. In other words, the adversary A does
not need to output any witness in the experiment of the security property as it is playing the
receiver of the commitment and its last flow is the (k − 2)-th one.

A k-round delayed-semi-malicious eiFC with WS can be constructed from a k-round delayed-
semi-malicious OT similarly as in Section 9.2, the only difference being the fact the base OT is
delayed-semi-maliciously sender and receiver private (i.e., the adversaries in these security properties
only need to provide a valid witness for the second last and the last round) instead of semi-maliciously
secure. We point out that our definition of OT is much weaker than simulation-based ones against
malicious adversary. In particular, a 2-round delayed-semi-malicious OT is a 2-round semi-malicious
OT.

We also point out that the commitment simulator eiFC.SimC and the commitment equivocator
eiFC.SimD cannot rewind the adversary. But this is not an issue as in our constructions, they act as
honest OT receivers, albeit using selection bits which a commitment sender would not be allowed to
use (even a malicious one as it still needs to output a pair (v, ρ)).

10.2 Delayed-Semi-Malicious MPC from Malicious eiFC with WS

When following the semi-malicious construction from Section 9.2 albeit using a malicious eiFC with
WS, instead of a semi-malicious one, we automatically get a delayed-semi-malicious MPC instead
of a semi-malicious one. We point out that the inner MPC still just needs to be secure against
semi-malicious adversaries, as it is only simulated in the last round and at the last round the inputs
and randomness of the corrupted parties is known (as the adversary is delayed semi-malicious and
it needed to commit to them in the (k − 1)-th rounds).

10.3 k-Round Malicious MPC from (k−1)-Round Delayed-Semi-Malicious MPC

In this section, for any k ≥ 5, we show how to generically transform any (k − 1)-round delayed-
semi-malicious MPC protocol into a k-round malicious MPC protocol. In the next section, we
show how to start from our specific delayed-semi-malicious MPC protocols, but with k rounds, to
get k-round malicious MPC. The latter will establish that k-round malicious MPC is implied by
k-round delayed-semi-malicious OT. Nonetheless, we present the former transformation since it is
more modular, and may be useful for other applications.

10.3.1 Construction of Malicious MPC

Let N be any integer and f any N -party functionality. For any k ≥ 5, to construct a k-round
malicious MPC protocol Π for computing f in the plain model, we rely on the following tools.

Tools Used in Our Malicious MPC Protocols.

• A (k − 1)-round delayed-semi-malicious MPC protocol Φ = (NextΦ,OutputΦ) for computing f
in the plain model.
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• a 2-message statistically binding commitment scheme Com, which is implied by one-way
functions [Nao91], and

• the 4-round delayed-input NMZK proof system NMZK from one-way functions by [COSV17]
(COSV), which is many-many non-malleable zero-knowledge in the synchronous setting and
publicly verifiable. Our construction of malicious MPC protocol Π makes non-black-box use
of the COSV NMZK protocol. We detail the tools used inside their construction next.

Tools Used in the COSV NMZK Protocol.

• A 3-round trapdoor-setup protocol Trap between a sender and a receiver, which proceeds as
follows:

i) In the first round, the sender samples a pair of (sk, vk) signing and verification key of a
signature scheme, and sends vk to the receiver,

ii) the receiver sends a random challenge message m R← {0, 1}λ, and
iii) the sender returns a signature σ of m signed by sk, and the receiver accepts if (m,σ) is

valid w.r.t. vk.

A valid trapdoor td = (m0, σ0,m1, σ1) w.r.t. the verification key vk consists of two valid
signatures for distinct messages m0 6= m1 w.r.t. vk. Clearly, for a malicious receiver who
participates in one execution of the protocol with an honest sender, it is hard to find a trapdoor
by the unforgeability of the signature scheme. On the other hand, a resetting receiver can
easily obtain a trapdoor by rewinding the honest sender to obtain signatures for different
messages.

• A 4-round public-coin commitment scheme NMCom that is many-many non-malleable (w.r.t.
commitment) in the synchronous setting, and extractable (with over-extraction) by rewinding
the last two messages. Such a commitment scheme was constructed by [GPR16] from one-way
functions.

• The 4-round delayed-input WI proof WIor constructed in [COSV17] from one-way functions.
The COSV WI protocol WIor is for an or-language L ∈ NP defined by two arbitrary NP
languages L0,L1, such that, a statement x = (x0, x1) is in L if and only if x0 ∈ L0 or x1 ∈ L1.
Moreover, the protocol WIor is public-coin, adaptive-input special sound, and satisfies the
following robustness property w.r.t. any extractable statistically binding commitment schemes
〈C,R〉. In particular, WIor is robust w.r.t. NMCom described above. Below we detail on the
definitions of adaptive-input special-soundness and robustness.

– Adaptive-input Special-soundness: Given two accepting proofs with the same first two
messages and different third messages for potentially two different statements, (α, β, γ, τ)
for statement x and (α, β, γ′, τ ′) for statement x′, there is an efficient way of computing
a valid witness w for x and a valid witness w′ for x′.

– Robustness: For any many-in-the-middle adversary A consider the following execution
using WIor and 〈C,R〉 with security parameter λ: A(1λ) interacts with the honest prover
of WIor on the left and the honest receiver R of 〈C,R〉 on the right. In the left session,
after the first three messages, A adaptively chooses a challenge statement x = (x0, x1)
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and valid witnesses w0, w1 for statements x0, x1 respectively. The honest prover of WIor

then uses witness wb for a bit b ∈ {0, 1} to generate the last prover’s message. In the
right session, A sends a commitment c using 〈C,R〉. Denote by wiMIMA

〈C,R〉(1λ, b) the
view viewA of A together with the value v it commits to in c; v is set to ⊥ if c is invalid.
(Note that the random variable v is well-defined with overwhelming probability, since
by the statistical binding property of 〈C,R〉, the probability that there exist two valid
decommitment of c to different values is negligible.)
Claim 10.1 (Robustness of the COSVWI proof). Let 〈C,R〉 be any extractable statistical-
binding commitment scheme. The delayed-input WI proof system of [COSV17] satisfies
the following robustness property w.r.t. 〈C,R〉: For any computationally efficient predicate
P : {0, 1}∗ × ({0, 1}∗ ∪ {⊥})→ {0, 1} satisfying that whenever the second input is ⊥, P
outputs 0, there exists a negligible function negl, such that,

|Pr[P (wiMIMA
〈C,R〉(1λ, 0)) = 1]− Pr[P (wiMIMA

〈C,R〉(1λ, 1)) = 1]| ≤ negl(λ) .

The Malicious MPC Protocol Π. To compute f on inputs x1, · · · , xN , parties Pi(1λ, xi) run
the following sub-protocols

• Component 1, Computation by the delayed-semi-malicious MPC protocol Φ (Round
1, · · · , k − 3, k − 1, k):
For every i ∈ [N ], Pi samples a sufficiently long random tape ri at the beginning of its
execution. Then, all the parties jointly run Φ, where Pi uses input xi and random tape ri.
The k − 1 messages of Φ are sent in rounds 1, · · · , k − 3, k − 1, k, that is, only round k − 2 is
skipped. Let m`

i be the message broadcast by Pi in round ` of Φ, and m̄<` = {m`′
j }j,`′<` be

messages broadcast by all parties in the first `− 1 rounds of Φ.

• Component 2, 〈C,R〉 commitment to input and randomness (Round 1 and 2):
For every distinct i, j ∈ [N ], Pi commits to (xi, ri) to Pj using 〈C,R〉. The 2 messages of 〈C,R〉
are sent in the first two rounds. Let ci→j be the commitment, and ρi→j the decommitment.

• Component 3, NMZK proof of correctness of the first k − 2 rounds of Φ (Round
k − 4, · · · , k − 1):
For every distinct i, j ∈ [N ], Pi proves to Pj using COSV NMZK NMZK that it has generated
its first k − 2 messages in Φ correctly using the input and random tape committed in ci→j ,
that is, prove that the statement Xk−2

i→j is in language LX defined by relation RX below. Let
NMZKi→j be the produced proof.

Xt
i→j = (t, m̄≤t, ci→j)
RX(Xt

i→j , ρi→j) = 1 iff i) ρi→j decommits ci→j to xi, ri, and
ii) ∀` ≤ t, m`

i = NextΦ
i (1λ, xi, ri,m≤`−1)

(5)

More precisely, to give the NMZK proof, Pi and Pj do the following:

– Trapdoor of Trap: Pi and Pj run the trapdoor setup protocol Trap in rounds k −
4, k − 3, k − 2, where Pj acts as the sender and Pj the receiver. Let Trapj→i denote the
produced transcript, and vkj→i the verification key that Pj sends to Pi.
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– Commitment of NMCom to one share s0
i→j: Pi commits to a random string s0

i→j to
Pj using the non-malleable commitment scheme NMCom, in rounds k−4, k−3, k−2, k−1.
Let NMComi→j denote the produced commitment and τi→j the decommitment.

– Another share s1
i→j in the clear: Pi sends another random string s1

i→j in the clear
to Pj .

– The first WIor proof: Pi proves to Pj using the WI proof WIor in rounds k − 4, k −
3, k − 2, k − 1 that
∗ Honest Statement: Either, the statement Xk−1

i→j is in LX ,
∗ Cheating Statement: Or, the XOR of the share s0

i→j committed to in NMComi→j
and the share s1

i→j is a trapdoor w.r.t. vkj→i.
We refer to the above two statements the honest and cheating statements respectively.
That is, Pi proves that the statement Y k−1

i→j is in the or-language LY defined below.

Y t
i→j = (Xt

i→j , vkj→i,NMComi→j , s
1
i→j) (6)

RY (Y t
i→j , (ρi→j , τi→j)) = 1 iff

RX(Xt
i→j , ρi→j) = 1,

OR i) τi→j decommits NMComi→j to s0
i→j , and

ii) s0
i→j ⊕ s1

i→j contains two signatures for distinct messages w.r.t. vki→j

Let WIor,1
i→j be the produced proof. Each party Pi verifies all WIor proofs {WIor,1

i→j}i,j∈[N ]. If any
proof is not accepting, it aborts and outputs ⊥. This can be done thanks to the fact that WIor

is public-coin and hence publicly verifiable.

• Component 4, The second WIor proof of correctness of all k−1 rounds of Φ (Round
k − 3, · · · , k):
For every distinct i, j ∈ [N ], Pi proves to Pj using WIor that

– Honest statement: Either, it has generated all its messages in Φ correctly using the input
and random tape committed to in ci→j , that is, Xk

i→j is in LX ,
– Cheating statement: Or, the XOR of the share s0

i→j committed to in NMComi→j and the
share s1

i→j is a trapdoor w.r.t. vkj→i.

That is, Pi proves that the statement Y k
i→j is in LY as defined above. Let WIor,2

i→j be the
produced proof.

• Deriving Output: Each party Pi verifies all WIor proofs {WIor,2
i→j}i,j∈[N ]. If any proof is not

accepting, it aborts and outputs ⊥. Otherwise, it returns the output derived from the MPC
protocol Φ, that is,

yi = OutputΦ
i (1λ, xi, ri, m̄≤k−1)

It is easy to see that the correctness of the protocol Π follows from that of Φ.
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10.3.2 Proof of Malicious Security

We prove that Π is maliciously secure.

Theorem 10.2. Let f be any functionality. The above MPC protocol Π for f is secure against
malicious adversaries.

To show the theorem, we need to show that for every non-uniform poly-time interactive Turing
machine A corrupting a set of parties I, there exists a non-uniform expected-poly-time interactive
Turing Sim, such that, for every vector of inputs x̄, the distribution of the outputs of honest parties
and A running Π in the real world, is indistinguishable to the outputs of the honest parties and Sim
interacting with the ideal functionality in the ideal world. That is,

{IdealI,Sim(1λ, x̄)}λ,I,x̄ ≈ {RealI,A(1λ, x̄)}λ,I,x̄ .

We start with describing the simulator Sim for adversary A.

Overview of the Simulator Sim: In the ideal world, the simulator Sim corrupting parties in set
I, internally runs A and simulates an execution of Π for A by simulating the honest parties in Ī.
To to simulate messages in Φ for A, Sim employs the simulator SimΦ of Φ. Recall that Φ is secure
against delayed-semi-malicious adversaries AΦ, who is arbitrarily malicious, except that it outputs a
witness at the second last round (i.e., round k − 2) of Φ. A valid witness contains the inputs and
random tapes of corrupted parties that are consistent with (i.e., generates) their messages sent in all
rounds (If the witness is invalid, honest parties abort and output ⊥). The security of Φ guarantees
that there exists a universal simulator SimΦ(1λ, I) that simulates the honest parties’ messages of Φ
for AΦ in a straight-line, by making use of the witness that AΦ outputs. In order to use SimΦ, the
simulators Sim needs to “turn” the malicious adversary A (against Π) into a delayed-semi-malicious
adversary AΦ (against Φ). It achieves so by extracting witnesses from the first WI proofs WIor,1

sent by A. In addition, when messages of the honest parties of Φ are simulated by SimΦ, Sim can
on longer convince A in the WI proofs WIor,1,WIor,2 that these messages are honestly generated.
Therefore, Sim cheats by proving the fake statement that it has committed to a trapdoor in the
NMCom commitment. While doing so, we rely on the non-malleability of NMCom, the robustness of
WIor against NMCom, and other properties to ensure that A never commits to a trapdoor itself and
hence must prove the honest statements in WI proofs WIor,1,WIor,2 it sends. This, in particular,
ensures that the witnesses extracted from the first WI proofs WIor,1 from A form a valid witness for
messages of corrupted parties in Φ.

The Simulator Sim: We now describe the procedure of Sim formally, where simulation of the
main thread — the thread in which the output of A is output in the end — and rewindings for
different extraction purposes are interleaved.

• Stage 1, Simulate main thread rounds 1, . . . , k−2: Sim simulates honest parties’ messages
as follows:

1. Simulate messages in Φ: Run SimΦ(1λ, I) to simulate messages from honest parties
in Φ. In slight more detail, Sim forwards messages of Φ between SimΦ and A; whenever
SimΦ sends the inputs x̄I of the corrupted parties, Sim forwards it and obtain the outputs
of the corrupted parties ȳI , and whenever SimΦ decides to abort the honest parties in the
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ideal world, Sim decides to abort them too. Note that, SimΦ does not need any witness
in order to simulate the first k − 2 rounds, and only needs it for simulating the last k − 1
round.

2. Simulate Com commitments: For every distinct i, j ∈ [N ] s.t. i or j is in Ī, simulate
the Com commitment ci→j as follows: If Pi is honest, commit to 0poly(λ) in ci→j (instead
of the input and random tape xi, ri of Pi), and if Pj is honest, emulate the receiver of
Com honestly.

3. Simulate NMZK proofs: For every distinct i, j ∈ [N ] s.t. i or j is in Ī, emulate the
first three messages of the NMZK proof NMZKi→j by running the honest prover (if Pi is
honest) or the honest verifier (if Pj is honest) of NMZK. Note that this can be done since
NMZK is delayed-input and the first three messages depend only on the length of the
statement. In particular, if Pi is honest, Sim does the following to emulate the prover’s
message:
– Act as the honest receiver of Trap: Upon receiving verification key vkj→i, send a

random challenge message mi→j and receive a signature σi→j .
– Commit in the first three messages of NMComi→j to a random share s0

i→j .
– Act as the honest prover to in the first three messages of WIor,1

i→j .
4. Simulate the second WIor proofs: For every distinct i, j ∈ [N ] s.t. i or j is in Ī,

emulate the first two messages of the WI proofs WIor,2
i→j by running the honest prover (if

Pi is honest) and verifier (if Pj is honest) of WIor.

If A aborts at any point, Sim aborts and outputs ⊥. Let trans≤k−2 denote the obtained
transcript.

• Stage 2, Rewind rounds k− 3, k− 2 to extract trapdoors: Sim keeps rewinding A from
round k − 3 to round k − 2 in order to extract a trapdoor w.r.t. every verification key vkj→i
sent to an honest party Pi. In each rewinding, Sim restores the state of A at the end of round
k − 4 in the main thread, and re-execute round k − 3 and k − 2 as follows:

1. Replay the honest parties’ messages in round k − 3 of Φ in the main thread. (In round
k − 2, there are no messages of Φ being sent.) Note that this avoid rewinding messages
in Φ.

2. Simulate the honest parties’ messages in other components ci→j ,NMZKi→j ,WIor,2
i→j exactly

as done in the main thread, described above.

Sim keeps rewinding until it obtains another successful transcript trans′ of round k − 3 and
k − 2. For every vkj→i sent to an honest party Pi, find two valid message-signature pairs
w.r.t. vkj→i, (mi→j , σi→j) and (m′i→j , σ′i→j) in the transcript trans≤k−2 of the main thread
and trans′ respectively; if mi→j = m′i→j , Sim aborts and outputs err1, and otherwise, it sets
trapdoor tdj→i to these two pairs.

• Stage 3, Simulate main thread round k−1 using trapdoors: Using trapdoors obtained
above, Sim simulates honest parties’ messages in round k − 1 as follows:
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1. Simulate messages in Φ and the second WIor proofs: Simulate honest player’s
messages in round k − 2 of Φ using SimΦ, and simulate third messages in the second WI
proofs WIor,2

i→j honestly, as in Stage 1.
2. Simulate the NMZK proofs: For every honest i ∈ Ī, and any j 6= i, emulate the

fourth message of NMZKi→j (from the prover) continuing from Stage 1 as follows:
– Commit in the last message of NMComi→j to the random share s0

i→j tossed in Stage
1. Let τi→j be the decommitment.

– Send the other share s1
i→j = s0

i→j xor tdj→i in the clear.
– Prove in the last message of WIor,2

i→j the fake statement that NMComi→j commits to
s0
i→j , such that, tdj→i = s0

i→j xors1
i→j is a valid trapdoor w.r.t. vkj→i. More precisely,

prove the statement Y k−1
i→j defined in Equation 6 using the witness (⊥, τi→j).

• Stage 4, Rewind rounds k−2, k−1 to extract inputs and random tapes of corrupted
parties: Sim keeps rewinding A from round k− 2 to round k− 1 in order to extract a witness
wj→i from every WI proof WIor,1

j→i where the prover Pj is corrupted and the verifier Pi is honest.
In each rewinding, Sim restores the state of A at the end of round k − 3 in the main thread,
and re-execute rounds k − 2 and k − 1 as follows:

1. Replay the honest parties’ messages in round k − 1 of Φ in the main thread. (In round
k − 2, there are no messages of Φ being sent.)

2. Simulate the honest parties’ messages in other components NMZKi→j ,WIor,2
i→j exactly as

done in the main thread.

Sim keeps rewinding until it obtains another successful transcript trans′′ of round k − 2 and
k− 1. For every WI proof WIor,1

j→i where the prover Pj is corrupted and the verifier Pi is honest,
find two accepting transcripts of WIor,1

j→i sharing the same first two messages in trans≤k−2 of
the main thread and trans′′; if these two transcripts have the same third message, Sim aborts
and outputs err2, and otherwise, it extracts a witness wj→i from them by relying on the
adaptive-input special soundness of WIor. In addition, if any witness wj→i is not a witness
of the honest statement Xk−2

j→i defined in Equation 5, it aborts and outputs err3. Otherwise,
every wj→i is of form (ρj→i, ?), such that, ρj→i decommits Comj→i to a pair (xj→i, rj→i) that
is consistent with Pj ’s messages in the first k − 1 rounds of Φ. For every corrupted party Pj ,
set (xj , rj) to (xj→i, rj→i) for an arbitrary honest i ∈ Ī.

• Stage 5, Simulate main thread round k using extracted input and randomness:
Using the corrupted parties’ inputs and random tapes {xj , rj}j∈I extracted from A, Sim
simulates honest parties’ messages in round k as follows:

1. Simulate messages in Φ: Feed SimΦ the witness w = {xj , rj}j∈I , which simulate
honest player’s last messages in Φ.

2. Simulate the second WIor proofs: For every honest i ∈ Ī, and any j 6= i, prove in
the last message of WIor,2

i→j , the fake statement that NMComi→j commits to s0
i→j , such

that, tdj→i = s0
i→j xor s1

i→j is a valid trapdoor w.r.t. vkj→i. More precisely, prove the
statement Y k

i→j defined in Equation 6 using the witness (⊥, τi→j).
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Finally, if the honest parties do not abort in the main thread, and for any j ∈ I, (xj , rj)
obtained in Stage 4 is not consistent with Pj ’s last message in Φ, Sim outputs err4.

To establish the correctness of Sim, we need to show that Sim runs in expected polynomial time,
and the distributions of outputs in the real and ideal worlds are indistinguishable.

Lemma 10.3. For any N-party functionality f , and any poly-sized adversary A controlling any
subset I ⊂ [N ] of parties. The simulator Sim for A described above runs in expected polynomial
time.

Lemma 10.4. For any N-party functionality f , and any poly-sized adversary A controlling any
subset I ⊂ [N ] of parties. The simulator Sim for A described above satisfies that:

{IdealI,Sim(1λ, x̄)}λ,I,x̄ ≈ {RealI,A(1λ, x̄)}λ,I,x̄ .

Correctness of Simulation — Proof of Lemma 10.3 and 10.4 For any adversary A, we
show the correctness of the simulator Sim through a sequence of hybrids H0, · · · ,H6 that gradually
“morph” a real world execution H0(1λ, x̄) = RealI,A(1λ, x̄) into an ideal world execution H6(1λ, x̄) =
IdealI,Sim(1λ, x̄) in an indistinguishable way. Throughout all hybrids, we show that the runtime of
all hybrids are polynomial in expectation, and that the outputs of all parties are indistinguishable in
every pair of neighboring hybrids. Towards this, we will maintain the following soundness condition
that the following event bad happens with negligible probability:

• Event bad: In the main thread, there exists some j ∈ I and i ∈ Ī, such that, the XOR of the
share s0

j→i that A commits to in NMComj→i and the share s1
j→i is a trapdoor w.r.t. vki→j ,

that is, s0
j→i xor s1

j→i contains two valid signatures for two distinct messages under vki→j .

We abuse notation and denote by Hk(1λ, x̄) the distribution of the outputs of honest parties and
the output of A in the main thread.

Hybrid H0: This hybrid is identical to the real world execution RealI,A(1λ, x̄). Clearly, H0 runs in
strict polynomial time. We claim that event bad almost never occurs in this hybrid.

Claim 10.5. For every λ and inputs x̄, the probability that event bad occurs in H0 is
negligible.

Proof. Recall that in the real world, for any corrupted j ∈ I and honest i ∈ Ī, A obtains
only a single signature under vki→j (of a message of its choice) in Trapi→j , where vki→j is
sampled honestly by the honest player Pi. Suppose for contradiction that event bad occurs
with noticeable probability; it must occur w.r.t. some i, j with noticeable probability. Then,
one can extract two signatures of different messages under vki→j without rewinding Trapi→j ,
which violates the unforgeability of the signature scheme. Extraction works as follows: By the
extractability of NMComi→j , one can rewind the last two messages of NMComi→j in rounds
k − 2, k − 1 to extract the committed share s0

i→j . When event bad occurs, the commitment
NMComi→j is valid and hence extraction must succeed. Moreover, this extraction does not
rewind Trapi→j since one can replay the same signature in round k− 2. XORing s0

i→j xor s1
i→j

gives two valid signatures of different messages under vki→j .
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Hybrid H1: This hybrid is identical to H0 except that after generating messages in the first k − 2
rounds in the main thread, H1 keeps rewinding rounds k− 3, k− 2 to extract a trapdoor w.r.t.
every verification key vkj→i sent to an honest party Pi. Extraction is done as in Stage 2 of
Sim, except that here the main thread is generated honestly, that is,

• Replay the honest parties’ messages in round k − 3 of Φ in the main thread.
• Generate honest parties’ messages in other components ci→j ,NMZKi→j ,WIor,2

i→j in rounds
k − 3, k − 2 as done in the main thread. (Different from the main thread of Sim, here
ci→j commits to the input and random tape (xi, ri) of Pi used in Φ.)

Keep rewinding until obtaining another successful transcript trans′ of rounds k − 3, k − 2. For
every vkj→i sent to an honest party Pi, find two valid signatures for messages mi→j ,m

′
i→j in

the main thread and in trans′; if mi→j = m′i→j , H1 aborts and outputs err1, and otherwise, it
sets trapdoor tdj→i to these two pairs.
We first argue that this hybrid runs in expected polynomial time.

Claim 10.6. There exists a universal polynomial T1, such that, for every λ and inputs x̄, the
run time of H1 is T1(TA(λ)) in expectation, where TA(λ) is the runtime of A.

Proof. Observe that the time for generating messages in the main thread and in each rewinding
thread is a fixed polynomial T ′(TA) in the runtime of A. Therefore, to bound the runtime
of H1, it suffices to bound the expected number of rewindings performed for extracting the
trapdoor. Let ρ be any prefix of execution of H1 up to the end of round k − 4 in the main
thread. It is without of loss generality to assume that honest parties’ random tapes for
computing messages in the instance of Φ are sampled inside ρ. Let p[ρ] be the probability that
no party aborts before the end of round k − 2 in the main thread conditioned on ρ appearing.
In each rewinding of rounds k−3, k−2, H1 simulates honest parties’ messages identically as in
the main thread, continuing from ρ. In particular, since the honest parties’ random tapes for
running Φ are contained in ρ, their messages in round k − 3 of Φ must be identical to that in
the main thread. (Honest parties’ other messages are generated randomly and independently
as in the main thread.) Thus, the probability that A does not abort in a rewinding is exactly
p[ρ]. The expected number of rewindings is thus p[ρ]× 1/p[ρ] = 1.
Therefore, there exists a universal polynomial T1, such that, H1 runs in time T1(TA) in
expectation.

Next, we show the following useful claim.

Claim 10.7. For every λ and inputs x̄, the probability that H1 outputs err1 is negligible.

Proof. Suppose for contradiction that H1 outputs err1 with noticeable probability. This means
for some i ∈ Ī and j 6= i, H1 fails to extract signatures for two different messages under
vki→j with noticeable probability. By definition of H1, it keeps rewinding until it obtains
a successful rewinding of rounds k − 3, k − 2. Thus, H1 must find two valid signatures for
messages mi→j ,m

′
i→j , and it fails to obtain a trapdoor only if mi→j = m′i→j .

By Claim 10.6, H1 runs in expected polynomial time. Thus, the probability that H1 makes
more than 2λ rewindings is negligible. In each rewinding k, the honest party Pi chooses the
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challenge message mk
i→j to be signed at random. Therefore, when the challenge messages

are sufficiently long, the probability that any two challenge messages in these 2λ rewindings
collide is negligible. This implies that the probability that mi→j = m′i→j is negligible, which
is a contradiction.

Note that the views of all parties in the main threads of H0 and H1 are identical, except that
H1 may output err1. By the above claim, we have that the views of all parties in the main
threads of H0 and H1 are statistically close. Therefore,

Claim 10.8. The outputs of all parties in H0 and H1 are indistinguishable, that is,

{H0(1λ, x̄)}λ,x̄ ≈ {H1(1λ, x̄)}λ,x̄

Claim 10.9. For every λ and inputs x̄, the probability that event bad occurs in H1 is
negligible.

Hybrid H2: This hybrid proceeds identically to H1 except for the following difference in the main
thread:

• in H1 for every honest i ∈ Ī and j 6= i, the party Pi commits to a random share s0
i→j in

NMComi→j and sends another random share s1
i→j in the clear, but

• in H2, share s1
i→j is set to s0

i→j xor tdj→i, where tdj→i is the extracted trapdoor for vkj→i.

Note that H1 and H2 proceed identically till the end of round k− 2 in the main thread. Thus,
their expected run-time are identical up to this point. After this point, both hybrids run in a
fixed polynomial time. Hence,

Claim 10.10. There exists a universal polynomial T2, such that, for every λ and inputs x̄,
the run time of H2 is T2(TA(λ)) in expectation, where TA(λ) is the runtime of A.

Alternatively, we can view the shares in H1 and H2 as being generated as follows: In H1, they
are set as s0

i→j = ui→j and s1
i→j = u′i→j xor tdj→i for randomly and independently sampled

ui→j and u′i→j , whereas in H2, they are s0
i→j = u′i→j and s1

i→j = u′i→j xor tdj→i. In this
equivalent view, the only difference in main threads of H1 and H2 lies in the values committed
in NMComi→j by honest parties. By the hiding of NMCom, we have that

Claim 10.11. The outputs of all parties in H0 and H1 are indistinguishable, that is,

{H1(1λ, x̄)}λ,x̄ ≈ {H2(1λ, x̄)}λ,x̄

Furthermore, since NMCom is many-many non-malleable in synchronous setting, we have that
the values that A commits to in NMComj→i sent by corrupted parties Pj do not change in H1
and H2, in particular, this implies:

Claim 10.12. For every λ and inputs x̄, the probability that event bad occurs in H2 is
negligible.
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We remark that we can reduce the above claims to the hiding and non-malleability of
NMCom, despite that H1 and H2 internally rewind rounds k−3, k−2. This is because, during
rewindings, the committer’s messages of NMCom from honest parties can be emulated internally
by committing to freshly sampled s0 shares (the s1 shares are never sent in rewindings), while
the receiver’s messages of NMCom from honest parties can be emulated by sending random
coins, thanks to the fact that NMCom is public-coin. Therefore, the NMCom commitments in
the main thread are never rewound.

Hybrid H3: This hybrid proceeds identically to H2 except for the following difference in the main
thread:

• in H2, for every honest i ∈ Ī and j 6= i, the honest party Pi proves the honest statement
in the WI proofs WIor,1

i→j ,WIor,2
i→j , whereas

• in H3, Pi proves the fake statement that NMComi→j commits to s0
i→j , such that, tdj→i =

s0
i→j xor s1

i→j is a valid trapdoor w.r.t. vkj→i.

Since the WI proofs use delayed inputs. H2 and H3 proceed identically till the end of round
k − 2 in the main thread. After this point, both hybrids run in a fixed polynomial time in TA.
Hence,

Claim 10.13. There exists a universal polynomial T3, such that, for every λ and inputs x̄,
the run time of H3 is T3(TA(λ)) in expectation, where TA(λ) is the runtime of A.

Therefore, by the witness indistinguishability of WIor, we have that

Claim 10.14. The outputs of all parties in H2 and H3 are indistinguishable, that is,

{H2(1λ, x̄)}λ,x̄ ≈ {H3(1λ, x̄)}λ,x̄

Furthermore, WIor is robust w.r.t. NMCom (see Claim 10.1). Notice that whether event bad
occurs w.r.t. a commitment NMComj→i for a corrupted j ∈ I and an honest i ∈ Ī can be
decided efficiently given the view of A and the value committed to in NMComj→i. Thus,
it follows from robustness that for any j ∈ I and i ∈ Ī, the probabilities that bad occurs
w.r.t. NMComj→i in H2 and H3 differ only by a negligible amount. Combine this fact with
Claim 10.12, we have that the probability that bad occur w.r.t. any such i, j is negligible.

Claim 10.15. For every λ and inputs x̄, the probability that event bad occurs in H3 is
negligible.

Again, we remark that we can reduce the above claims to the hiding and robustness of WIor,
despite of rewindings of rounds k − 3, k − 2. This is because, during rewindings, the first
prover’s messages of WIor from honest parties can be emulated by internally running the
prover’s algorithm, which does not depend on statements nor witnesses (the second prover’s
messages are never sent in rewindings) thanks to the delayed-input property of WIor. The
receiver’s messages of WIor can be emulated by sending random coins, thanks to the public-coin
property of WIor is. Therefore, the WIor proofs in the main thread are never rewound.
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Hybrid H4: This hybrid proceeds identically to H3 except that after generating messages in round
k − 1 in the main thread, H1 keeps rewinding rounds k − 2, k − 1 to extract the inputs and
random tapes of corrupted parties from the WIor,1 proofs given by A. Extraction is done
identically as in Stage 4 of Sim, except that, the main thread here is simulated differently. In
more detail, Sim simulates each rewinding as follows.

• Replay the honest parties’ messages in round k − 1 of Φ in the main thread.
• Generate honest parties’ messages in other components ci→j ,NMZKi→j ,WIor,2

i→j in rounds
k − 2, k − 1 as done in the main thread of H3/H4. (Different from the main thread in
Sim, here ci→j commits to the input and random tape (xi, ri) of Pi used in Φ.)

Keep rewinding until obtaining another successful transcript trans′′ of rounds k− 2, k− 1. For
every WI proof WIor,1

j→i where prover is Pj is corrupted and the verifier Pi is honest, find two
accepting transcripts of WIor,1

j→i with the same first two messages in the main thread and trans′′.
If they have the same third message, H4 aborts and outputs err2; otherwise, H4 extracts
a witness wj→i by relying on the adaptive-input special soundness of WIor. If any witness
wj→i is not a witness to the honest statement Xk−1

j→i defined in Equation 5, H4 aborts and
outputs err3; otherwise, wj→i contains the decommitment ρj→i of cj→i to input and random
tape (xj→i, rj→i) that are consistent with Pj ’s messages in the first k − 2 rounds of Φ. For
corrupted j ∈ I, set (xj , rj) to (xj→i, rj→i) for an arbitrary honest i ∈ Ī. Finally, after the
last round k in main thread, H4 outputs err4, if the honest parties do not abort, and for any
j ∈ I, (xj , rj) is not consistent with Pj ’s last message in Φ.
We first bound the expected runtime of H4.

Claim 10.16. There exists a universal polynomial T4, such that, for every λ and inputs x̄,
the run time of H4 is T4(TA(λ)) in expectation, where TA(λ) is the runtime of A.

Proof. Observe that hybridH3 andH4 proceed identically, except thatH4 performs rewindings
in order to extract the inputs and random tapes of corrupted parties. Also observe that
messages in each rewinding of rounds k − 2, k − 1 By are generated in a fixed polynomial
time T ′(TA) in the runtime of A. Therefore, by Claim 10.13, to bound the run-time of H4, it
suffices to bound the expected number of rewindings of rounds k − 2, k − 1. This follows from
the same argument as in 10.6.
Let ρ be any prefix of execution of H4 up to the end of round k − 3 in the main thread. It is
without loss of generality to assume that honest parties’ random tapes for computing messages
in the instance of Φ are sampled inside ρ. Let p[ρ] be the probability that no party aborts in
the first k − 1 rounds in the main thread conditioned on ρ appearing. In each rewinding of
rounds k− 2, k− 1, execution starts from ρ, and H4 simulates honest parties’ messages exactly
as in the main thread. In particular, since the honest parties’ random tapes for running Φ are
fixed in ρ, and round k − 2, k − 1 contains only round k − 2 of Φ, honest parties’ messages
this round of Φ must be identical to that in the main thread. Thus, the probability that
no party aborts in a rewinding is exactly p[ρ]. The expected number of rewindings is thus
p[ρ]× 1/p[ρ] = 1.

We establish the following useful claim for H4.
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Claim 10.17. For every λ and inputs x̄, the probability that H4 outputs err2 or err3 or err4
is negligible.

Proof. H4 outputs err2 if for some WIor,1
j→i for i ∈ Ī , j ∈ I, the two accepting transcripts

obtained in the main and the successful rewinding threads have the same third messages. It
follows from the same argument as the proof of Claim 10.7 that the probability that this
occurs is negligible.
Next, suppose for contradiction that H4 outputs err3 with noticeable probability. This means,
for some i ∈ Ī , j ∈ I, the witness wj→i extracted from WIor

j→i is not a witness for the honest
statement with noticeable probability. By the soundness of WIor

j→i, wj→i must be a valid
witness of the fake statement, that is, the XOR of the share s0

j→i committed in NMComj→i
and the share s1

j→i is a trapdoor tdi→j w.r.t. vki→j with noticeable probability. However, note
messages in main threads of H3 and H4 are generated identically. By Claim 10.15, event bad
occurs with negligible probability in the main thread of H4, which gives a contradiction.
Finally, suppose for contradiction that H4 outputs err4 with noticeable probability. This
means honest parties do not abort after k rounds in the main thread, and for some corrupted
j and honest i, (xj , rj) = (xj→i, rj→i) is not consistent with Pj ’s last message in Φ. By the
above analysis, (xj , rj) is obtained from a witness wj→i for the honest statement of WIor

j→i, and
hence it is the value committed in cj→i. If (xj , rj) is not consistent with Pj ’s last message in
Φ, the honest statement Xk

j→i of the second WI proof WIor,2
j→i from Pj is false. By the fact that

honest parties accept the proof WIor,2
j→i at the end of round k and the soundness of the proof,

the fake statement must be true. However, this would again contradict with Claim 10.15 that
event bad occurs with only negligible probability.

Note that the only difference between H3 and H4 is that the latter may output err2, err3, err4.
Thus,

Claim 10.18. The outputs of all parties in H3 and H4 are indistinguishable, that is,

{H3(1λ, x̄)}λ,x̄ ≈ {H4(1λ, x̄)}λ,x̄

Hybrid H5: This hybrid is identical to H4, except for the following difference in both the main
and rewinding threads:

• in H4, for every honest i ∈ Ī and j 6= i, the honest party Pi commits to its input and
random tape (xi, ri) for Φ in ci→j , whereas,
• in H5, Pi commits to 0poly(λ) in ci→j .

By the same analysis of the expected runtime of H1 and H4, we have

Claim 10.19. There exists a universal polynomial T5, such that, for every λ and inputs x̄,
the run time of H5 is T5(TA(λ)) in expectation, where TA(λ) is the runtime of A.

It follows from the hiding property of Com and the fact that the committer of Com sends only
a single message that the following two claims hold.
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Claim 10.20. The outputs of all parties in H4 and H5 are indistinguishable, that is,

{H4(1λ, x̄)}λ,x̄ ≈ {H5(1λ, x̄)}λ,x̄ .
Claim 10.21. For every λ and inputs x̄, the probability that H5 outputs err2 or err3 or err4
is negligible.

Hybrid H6 This hybrid is identical to H5, except for the following difference in the main thread:

• in H5, messages in the delayed-semi-malicious MPC protocol Φ from the honest parties
are generated honestly, whereas,
• in H6, these messages are simulated using the simulator SimΦ as Sim does.

By the same analysis of the expected runtime of H1 and H4, we have
Claim 10.22. There exists a universal polynomial T6, such that, for every λ and inputs x̄,
the run time of H6 is T6(TA(λ)) in expectation, where TA(λ) is the runtime of A.

In both H5 and H6, the rewinding threads simply replay the messages of honest parties in Φ
in the main thread. Therefore, the execution of Φ in the main thread is never rewound.
Claim 10.23. The outputs of all parties in H5 and H6 are indistinguishable, that is,

{H5(1λ, x̄)}λ,x̄ ≈ {H6(1λ, x̄)}λ,x̄ .

Proof. To show this indistinguishability, we need to show that in H5, the adversary A with
the extracted witness acts as a valid delayed-semi-malicious adversary. Then, by the delayed-
semi-malicious security of Φ, the outputs of all parties remain indistinguishable when messages
in Φ are simulated for A using SimΦ. Towards this, it suffices to show that with overwhelming
probability, i) if the honest parties do not abort after round k− 2 of Φ (that is, round k− 1 of
Π), then H5 must extract a witness w that is consistent with corrupted parties’ messages in
the first k − 2 rounds, and ii) if honest parties do not abort after round k − 1 of Φ (that is,
round k of Π), then w must also be consistent with corrupted parties’ messages in the last
k − 1 round. In this case, the execution of Φ in H5 corresponds to a real world execution of Φ
with a delayed-semi-malicious adversary, where if the witness that the adversary sends is not
valid, the honest parties abort immediately.
We show i) first. In H5, if the honest parties do not abort after round k − 2 of Φ (that is,
round k − 1 of Π), H5 starts extraction. In this case, by Claim 10.21 that H5 outputs err2 or
err3 with negligible probability, it must extract inputs and random tapes {xj , rj}j∈I consistent
with corrupted parties’ messages in the first k− 2 rounds of Φ, with overwhelming probability.
We now show ii). In H5, if the honest parties do not abort after round k − 1 of Φ (that is,
round k of Π), by Claim 10.21 that H5 outputs err4 with negligible probability, the extracted
inputs and random tapes {xj , rj}j∈I must be consistent with corrupted parties’ last messages
of Φ, with overwhelming probability.

Note that hybrid H0 and H6 proceed identically to the real world execution with A and the ideal
world execution with A and Sim respectively. Therefore, Claim 10.22 directly shows that Sim runs
in expected polynomial time (with black-box oracle access to A), which concludes Lemma 10.3.
By a hybrid argument, we have that the outputs of all parties in the real and ideal worlds are
indistinguishable, which concludes Lemma 10.4.
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10.4 k-RoundMalicious MPC from Our k-Round Delayed-Semi-Malicious MPC

In this section, we show that by leveraging specific properties of our delayed-semi-malicious MPC
protocols, we can modify the transformation in the previous section to start with our protocols with
k rounds, instead of k − 1 rounds.

10.4.1 Construction of Malicious MPC

Tools Used in Our Malicious MPC Protocols. To construct a malicious MPC protocol for
computing a functionality f , we rely on the same tools for as in Section 10.3, namely, a delayed-
semi-malicious MPC protocol Φ′ for computing f , a two-message statistically binding commitment
scheme Com, and all the tools used in COSV NMZK (including the trapdoor setup protocol Trap, the
special non-malleable commitment NMCom, and the special WI protocol WIor). The only difference
is that Φ′ is our k-round delayed-semi-malicious MPC protocol for f , which satisfies the following
properties.

• Property 1: The first k−2 rounds of Φ′ contain only instances of OT. Let OTi→j,` denote the
`-th OT instance between Pi as the sender and Pj as the receiver, and {OTi→j,`}i,j∈[N ],`∈[poly(λ)]
the set of all OT instances executed in Φ′. The first k − 2 rounds of Φ′ contain only the first
k − 2 rounds of these OT instances.

• Property 2: Messages in the first k − 2 rounds of Φ′ does not depend on the input. Because
of property 1 and the fact that OT can work with delayed inputs, that is, the OT receiver
and the OT sender use their inputs only for generating the last message they send, namely, in
round k − 1 and round k respectively, only messages in round k − 1 and k of Φ′ depend on
parties’ inputs.

• Property 3: The simulator SimΦ′ of Φ′ simulates honest parties’ messages in the first k − 2
rounds of Φ′ by simply running the honest OT sender and receiver algorithms. Only honest
parties’ messages in round k − 1 and k are simulated differently.

The Malicious MPC Protocol Π′. With these special properties, we now describe how to
modify the construction of Π in Section 10.3 to use our k-round delayed-semi-malicious protocol Φ′.
To compute f on inputs x1, · · · , xN , parties Pi(1λ, xi) run the same components as in Π, except
that the first component is modified as follows:

• Component 1, Computation by the delayed-semi-malicious MPC protocol Φ′
(Round 1, · · · , k):

– For every OT instance OTi→j,` in Φ′, if the (k − 2)-th message in OT is from the
sender (or receiver), Pi (or Pj respectively) samples a bit bi→j,` R← {0, 1} randomly and
independently.

– In the first k − 3 rounds, for every OT instance OTi→j,` in Φ′, run 2 independent OT
instances OT0

i→j,` and OT1
i→j,` from Pi to Pj . (As OT works with delayed-inputs, these

messages do not depend on parties’ inputs.)
– In round k− 2, k− 1, k, all parties jointly complete the execution of Φ′ using inputs {xi},

continuing from the OT instances {OTbi→j,`i→j,` }. The other OT instances {OT1−bi→j,`
i→j,` } are

aborted in round k − 2.
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In summary, the instance of Φ′ contains only {OTbi→j,`i→j,` }. Refer to them as the real OT
instances, and the other aborted ones the shadow OT instances. As we will see shortly, the
shadow OT instances are only used for simulation. Similar to before, let xi, ri be the input
and random tape that Pi used in the instance of Φ′; m`

i and m̄<` = {m`′
j }j,`′<` denote the

messages broadcast by Pi and all parties in the first `− 1 rounds of Φ′.

• Components 2-4 are essentially identical to that in Π, with the following slight modification:

– In ci→j , Pi commits to (xi, r′i) using Com in the first two rounds, where r′i is the random
tape Pi used for generating messages in all OT instances and Φ′ (from round k−2). Note
that Pi cannot commit to only its random tape used in Φ′, because which OT instances
are included in Φ′ are only chosen in round k − 2 > 2.

– In NMZKi→j (consisting of Trapj→i,NMComi→j , s
1
i→j ,WIor,1

i→j), Pi proves that its messages
in the first k − 1 rounds of Φ′ are consistent with (xi, r′i) committed in ci→j . Formally,
statement Xk−1

i→j is in language LX , which are defined identically to Equation 5, with the
underlined difference.

∀ Xt
i→j = (t, m̄≤t, ci→j), RX(Xt

i→j , ρi→j) = 1
iff i) ρi→j decommits ci→j to xi, r′i, and

ii) r′i contains ri s.t. ∀` ≤ t, m`
i = NextΦ

i (1λ, xi, ri,m≤`−1) (7)

Recall that inside NMZKi→j , Pi proves in WIor,1
i→j that either the above honest statement

is true, or the following fake statement is true: The share s0
i→j committed in NMComi→j

XOR’ed with s1
i→j is a trapdoor w.r.t. vkj→i in Trapj→i. Formally, the statement Y k−1

i→j
is in LY defined in Equation (6) (w.r.t. the modified X statement above).

– In WIor,2
i→j , Pi proves that either its messages in all k rounds of Φ′ are consistent with

(xi, r′i) committed in ci→j or the above fake statement is true. Formally, the statement
Y k
i→j is in language LY .

• Derive Outputs: Each party derives its output from the instance of Φ′.

10.4.2 Proof of Malicious Security

Theorem 10.24. Let f be any functionality. The above MPC protocol Π′ for f is secure against
malicious adversaries.

We modify the simulator Sim for Π in Section 10.3.2 to obtain the simulator Sim′ for Π′.

Overview of the Simulator Sim′: At a high-level, Sim′ proceeds identically to Sim, except for
the following differences. First, Sim′ simulate the shadow OT instances by simply running the honest
OT sender and receiver’s algorithms; as mentioned above, this does not require to use parties’ real
inputs. Second, recall that Π rewinds A at two places: It repeatedly rewinds rounds k − 3, k − 2
in order to extract a trapdoor tdj→i w.r.t. every verification key vkj→i sent to an honest party Pi,
and it rewinds rounds k − 2, k − 1 in order to extract the input and random tape (xj , rj) of every
corrupted party Pj . For the security of the Φ instance to hold, it is important that its messages
are never rewound. To achieve so, in these rewindings, Sim simply replays the messages in round
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k − 3 (when rewinding rounds k − 3, k − 2) and round k − 2 (when rewinding rounds k − 2, k − 1)
of Φ in the main thread for A. This works since Φ has only k − 1 rounds, and the round k − 2 of
Π does not contain any Φ messages. Therefore, in these rewindings, the simulator never needs to
simulate honest parties’ message in response to new messages sent by A. In contrast, every round
of Π′ contains one round of Φ′. Sim′ must avoid rewinding the Φ′ instance in different ways.

• In each rewinding of rounds k − 3, k − 2, Sim′ replays messages in round k − 3 of Φ′ in the
main thread, and then uses the shadow OT instances to simulate messages in round k − 2,
that is, it generates the (k − 2)-th message of {OT1−bi→j,`

i→j,` } for A. Observe that since bi→j,` is
chosen randomly and independently, the view of A in each rewinding is identically distributed
as that in the main thread.

• In each rewinding of rounds k − 2, k − 1, Sim′ replays messages in round k − 2 of Φ′ in the
main thread. Then, it checks whether A sends the same messages in round k − 2 as in the
main thread, and aborts if not. Otherwise, it replays again messages in round k − 1 of Φ′ in
the main thread. For this strategy to work, A is expected to send the same messages in round
k − 2 again with good probability. This follows because in round k − 1, A must prove using
NMZK that the corrupted parties’ messages are consistent with the inputs and random tapes
committed to in round 2 < k − 2. If A has good probability of passing the proof, then it has
good probability of sending the same messages.

The new rewinding strategy does not rewind any messages in Φ′. Thus, its security holds.

The Simulator Sim′: We now describe the modification to Sim formally.

• Stage 1, Simulate main thread rounds 1, . . . , k − 2: Sim′ simulates honest parties’
messages as follows:

1. Simulate messages in OT instances:
– In the first k − 3 rounds, emulate honest parties’ messages in all OT instances
{OT0

i→j,`,OT1i→j,`} by running the honest OT sender and receiver algorithms.
– In round k − 2, for every pair (OT0

i→j,`,OT1i→j,`) whose (k − 2)-th message is from
an honest party Pi (or Pj), sample a bit bi→j,` R← {0, 1} at random, and emulate the
honest party’s next message in OTbi→j,`i→j,` honestly and abort in OT1−bi→j,`

i→j,` .
For every pair (OT0

i→j,`,OT1i→j,`) whose next message is from a corrupted party,
receive from A the next message of OTbi→j,`i→j,` for bit bi→j,` chosen by A.

After round k − 2, which OT instances are included in the instance of Φ′ is determined.
By the property of Φ′, simulation of the first k − 2 rounds of Φ′ involves only generating
OT messages honestly, exactly as done above.

2. Simulate messages in ci→j, NMZKi→j, WIor,2
i→j, exactly as Sim does: Commit to a zero

string in every ci→j from an honest party Pi; emulate the first k− 2 rounds of NMZKi→j
and WIor,2

i→j honestly, which does not depend on any statements nor witnesses.

• Stage 2, Rewind rounds k−3, k−2 to extract trapdoors: Sim′ keeps rewinding A from
round k − 3 to round k − 2 in order to extract a trapdoor w.r.t. every verification key vkj→i
sent to an honest party Pi. In each rewinding, it does:
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1. Simulate the honest parties’ messages in all OT instances as follows: In round k − 3,
Replay the honest parties’ messages in all OT instances in the main thread. In round
k − 2, for every pair (OT0

i→j,`,OT1i→j,`) whose (k − 2)-th message is from an honest
party Pi (or Pj), emulate the honest party’s next message in OT1−bi→j,`

i→j,` honestly and
abort in OTbi→j,`i→j,` .

2. Simulate the honest parties’ messages in other components ci→j ,NMZKi→j ,WIor,2
i→j exactly

as in the main thread.

Sim′ keeps rewinding until it obtains another successful transcript trans′ of round k − 3 and
k − 2. For every vkj→i sent to an honest party Pi, it finds a trapdoor tdj→i, and outputs err1
if it fails.

• Stage 3, Simulate main thread round k − 1 using trapdoors: Sim′ simulates honest
parties’ messages in round k − 1 as Sim does: 1) It simulates messages in the instance of Φ′
using the simulator Sim′Φ′(1λ, I) of Φ′, 2) simulates the third messages in {WIor,2

i→j} honestly,
and 3) cheats in {NMZKi→j} by proving the fake statements.

• Stage 4, Rewind rounds k−2, k−1 to extract inputs and random tapes of corrupted
parties: Sim′ keeps rewinding A from round k− 2 to k− 1 in order to extract a witness wj→i
from every WI proof WIor,1

j→i where the prover Pj is corrupted and the verifier Pi is honest. In
each rewinding, it does:

1. Simulate the honest parties’ messages in Φ′ as follows: In round k − 2, replay the honest
parties’ messages in round k − 2 of Φ′ in the main thread. Let m̄k−2

I = {mk−2
j }

j∈I be
the messages that corrupted parties sent in round k − 2 of Φ′ in the main-thread. If A
sends messages different from m̄k−2

I , abort this rewinding. Otherwise, in round k − 1,
replay the honest parties’ messages in round k − 1 of Φ′ in the main thread.

2. Simulate the honest parties’ messages in other components NMZKi→j ,WIor,2
i→j exactly as

in the main thread.

Sim keeps rewinding until it obtains another successful transcript trans′′ of round k − 2 and
k− 1. For every WI proof WIor,1

j→i where the prover Pj is corrupted and the verifier Pi is honest,
it extracts a witness, and outputs err2 if extraction fails. If any witness wj→i is not a witness
to the honest statement Xk−1

j→i defined in Equation (7), it aborts and outputs err3. Otherwise,
it finds in wj→i for an arbitrary honest i ∈ Ī, an input and random tape (xj , rj) consistent
with Pj ’s messages in the first k − 1 rounds of Φ′.

• Stage 5, Simulate main thread round k using extracted input and randomness:
Using the corrupted parties’ inputs and random tapes {xj , rj}j∈I extracted from A, Sim′
simulates honest parties’ messages in round k as Sim does: 1) it simulates the last messages of
Φ′ using Sim′Φ′ , fed with the witness w = {xj , rj}j∈I , and 2) cheats in {WIor,2

i→j} by proving the
fake statement.
Finally, Sim′ outputs err4 (as Sim does), if the honest parties do not abort in the main thread,
and for some j ∈ I, (xj , rj) obtained in Stage 4 is not consistent with Pj ’s last message in Φ′.

To establish the correctness of Sim′, we show that
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Lemma 10.25. For any N -party functionality f , and any poly-sized adversary A controlling any
subset I ⊂ [N ] of parties. The simulator Sim′ for A described above runs in expected polynomial
time, except for a negligible probability.

Lemma 10.26. For any N -party functionality f , and any poly-sized adversary A controlling any
subset I ⊂ [N ] of parties. The simulator Sim′ for A described above satisfies that:

{IdealI,Sim′(1λ, x̄)}
λ,I,x̄

≈ {RealI,A(1λ, x̄)}λ,I,x̄ .

We remark that Lemma 10.25 only establishes that Sim′ runs in some polynomial T time in
expectation, with overwhelming probability 1− µ(λ). But, we can easily modify Sim′ to remove the
negligible probability µ(λ): Simply cut off it computation after 1/µ(λ) steps. Now, the expected
polynomial time is T × (1− µ(λ)) + (1/µ(λ))µ(λ) ≤ T + 1. Therefore, it suffices to prove the above
two lemmas.

Correctness of Simulation — Proof of Lemma 10.25 and 10.26 To show the correctness
of Sim′, we use essentially the same hybrids H′0, · · · ,H′6 used for showing the correctness of Sim.
The main difference lies in the simulation strategy in the rewindings of rounds k − 3, k − 2 and
round k− 2, k− 1, and the running time analysis of the hybrids. Below, we describe the hybrids; we
focus more on the part that is different from the hybrids in the proof for Sim, and describe briefly
the parts that are similar or identical.

Hybrid H′0: This hybrid is identical to the real world execution RealI,A(1λ, x̄). It runs in strict
polynomial time, and it follows from the same proof of Claim 10.5 that event bad almost never
occurs in this hybrid.

Hybrid H′1: This hybrid is identical to H′0 except that after generating messages in the first k − 2
rounds in the main thread, H′1 keeps rewinding rounds k− 3, k− 2 to extract a trapdoor w.r.t.
every verification key vkj→i sent to an honest party Pi. Procedure of extraction is identical
to that in Stage 2 of Sim′, except that now the main thread is honestly generated. In more
detail, H′1 simulates in a rewinding as follows.

• Replay the honest parties’ messages in round k− 3 of all OT instances in the main thread.
In round k − 2, for every pair (OT0

i→j,`,OT1i→j,`) whose (k − 2)-th message is from an
honest party, emulate the honest party’s next message in OT1−bi→j,`

i→j,` honestly and abort
in OTbi→j,`i→j,` .

• Generate honest parties’ messages in other components ci→j ,NMZKi→j ,WIor,2
i→j in rounds

k − 3, k − 2 as done in the main thread. (Different from the main thread of Sim′, here
ci→j commits to the input and random tape (xi, r′i) of Pi used in all OT instances and
Φ′.)

Keep rewinding until obtaining another successful transcript trans′ of rounds k − 3, k − 2. For
every vkj→i sent to an honest party Pi, it finds a trapdoor tdj→i, and outputs err1 if it fails.
We first argue that this hybrid runs in expected polynomial time.

Claim 10.27. There exists a universal polynomial T1, such that, for every λ and inputs x̄,
the run time of H′1 is T1(TA(λ)) in expectation, where TA(λ) is the runtime of A.
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Proof. The analysis of run-time is identical to that for Claim 10.6. To bound the expected
run-time ofH′1, it suffices to bound the expected number of rewindings performed for extracting
the trapdoor. In Claim 10.6, we showed that if the views of A in the main and each rewinding
thread are identically distributed, then the expected number of rewindings is 1, following the
“p× 1/p” argument.
Let ρ be any prefix of execution of H′1 up to the end of round k − 4 in the main thread. It
is without loss of generality to assume that honest parties’ messages in round k − 3 of all
OT instances are already generated in ρ, and would be sent immediately after ρ. Let p[ρ] be
the probability that no party aborts in the first k − 2 rounds in the main thread conditioned
on ρ appearing. Conditioned on ρ, honest parties’ messages are simulated identically in the
main and each rewinding thread, except that, in the main thread, round k− 2 contains honest
messages in the OT instances {OTbi→j,`i→j,` }, whereas in rewinding, it contains honest messages in
OT instances {OT1−bi→j,`

i→j,` }. However, for each instance OTi→j,` whose (k − 2)-th message is
sent by an honest party, the bit bi→j,` is sampled by that honest party at random. Therefore,
the views of A in the main and rewinding thread are still identically distributed. Thus, by the
“p[ρ]× 1/p[ρ]” argument, the expected number of rewindings is at most 1.

Given that H′1 runs in expected polynomial time, it follows from the same arguments for
Claim 10.7 that H1 outputs err1 with negligible probability. Since the only difference in the
main threads of H′0 and H′1 is that the latter may output err1, we have that: The views of all
parties in the main threads of H′0 and H′1 are statistically close, and event bad occurs in H′1
with negligible probability.

Hybrid H′2: This hybrid proceeds identically to H′1 except for the following difference in the main
thread:

• in H′1 for every honest i ∈ Ī and j 6= i, the party Pi commits to a random share s0
i→j in

NMComi→j and sends another random share s1
i→j in the clear, but

• in H′2, share s1
i→j is set to s0

i→j xor tdj→i, where tdj→i is the extracted trapdoor for vkj→i.

Since H′1 and H′2 proceed identically till the end of round k − 2 in the main thread, their
expected run-time are identical up to this point. After this point, both hybrids run in a fixed
polynomial time in TA. Hence,

Claim 10.28. There exists a universal polynomial T2, such that, for every λ and inputs x̄,
the run time of H′2 is T2(TA(λ)) in expectation, where TA(λ) is the runtime of A.

Alternatively, we can view the difference in H′1 and H′2 as follows: In H′1, the shares are
s0
i→j = ui→j and s1

i→j = u′i→j xor tdj→i for randomly sampled ui→j , u′i→j , whereas in H′2, they
are s0

i→j = u′i→j and s1
i→j = u′i→j xor tdj→i. Therefore, by hiding of NMCom, the outputs

of all parties in H′1,H′2 are indistinguishable. Furthermore, by non-malleability of NMCom,
the probabilities that bad occurs in H′1,H′2 differ by at most a negligible amount. Since bad
almost never occurs in H′1, the same holds in H′2.

Hybrid H′3: This hybrid proceeds identically to H′2 except for the following difference in the main
thread:
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• in H′2, for every honest i ∈ Ī and j 6= i, the honest party Pi proves the honest statement
in the WI proofs WIor,1

i→j ,WIor,2
i→j , whereas

• in H′3, Pi proves the fake statement that the share s0
i→j committed in NMComi→j XORed

with s1
i→j is a valid trapdoor w.r.t. vkj→i.

Since the WI proofs use delayed inputs. H′2 and H′3 proceed identically till the end of round
k−2 in the main thread. After this point, both hybrids run in a fixed polynomial time. Hence,

Claim 10.29. There exists a universal polynomial T3, such that, for every λ and inputs x̄,
the run time of H′3 is T3(TA(λ)) in expectation, where TA(λ) is the runtime of A.

By the witness indistinguishability of WIor, we have that the outputs of all parties in H′2,H′3
are indistinguishable. Furthermore, by the robustness of WIor w.r.t. NMCom (see Claim 10.1)
and the fact that bad occurs with negligible probability in H′1, the same holds in H′2.

Hybrid H′4: This hybrid proceeds identically to H′3 except that after round k − 1 in the main
thread, H′1 keeps rewinding round k − 2, k − 1 to extract the inputs and random tapes of
corrupted parties from the WIor,1 proofs given by A. Extraction is done identically as in Stage
4 of Sim′. In more detail, Sim′ simulates each rewinding as follows.

• In round k− 2, replay the honest parties’ messages in the Φ′ instances in the main thread.
If A sends messages m̄′k−2

I different from the messages it sent m̄k−2
I in the main thread,

abort this rewinding. Otherwise, in round k−1, replay again the honest parties’ messages
in round k − 1 of the Φ′ instance in the main thread.
• Simulate the honest parties’ messages in other components ci→j ,NMZKi→j ,WIor,2

i→j in
rounds k−2, k−1 as done in the main thread of H′3/H′4. (Different from the main thread
in Sim′, here ci→j commits to the input and random tape (xi, r′i) of Pi used in all OT
instances and Φ′.)

Keep rewinding until obtaining another successful transcript trans′′ of rounds k − 2, k − 1.
For every WI proof WIor,1

j→i from a corrupted prover Pj to an honest verifier Pi, H′4 extracts a
witness wj→i by relying on the adaptive-input special soundness of WIor. If extraction fails,
H′4 aborts and outputs err2, and if wj→i is not a witness to the honest statement Xk−1

j→i defined
in Equation 7, it aborts and outputs err3. Otherwise, it finds (xj , rj) consistent with Pj ’s
messages in the first k − 1 rounds of Φ′. Finally, after the last round k in main thread, H′4
outputs err4, if the honest parties do not abort, and for some j ∈ I, (xj , rj) is not consistent
with Pj ’s last message in Φ′.
We first bound the expected run-time of H′4.

Claim 10.30. There exists a universal polynomial T4, such that, for every λ and inputs x̄,
the run time of H′4 is T4(TA(λ)) in expectation, except for a negligible probability µ4, where
TA(λ) is the runtime of A.

Proof. Observe that hybridH′3 andH′4 proceed identically, except thatH′4 performs rewindings
in order to extract the inputs and random tapes of corrupted parties. By the fact that H′3
runs in expected polynomial time and that each rewinding takes a strict polynomial time, to
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bound the expected run-time of H′4, it suffices to bound the expected number rewindings of
round k − 2, k − 1.
First, observe that the main threads of H′3,H′4 are simulated identically. Since bad almost
never occurs in H′3, neither does it occur in H′4. We show that the following event bad′ also
almost never occurs in the main thread of H′4.

• Fix an arbitrary honest party i? ∈ Ī, say the smallest i in Ī.
Event bad′ occurs in a thread, if the following conditions hold.
– i) No party aborts in the first k − 1 rounds.
– ii) There exists a corrupted party Pj , such that, its messages mk−2

j in round k− 2 of
Φ′ are inconsistent with the unique input and random tape (xj , r′j) committed to in
cj→i? . (By the statistical binding property of Com, the value committed in cj→i? is
unique with overwhelming probability.) Inconsistency means that mk−2

j is different
from the messages m?,k−2

j computed according to the appropriate random coins in
r′j and messages in Φ′.

If bad occurs with negligible probability, then bad′ occurs with negligible probability. Condition
i) implies that every corrupted party Pj convinces Pi? in NMZKj→i? . When bad does not
occur, by the soundness of WIor,1

j→i? in NMZKj→i? , the honest statement must be true, which
implies that Pj ’s message mk−2

j in round k − 2 of Φ′ is consistent with (xj , r′j) committed in
cj→i? , with overwhelming probability. Let µ = µ(λ) be the negligible probability that bad′
occurs in the main thread of H′4.
Let ρ be any prefix of execution of H′4 up to the end of round k − 3 in the main thread. It is
without loss of generality to assume that honest parties’ random tapes for computing messages
in the instance of Φ′ are sampled inside ρ. Let p[ρ] denote the probability that no party aborts
in the first k − 1 rounds in the main thread, conditioned on ρ appearing. By an averaging
argument, for a (1−√µ) fraction of ρ, conditioned on ρ appearing, the probability that bad′
occurs in the main thread is at most √µ. Let Γ be this set of ρ.
Recall that in H′4. A rewinding is successful if (1) no party aborts in the first k−1 rounds, and
(2) messages sent by corrupted parties in round k−2 of Φ′ are identical to that m̄k−2

I they sent
in the main thread. We observe that in a rewinding in H′4, honest parties’ messages in round
k − 1 are simulated identically as in the main thread. In particular, since the honest parties’
random tapes for running Φ′ are fixed inside ρ, their messages in round k − 2 of Φ′ must
be identical to that in the main thread. (Other components are also simulated identically.)
Moreover, if (2) holds in a rewinding, H′4 continues to simulate the honest parties’ messages in
round k − 1 identically as in the main thread. In particular, if corrupted parties indeed send
m̄k−2
I again in round k − 2, honest parties’ responses in round k − 1 must also be identical

to that in the main thread. On the other hand, when (2) does not occur, H′4 aborts this
rewinding.
Consider a hypothetical hybrid H′′4 where when (2) occurs, it does not abort the rewinding
and continues to simulate messages in round k− 1 as in the main thread. (The rest is identical
to H′4.) Still, a rewinding is successful only if both conditions (1) and (2) hold. Observe that
the probability that a rewinding is successful is identical in H′4 and H′′4 , since H′4 only aborts
when (2) does not occur. Therefore, they have the same number of rewindings. The advantage
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of considering H′′4 is that its main thread and rewinding threads are simulated identically. In
particular, if conditioned on ρ, the probability that bad′ occurs is bounded by √µ in the main
thread, it is also bounded by √µ in each rewinding.
Next, we bound the expected number of rewindings in H′′4 , when the following bad events
overtime1 and overtime2 do not happen.

• Event overtime1 occurs if a prefix ρ 6∈ Γ appears or bad′ occurs in the main thread. We
have that

Pr[overtime1] ≤ Pr [ ρ 6∈ Γ ] + Pr
[
bad′ in main ∧ ρ ∈ Γ

] ≤ 2√µ .

• Event overtime2 occurs if a prefix ρ satisfying that p[ρ] ≤ 2√µ appears, and no party
aborts in the first k − 1 rounds in the main thread.

Pr [ overtime2 ] = Pr [ p[ρ] ≤ 2√µ ]× Pr [ no abort in main : p[ρ] ≤ 2√µ ] ≤ 2√µ .

We now show that conditioned on overtime1, overtime2 not occurring, the expected number of
rewindings is at most 4.
Towards the above, first observe that

R = E [# rewindings : ¬overtime1 ∧ ¬overtime2 ]
= E

[
# rewindings : ρ ∈ Γ ∧ (¬bad′ in main

) ∧ ((p[ρ] > 2√µ) ∨ (abort in main))
]

Consider two cases, either the main thread is aborted, or not. By Bayesian law,

R ≤ E
[
# rewindings : ρ ∈ Γ ∧ (¬bad′ in main

) ∧ abort in main
]

+ E
[
# rewindings : ρ ∈ Γ ∧ (¬bad′ in main

) ∧ (p[ρ] > 2√µ) ∧ (¬abort in main)
]

× Pr
[¬abort in main : ρ ∈ Γ ∧ (¬bad′ in main

) ∧ ((p[ρ] > 2√µ) ∨ (abort in main))
]

The first expectation is simply 0 as when the main thread is aborted, no rewinding is performed.
Moreover, the last probability is at most 2p[ρ]. To see this, consider two cases, either ρ ∈ Γ
satisfies that p[ρ] ≤ 2√µ; then it must happen that the main thread is aborted, and hence the
probability of not aborting is zero. Or ρ ∈ Γ satisfies that p[ρ] > 2√µ; conditioned on such
a ρ, and conditioned further on bad′ not occurring in main, the probability that the main
thread is not aborted is at most p[ρ]/(1−√µ) ≤ 2p[ρ], as for ρ ∈ Γ, the probability that bad′
occurs is at most √µ ≤ 1/2. Therefore,

R ≤ E
[
# rewindings : ρ ∈ Γ ∧ (¬bad′ in main

) ∧ (p[ρ] > 2√µ) ∧ (¬abort in main)
]× 2p[ρ]

The expected number of rewindings is the inverse of the probability that a rewinding is
successful. Recall that a rewinding is successful when 1) no party aborts in the first k − 1
rounds and 2) the corrupted parties send the same messages in k−2 round of Φ′ as in the main
thread. Conditioned on any ρ ∈ Γ satisfying p[ρ] > 2√µ, the main and rewinding threads are
simulated identically and independently in H′′4 . Therefore, the probability that 1) holds in a
rewinding is p[ρ]. We claim that 2) occurs whenever bad′ does not occur in the rewinding,
which happens with probability at least 1−√µ. Since bad′ does not occur in the main thread,
if it also does not occur in a rewinding, the corrupted parties’ messages in round k − 2 of Φ′
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are determined by the inputs and random tapes committed to in {cj→i?}j∈I in the first two
rounds contained in ρ, and hence 2) must occur. Therefore, the probability that a rewinding
is successful is at least p[ρ]−√µ > p[ρ]/2. Combined this with the above equation, we have:

R ≤ p[ρ]
2 × 2p[ρ] = 4

We conclude that except with negligible probability µ4 = 4√µ, the expected number of
rewindings is bounded by 4 in H′′4 , as well as in H′4. Therefore, the claim holds.

Given that the H′4 runs in expected polynomial time with overwhelming probability, by the
same argument of Claim 10.17, the probability that it fails to extract a witness from some
WIor,1

j→i from a corrupted party is negligible, i.e., H′4 outputs err2 with negligible probability.
Moreover, by the fact that bad almost never occurs in the main thread of H′4 and the soundness
of WIor,1

j→i, the extracted witness must be a witness of the honest statement with overwhelming
probability, i.e., H′4 outputs err3 with negligible probability. Therefore, H′4 can recover inputs
and random tapes that explain corrupted parties’ messages in the first k − 1 rounds. By the
same argument and the soundness of WIor,2

j→i proofs, the recovered inputs and random tapes
must also be consistent with messages in round k, if the honest parties do not abort, i.e., H′4
outputs err4 with negligible probability.
As the only difference between H′3 and H′4 is that the latter may output err2, err3, err4, which
occurs with only negligible probability, we have that the outputs of all parties in H′3 and H′4
are statistically close.

Hybrid H′5: This hybrid is identical to H′4, except for the following difference in both the main
and rewinding threads:

• in H′4, for every honest i ∈ Ī and j 6= i, the honest party Pi commits to its input and
random tape (xi, r′i) for all OT instances and Φ in ci→j , whereas,
• in H′5, Pi commits to 0poly(λ) in ci→j .

We show that the hiding of Com implies that like H′4, H′5 runs in expected polynomial time
except with negligible probabilities.

Claim 10.31. There exists a universal polynomial T5, such that, for every λ and inputs x̄,
the run time of H′5 is T5(TA(λ)) in expectation, except for a negligible probability µ5(λ), where
TA(λ) is the runtime of A.

Proof. Fix a λ and inputs x̄. By Claim 10.30, H′4 runs in expected polynomial time T = T4(TA),
except with negligible probability µ4.
Suppose for contradiction that the claim is false.

• Let T > be the largest time step such that conditioned on H′5 not running for more
than T > steps, the expected run-time of H′5 is bounded by 2T . In other words, for any
T ′ > T >, the expected run-time of H′5 conditioned on not running for more than T ′
steps is larger than 2T . By the contradiction hypothesis, we have that the probability
that H′5 runs more than T > steps is some inverse polynomial, denoted as p>.
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Since p> is inverse polynomial, we argue that T > must be a polynomial. Suppose not and T >
is superpolynomial. Let H5[T >] be a hybrid identical to H′5 except that the execution is cut
off after T > steps. Since the expected run-time of H5[T >] is bounded by 2T , the probability
that it runs for more than T ⊥ = 2T /p> steps is at most p>. As T > is superpolynomial and
T ⊥ is polynomial, it holds: i) The probability that H′5 (without cut off) runs for more than T⊥
steps is also at most p>, and ii) this gives a contradiction with the contradiction hypothesis
that H5 runs for more than T > steps with probability at least p>.
Consider now H5[T >+ 1] and H4[T >+ 1], where executions of H′5,H′4 are cut off after T >+ 1
steps. They both run in strict polynomial time. The expected run-time of the former is greater
than 2T , but the expected run-time of the latter is no greater than T + 1. To see the latter, let
overtime denote the probability µ4 event where the expected run-time of H′4 is not bounded.

E
[
Runtime of H4[T > + 1]

]
≤ E

[
Runtime of H′4 : ¬overtime

]× (1− µ4) + (T > + 1)× µ4 ≤ T + 1

Since the only difference between H5[T >+1] and H4[T >+1] lies in what values are committed
to in the Com commitments. We can use them to build a malicious strict poly-time receiver
A′ of Com. A′ internally runs H′′4 (or H′′5) for a sufficiently large polynomial number of times.
Whenever an honest party Pi needs to send a Com commitment in the internal emulation,
A′ chooses two appropriate challenge messages (xi, r′i), 0poly(λ), and upon receiving a Com
commitment to one of the messages, it forwards this commitment to A′ as the commitment
from Pi. All other messages are generated identically as in H′′4 . Finally, A′ outputs the
average run-time of all executions. Note that depending on the values committed in the Com
commitments, A′ perfectly emulates many executions of H′′4 or H′′5 . When the number of
executions is sufficiently large, in the former case, the average run-time output by A′ must be
smaller than 3T/2 with overwhelming probability, and in the latter case, the average run-time
must be larger than 3T/2 with overwhelming probability. This violates hiding of Com and
gives a contradiction.

Given that the expected runtime of H′4,H′5 are both polynomial with overwhelming probability.
It follows from the hiding property of Com and the fact that the committer of Com sends only
a single message that the outputs of all parties in H′4 and H′5 are indistinguishable, and the
probability that H′5 outputs err2 or err3 or err4 is almost identical to that H′4 outputs any of
them, which is negligible.

Hybrid H′6 This hybrid is identical to H′5, except for the following difference in the main thread:

• in H′5, messages in our delayed-semi-malicious MPC protocol Φ′ from the honest parties
are generated honestly, whereas,
• in H′6, these messages are simulated using the simulator Sim′Φ′ as Sim′ does.

In both H′5 and H′6, the rewinding threads simply replay the honest parties’ messages in the
instance of Φ′ in the main thread. Therefore, the instance of Φ′ in the main thread is never
rewound. By the same analysis of the expected runtime of H′5 (Claim 10.31), but now relying
on the security of Φ′, we have
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Claim 10.32. There exists a universal polynomial T6, such that, for every λ and inputs x̄,
the run time of H′6 is T6(TA(λ)) in expectation, except for a negligible probability µ6(λ), where
TA(λ) is the runtime of A.

Finally, again by the security of Φ′, the outputs of all parties inH′5 andH′6 are indistinguishable.

Note that hybrid H′0 and H′6 are identical to the real world execution with A and the ideal world
execution with A and Sim′ respectively. Therefore, Claim 10.32 directly shows that Sim′ runs in
expected polynomial time (with black-box oracle access to A), except with negligible probability,
which concludes Lemma 10.25. By a hybrid argument, we have that the outputs of all parties in the
real and ideal worlds are indistinguishable, which concludes Lemma 10.26.
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