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Abstract. Information theoretically secure secret-key exchange between two
parties, Alice and Bob, is a well-studied problem that is provably impossible
without additional assumptions. However, it has shown to be feasible in a
model where – in addition to an authenticated communication channel – the
parties also have access to some correlated randomness. One particular type
of such correlated randomness is the so-called satellite setting, where a source
of uniform random bits (e.g. sent by a satellite) is received by the parties and
the eavesdropper, Eve, via antennas of different sizes, which is modeled as
receiving the bits through independent binary symmetric channels with error
probabilities εA, εB , and εE , respectively, where typically εE � εA ≈ εB . The
secret-key rate is then defined as the maximal rate, per random bit, at which
Alice and Bob can agree on secret key bits about which Eve has arbitrarily
little information.
While in computational cryptography the relevant parameter in a security
analysis is a bound on Eve’s computing power, the corresponding quantity
in the satellite setting is a bound on Eve’s antenna size. In this work, we
study the optimal secret-key rate in the satellite setting as a function of the
ratio Q of Eve’s tolerable antenna size and the honest parties’ antenna size.
Technically, we consider the ratio Q of the capacities of the corresponding
binary symmetric channels, which corresponds roughly to the antenna size
ratio, and we consider the satellite’s sending signal strength as a system design
parameter that can be optimized. This setting was first considered by Gander
and Maurer (ISIT 1994), who conjectured based on numerical evidence that
the secret-key rate of the parity-check protocol decreases like 1/Q2.
As a first contribution, we prove that this is actually the case, and also
prove that this rate is asymptotically optimal, i.e., no protocol can achieve an
asymptotically better rate in a setting where εA ≈ εB . As a second contribution,
we consider the secret-key rate per second rather than per transmitted bit,
which might be of higher practical interest, given that one particular way of
adjusting the signal strength is to adjust the bit-rate at which the satellite
broadcasts. To this end, we introduce a quantity that approximates the secret-
key rate per second, prove that for the parity-check protocol this quantity
decreases like 1/Q, and prove again that this is optimal. The difference between
quadratic and linear decrease is quite significant in the satellite setting because
it is plausible for Eve’s antenna to be orders of magnitude larger than Alice’s
and Bob’s.
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1 Introduction

1.1 Motivation for Information-theoretic Security

In cryptography, one generally considers two types of security of cryptographic
schemes. Unconditional or information-theoretic security means that not even an
adversary with unbounded computing power can cause a violation of the security
property, whereas computational security means that the violation of the security
property is impossible for an adversary with (suitably) bounded computing power, but
is usually possible for a computationally unbounded adversary. Information-theoretic
security was first defined and considered in Shannon’s ground-breaking paper [21].

While for the most part cryptographic research is focused on computational
security, actually the state of the art in complexity theory is that no cryptographic
scheme has been proven to be computationally secure for a general and realistic
model of computation. Instead, the term “provable security” is often used for schemes
for which a reduction from a commonly agreed conjectured hard problem (such as
factoring large integers) is known: Any adversary breaking the cryptographic scheme
could be transformed (by the reduction), with reasonable efficiency loss, into an
algorithm solving the hard problem with noticeable probability. Therefore, under the
assumption that the problem is indeed hard, the scheme is secure.

In summary, there are two main advantages of information-theoretic security:

– Information-theoretic security is stronger because, compared to computational
security, the security holds against a larger class of adversaries.

– The security proof does not require an unproven computational assumption.

1.2 Circumventing Impossibility Results

Unfortunately, information-theoretic security is in many settings unachievable, often
provably so, at least for practical settings. For instance, Shannon’s famous impossibility
result [21] states that perfectly secure encryption is impossible unless the secret key
has at least as much entropy as the message. This result is often quoted as showing
that information-theoretic security is not practical since exchanging a fresh truly
random key for every message is generally completely impractical.

The significance of such an impossibility result depends on the generality of the
conditions underlying the impossibility proof. For example, Shannon’s impossibility
result was stated (and proven) only under the restriction that the communication
between sender and receiver is one-way. That this result also holds in the more realistic
setting with interactive communication between sender and receiver was proved only
in 1993 [10]. It is therefore possible that a careful re-examination of impossibility
results allows to circumvent them by a slight change of the model, where such a
change should be as realistic as possible and should not destroy the practicality of
schemes proven secure in the model.

One such attempt, proposed by Maurer [14] and investigated by many researchers
in different contexts, is the so-called bounded-storage model. Here one assumes
that the adversary’s memory resources are bounded, but no assumption about the
adversary’s computing power is needed. Unfortunately, it seems very hard to argue
that schemes proven secure in this model are practical for a reasonable bound on the
adversary’s memory capacity.

Other notable earlier attempts include the works of Wyner [23] and Csiszár and
Körner [4], where all parties are connected by noisy channels (and only one-way
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communication between the two honest parties is allowed), and the work of Ozarow
and Wyner [18], where the adversary is allowed to observe a bounded subset of the
message’s encoding. In these models, perfectly secure encryption is possible only when
the adversary is at a disadvantage compared to the honest parties, which is rarely
the case in practice.

A more promising approach in the context of secret-key agreement is the so-called
secret-key agreement by public discussion model proposed by Maurer [15,10]. In this
model, two parties Alice and Bob wish to agree on a secret key by communicating
over a public authenticated channel perfectly accessible to the adversary Eve. In this
setting, without further assumptions, key agreement is provably impossible. However,
by a slight modification of the model, namely by considering a setting where Alice,
Bob, and Eve have access to correlated random variables X, Y , and Z, respectively,
with joint probability distribution PXY Z , secret-key agreement becomes possible,
even if X and Y are almost not correlated and even if Z is strongly correlated with
both X and Y .

Often one considers a setting where the experiment generating X, Y , and Z is
repeated many times (independently), and one then considers the secret-key rate, the
maximal rate (per realization of the random experiment) at which Alice and Bob can
generate secret-key bits. Surprisingly, in this model, secret-key agreement (and thus
perfectly secure encryption) is also possible in many cases where Eve starts with an
advantage over Alice and Bob.

1.3 The Satellite Setting and Contributions of this Paper

A setting of particular interest is the so-called satellite setting: A uniform random bit
R is generated (e.g. by a satellite, or by a deep-space radio source) and Alice, Bob,
and Eve can receive this bit over independent binary symmetric channels with error
probabilities εA, εB, and εE , respectively. Quite surprisingly, one can show [10,13]
that in this model secret-key agreement is possible even if Eve’s channel is almost
perfect, i.e., if εE is arbitrarily close to 0 and if Alice’s and Bob’s channels have
arbitrarily high error probability (i.e., εA and εB are close to 0.5). In other words,
secret-key agreement is possible, with a strictly positive rate, in all cases where it is
not obviously impossible, namely if either εA = 0.5, εB = 0.5, or εE = 0.

The central open problem in this topic is the characterization of the secret-key
rate. However, in practice a characterization in terms of the error probabilities εA, εB ,
and εE is not very useful. Rather, the relevant parameter should be a bound on Eve’s
capabilities, which in the satellite setting corresponds to her antenna size. Thus, we
consider the secret-key rate as a function of the maximal tolerable ratio Q of Eve’s
and the honest parties’ antenna sizes. Especially, we treat the energy used by the
satellite to broadcast one bit as a design parameter for the protocol designer.

In a regime with significant noise power compared to the signal power (i.e., with
small signal-to-noise ratio), the channel capacity is essentially proportional to the
product of the surface of the receiver’s antenna and the energy used to transmit each
bit. Therefore, in order to model the sketched scenario of fixed antenna sizes but
variable energy per bit, we consider the ratios of the capacity of Eve’s channel and
the capacity of Alice’s and Bob’s channels to be the relevant quantity. For simplicity,
we assume in the following that Alice’s and Bob’s channel are of roughly the same
quality and only consider their maximal error probability εAB. This allows us to
consider only a single ratio Q, and thus define the secret-key rate per transmitted
bit under a fixed quality constraint Q as the optimization over all tuples (εAB , εE)
satisfying the channel capacity ratio Q. In Section 4, we show that this secret-key
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rate is inversely proportional to Q2, which is significantly better than the best proven
result of the original paper [10], where the secret-key rate decreases exponentially
in Q.

While a characterization of the secret-key rate per transmitted bit is interesting
on its own, the more compelling quantity to look at is the secret-key rate per second.
Especially, adjusting the energy used to transmit one bit, in practice, would probably
be done by adjusting the bit-rate, as this allows to keep a fixed signal power. This
highlights a very interesting trade-off: A smaller transmission time allows Alice and
Bob to receive more bits per second, but yields larger error probabilities for all
parties, rendering the optimal bit-rate a priori unclear. In order to investigate this
question, we introduce a quantity that approximates the secret-key rate per second by
dividing the secret-key rate per transmitted bit by the capacity of Alice’s channel. This
approximation is again motivated by the fact that the capacity is roughly inversely
proportional to the bit-rate and since this approximation mainly holds in a regime
with small signal-to-noise ratio, it is natural to choose Alice’s and not Eve’s channel
capacity. In Section 5 we then show that this quantity decreases inversely proportional
to Q, rather than Q2. Note that this is a significant difference, since Eve’s antenna
must be assumed to be orders of magnitudes larger than those of Alice and Bob (who
might for instance use a mobile phone). In summary, the fact that the secret-key rate
per second only decreases linearly in Q is a highly surprising result, which brings
secret-key exchange in the satellite model within the reach of practicality.

1.4 Related Work

There have been considerable efforts to find good approximations for the secret-key
rate, both in the satellite setting and for more general probability distributions, and
also for setting with more than three parties.

The first bounds on the secret-key rate were proved by Maurer [10,12], and
by Ahlswede and Csiszár [1], who studied the secret-key rate when only one-way
communication from Alice to Bob is allowed. Later, Maurer and Wolf [11] and Renner,
Skripsky, and Wolf [19] introduced improved upper bounds for general distributions,
called the intrinsic mutual information and the reduced intrinsic mutual information,
respectively.

For the satellite setting, there exist better lower bounds on the secret-key rate
due to the study of several advantage distillation protocols. The first such protocol,
called the repeater-code protocol, was introduced and studied by Maurer [15,10]. An
improved version of this protocol, called the parity-check protocol, was studied by
Gander and Maurer [15,6]. Later, Liu, Van Tilborg, and Van Dijk [9] proposed a
more complex protocol that outperforms the parity-check protocol, but from which it
appears to be difficult to compute better lower bounds.

Csiszár and Narayan [5] extended the study of the secret-key rate to settings with
more than three parties, and exhibited connections between information-theoretic
secret-key agreement and the problem of communication for omniscience. Then,
Gohari and Anantharam [7] showcased new lower and upper bounds on the secret-key
rate for an arbitrary number of parties, which in particular are strict improvements
over the previously known bounds for our setting.

Naito et al. [17] considered a scenario where Alice, Bob, and Eve receive the
random bits in the satellite setting through Gaussian channels, instead of binary
symmetric channels, and so are able to make use of soft-decoding. They show that
Alice and Bob can extract more secret-key rate in the Gaussian scenario.
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There has been some recent interest in the secret-key rate in the finite blocklength
setting, where the number of available realizations (X,Y, Z) is bounded. Tyagi and
Watanabe [22] showcase a connection between the secret-key rate in this setting and
binary hypothesis testing, and use it to obtain an upper bound on the secret-key
rate for a bounded number of realizations. Later, Hayashi, Tyagi, and Watanabe [8]
used this connection to better understand how the gap between the secret-key rate in
the finite blocklength and asymptotic settings decreases as the number of available
realizations increases, for certain probability distributions.

2 Preliminaries

2.1 Notation

We denote random variables by uppercase letters such as X, Y , and Z. We may denote
sequences of random variables X1, X2, . . . , XN as XN . We say that X1, X2, . . . , XN

are i.i.d. if all the Xi are independent random variables and they all have the same
distribution. Most sets are denoted by uppercase calligraphic letters such as S. The
set of real numbers is denoted by R and for a natural number n ∈ N, [n] denotes the
set {1, . . . , n}. Given a set S, the size of S is denoted by |S|. For a string x ∈ {0, 1}∗,
|x| denotes the length of x. The (Hamming) weight of a string x ∈ {0, 1}∗ is defined
as w(x) := |{i : xi = 1}|, where xi is the i-th entry of x. We denote the logarithm to
the base 2 by log and the natural logarithm by ln. The closed interval in R between
two real numbers a and b is denoted by [a, b].

Given an event A, we denote the probability that A happens by Pr[A], which is
the sum of the probabilities of all outcomes in event A. Given two events A and B,
the probability that A and B happen simultaneously is denoted by Pr[A,B]. The
conditional probability of A given B, provided Pr[B] > 0, is Pr[A|B] := Pr[A,B]

Pr[B] .
The probability distribution of a finite random variable X is denoted by PX ,

and so PX(x) denotes the probability that X takes the value x. Given an event A,
PX|A denotes the conditional probability distribution of X conditioned on A. For two
finite random variables X and Y , PX|Y (·, y) denotes the probability distribution of
X conditioned on the event Y = y.

2.2 Information Theory

Throughout this paper we will make use of some fundamental concepts from informa-
tion theory. We briefly define the required notions in this section; a more detailed
exposition of this field can be found in [3].

Fix a finite random variable X with range X . The entropy of X, denoted by
H(X), is defined as

H(X) := −
∑
x∈X

PX(x) logPX(x).

Intuitively, the entropy measures the uncertainty about a given random variable. In
fact, a finite random variable X with range X satisfies 0 ≤ H(X) ≤ log|X | with
equality in the lower bound if and only if PX(x) = 1 for some x ∈ X , and with
equality in the upper bound if and only if X is uniform over X . We call

h(p) := −p log(p)− (1− p) log(1− p)

the binary entropy function and note that for a binary random variable X with
PX(1) = p we have that H(X) = h(p).
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Given two finite random variables X and Y with ranges X and Y, respectively,
we define the conditional entropy of X given Y , denoted by H(X|Y ), as

H(X|Y ) :=
∑
y∈Y

PY (y)H(X|Y = y).

Given an event A, H(X|Y,A) is defined as

H(X|Y,A) :=
∑
y∈Y

PY |A(y)H(X|Y = y,A).

We define the mutual information between X and Y , denoted by I(X;Y ), as

I(X;Y ) := H(X)−H(X|Y ).

Intuitively, the mutual information measures how independent two random variables
are, and we have I(X;Y ) = 0 if and only if X and Y are independent. Given an event
A, I(X;Y |A) is defined as

I(X;Y |A) := H(X|A)−H(X|Y,A).

Finally, if additionally Z is a finite random variable with range Z, the conditional
mutual information between X and Y given Z, denoted by I(X;Y |Z), is defined as

I(X;Y |Z) :=
∑
z∈Z

PZ(z)I(X;Y |Z = z).

We will be dealing with a simple instance of a discrete memoryless channel. A
discrete memoryless channel with input X and output W is characterized by a
conditional probability distribution PW |X . The term memoryless stems from the fact
that the channel’s output depends only on the current input, and so is independent of
previous channel utilizations. The binary symmetric channel with error probability ε
is the discrete memoryless channel with input X ∈ {0, 1} and conditional probability
distribution such that PW |X(b, b) = 1 − ε and PW |X(1 − b, b) = ε for b ∈ {0, 1}.
Intuitively, the binary symmetric channel receives a bit as input and flips it with a
certain error probability.

The capacity is a fundamental quantity associated to every channel. Informally,
the capacity of a channel is the optimal rate at which one can communicate through
the channel while ensuring that the decoding error probability goes to zero as the
number of channel uses increases. Shannon [20] proved that the capacity of a channel
PW |X is given by maxPX I(X;W ). In particular, it is easily shown that the capacity
of the binary symmetric channel with error probability ε is 1− h(ε), where h is the
binary entropy function.

3 Secret-Key Agreement by Public Discussion

3.1 The Source Model and the Secret-Key Rate

We study information-theoretic secret-key agreement, in which Alice and Bob want
to agree on a shared secret-key, about which Eve has (almost) no information.
To circumvent the trivial impossibility results, we consider the model introduced
by Maurer [15,10], called secret-key agreement by public discussion from common
information. In this model, we assume that in addition to a bidirectional authenticated
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noiseless channel, which Eve can listen in to but not tamper with, the parties also
share some form of correlated randomness. More specifically, we will look at the
setting where the correlated randomness of Alice, Bob, and Eve consists of several
independent and identically distributed realizations of discrete random variables X,
Y , and Z, respectively, distributed according to some joint probability distribution
PXY Z .

In this setting, the main quantity of interest is the maximal rate (per number of
realizations of X, Y , and Z received) at which Alice and Bob can generate secret-key
bits, about which Eve has almost no information, as a function of the probability
distribution PXY Z . We first define what we mean by a secret-key agreement protocol.

Definition 1. Given a finite probability distribution PXY Z , an (N,R, ε)-secret-key
agreement protocol for PXY Z is an interactive protocol for Alice and Bob, which
receive XN = (X1, . . . , XN ) and Y N = (Y1, . . . , YN ), respecitvely, as input. Then they
generate a communication transcript CM = (C1, . . . , CM ) (where M is also a random
variable) by sending messages over authenticated channels in an alternating manner.
After the interaction is finished, Alice and Bob produce outputs SA and SB over the
finite range S, respectively.

We require that if for i ∈ [N ], the random variables (Xi, Yi, Zi) are i.i.d. according
to PXY Z , then the following properties must hold:

1. H(SA) ≥ N(R− ε);
2. H(SA) ≥ log|S| − ε;
3. Pr[SA = SB ] ≥ 1− ε;
4. I(SA;ZNCM ) ≤ ε.

Intuitively, property 1 in Definition 1 states that, on average, Alice and Bob
extract at least R− ε secret bits per realization of (X,Y, Z), i.e., the rate is at least
R− ε. Property 2 enforces that SA is almost uniform over S, property 3 implies that
SA and SB should coincide with high probability, and property 4 means that Eve’s
information, which consists of ZN and the transcript CM , gives almost no information
about the secret keys SA and SB . We are now ready to define the secret-key rate.

Definition 2. Given a finite probability distribution PXY Z , the secret-key rate, de-
noted by S(X;Y ‖Z), is the supremum of all real numbers R such that for all ε > 0
and large enough N there exists an (N,R, ε)-secret-key agreement protocol for PXY Z .

The secret-key rate was first studied by Maurer [15,10], while Csiszár and Körner [1]
studied the one-way secret-key rate, where only one-way communication from Alice
to Bob is allowed.

The following theorem states basic bounds for the secret-key rate. The lower
bound was proved by Maurer [10,12] and Csiszár and Körner [1], while the upper
bound was proved by Maurer [10].

Lemma 1 ([10, Theorem 2] and [12, Theorem 4]). For all finite probability
distributions PXY Z , we have

I(X;Y )−min(I(X;Z), I(Y ;Z)) ≤ S(X;Y ‖Z) ≤ min(I(X;Y ), I(X;Y |Z)).

Note that our definition of the secret-key rate corresponds to the so-called strong
secret-key rate, which Maurer and Wolf [16] have proven to be equivalent to the weak
one initially considered in the lower bounds.
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3.2 A Special Case: The Satellite Setting

Our focus will lie on the secret-key rate of a conceptually simple, but realistic and
interesting, class of distributions PXY Z , named the satellite setting.

Fix real numbers εA, εB , εE ∈ [0, 1/2] and consider the following experiment:

1. Sample a bit R ∈ {0, 1} uniformly at random;
2. Send R to Alice, Bob, and Eve through independent binary symmetric channels

with error probabilities εA, εB , and εE , respectively. The random variables X, Y ,
and Z are the output of these three channels.

This class of distributions was introduced by Maurer [15,10]. The satellite setting
earned its name because a realistic implementation of such a scenario would consist
of having a satellite orbiting the Earth which broadcasts random bits. On the ground,
Alice, Bob, and Eve would be in possession of their own antennas, which they can
use to listen to the satellite broadcasts. The quality of a party’s antenna would then
dictate how reliably they receive the random bits from the satellite. For instance, a
better antenna leads to a smaller error probability.

An additional surprising benefit of this model is that secret-key agreement is
possible whenever it is not trivially impossible, as stated in the following theorem of
Maurer and Wolf [10,13].

Theorem 1 ([13, Theorem 2, adapted]). We have S(X;Y ‖Z) > 0 if and only if
εE > 0 and εA, εB < 1/2.

This stands in stark contrast to the well-known fact that secret-key agreement with
one-way communication from Alice to Bob (in the sense of [1]) is impossible whenever
Eve’s antenna is better than both Alice’s and Bob’s antennas, i.e. whenever εE < εA
and εE < εB .

While Theorem 1 assures that the secret-key rate is positive in all non-trivial
settings, computing (or even approximating) it has proven to be a surprisingly difficult
problem for most parameters εA, εB , and εE .

3.3 Advantage Distillation Protocols

The strategy used in [10,13] to prove Theorem 1 is based on the construction of an
advantage distillation protocol in the satellite setting. In such a protocol, Alice and
Bob, starting with random variables XN and Y N for N large enough, interact over
several rounds of communication to obtain new random variables X̂ and Ŷ satisfying

I(X̂; Ŷ )− I(X̂; Ẑ) > 0,

where Ẑ denotes Eve’s total information at the end of the protocol. Intuitively, Bob
ends up with more information about Alice than Eve does, and so the protocol “distills”
an advantage for Alice and Bob over Eve. The existence of such a protocol implies
that S(X;Y ‖Z) > 0. In fact,

S(X;Y ‖Z) ≥ S(X̂; Ŷ ‖Ẑ)
N

≥ I(X̂; Ŷ )− I(X̂; Ẑ)

N
> 0,

where the second inequality follows from Lemma 1.
The first advantage distillation protocol was the repeater-code protocol [15,10].

Suppose, without loss of generality, that εA ≥ εB . Then, the repeater-code protocol
works as follows:
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1. Alice samples C ∈ {0, 1} uniformly at random and sends C ⊕ XN = (C ⊕
X1, . . . , C ⊕XN ) to Bob over the authenticated channel;

2. Bob computes C ⊕XN ⊕ Y N = (C ⊕X1⊕ Y1, . . . , C ⊕XN ⊕ YN ) and sets A = 1
if C ⊕XN ⊕Y N = 0N or C ⊕XN ⊕Y N = 1N . Otherwise, Bob sets A = 0. Then,
Bob sends A to Alice through the authenticated channel;

3. If A = 1, then Alice sets X̂ = C and Bob sets Ŷ = C ⊕X1 ⊕ Y1. Otherwise, if
A = 0, then Alice and Bob set X̂ = Ŷ = ⊥.

Eve’s total information Ẑ consists of Ẑ = (ZN , C ⊕ XN , A). Define β := Pr[X 6=
Y ] = εA(1− εB) + (1− εA)εB and αrs := Pr[X ⊕ Y = r,X ⊕ Z = s] for r, s ∈ {0, 1}.
It can be shown [10] that, for a fixed N ,

I(X̂; Ŷ )− I(X̂; Ẑ)

N
=
pa,N
N

(
N∑
w=0

(
N

w

)
pw
pa,N

· h
(

pw
pw + pN−w

)
− h(βN )

)
, (1)

where h is the binary entropy function and:

– pa,N := Pr[A = 1] = βN + (1− β)N ;
– βN := Pr[X̂ 6= Ŷ |A = 1] = βN

βN+(1−β)N ;
– pw := αN−w00 αw01 + αN−w10 αw11 is the probability that Bob accepts and XN ⊕ZN is

a specific codeword of Hamming weight w.

Maurer and Wolf [13] proved that, for all triples (εA, εB , εE) such that εA < 1/2,
εB < 1/2, and εE > 0, we have

I(X̂; Ŷ )− I(X̂; Ẑ) > 0

provided N is large enough.
While the repeater-code protocol is good enough to prove that secret-key agreement

is possible in the satellite setting, it guarantees only a very small lower bound on
the secret-key rate, especially when εA and εB are much larger than εE . This issue
motivated the search for better advantage distillation protocols in the satellite setting.

Gander and Maurer [15,6] studied an improved protocol, called the parity-check
protocol. Again, we assume, without loss of generality, that εA ≥ εB . The parity-check
protocol with ` rounds works as follows:

1. Alice and Bob start with initially empty strings UA and UB , respectively;
2. Alice and Bob divide XN and Y N into pairs (X2i, X2i+1) and (Y2i, Y2i+1), re-

spectively, for i = 0, . . . , bN/2c;
3. For each i, Alice sends X2i ⊕X2i+1 to Bob via the authenticated channel;
4. Bob sets Ai = 1 if X2i ⊕X2i+1 = Y2i ⊕ Y2i+1. Otherwise, Bob sets Ai = 0. Then,

he sends Ai to Alice;
5. If Ai = 1, Alice adds X2i to her string UA, and Bob adds Y2i to his string UB,

and they discard the remaining bits. If Ai = 0, Alice and Bob discard all the bits;
6. If ` = 1, then Alice and Bob stop the protocol. Alice sets X̂ = UA and Bob sets
Ŷ = UB ;

7. If ` > 1 and |UA| ≥ 2`−1, Alice and Bob run the parity-check protocol with `− 1
rounds on the strings UA and UB . Otherwise, if |UA| < 2`−1, then Alice and Bob
set X̂ = ⊥ and Ŷ = ⊥, respectively.

If X̂ and Ŷ are the outputs of the parity-check protocol with ` rounds, then each
pair of bits (X̂i, Ŷi) behaves like the output of a successful run of the repeater-code
protocol with N = L := 2`. Furthermore, all pairs (X̂i, Ŷi) are independent of each
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other. It can then be shown that the parity-check protocol with ` rounds yields the
lower bound

S(X;Y ‖Z) ≥ R`

(
L∑

w=0

(
L

w

)
pw
pa,L

· h
(

pw
pw + pL−w

)
− h(βL)

)
,

where

R` := lim
N→∞

E[|X̂|]
N

= 2−`
`−1∏
i=0

(β2
2i + (1− β2i)2), (2)

and β2i =
β2i

β2i+(1−β)2i
is the error probability between Alice’s and Bob’s bits after i

rounds of the parity-check protocol.
The intuition behind Equation (2) is the following: Suppose there are Ni bits left

after i rounds of the parity-check protocol. These Ni bits are partitioned into bNi/2c
pairs (if Ni is even, Alice and Bob discard a bit), and, in round i+ 1, Alice and Bob
keep a bit from a given pair with probability β2

2i + (1− β2i)2. Therefore, we have

E[Ni+1 | Ni bits after i rounds] ≈
β2
2i + (1− β2i)2

2
·Ni,

where Ni+1 is the random variable denoting the number of bits after i+ 1 rounds of
the parity-check protocol.

The lower bound obtained through the parity-check protocol is, for most choices
of error probabilities in the satellite setting, much better than the lower bound given
by the repeater-code protocol.

Note that the parity-check protocol consists of the iterative application of the
repeater-code protocol with length 2 to pairs of bits of XN and Y N . This protocol can
be further improved in a natural way for some interesting choices of error probabilities
in the satellite setting by modifying the length of the repeater-code protocol that is
applied iteratively, and reutilizing discarded bits from failed runs of the repeater-code
protocol which are “almost” successful. We do not expand on this, since the original
parity-check protocol suffices for our needs.

3.4 The Secret-Key Rate under a fixed Channel Quality Ratio

In this section, we formally define the two main quantities of this work: The secret-key
rate per transmitted bit and the secret-key rate per second. Rather than defining them
as functions of the error probabilities εA, εB , and εE , we define them as functions of
a channel quality ratio between Eve’s channel and those of Alice and Bob, which are
assumed to be roughly equivalent. This is motivated by the following observation: In
practice, the satellite setting would, for example, be implemented by having a satellite
broadcast random bits and the three parties use antennas to receive them. Moreover,
we want to assume that the antennas are of a fixed size (typically Eve’s antenna is
large, while Alice’s and Bob’s antennas are small, e.g. mobile phone antennas), but
the energy which the satellite uses to transmit each random bit is a parameter the
protocol designer is free to choose.

If we can choose the signal strength, this clearly affects the error probabilities εA,
εB , and εE , which therefore do not directly reflect the fixed parameters. However, in
a regime with significant noise power compared to the signal power (i.e., with small
signal-to-noise ratio), the channel capacity is essentially proportional to the product
of the surface of the receiver’s antenna and the energy used to transmit the bits.
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Therefore, having a fixed ratio between the antenna sizes but variable energy used
to transmit a bit corresponds to having a fixed ratio of the channel capacities. As a
consequence, this ratio is the relevant parameter to describe the secret-key rate as a
function of. For simplicity, we assume in the following that both Alice and Bob have
a channel with equal error probability α := εA = εB, and we set γ := εE as Eve’s
error probability. Note that all of our lower bounds would remain true if εA 6= εB and
α := max{εA, εB} instead. However, the upper bounds would no longer be valid, if
εA and εB differ significantly. Let Q denote the fixed size-ratio between the antennas
of the honest parties (which have the same size) and Eve’s antenna. Adjusting the
energy per bit then corresponds to choosing α and γ under the following constraint:

1− h(γ)
1− h(α)

= Q.

This leads us directly to our definition of the secret-key rate per transmitted bit.

Definition 3. The secret-key rate per transmitted bit under a channel quality ratio
constraint Q, denoted by S(Q), is defined as

S(Q) := sup
α,γ:

1−h(γ)
1−h(α)

=Q

S(α; γ),

where S(α; γ) is the secret-key rate of the satellite setting when εA = εB = α and
εE = γ.

Secondly, we also define the secret-key rate per second, which is motivated by
the observation that adjusting the energy used to transmit a bit can be achieved by
modifying the bit-rate (the number of bits transmitted per second) while retaining
a fixed power consumption. In this case, a higher bit-rate corresponds to a larger
quantity of lower quality bits transmitted per second, since less energy is spent in
the transmission of each bit. Since the bit-rate can be chosen at will, it is sensible
to measure the secret-key rate per second instead of per bit transmitted. In order
to approximate the bit-rate as a function of α and γ, by which we then have to
multiply the secret-key rate per bit in order to obtain the secret-key rate per second,
we note that the capacity is roughly inversely proportional to the bit-rate. Since this
approximation is better in a regime with small signal-to-noise ratio, it is natural to
choose Alice’s capacity instead of Eve’s. Although this is only an approximation, it
should be without a significant loss of exactness in our results, since we are solely
interested in the asymptotic behavior of the secret-key rate, and not the exact rate.
This leads us to the following definition of the secret-key rate per second.

Definition 4. The secret-key rate per second under a channel quality ratio constraint
Q, denoted by S∗(Q), is defined as

S∗(Q) := sup
α,γ:

1−h(γ)
1−h(α)

=Q

S(α; γ)

1− h(α)
,

where S(α; γ) is the secret-key rate of the satellite setting when εA = εB = α and
εE = γ.

The main question we seek to answer in the remainder of this work is the following:
How do S(Q) and S∗(Q) behave as Q increases?
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4 Asymptotic Behavior of the Secret-Key Rate per Random
Bit and a Conjecture of Gander and Maurer

In this section, we prove that S(Q) is inversely proportional to Q2. Moreover, we
show that the parity-check protocol is optimal in an asymptotic manner, i.e., the
rate of the parity-check protocol is also inversely proportional to Q2, which was first
conjectured to be true by Gander and Maurer [6], based on numerical evidence.

Let R(`, α, γ) denote the rate per random bit generated by the parity-check
protocol when εA = εB = α and εE = γ. Furthermore, define

R(Q) := sup
`,α,γ:

1−h(γ)
1−h(α)

=Q

R(`, α, γ).

Then, we have the following result.

Theorem 2. There exist constants c1, c2 > 0 such that
c1
Q2
≤ R(Q) ≤ S(Q) ≤ c2

Q2

for all Q ≥ 1.

Here the second inequality simply represents the fact that the secret-key rate R(Q)
generated by the parity-check protocol is a lower bound on the general secret-key
rate in the satellite setting. In the following two subsections, we prove the first and
the third inequalities from Theorem 2.

4.1 Upper bound on S(Q)

In this subsection, we prove the following proposition.

Proposition 1. We have

S(Q) ≤ 4 ln(2)2

Q2
<

2

Q2

for all Q ≥ 1.

Before we prove Proposition 1, we need the following auxiliary result.

Lemma 2 ([2, Theorem 2.2]). If p = 1/2− ε, we have

2ε2

ln(2)
≤ 1− h(p) ≤ 4ε2.

We now proceed to the actual proof, which we split into two lemmas that we will
reuse later.

Lemma 3. Let Q ≥ 1, α, γ ∈ [0, 1/2] such that 1−h(γ)
1−h(α) = Q, and δ := 1/2− α. We

then have
S(α; γ) ≤ 16δ4.

Proof. Note that
S(α; γ) ≤ I(X;Y ) = 1− h(β),

where X and Y are Alice’s and Bob’s random variables in the satellite setting with
εA = εB = α, and β := Pr[X 6= Y ] = 2α(1 − α). Since β = 2α(1 − α) = 1/2 − 2δ2,
using ε := 2δ2, it follows by Lemma 2 that

1− h(β) ≤ 16δ4,

concluding the proof. ut
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It remains to bound δ4 by a function of Q.

Lemma 4. Let Q ≥ 1, α, γ ∈ [0, 1/2] such that 1−h(γ)
1−h(α) = Q, and δ := 1/2− α. We

then have

2δ2 ≤ ln(2)

Q
.

Proof. Using Lemma 2 we obtain

2δ2

ln(2)
≤ 1− h(α) = 1− h(γ)

Q
≤ 1

Q
.

ut

Combining Lemmas 3 and 4 yields

S(Q) = sup
α,γ:

1−h(γ)
1−h(α)

=Q

S(α; γ) ≤ 16δ4 ≤ 4 ln(2)2

Q2
<

2

Q2

for all Q ≥ 1, concluding the overall proof of Proposition 1.

4.2 Lower bound on S(Q)

In this subsection, we prove the following proposition.

Proposition 2. There exists a constant c > 0 such that

R(Q) ≥ c

Q2

for all Q ≥ 1.

Recall that the secret-key rate R(Q) of the parity-check protocol under the channel
quality constraint Q is defined as

R(Q) := sup
`,α,γ:

1−h(γ)
1−h(α)

=Q

R(`, α, γ).

In order to lower bound this supremum, we carefully choose a sequence of triples
(`k, αk, γk) such that R

(
1−h(γk)
1−h(αk)

)
does not decrease too quickly when compared to

1−h(γk)
1−h(αk) . In the first step, we will show that

R

(
1− h(γk)
1− h(αk)

)
≥ c1
k4

for some constant c1 > 0, and then in a second step use that 1−h(γk)
1−h(αk) increase like k2,

in order to derive the desired result.
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Lower bounding the SKR of the parity-check protocol with concrete pa-
rameters. In this section we show that for `k = 2 log(k) rounds, in the satellite
setting with εA = εB = αk = 1/2− 1/k, and εE = γk = 2/5, the secret-key rate of
the parity-check protocol R(`k, αk, γk) decreases inversely proportional to k4. For
simplicity, we drop the subscript k in most terms from now on. Recall that

R(`, α, γ) = 2−`Φ(L,α, γ)

`−1∏
i=0

(
β2
2i + (1− β2i)2

)
,

where

Φ(L,α, γ) :=

L∑
w=0

(
L

w

)
pw

βL + (1− β)L
h

(
pw

pw + pL−w

)
− h(βL)

and L := 2l, β, and pw are defined as in Section 3.3.
Before lower bounding R(`, α, γ) we need a few auxiliary definitions and results.

First, note that

pw = αL−w00 αw01 + αL−w10 αw11 = αL−w00 αw01 + (2α(1− α))L,

where αrs = Pr[X ⊕ Y = r,X ⊕ Z = s], since εA = εB = α. Let

p′w := αL−w00 αw01.

Then p′w is the probability that XL ⊕ ZL is a particular codeword of weight w and
XL = Y L. Furthermore,

pw = p′w + (2α(1− α))L > p′w.

for all w. We have the following lemmas.

Lemma 5. We have

h

(
pw

pw + pL−w

)
≥ h

(
p′w

p′w + p′L−w

)
for all L and w.

Proof. This lemma is a consequence of the fact that, for a, b, x > 0,

a+ x

a+ b+ 2x
≤ a

a+ b

if and only if a ≥ b.
Fix w ≤ L/2. Then

pw
pw + pL−w

≥ 1

2

since pw ≥ pL−w. Furthermore, it holds that

p′w
p′w + p′L−w

≥ (α(1− α))L + p′w
2(α(1− α))L + p′w + p′L−w

=
pw

pw + pL−w
≥ 1

2
.

On the other hand, if w > L/2, then pw < pL−w holds, and so

p′w
p′w + p′L−w

≤ pw
pw + pL−w

< 1/2.

This implies the desired result. ut
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Lemma 6. Suppose w = L(1/2− δ) for some δ > 0. Then

p′L−w
p′w

=

(
α01

α00

)2δL

.

Proof. It suffices to note that

p′L−w
p′w

=
αw00α

L−w
01

αL−w00 αw01
=

(
α01

α00

)L−2w
,

and that L− 2w = L− 2L(1/2− δ) = 2δL. ut

Next, we lower bound R(`, α, γ).

Lemma 7. For all k ∈ {2j : j ∈ N}, let `k = 2 log(k), αk = 1/2−1/k, and γk = 2/5.
We then have

R(`k, αk, γk) ≥
1

k4
Φ(k2, αk, γk).

Proof. First, note that L = 2` = 22 log(k) = k2. Second, we have

`−1∏
i=0

[β2
2i + (1− β2i)2] ≥

`−1∏
i=0

1

2
= 2−` =

1

k2
,

since p2 + (1− p)2 ≥ 1/2 for all p ∈ [0, 1]. ut

Lemma 8. For k ∈ {2j : j ∈ N}, let `k = 2 log(k), αk = 1/2− 1/k, and γk = 2/5.
Then there exists a positive constant c > 0 such that

Φ(k2, αk, γk) ≥ c

for large enough k ∈ {2j : j ∈ N}.

Proof. It holds that

lim
k→∞

h (βk2) = h

(
lim
k→∞

1

1 + (1 + 8/k2)k2

)
= h

(
1

1 + e8

)
< 5 · 10−3. (3)
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Furthermore, we have

k2∑
w=0

(
k2

w

)
pw

βk2 + (1− β)k2
· h
(

pw
pw + pk2−w

)
≥

≥
k2(1/2+2/k)∑

w=k2(1/2−2/k)

(
k2

w

)
pw

βk2 + (1− β)k2
· h
(

pw
pw + pk2−w

)
≥

≥ 1

2

k2(1/2+2/k)∑
w=k2(1/2−2/k)

(
k2

w

)
pw

(1− β)k2
· h
(

pw
pw + pk2−w

)
≥

≥ 1

2

k2(1/2+2/k)∑
w=k2(1/2−2/k)

(
k2

w

)
p′w

(1− β)k2
· h
(

pw
pw + pk2−w

)
≥

≥ 1

2

k2(1/2+2/k)∑
w=k2(1/2−2/k)

(
k2

w

)
p′w

(1− β)k2
· h

(
p′w

p′w + p′k2−w

)
≥

≥ 1

2

k2(1/2+2/k)∑
w=k2(1/2−2/k)

(
k2

w

)
p′w

(1− β)k2
· h

 1

1 +
(
α01

α00

)4k
 (4)

for large enough k, where the first inequality holds for k ≥ 5 since all terms in the
sum are positive, the second inequality holds because

βk
2

+ (1− β)k
2

≤ 2(1− β)k
2

,

the third inequality follows because pw > p′w, the fourth inequality follows from
Lemma 5, and the fifth inequality follows from Lemma 6 with L = k2 and δ = 2/k,
and from the fact that

h

(
p′w

p′w + p′L−w

)
≤ h

(
p′w+1

p′w+1 + p′L−w−1

)
for all w < L/2.

In order to lower bound the binary entropy term in (4), observe that we have

lim
k→∞

h

 1

1 +
(
α01

α00

)4k
 = h

(
1

1 + e−32/5

)
> 1.7 · 10−2, (5)

since

lim
k→∞

(
α01

α00

)4k

= lim
k→∞

(
1− 8

5k

)4k

= e−32/5.

Next, let W := (w(Xk2 ⊕ Zk2) | Xk2 = Y k
2

), where w(u) denotes the weight of a
string u. Then

k2(1/2+2/k)∑
w=k2(1/2−2/k)

(
k2

w

)
p′w

(1− β)k2
= Pr[|W − k2/2| ≤ 2k]. (6)
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It suffices now to find a suitable lower bound for Pr[|W − k2/2| ≤ 2k]. In order to do
that, we will apply Chebyshev’s inequality. First, note that

E[W ] = k2 · α01

α00 + α01
= k2 · α

2(1− γ) + (1− α)2γ
α2 + (1− α)2

≤ k2

2
.

Second, algebraic manipulation yields

k2/2− E[W ]

k
=

1

5/2 + 10/k2
≤ 2

5
,

which implies that

k2/2− 2k/5 ≤ E[W ] ≤ k2/2

for all k. Thus, we have

k2(1/2− 2/k) = k2/2− 2k ≤ E[W ]− k,

and

k2(1/2 + 2/k) = k2/2 + 2k ≥ E[W ] + k.

Therefore,

Pr[|W − k2/2| ≤ 2k] ≥ Pr[|W − E[W ]| ≤ k] ≥ 1− Var[W ]

k2
≥ 3

4
, (7)

where the second inequality follows from Chebyshev’s inequality, and the third
inequality follows from the fact that

Var[W ] = k2 · Pr[X 6= Z|X = Y ](1− Pr[X 6= Z|X = Y ]) ≤ k2

4
.

Combining (4), (5), (6), and (7) yields

k2∑
w=0

(
k2

w

)
pw

βk2 + (1− β)k2
· h
(

pw
pw + pk2−w

)
>

1

2
· 3
4
· 1.7 · 10−2 > 5 · 10−3 > h(βk2)

for large enough k ∈ {2j : j ∈ N}. ut

Combining the previous two lemmas yields the main result of this section.

Lemma 9. For all k ∈ {2j : j ∈ N}, let `k = 2 log(k), αk = 1/2−1/k, and γk = 2/5.
Then there exists a constant c > 0 such that we have

R(`k, αk, γk) ≥
c

k4

for large enough k ∈ {2j : j ∈ N}.

Proof. This follows directly by combining Lemmas 7 and 8.
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Deriving a lower bound in Q. It now remains to show that Lemma 9 actually
implies the desired lower bound in Q. We proceed by first showing that 1−h(γk)

1−h(αk)
increases like k2, and then substitute this term by Q.

Lemma 10. For all k ∈ N, let `k = 2 log(k), αk = 1/2 − 1/k, and γk = 2/5. We
then have

1− h(γk)
1− h(αk)

≥ k2

200
.

Proof. Note that 1− h(γk) = 1− h(0.4) > 1/50 for all k. Moreover, Lemma 2 yields

1− h(αk) ≤
4

k2

and thus,
1− h(γk)
1− h(αk)

≥ (1− h(γk))k2

4
>

k2

200

for all k. ut

Lemma 11. For all k ∈ {2j : j ∈ N}, let `k = 2 log(k), αk = 1/2 − 1/k, and
γk = 2/5. We then have

R

(
k2

200

)
≥ R(`k, αk, γk).

Proof. First, observe that R(Q) is a decreasing function of Q. Indeed, fix Q < Q′.
For each choice (α′, γ′) for R(Q′), we can obtain a choice (α, γ) for R(Q) by setting
α = α′ and γ > γ′. It follows immediately that running the parity-check protocol
with the same parameters for the new choice (α, γ) yields a larger secret-key rate,
and thus R(Q) ≥ R(Q′). Combining this with Lemma 10 immediately yields

R

(
k2

200

)
≥ R

(
1− h(γk)
1− h(αk)

)
.

Finally, observe that by definition we have

R

(
1− h(γk)
1− h(αk)

)
= sup
`,α,γ:

1−h(γ)
1−h(α)

=
1−h(γk)

1−h(αk)

R(`, α, γ) ≥ R(`k, αk, γk),

concluding the proof. ut

We are now ready to actually prove Proposition 2 by substituting k2/200 with Q.

Proof (Proposition 2). Combining Lemmas 9 and 11 we know that there exists a
constant c1 > 0 such that

R

(
k2

200

)
≥ c1
k4

for large enough k ∈ {2j : j ∈ N}. Substituting Q := k2/200 and c2 := c1/200
2 > 0

we obtain
R(Q) ≥ c2

Q2
,

for large enough Q ∈ {4j/200 | j ∈ N}. This inequality can be extended to all large
enough values of Q by noting that, for every Q ≥ 1, there is an integer j such that

Q ≤ 4j

200
≤ 6Q.
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In fact, if j is such that Q ≤ 4j ≤ 4Q, which we know exists, then

Q ≤ 4j+4

200
=

256 · 4j

200
≤ 6Q.

Using that R(·) is a decreasing function, we thus obtain, if j is large enough,

R(Q) ≥ R
(
4j+4

200

)
≥ c2

(6Q)2
=

c3
Q2

,

where c3 = c2/6
2 > 0 is a positive constant independent of Q.

The inequality can finally be extended to all Q ≥ 1 as follows. Let Q0 be such
that R(Q0) ≥ c3/Q2

0. Then, set c4 = c3/Q
2
0 ≤ c3. For all 1 ≤ Q < Q0 we have

R(Q) ≥ R(Q0) ≥ c4 ≥
c4
Q2

,

which implies the desired result with c = c4. ut

Remark 1. The proof of Proposition 2 also goes through if we choose `k, αk and γk
in a way that the channel quality ratio Q increases linearly with k, e.g. by choosing
`k = log(k), αk = 1/2 − 1/

√
k and γk = 2/5. We opted for the current settings

because the derivation is slightly easier to follow.

5 Asymptotic Behavior of the Secret-Key Rate per Second

In this section, we establish the exact asymptotic behavior of S∗(Q) as a function of
Q, up to a multiplicative constant. Recall that R(`, α, γ) denotes the rate generated
by the parity-check protocol in the satellite setting when εA = εB = α and εE = γ.
Define

R∗(Q) := sup
`,α,γ:

1−h(γ)
1−h(α)

=Q

R(`, α, γ)

1− h(α)
.

We have the following result.

Theorem 3. There exist constants c1, c2 > 0 such that

c1
Q
≤ R∗(Q) ≤ S∗(Q) ≤ c2

Q

for all Q ≥ 1.

Proof. The overall proof is very similar to the one of Theorem 2 and reuses most of
its lemmas. Again, the second inequality represents the trivial fact that the secret-key
rate R∗(Q) generated by the parity-check protocol is a lower bound on the general
secret-key rate in the satellite setting.

We first prove the upper bound on S∗(Q). Fix Q ≥ 1 and α, γ ∈ [0, 1/2] satisfying
1−h(γ)
1−h(α) = Q, and let δ := 1/2− α. Then, by Lemma 2, we have

1− h(α) ≥ 2δ2

ln(2)
.

Combining this with Lemmas 3 and 4 yields

S(α; γ)

1− h(α)
≤ 8 ln(2)δ2 ≤ 4 ln(2)2

Q
.
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Since the choice of α and γ was arbitrary, we have

S∗(Q) = sup
α,γ:

1−h(γ)
1−h(α)

=Q

S(α; γ)

1− h(α)
≤ 4 ln(2)2

Q
<

2

Q

for all Q ≥ 1. This concludes the proof on the upper bound on S∗(Q).
It now remains to prove the lower bound on R∗(Q). To this end, let `k = 2 log(k),

αk = 1/2−1/k, and γk = 2/5 for all k ∈ {2j : j ∈ N}. First, observe that by definition
we have

R∗
(
1− h(γk)
1− h(αk)

)
= sup
`,α,γ:

1−h(γ)
1−h(α)

=
1−h(γk)

1−h(αk)

R(`, α, γ)

1− h(α)
≥ R(`k, αk, γk)

1− h(αk)
.

Using Lemma 9 we know that there exists a constant c > 0 such that

R∗
(
1− h(γk)
1− h(αk)

)
≥ c

k4(1− h(αk))

for large enough k ∈ {2j : j ∈ N}. Moreover, Lemma 2 yields

1− h(αk) ≤
4

k2
,

and thus we obtain
R∗
(
1− h(γk)
1− h(αk)

)
≥ c

4k2

for large enough k ∈ {2j : j ∈ N}. Next, observe that analogously to R(Q), R∗(Q) is
a decreasing function of Q. Combining this with Lemma 10 immediately yields

R∗
(
k2

200

)
≥ R∗

(
1− h(γk)
1− h(αk)

)
≥ c

4k2

for large enough k ∈ {2j : j ∈ N}. Substituting Q := k2/200 and c′ := c/800 > 0 we
obtain

R∗(Q) ≥ c′

Q
,

for large enough Q ∈ {4j/200 | j ∈ N}. This inequality can be extended to all values
of Q ≥ 1 using the same technique as in the proof of Proposition 2 on Page 18. ut

6 Conclusions and Open Problems

In this paper we investigated the secret-key rate in the satellite model, where we
assume an upper bound Q on quality ratio between the honest parties’ and Eve’s
receiving equipment, which we modeled as a constraint on the capacity ratio between
the binary symmetric channels. As a first contribution, we have shown that the secret-
key rate per transmitted bit asymptotically behaves like 1/Q2, and moreover proved
that the parity-check protocol achieves this asymptotic rate, yielding a positive
answer to a conjecture by Gander and Maurer [6]. As a second contribution, we
investigated the secret-key rate per second – a quantity of much higher practical
interest – and proved that this rate asymptotically decreases only like 1/Q. Since in
realistic scenarios Q has to be assumed very large, this is a significant improvement
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over the known bounds, highlighting that secret-key exchange in the satellite model
could be practical.

While those results exactly characterize the asymptotic secret-key rate in the
satellite setting, the gap between the constants in the upper and lower bounds of
Theorem 2 is quite large. In fact, the constant in the upper bound is 4 ln(2)2, which
is approximately 1.92, while the constant in the lower bound is on the order of 10−5.
This observation raises a natural question: How can we significantly narrow this
gap? In order to make the constant in the upper bound smaller, one can attempt to
replace the mutual information in the proof of Proposition 1 by a better upper bound
on the secret-key rate, such as the intrinsic mutual information [11], the reduced
intrinsic mutual information [19], or the upper bound found in [7]. On the other hand,
we believe that tightening the lower bound significantly would require substantially
different techniques than the one used in the proof of Proposition 2.
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