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Abstract—This paper presents an efficient algebraic fault
analysis on all four modes of SHA-3 under relaxed fault models.
This is the first work to apply algebraic techniques on fault
analysis of SHA-3. Results show that algebraic fault analysis on
SHA-3 is very efficient and effective due to the clear algebraic
properties of Keccak operations. Comparing with previous work
on differential fault analysis of SHA-3, algebraic fault analysis can
identify the injected faults with much higher rates, and recover
an entire internal state of the penultimate round with much fewer
fault injections.

I. INTRODUCTION

Keccak is a family of sponge functions, and has been
selected as the new Secure Hash Algorithm (SHA-3) standard.
Therefore, Keccak based security modules, including hash
function, symmetric cryptographic function, pseudo random
number generator, and authenticated encryption, will be widely
used in future crypto systems [1]–[3]. For example, Keccak-
based variations, Ketje and Keyak, have been chosen as
candidates in the third round for CAESAR (Competition for
Authenticated Encryption: Security, Applicability, and Robust-
ness). The vulnerability of SHA-3 to various attacks has to be
thoroughly examined. In this paper, we focus on fault attacks,
and propose an efficient algebraic fault analysis (AFA) method
on all the four modes of SHA-3.

Differential fault analysis (DFA) is a powerful attack
method, which utilizes the dependency of the faulty output
on the internal intermediate variables to recover the secret.
DFA has been used to break symmetric ciphers, e.g., the
Data Encryption Standard (DES) algorithm [4], and Advanced
Encryption Standard (AES) [5]. Many other ciphers have also
been hacked through DFA, including CLEFIA [6], Mickey [7]
and Grain [8].

Some existing hash standards have also been evaluated
against DFA attacks, including SHA-1 [9], Streebog [10], MD5
[11] and Grøstl [12], used in either message authentication
code (MAC) mode, or general hash mode. DFA aims at
recovering the original input message of general hash mode
functions, and extracting the secret key of MAC mode func-
tions. Besides DFA, algebraic technique has also been applied
to improve the efficiency of fault attacks, and a new kind of
attacks called algebraic fault analysis (AFA) has been proposed
[13]–[17]. AFA translates the problem of fault analysis into a
boolean satisfiability problem (abbreviated as SAT), and then
relies on SAT solvers to find the solution for the formulated
problem. With efficient SAT solvers, the complex fault propa-
gation analysis in traditional DFA is avoided.

There exist only two papers on DFA of SHA-3 [18], [19].
They differ in fault models and target modes of Keccak algo-
rithm. In [18], they inject single-bit faults at the penultimate

round input of SHA3-384 and SHA3-512, two modes of SHA3
with longer digest outputs, and they can recover an entire
internal state. In [19], the authors relax the fault model to
byte-level faults, and they apply the attack onto the other
two modes, SHA3-224 and SHA3-256. Their results show that
much smaller number of faults are needed to recover the whole
internal state than the work in [18]. These two works show that
Keccak based systems, like SHA-3, are susceptible to DFAs.

In this paper, we extend fault attacks on SHA-3 by intro-
ducing algebraic techniques into the attacks. Our work shows
that clear and simple algebraic properties of Keccak make
algebraic methods very suitable for analyzing SHA-3. Based
on the problem formulation, the SAT solver used in this paper
needs only several seconds to find the injected fault and then
recover some χ22

i bits. Meanwhile, AFA makes use of both
the correct and faulty digest output, H and H ′, instead of just
their differential ∆H as used in DFA. With more information,
AFA is more effective than DFA in terms of fault identification
and internal state bits recovery. Comparing with the previous
attacks in [18] and [19], AFA method proposed in this paper
has the following advantages:

• It does not involve the complex fault propagation analysis
required for DFA, and can be highly automatic.

• It achieves higher effectiveness (with more bits recovered
by each fault injection) and efficiency (fewer fault injec-
tions).

The rest of this paper is organized as follows. In Section II,
we introduce the algorithm of SHA-3, and then present the
fault models used in this paper. In Section III, we present the
algebraic analysis method to recover χ22

i bits. In Section IV,
the AFA attack results are given in detail. In Section V, we ex-
tend the proposed attacks to SHA-3 systems with longer input
message, and discuss countermeasures against the proposed
attacks. Finally, we conclude this paper in Section VI.

II. PRELIMINARIES OF SHA-3 AND FAULT MODEL

A. Preliminaries of SHA-3

Standardized by NIST, SHA-3 functions operate in modes
of Keccak-f [1600, d] [1], where each internal state is 1600-
bit organized in a 3-D array (5 × 5 × 64, i.e., 5 bits in each
row, 5 bits in each column and 64 bits in each lane), and d is
the capacity and also the output length at choice. The SHA-3
family includes four output lengths, called SHA3-224, SHA3-
256, SHA3-384, and SHA3-512 [1]. Keccak relies on a Sponge
architecture to iteratively absorb message inputs and squeeze
out digests by a f permutation function. Each f function works
on a state at a fixed length b = r + c.
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Fig. 1: The sponge construction

In this paper, we simplify the setting of SHA-3 by assuming
that only one f function is involved for absorbing and squeez-
ing. Then we extend the proposed attack to systems with longer
input messages which involves multiple f functions. The attack
goal is to recover the authentication key when SHA-3 is used
in MAC mode, or to recover the input message when SHA-3
is used in hash mode. The f function consists of 24 rounds for
1600-bit operations, and each round has five sequential steps:

Si+1 = ι ◦ χ ◦ π ◦ ρ ◦ θ(Si), i ∈ {0, 1, · · · , 23} (1)

in which S0 is the initial input. Details of each step are
described below:

− θ is a linear operation which involves 11 input bits and
outputs a single bit. Each output state bit is the XOR between
the input state bit and two intermediate bits produced by its
two neighbor columns. We denote the input to θ operation as
θi while the output as θo, and the operation is given as follows:

θo(x, y, z) = θi(x, y, z)⊕ (⊕4
y=0θi(x− 1, y, z))

⊕ (⊕4
y=0θi(x+ 1, y, z − 1)). (2)

− ρ is a rotation over the state bits along z-axis (in lanes).

− π is a permutation over the state bits within slices.

− χ is the only non-linear step that contains mixed binary
operations over state bits in rows. Each bit of the output state
is the result of an XOR between the corresponding input state
bit and its two neighboring bits along the x-axis (in a row):

χo(x, y, z) = χi(x, y, z)⊕ (χi(x+ 1, y, z) · χi(x+ 2, y, z)).

− ι is a binary XOR with a round constant.

All the above operations are reversible [2]. Thus if an
internal state is recovered in SHA-3, the original message
and all the other internal states can be recovered. We set our
target as recovering the entire internal state of χ22

i (1,600 bits).
We annotate the last two rounds of SHA-3 operations and
important intermediate states in Fig. 2, and use these notations
in the rest of this paper.

22

i

   22

22

o
22

i
22

o

H

23

i

   23

23

o
23

i
23

o
21

o

Fig. 2: Notations for operations and intermediate states

In this paper, the fault injection point is θ22i , and the
attackers can only observe the clean and faulty digest, H and
H ′, with length d for Keccak-f [1600, d].

B. Fault Models in This Paper

For DFA on block ciphers and stream ciphers, the goal is
to recover the key, and therefore operations on multiple inputs

under the same fault injection are performed. In fault analysis
on SHA-3 hash mode, the goal is to recover the input message,
and multiple faults are injected into the system with the same
input message. In this paper, we generate multiple random
messages and attack each message separately, and present their
average results for performance and effectiveness evaluation.

Two different fault models have been used in previous
work, single-bit [18] vs. single-byte [19]. In this paper, we
adopt the same byte-level fault model as [19], and also
extend our AFA to different platforms with more relaxed fault
models, for example, single 16-bit word fault model for 16-bit
architectures. We first use the random single-byte fault model
to demonstrate the AFA on SHA-3 in this paper:

• The attacker can inject faults into one byte of the penul-
timate round input θ22i for 8-bit architectures;

• The attacker has no control on either the position (which
byte) or the value of the injected faults;

• The attacker can observe only the correct and faulty SHA-
3 digest, H and H ′, which are d bits for SHA3-d function;

• The attacker can inject random faults for the same input
message multiple times.

All the single-byte faults in this paper are randomly gen-
erated, with any value (1-255) at any position (200 bytes).
For commonly used SHA-3 implementation, data structures
are organized along each lane [1], [2]. Thus one byte is eight
consecutive bits in one lane in this paper.

In this paper, we use C++ API of CryptoMiniSat for the
SAT problem formulation and solving [20]. All the simulations
are run on a Ubuntu 14.04.3 system, with an Intel i7-2600 CPU
and 8 GB memory.

III. ALGEBRAIC FAULT ANALYSIS ON SHA-3

A. Overview of Algebraic Fault Analysis on SHA-3

The key idea of AFA is to transform the internal state
recovery problem into a satisfiability problem, representing the
target algorithms and operations using Boolean equations, and
then use a SAT solver to find solutions for the variables which
contain secret information.

First, we build a set of equations for the hash function
for both correct and faulty executions. With the input of the
penultimate round input θ22i , the correct hash digest is:

H = ι23 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι22 ◦ χ ◦ π ◦ ρ ◦ θ(θ22i ). (3)

Denote the injected fault as ∆θ22i , then the faulty digest is:

H ′ = ι23 ◦ χ ◦ π ◦ ρ ◦ θ ◦ ι22 ◦ χ ◦ π ◦ ρ ◦ θ(θ22i ⊕∆θ22i ). (4)

Both H in (3) and H ′ in (4) have d bits for SHA3-d function.
For DFA in [18] and [19], the attacker uses the differential of
H and H ′ to retrieve ∆χ23

i , the differential of χ23
i , for attack.

In this paper, with AFA we are able to make use of both H
and H ′ directly.

We first build the equation set for (3) and (4) in Sec-
tion III-B1, and then construct constraints for the injected fault
∆θ22i in Section III-B2. We show the recovery of χ22

i bits using
a SAT solver in Section III-C, and then improve the recovery
process by identifying the injected fault first in Section III-D.



B. SAT Problem Formulation

In this section, we represent the SHA-3 algorithm in a set
of equations and build constraints for the injected fault.

1) Construction of the Equation Set for Keccak: Thanks to
the simple algebraic operations of Keccak, the construction of
equations of SHA-3 is straightforward. We use 1, 600 single-bit
variables to denote the input θ22i , and another 1, 600 variables
to denote the differential input (fault injected) ∆θ22i . Then we
build equations for the operations in the last two rounds of
SHA-3 for both the correct and faulty hashing processes based
on (3) and (4). Finally additional d equations can be used to
represent the observed value of digest H and H ′, respectively.

For the θ step, the only operation is XOR of state bits,
which can be easily expressed in CryptoMiniSat. We introduce
320 variables to denote the θ compression results, and then use
another 1, 600 bits to denote the θ operation outputs. Both ρ
and π are bit permutation operations, which can be simply
denoted in SAT. The step χ involves XOR, NOT and AND
operations, and can be simplified as:

χo(x, y, z) = χi(x, y, z)⊕ χi(x+ 2, y, z)

⊕ [χi(x+ 1, y, z) · χi(x+ 2, y, z)].

We introduce another 1, 600 variables χand(x, y, z) to denote
χi(x + 1, y, z) · χi(x + 2, y, z). Then χ operation can be
represented as XOR of three variables. ι can be denoted using
XOR operation as it is a constant number addition operation.

For the last two rounds of SHA-3 for both correct and
faulty hashing, we use 39, 360 variables and 52, 160 equations
in total. Note here some optimizations can be applied to
improve the efficiency of algebraic analysis by reducing the
number of variables and equations. For example, ρ and π can
be combined to form one new step, and ι can be combined
into χ to save variables and equations [21]. Even without any
optimization, the AFA method proposed in this paper needs
only seconds to recover the χ22

i bits, which will be described
in detail in the following sections.

2) Constraints for the Injected Fault: The fault model
we adopt will be represented as constraints in the SAT
problem. Under the single-byte fault model, we use D =
d1, d2, · · · , d200 to denote ∆θ22i , which is 200 bytes, and di
(1 ≤ i ≤ 200) is one byte of ∆θ22i . We use dji to represent
the jth bit of di, in which j ∈ {1, 2, · · · 8}. A one-bit variable
ci is introduced to represent whether the ith byte of θ22i is
corrupted:

ci = d1i ∨ d2i ∨ · · · ∨ d8i . (5)

We have the following observations:

1) One and only one byte out of 200 bytes of D has non-zero
value, because only one byte of θ22i is corrupted.

2) If di is corrupted, ci = 1, otherwise ci = 0.

Then we have the following constraints which will make
sure that one and only one byte of θ22i is corrupted:{

c1 ∨ c2 · · · ∨ c200 = 1
c̄i ∨ c̄j = 1, 1 ≤ i < j ≤ 200

. (6)

C. Recover χ22
i Bits by the SAT Solver Directly

For the SAT problem formulated in Section III-B, an SAT
solver can be used to find solutions for all the variables. As
the internal states are interdependent and the f function is
reversible, hacking the hash algorithm only needs to recover
one internal state. With one fault injected (which results in
H ′), only the bits uniquely recovered are useful and defined
as solution in our scheme. The effectiveness (number of bits
recovered by one fault injection) may vary for different states.
We target recovering χ22

i in AFA, because its effectiveness may
be the highest, which is determined by the hashing algorithm
itself. Both previous DFA works on SHA-3 also target to
recover χ22

i bits [18], [19]. Since a single fault can only recover
some bits, our AFA method has to inject multiple faults so as
to recover the entire χ22

i state.

We need an efficient method to find the χ22
i bits that can

be recovered uniquely under a certain fault injection. For the
original SAT problem (the equation set and the constraints),
we run the SAT solver to find the first solution (1600-bit χ22

i
state) and then prune it to reduce to unique bits, which will
be much fewer than 1600. Note the SAT solver also outputs
the corresponding solution for other variables, like the fault
and other states. We do not use them in further search as they
are not our attack target. We then convert the first solution
into blocking constraints and run SAT solver again (i.e., the
new solution should not be equal to the first solution). For the
second solution found, we compare it with the first solution.
On some bit positions they have different values, and on others
they have the same values, which will possibly be the unique
bits recovered by the specific fault. We then convert these
common bits into constraints for the next round search (to find
a solution that differs in one or multiple of these common bits).
Iteratively, each search will reduce the number of potential
unique bits a little until the SAT solver cannot output any
new solution, and we will end up with a number of χ22

i bits
uniquely recovered from this fault injection. We can view that
with each round of SAT solver, more specific constraints are
added into the SAT problem to help the solver converge onto
a unique solution. The more specific the constraints, the faster
the convergence speed of the iterative SAT solver runs.

For example, we generate a random message for SHA3-
512 and inject a fault 0x5A (010110102, four bits flipped) at
the first byte of θ22i . Using the above method we can recover
80 bits of χ22

i after 41 iterations of running the SAT solver.
However, only 21 bits of χ22

o and zero bits of θ22i can be
recovered using the above method. With more bits recovered
for each fault injection, there will be less number of faults
required to recover the whole state of χ22

i , i.e., achieving
higher efficiency for the AFA.

D. Improving the Recovery of χ22
i bits

In the previous section, the SAT solver starts from search-
ing for a 1600-bit solution for χ22

i , without identifying the
injected fault. It has been shown in [19] that with the knowl-
edge of ∆χ22

i (derived from the fault ∆θ22i ), the attacker
can know which χ22

i bits may be leaked. In this section, we
propose another method that can improve the recovery of χ22

i
bits, by finding the injected fault first and then using the fault
information to search for the unique bits more efficiently.



1) Identify the Injected Fault: As mentioned in [19], more
than one fault may satisfy the differential output constraints in
DFA, because limited number of ∆χ23

i bits are derived from
the observable digest, H and H ′. In our AFA scheme, we are
using more information, H and H ′ themselves rather than the
differential, to find the fault. Therefore we may have better
chance identifying the fault. However, the non-uniqueness
issue still exists for AFA due to the limited digest length
(224 to 512, rather than 1600), i.e., some faults cannot be
uniquely identified. We define those faults uniquely identified
as effective faults, and only effective faults can be used to
recover the internal state bits in this section.

Similar to the algorithm given in the previous section,
we run the SAT solver twice to identify unique faults. The
first solution (8-bit fault value and position) from the SAT
solver is converted into additional constraints for the second
search. If the second search finds another solution (fault), they
both are not effective, and this fault injection is of no use
with the uncertainty. Otherwise, the solution from the first-
round search is effective and indeed the injected fault, and
can be used to recover the internal state bits. With this search
algorithm, for single-byte faults, our results show that it only
needs about 1.7 seconds to 3.0 seconds to identify the injected
fault for four SHA-3 functions. For larger digest size d, the
proposed algorithm needs less time for fault identification. This
is because for larger d, more information of H and H ′ is
available and such information will be translated to constraints
that help to narrow the search space and thus decrease the
searching time. More results of fault identification will be
given in Section IV.

2) Recover χ22
i Bits with the Effective Fault Information:

With the effective fault identified, hopefully we can recover
some state bits of χ22

i more efficiently by knowing what are
these bit positions.

After the injected fault ∆θ22i identified, attackers can find
how the bits of χ22

i are affected by the fault, i.e., derive the
differential ∆χ22

i : ∆χ22
i = π ◦ρ◦ θ(∆θ22i ). It has been shown

that the bit-wise nonlinear AND operation of step χ may leak
information of the input bits of χ at the output differential [18],
[19]. For each fault, only part of χ22

i bits can be recovered
uniquely. We use three bits ∆χ22

i ([x : x + 2] in a row as an
example to demonstrate which χ22

i bit(s) can be leaked and
present them in Table I [19].

TABLE I: Information leakage for different ∆χ22
i ([x : x+ 2], y, z)

∆χ22
i ([x : x+ 2], y, z) Information leakage

[1,0,0] ∅
[0,1,0] χ22

i (x+ 2, y, z)

[0,0,1] χ22
i (x+ 1, y, z)

[1,1,0] χ22
i (x+ 2, y, z)

[0,1,1] χ22
i (x+ 1, y, z)⊕χ22

i (x+ 2, y, z)

[1,0,1] χ22
i (x+ 1, y, z)

[1,1,1] χ22
i (x+ 1, y, z)⊕χ22

i (x+ 2, y, z)

By checking the entire 1600-bit ∆χ22
i , we identify all

the χ22
i bits that may be recovered for the given identified

fault. Meanwhile, from Table I, we can see that sometimes the
attacker can only recover the XOR of two χ22

i bits, instead

of the value of χ22
i bits directly. It has also been shown in

[19] that the later θ23 operation may cancel out the effect
of some χ22

i bits before they propagate to the final digest.
Thus we still need a pruning algorithm similar to the one
presented in Section III-C to reduce the number of unique
χ22
i bits recovered iteratively.

We run the same fault injection experiment as Sec-
tion III-C: inject a fault 0x5A on the first byte of θ22i for
the same random message. The improved method finds that
only 88 bits of of χ22

i may possibly be recovered, and run
the SAT solver to look for a solution for these 88 bits. The
improved method needs only 3 iterations to find all the 80 χ22

i
bits which can be uniquely defined, using only 0.28 seconds.
By comparison, the method in Section III-C needs more than
10 seconds to recover these 80 χ22

i bits with 41 iterations.

For real attacks, we propose to use a hybrid of these two
methods. We first try to identify the injected fault. If the fault
is effective, we use the method in Section III-D2 to recover
the χ22

i bits; otherwise, we use the method in Section III-C.

IV. ALGEBRAIC FAULT ANALYSIS RESULTS

In this section, we present the simulation results of the
proposed AFA attacks on SHA-3. For fault injection attacks
on crypto systems, we evaluate them in several aspects:

• The impact of the fault model used for attacks. In this
work, we test the proposed method under both a single-
byte fault model and a single-word (16-bit) fault model.

• The effectiveness of identifying the injected fault. We
will present the ratio of effective faults in detail in
Section IV-A.

• The efficiency of the attack. We will report the total
number of effective faults to recover the entire state and
the total time, which will be presented in Section IV-B.

We note here that as DFA can use only effective faults for
attacks, we use only effective faults in AFA to better compare
the efficiency of AFA and DFA.

A. Fault Identification Results

Using the method proposed in Section III-D1, an attacker
can identify the injected fault for some fault injection. Con-
sidering the total number of possible faults is 51,000 (200
positions with each possible 255 fault values), we can find
the ratio of effective faults. Our simulation results show that
AFA has much higher effective fault ratio than DFA, presented
in Table II. It shows that under a single-byte fault model, the
effective fault ratio of AFA is almost 100% for all four SHA-3
modes, while the ratio of DFA is very low for the two shorter
digest modes presented in [19].

TABLE II: Results of effective fault ratio under two fault models
8-bit 16-bit

DFA AFA DFA AFA
SHA3-224 30.67% 96.85% 0.00% 0.00%
SHA3-256 66.61% 99.89% 0.00% 0.30%
SHA3-384

99.13%
100%

40.05%
99.99%

SHA3-512 100% 100%

We extend the proposed AFA to 16-bit architecture, by
injecting single 16-bit word fault into θ22i . The simulation



results for such fault model are shown in the right columns
of Table II. It shows that AFA still achieves close to 100%
effective fault ratio for SHA3-384 SHA3-512, while the ratio
of DFA is much lower. For SHA3-224 and SHA3-256, the
observable digest is limited, and the footprints of different
faults will no longer vary significantly, thus neither AFA nor
DFA can identify the injected fault.

B. Internal State χ22
i Recovery Results

To find the effectiveness of AFA, i.e., the average number
of state bits recovered by each fault injected, we conduct an
experiment by generating 105 messages and injecting random
single-byte faults at θ22i for each message. We count the
recovered χ22

i bits for each fault value. For the proposed
methods in Section III-C and Section III-D, the number of
χ22
i bits that can be recovered for different number of flipped
θ22i is shown in Fig. 3(a), and the distribution of number of
χ22
i bits that can be recovered is shown in Fig. 3(b). The more

bit flipped at the input of the penultimate round, the more state
bits of θ22i can be recovered. For random faults, on average 80
state bits can be recovered for each fault.
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Fig. 3: Number of χ22
i bits recovered for each fault

Attackers can inject multiple faults for the same input
message and run SHA-3 algorithm several times to recover
the whole internal state of χ22

i . To evaluate the efficiency
of the proposed AFA method, we randomly generate 1000
messages, and for each message, we randomly inject multiple
faults to recover the whole internal state χ22

i . We present the
χ22
i state recovery processes for SHA3-224 and SHA3-256,

under single-byte fault model in Fig. 4 and Fig. 5, by both our
AFA and DFA. It shows that with the same number of effective
faults, AFA can recover more χ22

i bits than DFA, and therefore
it requires much less number of fault injections to recover the
entire 1600 bit state. We note here that we do not present the
DFA results on SHA3-384/512, because DFA results are very
near to the AFA results, though less efficient. Overall, AFA is
much more efficient than DFA.
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Fig. 4: χ22
i recovery process for algebraic fault analysis

The difference in efficiency stems from the different usage
of information. DFA makes use of the information ∆χ23

i
while AFA uses both H and H ′, which contain much more
information than ∆χ23

i . What’s more, for SHA3-384 and
SHA3-512, only 320 bits of ∆χ23

i is available and used by
DFA, while there are 384 bits and 512 bits of digest (H and
H ′) available for AFA, respectively. For SHA3-224 and SHA3-
256, the number of available ∆χ23

i bit is 112 and 160 for DFA
respectively, while the number of available digest bits are 224
and 256 for AFA.

C. AFA Attacks Under A More Relaxed Fault Model

AS shown in Table II, the proposed AFA scheme still has
very high effective fault ratio under the single-word fault model
for SHA3-384 and SHA3-512. Here we present the results
of our AFA on SHA3-384 and SHA3-512 under single-word
fault model in Fig. 5. It shows that the AFA needs much
smaller number of effective faults to recover the whole internal
state under the random single-word fault model than under the
single-byte fault model. This is because single-word fault flips
more bits than single-byte fault on average, and thus more bits
of χ22

i can be recovered for each identified fault.

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

Number of effective faults injected

N
um

be
r 

of
 r

ec
ov

er
ed

 χ
22 i

 b
its

 

 

SHA3−384: single−byte fault model
SHA3−512: single−byte fault model
SHA3−384: single−word fault model
SHA3−512: single−word fault model

Fig. 5: AFA results under single-word (16-bit) fault model

As shown in Table II, the effective fault ratio for SHA3-
224 and SHA3-256 are almost zero under 16-bit fault model.
Limited information makes the method in Section III-C inef-
fective for SHA3-224 and SHA3-256 either. Attacks on SHA3-
224 and SHA3-256 under relaxed fault models will be future
work. Meanwhile, we also tried the proposed attacks under 32-
bit fault model and the SAT solver needs long time to identify
the fault and recover the internal state bits. Optimization to
improve the efficiency will also be future work.

V. DISCUSSION AND FUTURE WORK

In previous sections, we simplify the target SHA-3 system
by assuming that only one f function is involved for absorb-
ing the message and squeezing, which means that the input
message length is shorter than the bitrate r. In Section V-A,
we extend fault attacks to SHA-3 systems with input message
with variable length. Then we will discuss future work and
countermeasures in Section V-B.

A. Fault Attacks on SHA-3 Systems with Long Input Message

In this section, we first extend the proposed attack to
scenarios where the size of the input message is larger than
bitrate r, and there are n (n ≥ 1) f functions (f0 · · · fn−1)
involved for absorbing. We assume that the digest size is still
d-bit for SHA3-d function (refer to Fig. 1). For all the four



modes of SHA-3, the bitrate r is larger than d, and therefore
there is no need of f function for squeezing.

For MAC-Keccak, the attacker has control (knowledge) of
the input messages P0, · · · , Pn−1 except for the key bits. The
adversary can first attack the last f function, fn−1, by injecting
faults into its penultimate round input. Using the proposed
method in this paper, the input fn−1(in) will be recovered.
Combining with Pn−1, the attacker can recover fn−2(in).
There are two possible situations for the key length lk:

• If lk ≤ r, the attacker can iteratively recover P0 which
contains the key used for MAC, and therefore recover the
secret key.

• If lk > r, for example, all the bits of P0 and part of
P1 bits are key bits, then the attacker can recover f1(in),
which is f1(in) = f(P0||0c)⊕(P1||0c). Thus the attacker
will be unable to recover the key bits contained in P0 and
P1 directly. The attacker needs to make assumption of the
key bits in P1 and then try to recover the key bits in P0,
then the difficulty increases rapidly with the number of
the key bits in P1.

For SHA-3 system in general hash mode, the attacker has
no access to the input message P0 · · · Pn−1. Therefore, after
recovering fn−1(in), he will be unable to further recover
fn−2(out) without knowledge of Pn−1. Thus the attacker will
be unable to recover the original input message in hash mode
directly if the message length is greater than bitrate r.

For modified SHA-3 system which allows digest size larger
than d, there may be extra f functions involved for squeezing.
Then the size of z0 will be larger than d (up to r-bit), which
means more information (larger size H and H ′) available to
attackers. Thus the attacker can recover more bits of ∆θ23i
directly, which will make the attack much easier. Conclusively,
the proposed fault analysis method is still applicable for SHA-
3 systems which involve extra f functions for squeezing.

B. Future Work and Countermeasures

Both this work and [19] show that AFA/DFA cannot be
applied for the attacks of SHA3-224 and SHA3-256 under
more relaxed single-word fault model, and effective attacks on
SHA3-224/SHA3-256 under more relaxed fault models should
be devised in future work.

Protection can be added into Keccak based systems to
protect them against fault injection attacks. For example, error
detection codes can be added to detect injected faults, and this
has been discussed in [21]. It has been shown that utilizing the
algebraic properties makes the protection of Keccak efficient.
Meanwhile, extra modules can be added into crypto systems to
detect the disturbance used to inject faults [22]. More effective
countermeasures against fault attacks will be future work.

VI. CONCLUSION

In this paper, we present efficient algebraic fault analysis
attacks on SHA-3. We show that AFA is very suitable for the
attacks of SHA-3 because of the clear algebraic properties of
Keccak operations. The analysis and simulation results show
that our method has much higher effective fault ratio than
previous attacks, and it requires much fewer faults to recover
the whole internal state of χ22

i .
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