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Abstract. A physically unclonable function (PUF) is a circuit of which the input–
output behavior is designed to be sensitive to the random variations of its manufac-
turing process. This building block hence facilitates the authentication of any given
device in a population of identically laid-out silicon chips, similar to the biometric
authentication of a human. The focus and novelty of this work is the development
of efficient impersonation attacks on the following three PUF-based authentication
protocols: (1) the so-called PolyPUF protocol of Konigsmark, Chen, and Wong, as
published in the IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems in 2016, (2) the so-called RPUF protocol of Ye, Hu, and Li, as presented
at the IEEE conference AsianHOST 2016, and (3) the so-called PUF–FSM protocol of
Gao, Ma, Al-Sarawi, Abbott, and Ranasinghe, as published in the IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems in 2017.
Keywords: physically unclonable function · entity authentication · machine learning

1 Introduction
Since their advent in the early 2000s [LDT00], physically unclonable functions (PUFs) have
been used as a building block in numerous authentication protocols. The authentication is
either unilateral, i.e., one-way, or mutual, i.e., two-way, and usually takes place between a
low-cost, resource-constrained device hosting a PUF and a high-cost, resource-rich server
storing a selection of the input–output pairs of this PUF. The selected pairs embody a
shared secret between both parties, and a device is hence not required to store a secret key
in non-volatile memory (NVM). This way, physically invasive attacks that, e.g., optically
scan the cell contents of an NVM or microprobe its bus [Sko05], are precluded. The output
of a PUF, however, is noisy and hinders the design of a serviceable protocol. Moreover,
to avoid the amplification of noise, a PUF is highly constrained in its use of non-linear
operations and is therefore prone to machine learning. Stated otherwise, the level of
diffusion and confusion that can be achieved by a PUF is no match for a properly designed
cipher.

Delvaux et al. [Del17, Chapter 5] analyzed the security and practicality of 21 PUF-based
authentication protocols, thereby revealing numerous problems to the extent that only six
candidates survive. In parallel, Becker [Bec15a, Bec15b] and Tobisch [TB15] pushed the
boundaries of machine learning attacks on PUF-based protocols. The previous analyses,
however, are not up-to-date with more recent proposals. In this work, we illustrate that the
research field of developing new PUF-based authentication protocols remains a minefield.
Efficient attacks on the PolyPUF protocol of Konigsmark et al. [KCW16], the RPUF
protocol of Ye et al. [YHL16], and the PUF–FSM protocol of Gao et al. [GMA+17] are
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presented. All three protocols attempted to impede machine learning attacks through the
use of lightweight obfuscation logic.

The remainder of this paper is organized as follows. Section 2 introduces the notation
and provides preliminaries. Section 3 specifies and obliterates the aforementioned authen-
tication protocols. Section 4 discusses the aftermath from the perspective of a system
provider. Section 5 concludes this work.

2 Preliminaries

2.1 Notation
Variables are denoted by a character from the Latin alphabet: a, b, c, etc. Constants are
denoted by a character from the Greek alphabet: α, β, γ, etc. Vectors are denoted by a
bold-faced, lowercase character, e.g., x = (x1 x2). All vectors are row vectors. The all-zeros
vector is denoted by 0. Matrices are denoted by a bold-faced, uppercase character, e.g.,
X. The λ× λ identity matrix is denoted by Iλ. A diagonal matrix is defined by listing
the entries on its main diagonal, e.g., X = diag(x1, x2). A random variable is denoted by
an uppercase character, e.g., X. A multivariate normal random variable X with mean µ
and covariance matrix Σ is denoted by X ∼ N(µ,Σ). The expected value of a random
variable X is denoted by Ex←X [X]. A set, often but not necessarily referring to all possible
outcomes of a random variable, is denoted by an uppercase, calligraphic character, e.g., X .
The set of all λ-bit vectors is denoted by {0, 1}λ. Custom-defined functions are printed in
a sans-serif font, e.g., Hamming distance HD(x1,x2).

2.2 Arbiter PUF
A PUF maps a binary input, i.e., the so-called challenge c ∈ {0, 1}λ, to a binary, device-
specific output, i.e., the so-called response r ∈ {0, 1}η. There is a special interest for PUFs
that support a large-sized challenge c, e.g., having λ = 128, because this facilitates the
design of an authentication protocol considerably. Even those who are given unrestricted
access to such a PUF can neither gather nor tabulate all of its challenge–response pairs
(CRPs) within the lifetime of its hosting device. For the well-known Arbiter PUF [Lim04],
which quantizes the difference v between the propagation delays of two reconfigurable
paths as is shown in Figure 1, a large λ can be supported. The challenge c determines for
each out of λ switching elements whether path segments are crossed or uncrossed.

≶ 0 r

c1
= 0

c2
= 1

c3
= 1

cλ−1
= 0

cλ
= 1

v

Figure 1: An Arbiter PUF with λ stages [Lim04].

If delay difference v > 0, the single-bit response r = 1; otherwise, r = 0. Protocols
usually require a long response r, e.g., having η = 128. This expansion can be achieved
either by laying out η Arbiter PUFs in parallel, or by concatenating the response bits r of
a single Arbiter PUF that evaluates η challenges c. Unfortunately, noise sources within
the device, as well as changes to its external environment, imply that an initially generated
response r slightly differs from its reproduction r̃. The value of HD(r, r̃), averaged over
numerous challenges c, typically lies between 0.05η and 0.15η. A crucial insight is that
the reproducibility of the response r to a given challenge c increases monotonically with
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the absolute value |v|. A continuous spectrum ranging from highly stable to highly noisy
response bits hence arises.

2.3 Correlations and Machine Learning
Unfortunately, the 2λ CRPs (c, r) of an Arbiter PUF are all determined by the variability
of a limited number of circuit elements, and are hence strongly correlated. Numerous
authors have experimentally confirmed that the value of v can be accurately described by
a dot product: v = m sT in (1), where variability model m ∈ Rλ+1 aggregates differences t
between the propagation delays of the logic gates that constitute each stage as defined in
Figure 2 and where s ∈ {−1, 1}λ+1 is the result of an invertible challenge transformation.
To incorporate the effect of both internal noise sources and environmental changes, the latter
of which are assumed to be centered around a constant nominal value, the quantization
can be extended to (v + n) ≶ 0, where N ∼ N(0, σ2

n) with respect to the infinite set of
evaluations [Mae13].

v = m sT , where m = t Ψ,
t =

(
t1,0 t1,1 t2,0 t2,1 . . . tλ,0 tλ,1

)
,
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(−1)c1⊕c2⊕···⊕cλ (−1)c2⊕c3⊕···⊕cλ · · · (−1)cλ 1

)
.
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Figure 2: The delay behavior of a single stage of an Arbiter PUF.

For a population of ideally manufactured Arbiter PUFs, it holds that T ∼ N(0, σ2
t I2λ)

and hence M ∼ N
(
0 Ψ, σ2

t ΨT I2λ Ψ
)
∼ N

(
0, σ2

t diag(1/2, 1, 1, · · · , 1, 1/2)
)
. Given that

only the sign of v matters in determining the nominal value of response r, one may
arbitrarily choose σ2

t = 1 as long as σ2
n is scaled accordingly. The previous variability

model M implies that infinitely large populations of either Arbiter PUFs or random
oracles [BR93] substantially differ in their statistical properties. For the latter population,
the probability ρflip = Em←M [R1 ⊕ R2] equals 1/2 for any given challenge pair (c1, c2)
where c1 6= c2. For the former population, however, ρflip increases roughly proportionally
with HD(s1, s2) ∈ [1, λ] such that the interval [0, 1] is quasi completely covered [MKP08,
Figure 12].

Another manifestation of the correlated structure is that machine learning algorithms
training on a relatively small set of CRPs, i.e., {(c1, r1), (c2, r2), · · · , (cω, rω)} where
ω � 2λ, can produce a model m̂ that allows to accurately predict the unseen response rω+1
to any given challenge cω+1. If pairs (s, r) instead of pairs (c, r) are used as training data,
the problem of learning m becomes quasi-linear, i.e., the quantization v ≶ 0 is the only
remaining non-linearity, and hence straightforward to handle for numerous algorithms.
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This includes the use of artificial neural networks (ANNs), support vector machines, and
logistic regression. Thanks to existing validations with experimental data, it has become a
common practice to demonstrate the feasibility of a machine learning attack on randomly
generated instances of the mathematical abstraction M . Noise sources, however, pollute
both training and testing data (s, r), so if omitted from the mathematical abstraction, the
reported learning efficiency is usually slightly higher than for experimental data.

To prevent an attacker from successfully modeling an Arbiter PUF, several authentica-
tion protocols either keep the response bits r internal to its hosting device or obfuscate the
link between the public challenges c and the released response bits r. The latter strategy
usually entails the use of a true random number generator (TRNG). As demonstrated by
Becker [Bec15b] and Tobisch [TB15], however, the release of variables that are correlated
to r might still enable a modeling attack. For example, if the protocol leaks the error
rate perror of a hidden response bit r, an estimate of the absolute value |v| can still be
obtained. Noise sources might hence help rather than hinder an attacker.

2.4 Attacker Model
The analyzed authentication protocols adopt a frequently used attacker model [Del17,
Chapter 5]. The enrollment of a PUF-enabled device takes place in a secure environment,
and afterwards, an interface for accessing the CRPs might have to be irreversibly disabled.
In the field, the protocols should resist both impersonation and denial-of-service attacks.
Given that the device comprises a smart card, a radio-frequency identication tag, or
another mobile entity, it is assumed that an attacker may obtain physical access. The
server, however, features both secure computations and secure storage. The communication
channel between both parties is assumed to be insecure. This implies that an attacker
may not only eavesdrop on a genuine protocol run, but also manipulate, inject, and block
messages.

3 Protocols
To facilitate the understanding of the analyzed authentication protocols for a visually
oriented reader, Figure 3 shows the hardware of a PUF-enabled device. The implementation
efficiency is evidently reflected but is of secondary importance in light of the newly revealed
security issues. Intermediary registers and control logic are not drawn. The symbol × on
the boundary of a device denotes a one-time interface that is irreversibly disabled after
the enrollment. Although the protocols are specified and attacked in chronological order,
there is no problem in reading Sections 3.1 to 3.3 in a different order.

3.1 PolyPUF
3.1.1 Specification

The so-called PolyPUF protocol of Konigsmark, Chen, and Wong [KCW16], where “Poly”
stands for “Polymorphic”, is specified in Figure 4. Each device hosts λ Arbiter PUFs that
evaluate a common challenge c′ ∈ {0, 1}λ. Suggested values for λ are 32 and 64. To enroll
a given device, the server collects α CRPs (c′, r′) and trains a predictive model m̂ for each
Arbiter PUF. A suggested value for α is 5000. After the enrollment, direct access to the
CRPs (c′, r′) is irreversibly disabled.

To prevent machine learning by an attacker, a device that is deployed in the field XORs
the received challenge c ∈ {0, 1}λ with λ/γ concatenated copies of a nonce n1 ∈ {0, 1}γ
in order to form the PUF input c′. Likewise, the released response r ∈ {0, 1}λ is the
result of XORing the PUF output r′ with λ/δ concatenated copies of a nonce n2 ∈ {0, 1}δ.
Suggested values for γ and δ are 2 and 3 respectively. The authors do not comment
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Figure 3: The hardware of a PUF-enabled device for the analyzed authentication protocols.

PUF-enabled device Server

c′i ← TRNG(λ)
∀j ∈ [1, λ], rj ← ArbiterPUFj(c′i)
r′i ← (r1 r2 · · · rλ)
Disable access to c′ and r′ ∀j ∈ [1, λ], m̂j ←

TrainModel(c′1, r′1,j , · · · , c′α, r′α,j)

c← TRNG(λ)
n1 ← TRNG(γ)
c′ ← c⊕ (n1 n1 · · · )
∀j ∈ [1, λ], r̃j ← ArbiterPUFj(c′)
n2 ← TRNG(δ)
r̃← (r̃1 r̃2 · · · r̃λ)⊕ (n2 n2 · · · )

h← λ+ 1
∀n1 ∈ {0, 1}γ ,

c′ ← c⊕ (n1 n1 · · · )
∀j ∈ [1, λ], r̂j ← Predict(m̂j , c′)
∀n2 ∈ {0, 1}δ,

r̂← (r̂1 r̂2 · · · r̂λ)⊕ (n2 n2 · · · )
h← min(h,HD(r̃, r̂))
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Figure 4: The unilateral authentication protocol of Konigsmark et al. [KCW16].
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on the fact that λ ∈ {32, 64} is not an integer multiple of δ = 3; we therefore assume
that one copy of n2 is truncated to mod(λ, δ) ∈ {2, 1} bits. To save resources, the γ + δ
random bits could be generated by XORing unstable responses bits r rather than through
a dedicated TRNG. This solution, however, requires that a well-chosen challenge c′ is
programmed into the device during the enrollment. To authenticate a device, the server
checks whether the response r to a random challenge c matches with at least one out 2γ+δ

possible responses r̂. To account for the noisiness of the PUFs, only an approximate match
is required as reflected by the Hamming distance threshold ε.

The authors experiment with ANNs in order to validate the security of their protocol.
Most notably, they attempt to exploit the statistical weaknesses of the underlying Arbiter
PUFs in gathering a set of ω training CRPs (ci, ri) where the nonces (n1,n2) remain
unchanged. For this purpose, challenge c1 is chosen uniformly at random from {0, 1}λ, and
all other challenges ci, where i ∈ [2, ω], are randomly chosen such that HD(ci, ci−1) = 1.
Out of 2γ+δ unique responses ri ∈ {0, 1}λ, the one value that minimizes HD(ri, ri−1) is
retained. It is a triumph that, even with β = 108 device queries and 10–30 neurons in the
hidden layer, the obtained modeling accuracies do not significantly exceed the ideal value
of 50%.

3.1.2 Attack

Ironically, the authors overlook that their non-functional attack can be functionalized
through a minimal modification. Given a proper understanding of the challenge transfor-
mation in (1), it is evident that an attacker should choose consecutive challenges (ci, ci−1)
such that the Hamming distance HD(si, si−1) = 1 rather than HD(ci, ci−1) = 1. If nonce n1
remains unchanged, it holds for the former case that HD(s′i, s′i−1) = 1, and the value of
HD(r′i, r′i−1) is hence expected to be small. If nonce n2 remains unchanged as well, it
follows that an equally small Hamming distance HD(ri, ri−1) is output by the device. Thus,
an attacker can assume that if HD(ri, ri−1) ≤ ε1, where ε1 is a well-chosen threshold, that
nonces (n1,n2) remained unaltered.

The main concern, however, is that a single wrongly selected response ri could suffice
to corrupt the whole training set. The Monte Carlo experiment in Figure 5 demonstrates
for λ = 64, γ = 2, and δ = 3 that corruptions are not likely to occur. For each out of 105

sets of λ randomly generated PUFs M ∼ N
(
0, diag(1/2, 1, 1, · · · , 1, 1/2)

)
, a challenge pair

(ci, ci−1) is randomly chosen such that HD(si, si−1) = 1, and nonces n1,i−1 and n2,i−1 are
chosen uniformly at random from {0, 1}γ and {0, 1}δ respectively. For each combination
of nonce differences (n1,i ⊕ n1,i−1) ∈ {0, 1}γ and (n2,i ⊕ n2,i−1) ∈ {0, 1}δ, the estimated
probability mass function of HD(Ri, Ri−1) is shown. It benefits an attacker that the first
and the second curves from the left can easily be distinguished. As a side note, the 1-bit
offsets among the curves with HD(n2,i,n2,i−1) ∈ {1, 2} exist because λ is not an integer
multiple of δ.

Moreover, an attacker can play safe and only add a new CRP (ci, ri) to the training
set if the difference between the smallest and the second smallest value of HD(Ri, ri−1)
is greater than or equal to a well-chosen threshold ε2. In order to obtain all unique
values of Ri, each response r is XORed with 2δ possible patterns (n2 n2 · · · ). This way,
Algorithm 1 is able to produce a training set of w correctly linked CRPs (ci, ri) from
sending approximately β � w queries to the PUF-enabled device. There are 2γ+δ possible
pairs of nonces (n1,n2) that may underlie the w training CRPs (ci, ri), and the attacker
does not know which pair. It can, however, arbitrarily be assumed that n1 = 0 and n2 = 0,
and the corresponding pairs (si = s′i, ri = r′i) are then used for training λ predictive
models m̂, i.e., one for each Arbiter PUF. Given that the server iterates over 2γ+δ possible
pairs (n1,n2) to authenticate a device, the previous set of λ models m̂ always suffices for
impersonation purposes.
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Figure 5: Feasibility study of an attack on the protocol of Konigsmark et al. [KCW16],
where λ = 64, γ = 2, and δ = 3.

Algorithm 1: PolyPUF training set
i, w ← 1
c1 ← TRNG(λ)
r1 ← QueryDevice(c1)
while i < β do

j, f ← 0
while (f = 0) ∧ (j < 2γ) do

j ← j + 1
c← TRNG(λ) such that

HD(s, sw) = 1
r← QueryDevice(c)
k ← 0
foreach n2 ∈ {0, 1}δ do

k ← k + 1
ak ← r⊕ (n2 n2 · · · )
hk ← HD(rw,ak)

Sort h(1) ≤ h(2) ≤ · · · ≤ h(2δ)
f ←

(
h(1) ≤ ε1

)
f ← f ∧

(
h(2) − h(1) ≥ ε2

)
i← i+ j
if f = 1 then

w ← w + 1
cw ← c
rw ← a(1)

∑

∑
≥s1 s2 · · · sλ+1

r̂
m̂1,1 m̂1,2 m̂1,λ+1

m̂0,1 m̂0,2 m̂0,λ+1

Figure 6: A pair of single-neuron networks.
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Figure 7: The accuracy of modeling an
Arbiter PUF that is used in the protocol of
Konigsmark et al. [KCW16], where λ = 64,
γ = 2, and δ = 3.

In spite of what Konigsmark et al. [KCW16] suggest, there is no need for the ANN to
have 10–30 neurons in the hidden layer. The bare minimum, i.e., a network consisting of
a single neuron, suffices to capture the dot product v = m sT that underlies an Arbiter
PUF. A minor inconvenience is that ANNs inherently serve a regression purpose rather
than a classification purpose. To overcome this issue, we use resilient backpropagation to
independently train two single-neuron networks that approximate response bits r and their
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inverses ¬r respectively. As shown in Figure 6, the real-valued outputs of the corresponding
activation functions are compared to obtain a prediction r̂ ∈ {0, 1}.

Figure 7 shows the obtained modeling accuracies as a function of the approximate
number of device queries β. Fewer than β = 105 queries suffice to exceed accuracies of
90%, whereas Konigsmark et al. [KCW16] were unable to exceed the ideal value of 50%
using β = 108 queries. Each dot corresponds to five runs of Algorithm 1 using different
devices and hence displays the averaged average of modeling 5λ = 320 Arbiter PUFs;
parameters were configured as ε1 = ε2 = 14. For the noisy case, the standard deviation
σn = 0.325

√
λ so that the expected error rate between a nominal response r and its

reproduction r̃ is approximately 10%. The responses r to 1000 testing challenges c are
all nominal values, which corresponds to the best-case scenario where the server stores
infinitely precise predictive models m̂ of the λ Arbiter PUFs that are hosted by a given
device.

For the sake of completeness, it is worth mentioning that although Algorithm 1 succeeds
as a deobfucation tool, its robustness and its efficiency might still be open for improvement.
One idea is to track all 2γ = 4 values of nonce n1 instead of a single value only. This implies
that, in each algorithm pass, an attacker stores four ordered responses r to the given
challenge c. Ultimately, the four tracks will have to be combined into a single training set
of CRPs. There are (2γ−1)! (2δ)2γ−1 = 3072 non-equivalent combinations of which exactly
one results in server-acceptable predictive models m̂. A relatively small-sized exhaustive
execution of modeling experiments hence suffices to find the one. A complementary idea is
to store real-valued responses r ∈ [0, 1] that reflect the stability, given that multiple noisy
readings for each nonce n1 ∈ {0, 1}γ might be available anyway. The Hamming distance
computation HD(r,a) can be generalized to

∑λ
j=1 |aj − rj |.

3.2 RPUF

3.2.1 Specification

The so-called RPUF protocol of Ye, Hu, and Li [YHL16], where “R” stands for “Random-
ized”, is specified in Figure 8. To prevent the machine learning of its Arbiter PUF, a device
either does or does not invert the bits of any received challenge c ∈ {0, 1}λ depending on the
value of a nonce n ∈ {0, 1}γ . Suggested values for λ are 32, 64, and 128. For γ = 1, it holds
that c′ ∈ {c,¬c}. For γ = 2, it holds that c′ ∈ {c, (c1 c2 · · · cλ/2 ¬cλ/2+1 ¬cλ/2+2 · · · ¬cλ),
(¬c1 ¬c2 · · · ¬cλ/2 cλ/2+1 cλ/2+2 · · · cλ),¬c}. Larger values of γ are not deemed necessary.
The randomized challenge c′ is fed into a linear-feedback shift register (LFSR) so that the
1-bit responses r to an expanded list of λ challenges c′′ can be concatenated into a λ-bit
response r.

To enroll a device, the server requests the response r to each out of α randomly
generated challenges c not once but β � 2γ times and collects the 2γ unique values. A
suggested value for β is 100. Evidently, slightly differing responses r are attributed to the
noisiness of the PUF and are not considered unique. To authenticate a device up to α
times, the server checks whether the response r̃ to a challenge c is sufficiently close to
one out of its 2γ prerecorded values. The authors emphasize that the nonce N should be
uniformly distributed over {0, 1}γ . Otherwise, frequency analysis would allow an attacker
to partition the unique responses r from multiple protocol runs into 2γ sets that each
correspond to a given transformation of the challenge c. The authors collect data from
numerous protocol runs and conduct machine learning experiments that do not exceed an
accuracy of ≈ 75%. They, consequentially, consider their protocol fit for deployment in
practical use cases.
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Figure 8: The unilateral authentication protocol of Ye et al. [YHL16].

3.2.2 Attack

Analogous to the growth of cracks in solid materials, the mediocre accuracy of ≈ 75%
should have been a warning of an imminent failure. Indeed, we now devise an alternative
learning strategy that is an order of magnitude more efficient, thereby allowing an attacker
to impersonate a PUF-enabled device an unlimited number of times. Given physical access
to the device, the attacker can obtain the 2γ unique responses r ∈ {0, 1}λ to each out of q
challenges c ∈ {0, 1}λ. There are hence (2γ !)q possibilities for constructing a combined
training and testing set of 2γ · q · λ transformed CRPs (s′′, r) each. When exhaustively
applying a machine learning algorithm to each out of these sets, the one and only correct
mapping can be observed to result in the highest accuracy. Alternatively, an attacker who
eavesdrops on q genuine protocol runs can iterate over 2γ·q combined training and testing
sets of q · λ transformed CRPs (s′′, r) each. Figure 9(a) shows that for either strategy, a
relatively limited computational effort corresponds to a relatively large number of CRPs.

We apply linear regression [HTF09, 12th printing, Section 4.2] to each set of transformed
CRPs (s′′, r). Although the learning capabilities of this deterministic approach are slightly
inferior to several randomized training algorithms, its speed is unparalleled and hence
favors exhaustive enumeration. As shown in (2), determining the least-squares solution of a
system of linear equations is all what is needed. Although Figure 9(b) demonstrates that a
fairly limited brute-force effort already allows for an accuracy of 90%, we suggest adopting
a more efficient two-step approach to further improve the accuracy. First, numerous
repeated executions of a small-sized exhaustive search, e.g., using q = 1 every time, can be
used to deobfuscate the mapping between numerous transformed challenges s′′ and their
corresponding response bits r. Second, a potentially slower training algorithm with superior
learning capabilities can be applied to a single large set of deobfuscated pairs (s′′, r). This
way, accuracies exceeding 99% can be achieved [RSS+13].
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Figure 9: The first phase of an attack on the protocol of Ye et al. [YHL16], where λ = 128
and γ = 2. For an either passive or active attacker, subplot (a) shows the number of
possible mappings between a given number of transformed challenges s′′ and an equal
number of response bits r. For each possible mapping, a model is trained and subsequently
tested. Subplot (b) shows the accuracy of the best and second-best models, which are
obtained through linear regression according to (2). Both accuracies are averaged over
1000 randomly generated and noiseless PUFs M ∼ N

(
0,diag(1/2, 1, 1, · · · , 1, 1/2)

)
. For any

given challenge c, we use round(0.8λ) = 102 and round(0.2λ) = 26 transformed CRPs
(s′′, r) for training and testing purposes respectively.

Solve


s′′1
s′′2
...

s′′ω

 (m̂T
1 m̂T

0 ) =


r1 ¬r1
r2 ¬r2
...

...
rω ¬rω

 ; predict r̂ω+1 =
{

1, if s′′ω+1m̂T
1 > s′′ω+1m̂T

0 ,

0, otherwise.

(2)
We emphasize that the previously elaborated attack cannot simply be mitigated by

increasing the value of γ. To enroll a device, the response r to every challenge c needs
to be evaluated β � 2γ times. Therefore, the attacker and the server face a similar
workload. A final note is that, depending on the non-specified internals of the LFSR, a
more straightforward deobfuscation method might exist. It is intuitive to assume that the
LFSR has a λ-bit state that is initialized by the randomized challenge c′ ∈ {0, 1}λ, and that
each out of λ2 state updates generates a single challenge bit c′′. This allows an attacker to
choose two challenges c such that for any given value of nonce n ∈ {0, 1}γ , the expanded
challenge sequences are (c′′1 , c′′2 , · · · , c′′λ) and (c′′λ/2+1, c′′λ/2+2, · · · , c′′3λ/2) respectively. The
respective responses r hence have an overlap of λ/2 bits.

3.3 PUF–FSM
3.3.1 Specification

The so-called PUF–FSM protocol of Gao, Ma, Al-Sarawi, Abbott, and Ranasinghe [GMA+17],
where “FSM” stands for “finite-state machine”, is specified in Figure 10. Each device hosts
an Arbiter PUF with λ challenge bits. A suggested value for λ is 64. To enroll a given
device, the server collects α CRPs (c, r) so that an accurate predictive model m̂ can be
trained. A suggested value for α is 104. Both response bits r, which are the result of a
comparison v ≶ 0, and their respective error rates perror, which decrease monotonically



Jeroen Delvaux 11

with |v|, can be predicted. After the enrollment, the interface for reading out response
bits r is irreversibly disabled.

PUF-enabled device Server
ci ← TRNG(λ)

ri ← ArbiterPUF(ci)
Disable read-out of ri m̂← TrainModel(c1, r1, · · · , cα, rα)

n1 ← TRNG()
(c1, r1, · · · , cη, rη)← StablePath(m̂,n1)

(n2,n3)← TRNG()
∀i ∈ [1, η], r̃i ← ArbiterPUF(ci)
(k, f)← FollowPath(r1, · · · , rη)
If f = 0, then a← TRNG()
Else a← Hash(r̃1‖ · · · ‖r̃k,n2)

Reject if a 6= Hash(r1‖ · · · ‖rk,n2)
b← Hash(r1‖ · · · ‖rk,n3)

Reject if b 6= Hash(r̃1‖ · · · ‖r̃k,n3)

verifies

ci
ri

c1, c2,
· · · , cη

a,
n2,n3

b

en
ro
llm

en
t

au
th
en
tic

at
io
n
(∞

tim
es
)

∀i ∈ [1, α]

Figure 10: The mutual authentication protocol of Gao et al. [GMA+17].

During any out of a virtually unlimited number of protocol runs, the server is restricted
to using the CRPs (c, r) that have the lowest error rates perror, which is a fairly common
technique to obtain a low failure rate [Del17, Chapter 4]. Considering the noisiness of
their implemented Arbiter PUFs, the authors opt to maintain 1.8 · 1017 out of 264 CRPs,
which corresponds to a retention rate ρret ≈ 1%. For a hardwired FSM, having one start
state and one end state as shown in Figure 11, the server randomly selects one out of a
large number of paths from start to finish. The corresponding sequence of state transitions
defines a sequence of η response bits r, where a variable number of k ≤ η bits suffices to
reach the end state. A value for constant η has not been suggested. The proposed FSM
consists of β stages, where constant β is odd. A suggested value for β is 41. Odd- and
even-numbered stages, in turn, consist of 1 and γ > 1 states respectively. A suggested value
for γ is 3. Each state transition is defined by a δ-bit substrings of response x ∈ {0, 1}η. A
total of k ∈ [(β − 1)δ, η] response bits hence suffices for reach the end state. A suggested
value for δ is 4. A flag f indicating whether or not the finish is reached is 1 and 0 for stage
β and stages 1 to β − 1 respectively.

For a given path-defining response (r1 r2 · · · rη), the server randomly selects a corre-
sponding sequence of η challenges c that is subsequently transmitted to the device. The
latter party then reconstructs the path from newly generated response bits r̃i. If the end
state is successfully reached, i.e., flag f = 1, the first k response bits are used to establish
a shared secret with the server. This secret, in addition to nonce n2 or n3, is then fed into
a cryptographic hash function to perform the authentication. To preserve the secrecy of
flag f , an attacker is not allowed to observe whether or not the authentication succeeds.
Otherwise, an attacker would be able to replace a server-determined challenge ci by an
arbitrary challenge cj , where cj 6= ci, and determine whether or not ri = rj . Observe that
a repeated execution of this swapping mechanism would allow the attacker to gather a
large training set of CRPs and hence model the Arbiter PUF such that only the sign of m̂
remains unknown.
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Figure 11: The FSM of Gao et al. [GMA+17].

3.3.2 Attack

It suffices for an attacker to eavesdrop on a single genuine protocol run in order to train
an accurate predictive model m̂ of the corresponding PUF. This model m̂, in turn, allows
the attacker to impersonate either the device or the server a virtually unlimited number
of times. Although the authors are aware of Becker’s work [Bec15a] and designed their
protocol such that not only the response bits r but also their corresponding error rates perror
remain internal to the device, it is overlooked that other variables that are correlated to
the delay difference v are released. Most notably, for each server-determined challenge c, it
is known that the absolute value |v| is relatively high. Given ω = 1 challenge c ∈ {0, 1}λ,
having transformed version s ∈ {−1, 1}λ+1, the two best guesses for a model are hence
m̂ = (s1/2 s2 s3 · · · sλ sλ+1/2) and m̂ = −(s1/2 s2 s3 · · · sλ sλ+1/2). The choice between
these two models m̂ corresponds to one bit of entropy and is hence irrelevant from a
security perspective. Figure 12(a) shows that for a retention ratio ρret = 1%, the best out
of two models already exceeds an accuracy of 85%, which suffices to consider the protocol
broken.

During a single protocol run, however, the server releases not one but η � 1 challenges ci.
There is hence plenty of margin to improve the accuracy of model m̂. We adopt a covariance
matrix adaptation (CMA) variant of an evolution strategy (ES) [Han06] and perform
minimal changes to its open-source implementation in Matlab. Similar to Darwin’s theory
on biological evolution, the fittest candidates in a population of prospective models m̂
recombine and mutate into a new and presumably fitter population. It is crucial to define
an appropriate fitness function, i.e., fitness : {0, 1}λ+1 → R. We instantiate the fitness
function as shown in (3).

fitness(m̂) = 1
ω

ω∑
i=1

∣∣si m̂T
∣∣/1

q

q∑
i=1

∣∣sref,i m̂T
∣∣ . (3)

The ω transformed challenges si in its numerator originate from a genuine protocol run
and are hence known to have stable response bits ri. The q transformed challenges sref,i
in the denominator are chosen uniformly at random from the set of all 2λ transformed
challenges and hence have response bits r that cover the full spectrum of error rates perror.
We use the same q = 1000 transformed challenges sref,i for each evaluation of the fitness
function. The scale invariance, i.e., ∀a ∈ R0, fitness(a m̂) = fitness(m̂), is desired for
positive factors a ∈ R+

0 , but the inclusion of negative factors a ∈ R−0 once again implies
that one bit of entropy always remains present. Default values suffice for all parameters of
the adopted CMA-ES algorithm, e.g., the population size is 4 + b3 ln(λ+ 1)c = 16. For a
retention ratio ρret = 1% and ω = 10 server-defined challenges ci, Figure 12(b) shows that
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Figure 12: The accuracy of modeling an Arbiter PUF with λ = 64 challenge bits that
is used in the protocol of Gao et al. [GMA+17]. For each dot, we generate 100 PUFs
M ∼ N

(
0,diag(1/2, 1, 1, · · · , 1, 1/2)

)
and average the best accuracies Pacc for each out of

two reproduced models m̂. Stated otherwise, we show an estimate of E[max(Pacc, 1−Pacc)],
where Pacc is the accuracy for one out of two possible models m̂. For each individual
modeling experiment, we select ω ∈ [1, 100] training and 1000 test challenges c uniformly
at random from the subset Cstab ⊆ C that contains the challenges with the most stable
responses r, where |Cstab|/|C| = ρret. We emphasize that for impersonation purposes,
an attacker is only required to predict stable response bits r. In subplot (a), models m̂
are directly derived from ω = 1 transformed challenge s. In subplot (b), we use CMA-
ES. Because its randomized training algorithm does not always converge to an accurate
model m̂, we only retain the best out of five trials.

the best out of two models approaches the ideal accuracy of 100%.
The previously presented modeling techniques are successful despite disregarding the

internal specifics of the FSM. For the sake of completeness, we briefly discuss how this
disregarded knowledge could facilitate CMA-ES. For a given model m̂ and a given protocol
run, the prospective η-bit response r could be computed. For this sequence of state
transitions, the fitness of the best possible match with an available path can then be
computed. Numerous path-matching metrics could be devised but, given that our main
objective has already been achieved, we abstain from further exploration.

4 Aftermath
A fairly conservative approach to craft a PUF-based authentication protocol is to convert a
long response r ∈ {0, 1}η into a secret key k ∈ {0, 1}κ through a fuzzy extractor [DORS08]
and then use a keyed cryptographic algorithm to perform the authentication [Del17,
Section 5.2]. Realizations of a fuzzy extractor are usually based on an error-correcting
code and requires the storage of public helper data. Designers of PUF-based protocols
frequently aim to save resources by avoiding the use of an error-correcting code and/or
the cryptographic logic, but as we have demonstrated for the protocols of Konigsmark
et al. [KCW16], Ye et al. [YHL16], and Gao et al. [GMA+17], taking shortcuts might be
fatal for the system security. The irony is that for two out of three protocols, the obtained
reductions in hardware footprint are small, if existing at all, and might not even have
justified taking the risk.

The protocol of Gao et al. [GMA+17] requires each PUF-enabled device to implement
a cryptographic algorithm, so it suffices to compare the implementation efficiencies of
the FSM and an error-correcting code. Although monolithic, large-sized codes require
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expensive decoders, it is a common practice to construct a large-size code from the repeated
execution of one or more small-sized and hence cheaper codes. This refers, for example, to
the sliding window of a convolutional code [HYS16] and to the concatenation of a Golay and
a repetition code [vdLPvdS12]. Moreover, so-called reverse fuzzy extractors [VHKM+12]
only require a PUF-enabled device to implement an encoder, which is considerably cheaper
than the corresponding decoder. Protocol-specific and more generic weaknesses for this
approach are known to exist [Bec15b] [Del17, Chapter 5], but several versions still hold
up. A final note is that a sizeable helper data string needs to be transferred with every
protocol run, or alternatively for a non-reversed fuzzy extractor, stored permanently by a
device. The FSM, however, requires the repeated transfer of more than 160 · 64 = 10240
challenge bits c and is thus more expensive in this regard.

The protocol of Konigsmark et al. [KCW16] requires each device to implement 64
Arbiter PUFs having 64 stages each. Given that the estimated area of a 64-stage Arbiter
PUF [Roz16, Figure 7.1] is equivalent to 387 two-input NAND gates, consisting of four
transistors each, the whole array consumes 24768 gate equivalent (GE). More area-efficient
implementations of an Arbiter PUF evidently exist, but the main observation here is that
a full-fledged PUF-based key generator easily fits within 5000 GE for the given security
level κ ≈ 64 [vdLPvdS12]. When basing all subsequent cryptographic operations on a
lightweight cipher such as KATAN64 [CDK09], which adds around 1000 GE to the system,
it becomes clear that the conservative authentication approach might be cheaper. For the
sole purpose of performing area comparisons, Konigsmark et al. [KCW16] conveniently
switch to an alternative protocol version where a single Arbiter PUF generates all 64
response bits. Recall that their machine learning experiments are all conducted on a more
robust array of PUFs.

On the bright side, the protocol of Ye et al. [YHL16] allows for an efficient implemen-
tation. For those who are looking for a similarly sized alternative that remains unbroken
to date, we refer to the so-called lockdown protocols of Yu et al. [YHD+16].

5 Conclusion
Through the use of custom-tailored machine learning techniques, we were able to construct
an accurate predictive model of the Arbiter PUFs that are used in the protocols of
Konigsmark et al. [KCW16], Ye et al. [YHL16], and Gao et al. [GMA+17], and hence
enable an impersonation attack.
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