
Privacy Games for Syntactic Privacy Notions

Abstract. It is well understood that the huge volumes of data captured
in recent years have the potential to underpin significant research devel-
opments in many fields. But, to realise these benefits, all relevant parties
must be comfortable with how this data is shared. At the heart of this
is the notion of privacy — which is recognised as being somewhat dif-
ficult to define. Previous authors have shown how privacy notions such
as anonymity, unlinkability and pseudonymity might be combined into
a single formal framework. In this paper we use and extend this work
by defining privacy games for individual and group privacy within dis-
tributed environments. More precisely, for each privacy notion, we for-
mulate a game that an adversary has to win in order to break the notion.
Via these games, we aim to clarify understanding of, and relationships
between, different privacy notions; we also aim to give an unambiguous
understanding of adversarial actions. Additionally, we extend previous
work via the notion of unobservability.

1 Introduction

The continuous digitalisation of our daily lives has led to the collection of huge
volumes of data. The sharing and use of that data can be beneficial in many
ways. However, challenges arise from the processing of such data, one of which
is guaranteeing privacy to individuals and groups.

One of the complexities in this respect is defining privacy. By its very nature,
privacy is multi-dimensional and multi-faceted, and can mean different things to
different people — resulting in a variety of notions capturing different perspec-
tives on and properties of privacy.

Early efforts at establishing a consistent terminology in this regard include
those of Pfitzmann and colleagues [30,29], who developed a precise terminol-
ogy for privacy notions. Despite such efforts, an open problem with the formal
treatment of privacy notions remained: discrepancies between formal models led
to ill-defined relationships and incomparable notions. In addition, various at-
tacks [24,21,15,32,16] influenced and challenged the formulation of new privacy
notions. Bohli and Pashalidis addressed those disconnected notions in [7], as a
first step towards uniting multiple privacy notions into a single formal frame-
work.

We build upon the work of Bohli and Pashalidis [7]. As such, we give con-
sideration to the challenges faced in distributed, heterogeneous contexts. In par-
ticular, for each privacy notion, we formulate a game an adversary has to win
in order to break the notion. Via these games, we aim to clarify understanding
of, and relationships between, different privacy notions; we also aim to give an
unambiguous understanding of adversarial actions. In addition, we extend the
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Fig. 1: Illustration of the two privacy-preserving data release modes: non-
interactive (left) and interactive (right).

privacy framework of Bohli and Pashalidis [7] by introducing the notion of un-
observability. Concretely, this notion guarantees to prevent an adversary from
distinguishing if a system invocation has taken place or not (by observing a real
or ‘generated’ outcome element). As such, this notion gives similar guarantees
as the prominent notion of differential privacy [10]. However, instead of dealing
with probabilistic privacy notions, we focus on syntactical notions for privacy.
These notions are associated to the privacy properties that a system can inherit.
More precisely, they are defined on properties of the system release.

The presented notions and games may be used in privacy-preserving systems
to reason about their privacy properties. As such, we consider systems that
may be stateful, stateless, or online. Moreover, we focus on individual and group
privacy for interactive, non-interactive and statistical release scenarios — thereby
reflecting a wide scope of applications.

The kind of system of interest to us is manifested by the deployment of
Trustworthy Remote Entities (TREs) [4,20,28] — which we use later to motivate
our contribution. A TRE provides input privacy by leveraging novel hardware
security extensions, such as Intel’s SGX1 [3,25,8] extensions and, further, may
deploy differential privacy mechanisms to achieve release privacy.

To summarise, we claim the following contributions. We present games illus-
trating notions for individual and group privacy in distributed settings. More-
over, we extend [7] by introducing the notion of unobservability.

2 Background

2.1 Privacy-Preserving Data Release

In general, we consider two natural models in the privacy-preserving release
of data: non-interactive and interactive, as illustrated in Figure 1. In the non-
interactive setting, we assume data is to be shared by a trusted data curator,
who publishes a ‘safe’ or ‘sanitised’ version of the database. In the literature
this process is also know as de-identification or anonymisation of data. Tradi-
tionally, this can be achieved by the deployment of generalisation, suppression
or perturbation mechanisms. Non-interactive data release gained in popularity
in the mid 2000s with developments such as k-anonymity [31], `-diversity [24]
and t-closeness [21]. In the interactive setting, we assume users submit queries to
the data curator. The data curator applies the query function on the database
to obtain the so-called true answer. To protect privacy, for example, random
noise is added to the true answer, with the subsequent result being returned
to the user. Although there exist many other mechanisms to preserve privacy,

1 Intel Software Guard Extensions (SGX), https://software.intel.com/en-us/sgx

https://software.intel.com/en-us/sgx
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the utilisation of data perturbation seems both natural and appealing (and pre-
dominantly used for explicit notions [12]). This can come in two flavours: input
perturbation and output perturbation. While the former adds noise to the data
before submission to the data curator, the latter adds noise only after the query
mapping is applied (and added to the true answer). The first approach is stricter
(in the sense of preserving privacy, although it limits utility) and also works if
the data curator is untrusted. The latter requires a trustworthy data curator,
but typically achieves more utility. Statistical data release is a variant — or, in
fact, a specialisation — of the interactive approach: the query function computes
and returns a single value containing statistical information about the database
entries. The notion of differential privacy [10] emerged as a means of ensuring
privacy in such contexts.

2.2 Syntactic Privacy vs. Probabilistic Privacy

By nature, privacy is multi-dimensional and multi-faceted, and can mean dif-
ferent things to different people. Therefore, defining privacy and notions rep-
resenting specific properties related to privacy must be undertaken with care.
Some privacy definitions ignore the knowledge of an adversary, and only give
a requirement of the structure of the resulting data. These notions pertain to
the class of syntactic methods. As such, they are mainly concerned with the
syntactic form of the released outcome. In our context of concern, ignorance of
a priori knowledge of an adversary, often called background knowledge or auxil-
iary information, may easily lead to privacy breaches if the adversary is able to
obtain and combine information from other sources.

Many privacy attacks2 focus on the model of non-interactive privacy, due
to its release-and-forget approach (i.e. ‘re-sanitisation’ of a released (sanitised)
version of a database in case of a privacy breach is not possible). Mechanisms
to provide privacy in this setting have evolved, but this has subsequently led to
the problem that those algorithms became increasingly complex. Examples for
non-interactive release privacy include [31,24,21].

Another class of privacy notions pertains to probabilistic methods. Contrary
to syntactic methods, these notions abstract the probabilities that govern the
relationship between inputs to outputs. For example, to provide privacy in the
interactive setting, the notion of differential privacy (DP) [10] emerged. Soon,
it became established as a de facto standard due to its mathematically rigor-
ous definition and provable privacy guarantees. This powerful notion (or, more
precisely, property of an algorithm) allows for privacy-preserving views over sta-
tistical databases, while providing provable guarantees that the distribution of
noisy query answers changes only negligibly with addition or deletion of any
tuple in the database. However, while the mathematics of differential privacy
are straightforward, an intuitive understanding of the notion can be elusive, as

2 Typical attacks targeting non-interactive mechanisms include linking attacks (for
example, homogeneity attacks [24], skewness attacks [21] or similarity attacks [21]),
composition attacks [15], minimality attacks [32] or the attack by deFinetti [16].
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can characterisations of its relationships with, for example, anonymity, partic-
ipation hiding or unlinkability. Therefore, many variations have been proposed
to provide different assurances3.

Other frameworks that aim to unify privacy notions (mainly focused on prob-
abilistic privacy) include Pufferfish [19] and the framework of membership pri-
vacy [22]. Importantly, definitions within these frameworks satisfy the funda-
mental axioms for modern privacy design guidelines: transformation invariance
and convexity [17]. Within the context of syntactic privacy notions, to provide
a clear understanding of privacy, its properties and implications to systems, it
is important to accurately model adversarial actions. Game-based notions for-
mulate games illustrating the necessary actions for an adversary to break said
notion. Examples include [2,5]. Such game-based definitions have been widely
used in the cryptography community to provide simpler and more easily veri-
fiable proofs. Similarly, via our games, we aim to clarify understanding of, and
relationships between, different privacy notions.

3 Analysis of the Framework of Bohli and Pashalidis

Many privacy models (such as those of [31], [24], [21] and [10]) tend to assume
that data to be shared originates from a centralised database. In this context,
users must always trust the data curator to keep their data secure (and, conse-
quently, preserve their privacy). Such models, however, do not capture use cases
associated with distributed environments — in which data remains split over
several devices and is stored in databases distributed over a large network. Yet,
constant improvements in technology allow increasingly more operations to be
executed in distributed environments (which seek to preserve the privacy of those
individuals involved in such processing). The following provides an overview of
the privacy model and notions of Bohli and Pashalidis [7] and, importantly,
elaborates and motivates our distributed privacy model.

3.1 Privacy Model

While their system model is clearly focused on a centralised system, Bohli and
Pashalidis [7] do not explicitly state any assumptions pertaining to the under-
lying (centralised or distributed) structure of their privacy model. Indeed, the
privacy definitions follow the syntactic approach: as such, certain privacy no-
tions may be achieved dependent on the information an adversary gains access
to (or is allowed to learn). They do, though, consider systems that follow the
non-interactive release mode. Batches of input invocations trigger a sequence
of outputs, where output values represent a permutation of the input values.
In particular, this permutation obfuscates the association to a user identifier

3 Contributions that present criticisms and relaxations of the pure mode of DP are
summarised in [9] and include (ε, δ)-DP [11], probabilistic (ε, δ)-DP [23], distribu-
tional privacy [6], computational DP [27], no-free lunch DP [18], personalised DP [13],
and mutual-information DP [9].
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— essentially, the goal, in order to release data in a privacy-preserving way.
Furthermore, [7] gives considerations to stateful, stateless and online systems.

In their system model, Bohli and Pashalidis model a function that maps the
serial number of the output values to the identifier of the user associated with
it. By means of this function, they define privacy properties that abstract the
relation between the output element and the user identifier. In particular, they
define the notions introduced below and show how these notions are related to
each other.

3.2 Privacy Notions

The privacy notions considered in this paper are formally defined in Section 6,
but we introduce them first in terms of natural language to aid comprehension
(additionally, Figure 15 in Appendix C further illustrates the privacy notions in
terms of our system model). Informally, we say that an adversary (simplified) is
allowed to interact with a system in one of two ways:

(a) it inputs information, or4

(b) it obtains an outcome — in our case, a vector of input values (permuted, to
ensure privacy) and an aggregated value (computed over the input values).

Then, the objectives of the privacy notions of Bohli and Pashalidis [7] are as
follows:

· Strong anonymity prevents an adversary from learning any interesting rela-
tionship, from the observation of the outcome, with regards to the input.
· Participation hiding prevents an adversary from learning the relation of an

outcome value to a specific user.
· Unlinkability prevents an adversary from learning (i.e. identifying) any out-

come elements that are related to each other (i.e. pertaining to the same user).
· Pseudonymity allows an adversary to associate groups of outcome elements

with a pseudonym, but prevents her from learning the actual user identifier.
· Anonymity prevents an adversary from learning of the relationship between

groups of elements and/or groups of user identifiers.

Additionally, the objective of our extended notion of unobservability is as follows:

· Unobservability prevents an adversary to distinguish if a system invocation
has taken place or not (by observing a real or ‘generated’ outcome element).

3.3 An Extension to a Semi-Distributed Model

A fully-distributed system represents a collection of single systems. As such,
data is to be stored at each of the distributed parties and the privacy properties
are manifested in each system’s individual release and in the combined release.

4 ‘or’ stands here in an inclusive context. Furthermore, we want to clarify that this
is not a one-shot interaction, but a user (or adversary) may access the system or-
acles multiple times. A more detailed interpretation is given in Section 5 when we
introduce the privacy games.
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A user interacts via separate input and view interfaces of each individual sys-
tem. Consequently, the benefits of such an approach are: (a) data remains at
the data provider; (b) a reduced communication overhead; and (c) there is no
single point of failure. Examples for such (privacy-preserving) systems include
deep learning [1], crowdsourcing statistics [14], federated learning5 [26], or usage
patterns collections (i.e. the approach by Apple6 in iOS 10).

Yet, reasoning about privacy properties in such systems may be complex and
challenging. One needs to take into consideration that an adversary may obtain,
corrupt or control a certain threshold of system outcomes. Furthermore, privacy
notions need to be abstracted to include such ‘collaborative’ outcomes and rela-
tions between outcomes of individual systems. Thus, as a first step we consider
a semi-distributed model. Data is still split over multiple parties, however, users
gain access to the system via a global input and view interface. As such, privacy
properties may be considered only over the whole ‘combined’ system release. In
other words, for the privacy modelling, we consider the underlying structure as
a ‘black box’ and argue (with our notions and games) about the release of this
black box. Yet, we consider data to be distributed among multiple systems (as
such, that the games to abstract the privacy notions take such a distributed
modelling into consideration).

Our modelling of the privacy notions and games was undertaken with a focus
on the requirements of a distributed system. In particular, the kind of system of
interest to us are Trustworthy Remote Entities (TREs) [28], which operate in a
distributed context and enable privacy-preserving release of data, while simulta-
neously ensuring verifiability (and therefore trustworthiness) of its algorithms.
A brief overview of TREs is given in Appendix B. Cloud computing, the smart
grid, collaborative learning (as well as others — see [4]) represent use cases that
operate predominantly in distributed settings and benefit from the deployment
of privacy-preserving systems (such as a TRE). Consequently, our modelling was
dedicated to such kinds of systems, yet, we do not exclude other systems that fit
within our system model. In the following, we review considerations of individual
and group privacy, as well as the underlying structure (i.e. stateful, stateless or
online) of the kind of systems of interest to us.

Individual and Group Privacy An adversary may be able to infer knowledge
about an individual by directly or by indirectly targeting her (e.g. by grouping
users according to similar properties such as their behaviour, location or user
type; and gaining knowledge from the observation of the group). The former
case we further denote as breaching an individual’s privacy and the latter as
breaching group privacy. To illustrate, consider the following examples: a breach
of individuals’ privacy would mean that an adversary is able, for any single
element ex a system releases, to infer its relation to the associated user ux.
Drawn from a genomics use case [4], ex may represent a disease that user ux
has.

5 https://research.googleblog.com/2017/04/federated-learning-collaborative.html
6 https://wired.com/2016/06/apples-differential-privacy-collecting-data

https://research.googleblog.com/2017/04/federated-learning-collaborative.html
https://wired.com/2016/06/apples-differential-privacy-collecting-data
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A breach of group privacy would mean that an adversary is able to relate
two or more elements ex, ey, where ex pertains to a user ux, ey pertains to a user
uy, and both users are member of a group ux, uy ∈ ug. In this case (assuming
that ex and ey are types of diseases), the adversary may infer that ex and ey
pertains to a group of similar diseases. Another example would be: ex is a specific
disease, and if the adversary infers that ux, uy ∈ ug, then she may learn that uy
is somehow associated to ex. More concretely, ex is a specific inheritable disease
and ug is a family, with ux and uy members of that family — uy, therefore, may
also be susceptible to the disease. Hence, we model our notions and games such
that they give consideration to both individual and group privacy.

Stateful, Stateless and Online Systems The design and application of pri-
vacy notions depends heavily on the underlying structure of a system, be it state-
ful, stateless, or online. We discuss examples following a permutation as privacy-
preserving mechanism — yet any other mechanisms may apply similarly.

In a stateful system, released data may be shuffled according to a state-
(or data-) dependent, potentially secret, permutation. Additionally, statistical
queries may result in state-dependent answers (for example, identical queries
may not be answered, result in the same answer, or be dependent on the privacy
mechanism to include an increased noise value). In a stateless system, release
data may be shuffled according to a permutation chosen uniformly at random.
Because stateless systems may not rely on any state (from the perspective of
the system) queries submitted to it are independent and any input has no in-
fluence on the behaviour of the system. In the design of privacy notions and
privacy-preserving mechanisms we must cope with such restrictions (for exam-
ple, submission of two identical queries might disclose information). Finally, in
an online system, data is processed and output individually (i.e. before an invo-
cation of another input), due to a limited the buffer size of the system. Therefore,
a permutation may not be applicable and other sources (such as noise addition)
may need to be applied to preserve privacy in such a setting.

4 System Model

We consider systems, denoted by φ, that are sequentially invoked a finite number
of times, and require that they return values ei and an aggregated value βi
computed over a finite number of inputs αi. Further, we require that each input
αi must be associated to a unique user identifier ui and a computational party pi.
Inputs αi associated to the same user identifier ui may collectively be denoted
in vector notation αi. The same applies for the output values ei, with ei for
outputs associated to the same ui. Tuples of the form (ui, αi) are stored within
datasets at the specified party pi. The inputs to, as well as the outputs from,
φ are drawn from a parameter space αi, ei ∈ A that is specific to the system.
Similarly defined is the parameter space of the aggregated output βi ∈ A. Each
user identifier ui and party identifier pi is assumed to be unique, and drawn from
an identifier space.
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Invocations of φ, in the form of a query qi, produce output batches (ei, βi)
of potentially varying size. Thus, a query qi is essentially a mapping of input
batches to (ei, βi), denoted by πφ for values ei and πqi for the aggregated value
βi. In particular, φ accepts input batches of the form

(u1, α1, p1), (u2, α2, p2), . . . , (uc, αc, pc)

for c invocations of the input oracle input(·, ·, ·). Furthermore, for each invoca-
tion of the output oracle, viewπ·(·), φ applies a potentially secret permutation
πφ on the datasets held by each party pi and outputs a sequence

(e1, . . . , ec), β

where e← πφ(α) and β ← πqi(α).
In the notation above, we assumed that each input (ui, αi) is distributed to

a different party pi. However, we do not limit our model in such contexts, but
allow a data owner7 to freely decide to which party pi she wants to send her
inputs. Our model is assumed to handle any data distribution along parties pi.

Building on the privacy model of Bohli and Pashalidis [7], our model in-
cludes the possibility of a ‘void’ invocation of the system, i.e. an invocation of
φ, where the outcome (ei, βi) is unrelated to any ui, αi or pi and drawn uni-
formly at random from the parameter space A. However, we require that the
outcome of a void invocation must remain indistinguishable to the outcome of
a ‘normal’ invocation of φ. This property is essential in the context of system
unobservability.

Similarly to Bohli and Pashalidis, we consider systems that are stateful, state-
less or online. As such, we take these properties into account when designing pri-
vacy games in Section 6. Moreover, our stated notions and games must remain
independent of the data (i.e. the inputs and output of φ), and abstract to the
mappings πφ : αi → ei and πqi : αi → βi.

Our model allows single users or a collection of users to reason about their
privacy assurances. Precisely, a notion or game can be applied to capture privacy
properties about a mapping between:

1. a single user and an attribute: ux → ex
2. a single user and multiple attributes: ux → (ex,1, . . . , ex,c)
3. multiple users and multiple attributes: ux → ex, uy → (ey,1, . . . , ey,c)

where the last case denotes group privacy.
We denote the function f as the mapping between output values and user

identifiers, and the function f? as the mapping between dataset entries and user
identifiers. More formally, f : ei → ui takes as an input an element (or vector)
ei (or ei) of φ and maps it to the corresponding user ui. Similarly, this holds

7 Data submitted to the system may include (or, pertain to) several data subjects,
that are independent of the actual data owner. In our modelling, so far, we assume
that each input value αi is associated to a user identifier ui, which identifies the data
subject (which may or may not be the data owner). We further assume that data
subjects have given consent to data owners to perform certain data-mining tasks on
the committed data, while preserving the privacy of the data subjects. In any case,
the data owner decides with which party pi to share the data.
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for the internal processing of φ, f? : αi → ui, with αi (or αi) (stored in the
dataset of any party pi). Through the processing of a query qi (i.e. essentially
through πqi), φ obfuscates the function f . An adversary A must not be able to
directly learn f by observing the inputs (ui, αi, pi) to φ or the released outcome
(ei, βi). Nevertheless, the adversary’s goal remains to determine f , or any other
interesting property about f . Yet, the privacy notions and games reveal, to
varying degrees, information about f .

We denote pi ∈ P , with P the set of all computational parties. Inputs of φ are
stored in datasets αi → pi.db, given any possible distribution. Moreover, we say
α = ∪Pi=1pi.db, that is, α is the set of all inputs αi ∈ α for all parties pi. Similarly,
it holds that e = ∪ni=1ei represents the union of all outcome values. Following
the definitions of Bohli and Pashalidis, we denote the following properties of
the outcome in the form of sets (the relationship between those sets is further
illustrated on the right-hand side of Figure 15 in Appendix C):

Definition 1. (Participant Set): Uf = {f(ei) : ei ∈ eu} denotes the set of
participants in φ. Each element ei ∈ e is uniquely associated to a user identifier
f(ei) = ui.

Definition 2. (Usage Frequency Set): Qf = {(ui,#ui) : ui ∈ Uf}, with #ui =
|ei ∈ e : f(ei) = ui|, denotes the relation of the number of elements ei ∈ e each
user ui is associated with. In other words, #ui is the number of ei user ui has
contributed to φ.

Definition 3. (Linking Relation): Pf = {eu1
, eu2

, .., eu|Uf |} ` e, denotes the

linking relation of elements ei ∈ e which pertain to a certain user ui. In other
words, e is partitioned in non-overlapping subsets eui , where eui consists of
all ei for user ui. It holds, that ∀ei, ej ∈ eui , f(ei) = f(ej) = ui. Precisely,
∀ei ∈ eui : ei ∼ ui.

5 Adversarial Model and Principles of Privacy Games

In the following, we briefly state our adversarial model and then elaborate on
the fundamental definitions and interactions of our privacy games.

5.1 Adversarial Model

An adversary, denoted by A, is represented by an algorithm that runs in poly-
nomial time. A is given access to a limited number of oracles, as defined by the
privacy game. An oracle, denoted by O, gives A access to certain knowledge
about φ and relations between the outcome values (e, β). The interaction of A
with an oracle O is further denoted by AO.

Overall, we say thatA is interested in learning the mapping function f , or any
interesting properties about f , represented by the defined notions in Section 6.
Each of these notions is represented as a game. We define a game G, and say that
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A is able to break the privacy notion associated with that game if G evaluates
to true with a non-negligible probability. The advantage of A is denoted by

Adv(A) = Pr[GA
? → true]

where ? ∈ {SA, PH, SU, WU, PS, AN, WA, UO}8 denotes any of the games.
We assumeA to be semi-honest: whenA ‘plays’ a game, we assume that it be-

haves truthfully and follows the game’s rules. In other words, A does not deviate
from the game. In particular, this means that A does not submit elements that
it has not previously obtained from the system φ (e.g. it does submit a random
value ex 6∈ e, where e ← Aviewπq ()), or any of the other oracles OUf ,OQf ,OPf
or O|Uf |, revealing specific information about certain subsets of f .

Precisely, A is allowed to interact adaptively with the oracles of φ, and, at a
given point in time, must commit an input value pair (ux,αx) to which it receives
the output tuple (ex, βx) from φ, which we further denote as general observation.
Given these parameters (and access to some system-specific oracles, as defined
by the notions below) it will be evaluated if A is able to successfully break the
given notion. Further, for individual privacy, we assume ux to be fixed; for group
privacy, we assume ux ∈ ug, where ug is a fixed group of user identifiers.

These restrictions allow us to abstract (and in some cases omit) some of φ’s
specific operations and tasks in order to keep the following games concise and
clearly readable. To this end, we do not include checks of validity (for example,
ux ∈ Uf , for input or validation procedures) for any of the values submitted
to the oracles. Moreover, we omit the definition of the oracles OUf ,OQf ,OPf
or O|Uf | here, as we see such definitions as a technicality and, as such, present
them in Appendix A.

5.2 Principles of Privacy Games

Any game G? consists of a limited number of procedures. A procedure, denoted
by proc, defines the computational steps an algorithm has to follow in order
to terminate. Procedures are executed top-down and in order. Further, some
procedures may only be executed once during an attack session, and others may
be executed an arbitrary number of times, indicated by proc	. This allows A to
‘play’ around a bit and get used to the system, before, for a fixed set of inputs,
it tries to break the privacy notion, by executing proc ?, where ? ∈ {SA, PH,
SU, WU, PS, AN, WA, UO}.

In the following, we define a basic game G, which provides procedures used by
all games G?. We define inheritance as follows: if game Gx inherits all procedures
of game Gy, denoted Gx � Gy, then Gx can, additionally to its own procedures,
call any of the procedures of Gy. In our case: G? � G. In Figure 2, we present
game G. A may play game G for an arbitrary number of times, before it plays
a specific game G? once, where she aims to break the expressed notion.
In general, A interacts with φ (‘plays’ the games) in the following way:

8 Here, the notation follows the notions of strong anonymity (SA), participation hid-
ing (PH), strong unlinkability (SU), weak unlinkability (WU), pseudonymity (PS),
anonymity (AN), weak anonymity (WA), and unobservability (UO).
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proc initialise

forall i in range(0, n): pi.db← ∅
proc	 input(ui, αi, pi)
pi.db← pi.db ∪ (ui, αi)

proc	 viewπq

forall i in range(0, n):
ei ← πφ(pi.db);βi ← πq(pi.db)

e← e1 ◦ e2 ◦ · · · ◦ en
β ← β1 ◦ β2 ◦ · · · ◦ βn
return (e, β)

proc	 corrupt(pi)
return pi.db

Fig. 2: Game G.

proc validateSA(ex, ux)
if f(ex) = ux then: return true else:

return false

proc SA

Ainput(ux,αx,px)

ex, βx ← Aviewπq ()

return AvalidateSA(ex,ux)

Fig. 3: Game GSA (Strong Anonymity).

1. A inputs data (αi) into the system φ.
2. A obtains9 output (e, β) from the system φ.
3. A may gain additional information by corrupting a threshold of parties.
4. A selects any value from the output, to which it believes it knows the relation

(specified by the privacy notions) and submits that to the validation oracle
(e.g. any ex ∈ ex, where A believes to know ux).

5. Game G? returns true or false according to the output of the validation
oracle.

As already mentioned, our privacy model operates in a distributed setting,
but it also supports a centralised setting. For the games, we define an integer
n, which represents the number of parties p ∈ P , with P the set of all parties.
Each party pi holds a database, denoted as pi.db, containing the input values
submitted to it. Then, for a centralised model, we say n = 1 (meaning we have
exactly one party), and for a distributed model n > 1.

6 Privacy Games

We now state the notions for privacy that we consider in our privacy model.
For each notion, we formulate a game that an adversary has to win in order to
break the associated notion. The privacy notions follow and extend the work of
Bohli and Pashalidis [7]; the game-based definitions are novel. In formulating
said notions and games, we take into account that they must abstract the be-
haviour of a system (i.e. it may be stateful, stateless or online), must abstract
the locality of the computational parties (i.e. centralised or distributed), and
must give consideration to individuals as well as groups.

In Figures 3-10, we illustrate the gamesG?, with ? ∈ {SA, PH, SU, WU, PS, AN, WA,
UO}. Most of the games are quite similar, and differ only in the validation ora-
cle and by the access to the oracles OUf ,OQf ,OPf or O|Uf |. Therefore, we can

9 A obtains (e, β) by querying the view oracle. For each party’s database a permuta-
tion is applied. Moreover, ex ◦ ey denotes the combination of two sets ex, ey under
this permutation. This means that πφ(ex) ◦ πφ(ey) is equivalent to πφ(ex ∪ ey).
Similarly, for β, ◦ denotes the πq operation.
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group certain games and notions, as they aim to achieve similar objectives. In
particular, we group the notions as follows: (SA, PH), (SU, WU), (PS, AN, WA) and
(UO).

6.1 Privacy Games for Single Elements

The objective of group (SA, PH) is, from the outcome ex, βx, to find any value
ex ∈ ex for which A is able to identify the user identifier ux. The validation
functions of this group return true if A is able to do so.

Definition 4. (Strong Anonymity): A system is said to provide strong
anonymity, denoted by SA, if it does not leak any information about the mapping
function f .

A system φ that satisfies the property of SA prevents A relating output
elements to their associated user identifiers. More precisely, A must not be able,
for any element ex ∈ ex, to learn the associated identifier ux, such that f(ex) =
ux. A is not given anything beyond the general observation.

Definition 5. (Participation Hiding): A system is said to hide participation,
denoted by PH, if it does not leak any information about f beyond the size of the
participant set |Uf |.

A system φ that satisfies the property of PH prevents A relating output
elements to their associated user identifiers. More precisely, A must not be able,
for any element ex ∈ ex, to learn the associated identifier ux such that f(ex) =
ux. In addition to the general observation, we assume that A is able to learn
|Uf |, which might or might not help to find said relation.

6.2 Privacy Games for Multiple Elements

The objective of group (SU, WU) is, from the outcome ex, βx, to find any two
values ex, ey ∈ ex for which A believes they are related to the user identifier ux.
The validation functions of this group return true if A is able to do so.

Definition 6. (Strong Unlinkability): A system is said to provide strong un-
linkability, denoted by SU, if it does not leak any information about f beyond the
participant set Uf .

A system φ that satisfies the property of SU prevents A relating output
elements pertaining to the same user identifier. More precisely, A must not be
able, for a fixed user identifier ux to find any two elements ex, ey ∈ ex, such that
f(ex) = f(ey) = ux. In addition to the general observation, we assume that A
is able to learn Uf , which might or might not help to find said relation.

Definition 7. (Weak Unlinkability): A system is said to provide weak unlink-
ability, denoted by WU, if it does not leak any information about f beyond the
usage frequency set Qf

10.

10 Note that knowledge of Qf implicitly implies knowledge of Uf .
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proc	 OUf

return Uf
proc validateSU (ex, ey, ux)

if f(ex) = f(ey) = ux then: return true

else: return false

proc SU

Ainput(ux,αx,px)

Ainput(ux,αy,px)

ex, βx ← Aviewπq ()

return AvalidateSU(ex,ey,ux)

Fig. 4: Game GSU (Strong Unlinkability).

proc	 OPf

return Pf
proc validatePS(eux , ux)

if f(eux) = ux then: return true else:
return false

proc PS

Ainput(ux,αx,px)

ex, βx ← Aviewπq ()

return AvalidatePS(eux ,ux)

Fig. 5: Game GPS (Pseudonymity).

A system φ that satisfies the property of WU prevents A relating output
elements pertaining to the same user identifier. More precisely, A must not be
able, for a fixed user identifier ux, to find any two elements ex, ey ∈ ex such that
f(ex) = f(ey) = ux. In addition to the general observation, we assume that A
is able to learn Uf and Qf . This allows A to learn, for each user, the number of
elements of its outcome set, which might or might not help to find said relation.

6.3 Privacy Games for Element Groups

The objective of group (PS, AN, WA) is, from the outcome ex, βx, given the ability
to group certain outcome elements together, for this very group eux , to identify
the user identifier ux. The validation functions of this group return true if A is
able to do so.

Definition 8. (Pseudonymity): A system is said to provide pseudonymity, de-
noted by PS, if it does not leak any information about f beyond the linking relation
Pf .

A system φ that satisfies the property of PS prevents A relating a group of
output elements (or an element within that group), pertaining to the same user
identifier, to the user identifier. More precisely, A must not be able, for a fixed
user identifier ux, to find the group of related outcome elements eux ⊆ ex such
that ∀ex ∈ eux |f(ex) = ux. In addition to the general observation, we assume
that A is able to learn Pf . This allows A to assign, for each partition of the
overall outcome set ex, a pseudonym, which might or might not help to find said
relation.

Definition 9. (Anonymity): A system is said to provide anonymity, denoted by
AN, if it does not leak any information about f beyond the participation set Uf
and the linking relation Pf .

A system φ that satisfies the property of AN prevents A relating a group of
output elements (or an element within that group), pertaining to the same user
identifier, to the user identifier. More precisely, A must not be able, for a fixed
user identifier ux, to find the group of related outcome elements eux ⊆ ex such
that ∀ex ∈ eux |f(ex) = ux. In addition to the general observation, we assume
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proc	 OUf

return Uf
proc	 OQf

return Qf
proc	 OPf

return Pf
proc validateUO(g)

return (g == b)

proc	 view
πq
refut.

b
$← {0, 1}

forall i in range(0, n):
ei ← πφ(pi.db);βi ← πq(pi.db)

if b = 0 then: eux
$← A;βux

$← A
e← e1 ◦ e2 ◦ · · · ◦ en
β ← β1 ◦ β2 ◦ · · · ◦ βn
return (e, β)

proc UO

Ainput(ux,αx,px)

ex, βx ← Aview
πq
refut.

()

return AvalidateUO(g)

Fig. 6: Game GUO (Unobservability).

that A is able to learn Uf and Pf . This allows A to learn the user identifiers
associated with the outcome values, and the ability to learn partitions of the
overall outcome set ex, however not the relationship between those sets, which
might or might not help to find said relation.

Definition 10. (Weak Anonymity): A system is said to provide weak anonymity,
denoted by WA, if it does not leak any information about f beyond the participa-
tion set Uf , the usage frequency set Qf and the linking relation Pf .

A system φ that satisfies the property of WA prevents A relating a group of
output elements (or an element within that group), pertaining to the same user
identifier, to the user identifier. More precisely, A must not be able, for a fixed
user identifier ux, to find the group of related outcome elements eux ⊆ ex such
that ∀ex ∈ eux |f(ex) = ux. In addition to the general observation, we assume
that A is able to learn Uf , Qf and Pf . This allows A to learn the user identifiers
associated with the outcome values, partitions of the overall outcome set ex and
information about on the number of elements each user has contributed in the
outcome set, which might or might not help to find said relation.

Remark 1. In the case that each user contributes a unique amount of elements
to φ, and A is able to infer this knowledge, then it is easy to see that A is
able to determine f(ex) = ux by the mere combination of the sets Uf , Qf and
Pf . However, in other cases, where this condition is not satisfied (for example,
the number of elements each user contributes is uniformly distributed), A only
partially gains information by the combination of the previously mentioned sets.

6.4 Unobservability or Privacy Games for System Behaviour

Finally, the objective group (UO) is, from the outcome ex, βx, to distinguish if the
values eux , βux were generated as a result of a system invocation, or generated
purely at random. The validation functions of this group return true, if A is
able to do so.

Definition 11. (Unobservability): A system is said to be unobservable, denoted
by UO, if the output is indistinguishable from a random output in the range of
the output parameter set, even with knowledge of the participation set Uf , the
usage frequency set Qf and the linking relation Pf .
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A system φ that satisfies the property of UO prevents A from distinguishing
that, for a fixed tuple of user identifier and input value, a system invocation
has taken place or not. More precisely, A must not be able, for a fixed input
tuple (ux, αx), by observing the outcome (ex, βx), be able to distinguish if ex ←
πφ(αx), βx ← πq(αx) given αx ∈ αx, f?(αx) = ux, or, given αx 6∈ αx, f?(αx) 6=
ux. Intuitively, it is easy to distinguish a system φ behaving in the above way,
by simply determining |ex|. If αx 6∈ αx, then |ex| < |ey|, where in the latter
case αx ∈ αx. Therefore, even for a void invocation of φ, there must hold ∃ex ∈
ex|ex 6← πφ(αx). ex must be produced in a way that is indistinguishable of a
system being invoked or not. In addition to the general observation, we assume
that A is able to learn Uf , Qf and Pf . This allows A to learn the user identifiers
associated with the outcome values, partitions of the overall outcome set ex
and information about the number of elements each user has contributed in the
outcome set, which might or might not help to find said relation.

Remark 2. The previous illustration of the privacy games is for individual pri-
vacy, where we assume ux to be fixed. For group privacy, we assume ux ∈ ug,
where ug is a group of fixed user identifiers. Then, each objective may be ex-
tended to find elements ex ∈ ex that relate to any ux pertaining to the group
of ug. For example, if A was about to infer if any ex is related with ey, where
f(ex) = ux, f(ey) = uy and ux, uy ∈ ug, then this would violate group privacy.

7 Conclusions

We set out to provide a clear and concise understanding of various notions for
privacy-preserving data release. Precisely, we build upon the syntactic notions
of other authors and formulate those notions into privacy games, following the
game-playing technique of provable security. Furthermore, we extend the frame-
work of Bohli and Pashalidis [7] by the notion of unobservability — a notion
that captures the capability of an adversary to distinguish if a system invo-
cation has taken place or not. With the definition of these games, we aim to
clarify understanding of, and relationships between, different privacy notions;
we also aim to give an unambiguous understanding of adversarial actions (in
order to win a game and, therefore, break a notion). With the definition of the
privacy notions and games, we take into consideration the different requirements
of privacy protections for individuals and groups. Overall, many of the current
existing models for privacy focus on the preservation of privacy in centralised
environments, though various use cases show the importance for concise privacy
models and notions in distributed environments. Our notions, games, and sys-
tem model are designed for distributed environments (yet are still compliant with
centralised systems). For example, TRE systems (as outlined in Appendix B)
may be a good fit of the contributions of this paper.

Future work will include an extension to externally distributed systems (rea-
soning about privacy aspects between the release of various systems), policies
for the selection of privacy notions, exploration of primitives guaranteeing such
notions and, most importantly, application to real-world case studies.
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A Additional Privacy Games and Definitions of Oracles

A.1 Additional Privacy Games

proc	 O|Uf |

return |Uf |
proc validatePH(ex, ux)

if f(ex) = ux then: return true else:
return false

proc PH

Ainput(ux,αx,px)

ex, βx ← Aviewπq ()

return AvalidatePH(ex,ux)

Fig. 7: Game GPH (Participation Hiding).

proc	 OUf

return Uf
proc	 OQf

return Qf
proc validateWU (ex, ey, ux)

if f(ex) = f(ey) = ux then: return true

else: return false

proc WU

Ainput(ux,αx,px)

Ainput(ux,αy,px)

ex, βx ← Aviewπq ()

return AvalidateWU(ex,ey,ux)

Fig. 8: Game GWU (Weak Unlinkability).

proc	 OUf

return Uf
proc	 OPf

return Pf
proc validateAN (eux , ux)

if f(eux) = ux then: return true else:
return false

proc AN

Ainput(ux,αx,px)

ex, βx ← Aviewπq ()

return AvalidateAN(eux ,ux)

Fig. 9: Game GAN (Anonymity).

proc	 OUf

return Uf
proc	 OQf

return Qf
proc	 OPf

return Pf
proc validateWA(eux , ux)

if f(eux) = ux then: return true else:
return false

proc WA

Ainput(ux,αx,px)

ex, βx ← Aviewπq ()

return AvalidateWA(eux ,ux)

Fig. 10: Game GWA (Weak Anonymity).
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A.2 Definition of Oracles

proc	 OUf

forall i in range(0, |e|):
Uf ← Uf ∪ f(ei)

return Uf

Fig. 11: Oracle OUf (Participant Set).

proc	 OQf

forall i in range(0, |e|):
Qf ← Qf∪a {f(ei)}

return Uf

Fig. 12: Oracle OQf (Usage Frequency Set).

a ∪ is implemented such that if f(ei) al-
ready exists in Qf = {(ui,#ui)}, then it
solely increases frequency counter #ui.

proc	 OPf

Pf ← part(e)
return Pf

Fig. 13: Oracle OPf (Linking Relation).

proc	 O|Uf |

|Uf | ← sizeof(AOUf )
return |Uf |

Fig. 14: Oracle O|Uf | (Number of Partic-
ipants).

B TRE systems

A Trustworthy Remote Entity (TRE) [28] is a system that enables privacy-
preserving data release. The concept was introduced by Paverd [28] and ex-
tended by Ankele et al. [4] and Küçük et al. [20] to support the application of
privacy-preserving data release in distributed settings. In its simplest form, a
TRE operates as an intermediary between participating communication parties.
Essentially a TRE portrays a trusted third party (TTP), but, contrary to a
TTP that requires users to blindly trust all performed actions, a TRE can verify
its trustworthy nature. This can be done, for example, by using Intel Software
Guard Extensions (SGX) [3,25,8] as an underlying hardware security primitive,
which features isolated execution of code and memory pages in so-called en-
claves, encrypted storage outside of the immediate CPU package, and software
attestation to promote its trustworthiness. A TRE is not bound to any architec-
tural design choice and may be applied in a centralised or distributed fashion.
Overall, a TRE provides input privacy to a system. To achieve release privacy,
privacy-preserving mechanisms such as data permutation, data perturbation or
data anatomisation must be applied.

We may use the syntactic privacy notions and games introduced in this paper
to reason about privacy guarantees that such a TRE system is able to achieve.
Of course, this is dependent on the underlying use case, the data, and the privacy
mechanism leveraged by the TRE system to realise release privacy.
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C Illustration of Privacy Properties abstracted by the
Privacy Notions and Games

In Figure 15, we illustrate previously defined privacy notions. As depicted, the
system φ is queried with a triple (ux, αx, pi) and releases a tuple (e, β) on a view

query. Dashed encircled are the sets that the adversary A is given access to for
each notion. Further, the dashed arrows show the objective of each notion. For
simplicity, this representation includes only one database pi.db. However, any
finite number of databases are equally possible and supported by the model.

α1,1 α1,2 . . . α1,k

α2,1 α2,2 . . . α2,`

. . . . . . . . . . . .
αn,1 αn,2 . . . αn,m

e1 e2 . . . ek
ek+1 ek+2 . . . ek+`
. . . . . . . . . . . .
. . . ex ey en

eu1 → u1,#u1

eu2 → u2,#u2

. . . . . . , . . .
eun → un,#un

πq, b

φA

, β

pi.db
e← πφ(α)
β ← πq(α)

e
$← A

β
$← A

ux, αx, pi

UO

eu1 → u1,#u1

eu2 → u2,#u2

. . . . . . , . . .
eun → un,#un

AN

eu1 → u1,#u1

eu2 → u2,#u2

. . . . . . , . . .
eun → un,#un

WA

eu1 → u1,#u1

eu2 → u2,#u2

. . . . . . , . . .
eun → un,#un

PS

eu1 → u1,#u1

eu2 → u2,#u2

. . . . . . , . . .
eun → un,#un

SU, WU

eu1 → u1,#u1

eu2 → u2,#u2

. . . . . . , . . .
eun → un,#un

SA, PH11

Fig. 15: Illustration of privacy notions, given access to the system φ, and oracle
access to the sets Uf ( ), Qf ( ) and Pf ( ).

11 For the notion of PH, A has additional access to an oracle giving the size of the
participation set |Uf |.
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