
Cryptanalysis of Bivium using a Boolean all

solution solver

Virendra Sule
vrs@ee.iitb.ac.in

Dept. of Electrical Engg.

Anmol Yadav
anmol.y@iitb.ac.in

Dept. of Aerospace Engg.

Indian Institute of Technology Bombay
Mumbai 400076

India

November 25, 2017

Abstract

Cryptanalysis of Bivium is presented with the help of a new Boolean
system solver algorithm. This algorithm uses a Boolean equation
model of Bivium for a known keystream. The Boolean solver uses
implicant based computation of satisfying assignments and is distinct
from well known CNF-satisfiability solvers or algebraic cryptanalysis
methods. The solver is also inherently parallel and returns all satis-
fying assignments of the system of equations in terms of implicants.
Cryptanalysis of Bivium is classified in four categories of increasing
strength and it is shown that the solver algorithm is able to complete
the key recovery in category 2 in 48 hours. Computational algorithms
for formation of equations and symbolic operations are also developed
afresh for handling Boolean functions and presented. Limitations of
these implementations are determined with respect to Bivium model
and its cryptanalysis which shall be useful for cryptanalysis of general
stream ciphers.

1 Introduction

This paper reports 80 bit key recovery of the Bivium cipher from an output
stream with a given IV using a Boolean system solver algorithm developed
recently by one of the authors and announced in [4]. This solver is based on
Boolean computations and is principally different from existing algebraic or

1



CNF-satisfiability (SAT) based solvers of Boolean systems. The algebraic
model of Bivium chosen has Boolean functions in ANF hence the computa-
tional performance is not comparable to results on CNF model obtained by
using known algebraic and SAT solvers. However the results establish the
practical feasibility of cryptanalysis (of a specific category) of Bivium using
sequential implementation of this algorithm.

In recent times algebraic cryptanalysis of block and stream ciphers has
gained considerable importance as powerful methods and algorithms based
on extended linearization and improved Grobner basis generation emerged
[1, 7]. At the same time CNF satisfiability (SAT) based methods have
also emerged as powerful approaches for cryptanalysis based on the CNF
models of ciphers [2, 3, 8]. However we shall prefer to call SAT methods
as Boolean cryptanalysis which distinguish themselves from algebraic, since
these do not use algebraic operations such as arithmetic in finite fields and
gcd computations on polynomials unlike in algebraic cryptanalysis but resort
to Boolean operations and operations on Boolean functions. This paper is
also about Boolean cryptanalysis and the purpose is to report an instance
of solving a system of Boolean equations arising in the model of the Bivium
cipher with an instance of an output stream. Bivium cipher has been one
of the important case studies where performances of multiple cryptanalysis
methods are available as in [3, 6]. Hence Bivium cryptanalysis should be
useful for understanding limitations of computational algorithms and their
implementations.

The problem of cryptanalysis, that of solving the key bits given the input
output data of a cipher is a known hard computational problem in general.
Cryptanalysis can help to estimate in practical time, the time in which
instances of a specific cipher can be solved given sufficient resource. Solving
practical cases of cryptanalysis for reduced scale ciphers in practical time
is the most valuable aspect of cryptanalysis which helps in designing and
engineering secure cryptographic primitives and infrastructure. However
methods of algebraic as well as SAT based cryptanalysis suffer following
two hurdles

1. Algebraic methods are based on mathematically complex operations
and are not inherently designed for parallel computation. Hence these
are difficult to parallelize and scale up for solving large systems of
practical size over large number of parallel processors. Due to the
complex nature of mathematical operations they also require extensive
memory storage.

2. SAT based methods utilize relatively simple operations and most of

2



them are based on the DPLL algorithm and its later extensions. How-
ever these require representation of Boolean functions of the model in
CNF form. This representation itself blows up in size (in number of
clauses and variables) for practical systems. However, even if such a
conversion to CNF model is achievable, the greatest disadvantage of
SAT based methods is that they are only aimed for solving a decision
problems, that of existence of a solution to return one solution and
are not suitable for solving all solution assignments of a given CNF
data set. Multiple solutions can exist for Boolean equations even when
enough number of relations are available.

In realistic cryptanalysis problems typically arising from known plaintext
attack, it is required to find all solutions of the key or continue to find solu-
tions until match exists between available data of plaintext and ciphertext
blocks for ensuring correctness of the solution. The concern here is not that
of decision or existence of solution as it is already known that a solution ex-
ists for the relations but due to multiple number of solutions all solutions are
necessary. This problem of finding all solutions of Boolean systems (termed
in short as AllSolve) is theoretically of higher complexity and is not even
comparable to the decision problem. For instance, it is well known that for
the 2-SAT decision problem which is of class P , the All-2-SAT problem is
of class #P . Apart from this need to find all solutions, the true practical
hurdle is the representation of all solutions of the Boolean system since the
number of solutions of a Boolean system grows exponentially in number of
free variables in the solution. Finally, in order to be able to solve realistic
size problems the algorithm for cryptanalysis is required to have an inherent
parallel structure and should also facilitate scaling up in number of paral-
lel processes to utilize available parallel resources. Several known methods
of algebraic cryptanalysis and those based on algorithms for SAT are not
inherently parallel. Hence parallel solution of Boolean systems is still an
unfinished agenda in computational science [13]. Cryptanalysis problems
pose challenges in this agenda which have central importance not just in
Cryptanalysis but also for the Science of discrete and parallel computation.

The Boolean solver algorithm used in this paper is an inherently parallel
algorithm for the AllSolve problem of Boolean systems based on computa-
tion of local implicants of Boolean functions in each equation. An impor-
tant feature of this approach is the representation of all solutions in terms
of implicants of the system. While the number of all solutions increases
exponentially in free variables, the number of implicants such as orthogonal
implicants increases polynomially in the number of variables by suppressing

3



the free variables. Hence representation of solutions in terms of implicants
is a natural way to compactly represent all solutions. We show in this paper
that this algorithm succeeds in solving the Bivium equations even with a
sequential implementation of this algorithm. Hence the performance of this
algorithm can be greatly improved if such problems are solved by a parallel
implementation.

1.1 Representation of equations by factors

Often the models of ciphers (either block or stream) involve mixed opera-
tions and hence constitute Boolean functions not inherently represented in
standard forms such as CNF also called product of sums (POS) (or DNF
called sum pf products (SOP)). Boolean functions in algebraic normal form
(ANF) can be used for compact representation of equations involving mixed
Boolean functions. Hence it is reasonable to assume that the model of the
cipher be expressible in terms of equations with functions in ANF, although
this too is not a universal recipe for a good representation of the problem.
The cryptanalysis problem is usually stated as a Boolean system

C = F (P,K) (1)

where C is the ciphertext (or known output) block of bits, P the known
plaintext block (including the IV block) of input bits while K is the unknown
bits of the secret key to be solved. We assume that these equations are
brought to the algebraic normal form (ANF) and given as

gi(X) = 0, i = 1, 2, . . . , (2)

where gi are in ANF or alternatively the system is expressed in the product
form

F (X) =

N∏
i=1

fi(X) (3)

where fi = g′i the Boolean complements of gi. The factors fi are in gen-
eral not elementary disjuctions as in the CNF representation of F . The
cryptanalysis problem is stated as follows.

Problem 1. Construct a system of equations (2) from the known plaintext
data, (in the Bivium case construct the equations for a given output key
stream and IV ) and compute the factors fi of a Boolean formula (3) F (X)
where X are unknown key bits to be solved. Compute all assignments x of
variables X such that the Boolean formula is satisfied, i.e. F (x) = 1.

4



2 Implicant based solver algorithm

The implicant based solver announced in [4] is used to solve all satisfying
assignments of the formula F (X). We shall call this algorithm Implicantalgo
Any satisfying assignment x of the formula F must also satisfy each of the
factors fi. For a single non zero Boolean function f arising as a factor in a
formula F , let S(f) denote the set of all satisfying assignments. This set has
a compact representation in terms of implicants of f which are terms t in
the variables of f such that t ≤ f as Boolean functions (which is equivalent
to stating that if for any assignment x, t(x) = 1 then f(x) = 1). The
implicant based algorithm first computes the set I(f) of a complete set of
implicants of f which has the property that if f(x) = 1 for an assignment
x then there exists an implicant t in I(f) such that t(x) = 1. Any complete
set of implicants is thus equivalent to all terms in a sum of product (SOP)
form of f . If each factor f of a complex formula F has small number of
variables (called a sparse formula) this computation is practically feasible.
(In the actual implementation of this algorithm, we used the set I(f) of
orthogonal (OG) implicants. This set has the property that if f(x) = 1
for some assignment x then exactly one of the implicants t in I(f) satisfies
t(x) = 1). The Implicantalgo computes successively the OG implicants of
the formula F whose factors fi are given. If instead a Boolean system of
functions fi = 0 is to be solved, the factors chosen are complements gi = f ′

i

and the OG implicant set of the formula

G =
∏
i

gi

is computed. At each step the algorith computes OG implicants of pivote
functions fi and hence also results in OG implicants of the formula F . De-
tails of the algorithm with examples can be referred from [4]. In the present
paper we show that this algorithm is able to solve the complex systems of
algebraic equations arising in the cryptanalysis of Bivium. To the authors
knowledge solutions to such large systems in large number of variables have
not been announced by other methods such as Grobner basis or XL or CNF
SAT based algorithms.

2.1 Special features of the implicant based algorithm

This algorithm has following central features which distinguish it from well
known solvers based on algebraic and SAT based methods.

5



1. The Boolean factors fi of the Boolean formula whose satisfying assign-
ments are being computed, are not required to be in a special form
such as CNF. These can be Boolean functions represented in mixed
form as they naturally arise from a case study. For Bivium case we
have chosen to represent them in ANF since in this form the factors
can be computed easily from the Bivium algorithm.

2. All the factors fi need not be available apriori i.e. the formula F need
not be known completely at the start. New factors may be available
as new bits of key stream get known. This is strikingly different from
elimination based methods in which all factors containing a set of
variables need to be known apriori or as in SAT based solvers.

3. The algorithm is inherently thread parallel. The starting set of impli-
cants give rise to threads which fork further into new threads as further
implicants are computed. Hence although the number of threads seem
to increase exponentially, they also get discarded as contradictions
arise such as fi/t = 0 in further steps of Implicantalgo. The memory
gets freed once a thread is discarded. In the present paper the re-
sults on performance of computation are limited due to the sequential
implementation while this can be improved by several orders due to
inherent parallel nature of the algorithm.

4. Each successful thread results into an implicant of the formula F . This
way all implicants of the formula or a complete set I(F ) are discovered
giving a compact representation of all satisfying solutions. Although
such all satisfying assignments grow exponentially due to free variables,
the implicant representation suppresses the free variables and gives a
polynomial number of implicants representing all solutions. The SAT
based solvers are not designed for computing all solutions and can
be used to compute each solution in independent trial resulting in
exponential number of trials.

Due to these features the Cryptanalysis of Bivium performed using Im-
plicantalgo is unique as the algorithm is different from other methods. If the
same algebraic model is used then absolute performance in time for same
parameters of the key stream can be compared. Further, the scope for im-
provement in performance by parallel implementation of this algorithm is
also a unique advantage of this algorithm.

6



3 Bivium: algorithm, model and cryptanalysis

Bivium is a reduced version of the Trivium cipher [10]. The reduction is
obtained by just keeping two registers of trivium in the algorithm or al-
ternatively loading the third register by zero initial loading. Here the two
registers of bivium are of length 93 and 84 respectively totally with 177
states. These are denoted as (s1, s2, ..., s177). These states are initialized by
80 bits of key, 80 bits of IV and zeros. The exact location of key and IV
bits in these registers is shown in the encryption and decryption algorithm
below. But from any time instant k called clocking index, the algorithm for
obtaining the keystream output z(k) is as follows. Two latent states t1 and
t2 are defined and updates of all states are carried out by following rules in
algorithm 1.

Algorithm 1: Bivium algorithm

Input: states s1(k), . . . , s177(k)
Output: z(k) for k = 1, 2, . . .

1 t1(k) = s66(k)⊕ s93(k)
2 t2(k) = s162(k)⊕ s177(k)
3 z(k) = t1(k)⊕ t2(k)
4 % Updates of t1, t2
5 t1(k + 1) = t1(k)⊕ s91(k) ∗ s92(k)⊕ s171(k)
6 t2(k + 1) = t2(k)⊕ s175(k) ∗ s176(k)⊕ s69(k)
7 % State update
8 (s1(k + 1), s2(k + 1), ..., s93(k + 1)) = (t2(k + 1), s1(k), ..., s92(k))
9 (s94(k + 1), s95(k + 1), ..., s177(k + 1)) = (t1(k + 1), s94(k), ..., s176(k))

The output sequence z(k) is thus a quadratic non-linear function of the
states at each instant k. The encryption of a plaintext bit stream p(k)
and decryption of the ciphertext bit stream are carried out by the following
algorithms for encryption and decryption. These use the key stream z(k)
for XOR-ing with plaintext or ciphertext.

3.1 Algebraic model for cryptanalysis

The cryptanalysis of Bivium algorithm from the known plaintext attack thus
amounts to recovering the key bits when the IV bits are given and if the
sequence z(k + 4 ∗ 177) is available for consecutive values of k. From the
Bivium algorithm 1, the sequence of outputs z(k) and the IV bits allow

7



Algorithm 2: Encryption algorithm

Input: Key bits K1,K2, . . . ,K80, IV bits IV1, IV2, . . . , IV80,
Plaintext stream pk for k = 1, 2, . . .

Output: Ciphertext stream c(k) for k = 1, 2, . . .
1 % Loading of Key and IV
2 State at k = 1
3 (s1, s2, . . . , s93)(1) = (K1,K2, . . . ,K80, 0, . . . , 0)
4 (s94, s95, . . . , s177)(1) = (IV1, IV2, . . . , IV80, 0, . . . , 0)
5 For 1, 2, . . .
6 c(k) = p(k)⊕ z(k + 4 ∗ 177)

Algorithm 3: Decryption algorithm

Input: Key bits K1,K2, . . . ,K80, IV bits IV1, IV2, . . . , IV80,
Plaintext stream pk for k = 1, 2, . . .

Output: Plaintext stream p(k) for k = 1, 2, . . .
1 % Loading of Key and IV
2 State at k = 1
3 (s1, s2, . . . , s93)(1) = (K1,K2, . . . ,K80, 0, . . . , 0)
4 (s94, s95, . . . , s177)(1) = (IV1, IV2, . . . , IV80, 0, . . . , 0)
5 For k = 1, 2, . . .
6 p(k) = c(k)⊕ z(k + 4 ∗ 177)

8



construction of an algebraic model

fk(K1,K2, . . . ,K80) = z(k) (4)

in terms of Boolean functions fk for specified output indices k obtained
online. If a sufficient number of these functions are computed, a unique
solution to the key bits may result by solving (4) as a Boolean system using
the algorithm Implicantalgo. We shall thus refer to (4) as the algebraic
model of Bivium for given IV and the sequence of output indices k. The
Bivium algorithm 1 also gives rise to another offline algebraic model with
all 177 states as unkown bits. This is denoted as

gk(s1, s2, . . . , s177) = z(k) (5)

for specified output indices k. Such a model can be computed apriori. The
cryptanalysis to recover the key based on this model from a given IV is
discussed in the next section. The strength of the Bivium algorithm can be
determined under various conditions of the knowledge of IV and the output
index sequence which define categories of cryptanalysis.

3.2 Cryptanalysis categories for Bivium

Cryptanalysis is a methodology to determine conditions under which an at-
tack can be mounted on the cipher with a known cryptanalytic solver with
an objective to recovering the bits of the secret key. By Kirchhoff’s principle
in cryptography the only secret information about the encryption process
is the secret key shared between parties used in an encryption algorithm.
Hence the security of encryption process is not expected to be compromised
by the side information which is not intentionally kept secret. A large part
of side information may be available with efforts relatively inexpensive than
the secret information and security may turn out vulnerable to such in-
formation. Hence the cryptanalysis is meant to simulate conditions under
which such subversion of the encryption is feasible. The side information in
stream ciphers can consist of several types of bits such as output sequence
for indices before the key stream is actually used for encryption, bits of in-
ternal state during the encryption and rarely even the key bits. We consider
following categories of cryptanalysis whose feasibility in (specified practical
time, chosen as 24 hours, on a standrad desktop computer) indicates a cate-
gory of weakness of the cipher. For Bivium we consider following categories
of cryptanalysis.

9



1. Category 1. The secret key recovered from the algebraic model (4)
of the first 80 bits of output z(k) for k = 1, 2, . . . , 80 in practically
specified time.

2. Category 2. The secret key recovered from the algebraic model (4)
from an intermediate sequence z(k), k = k0 + 1, k0 + 2, . . . , k0 + 80 in
practically specified time for 1 < k0 < 4 ∗ 177.

3. Category 3. A minimum value of index kmin is always specified for
any stream cipher for functional usage of the key stream z(k) for en-
cryption. For Bivium it is kmin = 4 ∗ 177. This category is defined by
being able to solve the key from (4) in practically specified time from
output stream z(k), k > kmin.

4. Category 4. The secret key recovered from any consecutive sequence
of z(k) from the offline model (5) when IV is known. In this case the
model equations are solved for the initial state x(km) = (si(km), i =
1, . . . , 177) from a known sequence z(k), k > km = 4 ∗ 177. Then the
Bivium algorithm is reversed and all solutions to x(0) are determined.
The key is determined when the IV in x(0) match. Hence this requires
solving for all solutions of the state update in reverse. Thus in this
category the equations are known apriory and not built online from
known output stream.

These categories can be suitably extended for other stream ciphers as well as
new categories can be defined on the basis of possibility of side information.
For most stream ciphers, a reconstruction in practically specified time, of the
internal state of registers from the key stream data constitutes an almost
complete break of the cipher. In this paper we report Cryptanalysis of
Bivium in category 2.

4 Computation of the algebraic model

In this section we discuss generation of Boolean equations (4) for the Bivium
model and then use the Boolean solver algorithm Implicantalgo to retrieve
the Key. Few notations are used to represent Boolean functions in ANF
and defining Boolean operations on them. First consider the notation called
ANFstuc as defined below in terms of equations involving Boolean functions
in ANF. This is explained in following example.

Here one or more variables define a term using a symbolic-AND. Sim-
ilarly one or more terms form a function in ANF by symbolic-XOR. For

10



example let a function in ANF be 1 ⊕ x1 ⊕ x2x3. Here x1, x2 and x3 are
Boolean variables. For our code we represent this by [1, [[1], [2, 3]]]. This
is a list of elements. The first is the constant of the function, second ele-
ment is another list of lists. The first list is denotes first degree terms. The
next list denotes higher degree terms etc. A term itself is a list of indices
of elements. Hence the elements of the list are further lists. This is called
ANFstuc notation for representing functions in ANF.

Example 1. In the ANFstuc notation the function

f(x1, x2, x3) = 1⊕ x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3

is represented by the list

[1, [[2], [3], [1, 3], [2, 3], [1, 2, 3]]]

4.1 Symbolic operations on ANFstuc

For obtaining the Boolean equations for Bivium, we need symbolic-AND and
symbolic-XOR operations on Boolean functions. Symbolic-AND is carried
out in algorithm 4.

Following example explains symbolic-AND and the result from algorithm 4
in ANFstuc notation

Example 2. Given two ANF functions A = 1 ⊕ x1 ⊕ x2 and B = 1 ⊕ x2,
the function obtained by performing symbolic AND and then by algorithm
4 in ANFstuc form

A.B = (1⊕ x1 ⊕ x2).(1⊕ x2)

= (1⊕ x1 ⊕ x2)⊕ (x2 ⊕ x1x2 ⊕ x2x2)

= 1⊕ x1 ⊕ x2 ⊕ x2 ⊕ x1x2 ⊕ x2

= 1⊕ x1 ⊕ x2 ⊕ x1x2

In ANFstuc form A and B are represented as

A = [1, [[1], [2]]]

B = [1, [[2]]]

Algorithm 4 returns A.B in ANFstuc form as

SAND(A,B) = [1, [[1], [2], [1, 2]]]

11



Algorithm 4: Symbolic AND

1 function SAND (anfStuc1, anfStuc2)
Input : Two ANFstuc type data structures anfStuc1 and anfStuc2
Output: Single ANFstuc data structure finalAnfStuc

2 begin
3 Initialize: finalAnfStuc← [∅, [∅]]
4 for i← 0 to length of anfStuc1[1] do
5 for j ← 0 to length of anfStuc2[1] do
6 tempTerm← concatenate(anfStuc1[1][i], anfStuc2[1][j])
7 Remove all but one repeating elements of tempTerm
8 Append tempTerm to finalAnfStuc[1]

9 if anfStuc1[0] = 1 then
10 Append all elements of anfStuc2[1] to finalAnfStuc[1]

11 if anfStuc2[0] = 1 then
12 Append all elements of anfStuc1[1] to finalAnfStuc[1]

13 foreach element of finalAnfStuc[1] do
14 count← number occurrences of element in finalAnfStuc[1]
15 if count mod 2 = 0 then
16 Remove all occurrences of element from finalAnfStuc[1]
17 else
18 Remove all but one occurrence of element from

finalAnfStuc[1]

19 finalAnfStuc[0]← (anfStuc1[0] ∗ anfStuc2[0]) mod 2

20 return finalAnfStuc

12



Algorithm 5: Symbolic XOR

1 function SXOR (anfStuc1, anfStuc2)
Input : Two ANFstuc type data structures anfStuc1 and anfStuc2
Output: Single ANFstuc data structure finalAnfStuc

2 begin
3 Initialize: finalAnfStuc← [∅, [∅]]
4 for i← 0 to length of anfStuc1[1] do
5 Append anfStuc1[1][i] to finalAnfStuc[1]

6 for i← 0 to length of anfStuc2[1] do
7 Append anfStuc2[1][i] to finalAnfStuc[1]

8 foreach element of finalAnfStuc[1] do
9 count← number occurrences of element in finalAnfStuc[1]

10 if count mod 2 = 0 then
11 Remove all occurrences of element from finalAnfStuc[1]
12 else
13 Remove all but one occurrence of element from

finalAnfStuc[1]

14 finalAnfStuc[0]← (anfStuc1[0] + anfStuc2[0]) mod 2

15 return finalAnfStuc

13



Next algorithm performs symbolic-XOR on given Boolean functions.

Example 3. Given two ANF functions A = 1 ⊕ x1 ⊕ x2 and B = 1 ⊕ x2,
we perform symbolic-XOR and compare the result from algorithm 5

A⊕B = (1⊕ x1 ⊕ x2)⊕ (1⊕ x2)

= 1⊕ x1 ⊕ x2 ⊕ 1⊕ x2

= x1

In ANFstuc form A and B are represented as

A = [1, [[1], [2]]]

B = [1, [[2]]]

Using algorithm 5 we can get A⊕B in ANFstuc form as

SXOR(A,B) = [0, [[1]]]

4.2 Formation of Bivium ANF equations

Generation of the Boolean system model (4) or a pre-computed offline model
(5) is an important step in the Cyptanalysis of Bivium in this paper. We
generate ANF form of Boolean functions fi in this model for a given IV
in terms of unknown key bits as variables K = (x1, x2, x3...x80). Although
several ways can be devised to generate equations from Boolean operations,
this aspect of modeling is strongly dependent on available memory of the
computer and has been seldom discussed in detail in Cryptanalysis liter-
ature. This step performs symbolic operations in terms of standard data
structures of a computer language. For the present case of Bivium we have
followed the following two step procedure.

1. Convert the unknown key bits of K as a set of 80 Boolean functions in
ANF. Similarly convert the known IV as a set of 80 constant Boolean
functions.

2. Use the symbolic Boolean operations of AND and XOR devised above
to compute the output stream z(k) as Boolean functions and denote
these as fk. The equations fk(K) = z(k) are converted to a formula
(3) whose factors are kk(K)⊕z(k)⊕1 and are solved by Implicantalgo.

14



For instance an unknown bit xi of the key is stored as the Boolean function
in ANFstuc form as [0, [[i]]] while a known bit IVi is stored in ANFstuc
form as the constant function [IVi, [[]]]. Once key and IV are converted to
common data structure of ANFstuc the equation formation is carried out
by algorithm 6 which is a symbolic representation of the Bivium algorithm
1.

Algorithm 6: ANF Equation Formation

1 function FormEquations (IV, n)
Input : IV is 80 bit in ANFstuc form, n is the number of equations

that are to be formed or length of key-stream
Output: n number of equations in ANFstuc form

2 begin
3 Initialize Key: Ki = [0, [[i]]] for i = 1, 2, 3, ...80
4 Initialize States:

si = [K1K2, ..K80, 0, 0, ..., 0, IV1, IV2, ..., IV80, 0, 0, ..., 0]
5 Initialize List of Equations: z ← [∅]
6 Initialize temporary variables: t1 ← ∅; t2 ← ∅
7 for i← 0 to i = n do
8 t1 ← SXOR(s66, s93) and t2 ← SXOR(s162, s177)
9 Append SXOR(t1, t2) to z

10 t1 ← SXOR(t1, SXOR(SAND(s91, s92), s171))
11 t2 ← SXOR(t2, SXOR(SAND(s175, s176), s69))
12 (s1, s2, ..., s93)← (t2, s1, ..., s92)
13 (s94, s95, ..., s177)← (t1, s94, ..., s176)

14 return z

4.3 Cryptanalysis category, formation of equations and so-
lution

We shall report Cryptanalysis of Bivium in category 2 defined in the previous
section. This amounts to solution of the system of equations in (4) for a
chosen starting time index k0 < 4∗177 where the functions fk are computed
for a known 80 bits of IV and the unknown variables are key bits. The
functions fk are computed with the help of the algorithm 6 while the output
stream z(k) is computed using the standard implementation of the Bivium
model as mentioned in [5]. The reason for using category 2 instead of the
stronger category 3 is that the present implementation of the algorithm for

15



equation formation in Python is still in its infancy and needs further efforts
at overcoming challenges of memory management. At the present level the
implementation is too slow to fully compute the equations for the clocking
time index of 4∗177. The practical time chosen for solution of the equations
was chosen as 48 hours.

The system of equations formed for an output stream are solved by the
algorithm Implicantalgo. In general, algebraic equations of this form need
to be available in sufficient numbers to be able to find a unique or at most
a small number of solutions. However in the theory of Boolean equations
the elimination theory [12, 11] shows that all solutions can be obtained by
elimination of variables even when a single equation is available. Hence it is
not truly necessary to generate 80 equations to solve 80 Boolean unknowns
by Boolean methods. However the number of solutions may be too large
if the number of equations are too less. The scalability of the algorithm
Implicantalgo is primarily a result of the sparsity of the individual functions
in the system (or factors of the product form). This sparsity is more pro-
nounced for the starting index k0 much smaller than 4 ∗ 177 to allow the
cryptanalysis to succeed in category 2. Hence to achieve the Cryptanalysis
of Bivium in categories 3 and 4 further development in implementation of
equation formation algorithm are necessary. Furhet such Cryptanalysis may
not scale up to the required clocking index size without parallel implemen-
tation of the algorithm Implicantalgo. In the next section we present actual
computation details with the help of examples.

5 Examples of equation generation and solution
for category 2 cryptanalysis

In this section we compute examples to show that the Bivium model (4)
can be actually generated and the equations can be solved in practical time
using the sequential and unoptimized implementation of the algorithm Im-
plicantalgo under the relaxed condition that the starting time for the output
stream for the model is much smaller than the normal time of use which is
4 ∗ 177. This is classified as category 2 cryptanalysis.

5.1 Example with 161 bits of keystream, starting clock index
80

First the Key and IV are generated as random strings of 80 bits. The output
stream z(k) is then generated using standard implementation of Bivium

16



cipher. The Key and IV are chosen as follows while the output stream is
z(80+k) for k = 1, 2, . . . , 81. Hence totally 161 bits of output are generated.
The 81 outputs below are used for generating the functions in the model (4).

IV = 101010000010100111101100101011100011111101100101101100001001101
00110110001100100

Key = 010111100001101110000000100110101000001010100101010001111000100
10100000010001001

Output = 10010001110100100101100010001011011101100001000100101000110
1110101100111101010110

The output stream above and the IV are then used as inputs to the equation
generation algorithm 6. These equations represented in ANF are as follows.

f1 = 1⊕ x68 f2 = 1⊕ x1x2 ⊕ x69 f3 = 1⊕ x1 ⊕ x2x3 ⊕ x70 f4 = x2 ⊕ x3x4 ⊕ x71

f5 = 1⊕ x3 ⊕ x4x5 ⊕ x15 ⊕ x72 f6 = 1⊕ x4 ⊕ x5x6 ⊕ x16 ⊕ x73 f7 = x5 ⊕ x6x7 ⊕ x17 ⊕ x74

f8 = x6 ⊕ x7x8 ⊕ x18 ⊕ x75 f9 = x7 ⊕ x8x9 ⊕ x19 ⊕ x76 f10 = x8 ⊕ x9x10 ⊕ x20 ⊕ x77

f11 = 1⊕ x9 ⊕ x10x11 ⊕ x21 ⊕ x78 f12 = 1⊕ x10 ⊕ x11x12 ⊕ x22 ⊕ x79

f13 = 1⊕ x11 ⊕ x12x13 ⊕ x23 ⊕ x80 f14 = 1⊕ x13x14 ⊕ x24 f15 = x14x15 ⊕ x25

f16 = x15x16 ⊕ x26 f17 = x1x2 ⊕ x16x17 ⊕ x27 f18 = x1 ⊕ x2x3 ⊕ x17x18 ⊕ x28

f19 = 1⊕ x2 ⊕ x3x4 ⊕ x18x19 ⊕ x29 f20 = x3 ⊕ x4x5 ⊕ x19x20 ⊕ x30 f21 = x4 ⊕ x5x6 ⊕ x20x21 ⊕ x31

f22 = 1⊕ x5 ⊕ x6x7 ⊕ x21x22 ⊕ x32 f23 = 1⊕ x6 ⊕ x7x8 ⊕ x22x23 ⊕ x33

f24 = x7 ⊕ x8x9 ⊕ x23x24 ⊕ x34 f25 = 1⊕ x8 ⊕ x9x10 ⊕ x24x25 ⊕ x35

f26 = 1⊕ x9 ⊕ x10x11 ⊕ x25x26 ⊕ x36 f27 = 1⊕ x10 ⊕ x11x12 ⊕ x26x27 ⊕ x37

f28 = x11 ⊕ x12x13 ⊕ x27x28 ⊕ x38 f29 = x12 ⊕ x13x14 ⊕ x28x29 ⊕ x39

f30 = x13 ⊕ x14x15 ⊕ x29x30 ⊕ x40 f31 = 1⊕ x14 ⊕ x15x16 ⊕ x30x31 ⊕ x41

f32 = 1⊕ x15 ⊕ x16x17 ⊕ x31x32 ⊕ x42 f33 = 1⊕ x16 ⊕ x17x18 ⊕ x32x33 ⊕ x43

f34 = x17 ⊕ x18x19 ⊕ x33x34 ⊕ x44 f35 = 1⊕ x18 ⊕ x19x20 ⊕ x34x35 ⊕ x45

f36 = x19 ⊕ x20x21 ⊕ x35x36 ⊕ x46 f37 = 1⊕ x20 ⊕ x21x22 ⊕ x36x37 ⊕ x47

f38 = x21 ⊕ x22x23 ⊕ x37x38 ⊕ x48 f39 = 1⊕ x22 ⊕ x23x24 ⊕ x38x39 ⊕ x49

f40 = x23 ⊕ x24x25 ⊕ x39x40 ⊕ x50 f41 = 1⊕ x24 ⊕ x25x26 ⊕ x40x41 ⊕ x51

f42 = x25 ⊕ x26x27 ⊕ x41x42 ⊕ x52 f43 = 1⊕ x26 ⊕ x27x28 ⊕ x42x43 ⊕ x53

f44 = 1⊕ x27 ⊕ x28x29 ⊕ x43x44 ⊕ x54 f45 = 1⊕ x28 ⊕ x29x30 ⊕ x44x45 ⊕ x55

f46 = 1⊕ x29 ⊕ x30x31 ⊕ x45x46 ⊕ x56 f47 = x30 ⊕ x31x32 ⊕ x46x47 ⊕ x57

f48 = x31 ⊕ x32x33 ⊕ x47x48 ⊕ x58 f49 = 1⊕ x32 ⊕ x33x34 ⊕ x48x49 ⊕ x59

f50 = x33 ⊕ x34x35 ⊕ x49x50 ⊕ x60 f51 = x34 ⊕ x35x36 ⊕ x50x51 ⊕ x61

17



f52 = 1⊕ x35 ⊕ x36x37 ⊕ x51x52 ⊕ x62 f53 = 1⊕ x36 ⊕ x37x38 ⊕ x52x53 ⊕ x63

f54 = x37 ⊕ x38x39 ⊕ x53x54 ⊕ x64 f55 = x38 ⊕ x39x40 ⊕ x54x55 ⊕ x65

f56 = 1⊕ x15 ⊕ x39 ⊕ x40x41 ⊕ x55x56 ⊕ x66 f57 = 1⊕ x16 ⊕ x40 ⊕ x41x42 ⊕ x56x57 ⊕ x67

f58 = 1⊕ x17 ⊕ x41 ⊕ x42x43 ⊕ x57x58 ⊕ x68 f59 = 1⊕ x18 ⊕ x42 ⊕ x43x44 ⊕ x58x59 ⊕ x69

f60 = x19 ⊕ x43 ⊕ x44x45 ⊕ x59x60 ⊕ x70 f61 = 1⊕ x20 ⊕ x44 ⊕ x45x46 ⊕ x60x61 ⊕ x71

f62 = 1⊕ x21 ⊕ x45 ⊕ x46x47 ⊕ x61x62 ⊕ x72 f63 = 1⊕ x22 ⊕ x46 ⊕ x47x48 ⊕ x62x63 ⊕ x73

f64 = 1⊕ x23 ⊕ x47 ⊕ x48x49 ⊕ x63x64 ⊕ x74 f65 = x24 ⊕ x48 ⊕ x49x50 ⊕ x64x65 ⊕ x75

f66 = x25 ⊕ x49 ⊕ x50x51 ⊕ x65x66 ⊕ x76 f67 = 1⊕ x26 ⊕ x50 ⊕ x51x52 ⊕ x66x67 ⊕ x77

f68 = x1x2 ⊕ x15 ⊕ x27 ⊕ x51 ⊕ x52x53 ⊕ x67x68 ⊕ x78

f69 = 1⊕ x1 ⊕ x2x3 ⊕ x16 ⊕ x28 ⊕ x52 ⊕ x53x54 ⊕ x68x69 ⊕ x79

f70 = x2 ⊕ x3x4 ⊕ x15x16 ⊕ x16 ⊕ x17 ⊕ x29 ⊕ x53 ⊕ x54x55 ⊕ x69x70 ⊕ x80

f71 = x3 ⊕ x4x5 ⊕ x12 ⊕ x15 ⊕ x16 ⊕ x16x17 ⊕ x18 ⊕ x30 ⊕ x54 ⊕ x55x56 ⊕ x70x71

f72 = x4 ⊕ x5x6 ⊕ x13 ⊕ x16 ⊕ x17x18 ⊕ x18 ⊕ x19 ⊕ x31 ⊕ x55 ⊕ x56x57 ⊕ x71x72

f73 = 1⊕ x5 ⊕ x6x7 ⊕ x14 ⊕ x17 ⊕ x18x19 ⊕ x20 ⊕ x32 ⊕ x56 ⊕ x57x58 ⊕ x72x73

f74 = 1⊕ x6 ⊕ x7x8 ⊕ x15 ⊕ x18 ⊕ x19x20 ⊕ x21 ⊕ x33 ⊕ x57 ⊕ x58x59 ⊕ x73x74

f75 = 1⊕ x7 ⊕ x8x9 ⊕ x16 ⊕ x19 ⊕ x20x21 ⊕ x22 ⊕ x34 ⊕ x58 ⊕ x59x60 ⊕ x74x75

f76 = x8 ⊕ x9x10 ⊕ x17 ⊕ x20 ⊕ x21x22 ⊕ x23 ⊕ x35 ⊕ x59 ⊕ x60x61 ⊕ x75x76

f77 = 1⊕ x9 ⊕ x10x11 ⊕ x18 ⊕ x21 ⊕ x22 ⊕ x22x23 ⊕ x24 ⊕ x36 ⊕ x60 ⊕ x61x62 ⊕ x76x77

f78 = 1⊕ x10 ⊕ x11x12 ⊕ x19 ⊕ x22 ⊕ x23x24 ⊕ x24 ⊕ x25 ⊕ x37 ⊕ x61 ⊕ x62x63 ⊕ x77x78

f79 = x11 ⊕ x12x13 ⊕ x20 ⊕ x23 ⊕ x24 ⊕ x24x25 ⊕ x26 ⊕ x38 ⊕ x62 ⊕ x63x64 ⊕ x78x79

f80 = 1⊕ x1x2 ⊕ x12 ⊕ x13x14 ⊕ x21 ⊕ x24 ⊕ x25x26 ⊕ x26 ⊕ x27 ⊕ x39 ⊕ x63 ⊕ x64x65 ⊕ x79x80

f81 = x1 ⊕ x1x2x26 ⊕ x2x3 ⊕ x12x80 ⊕ x13 ⊕ x14x15 ⊕ x22 ⊕ x25 ⊕ x26x27 ⊕ x28 ⊕ x40 ⊕ x64 ⊕ x65x66

These equations are then solved by algorithm Implicantalgo which resulted
in two implicant solutions. The solutions covert to the following bit strings

K1 = 010111100001101110000000100110101000001010100101010001111000100
10100000010001001

K2 = 001110011000001000111010111110110010100100011110001100001011100
01110000110111001

We can see that the K1 matches with the Key that we had chosen initially.
The time taken for formation of equations was approximately 0.15 sec. while
the time required to solve the equations to get two solutions was close to 63
min.

18



5.2 Example with 165 bits of keystream, starting index 80

This example was chosen of comparable size to the above with a different
Key and IV . The 85 bits of output stream z(80 + k) for k = 1, 2, . . . , 85
was used to build the model. The randomly generated Key, IV and the
keystream output are as follows

IV = 110110001011000000110100010000000010100001100100111001101101101
11100010000010110

Key = 101010110001100011011010000111110010101111001010100010100011010
01110010100011110

Output = 00100001011100010101001100100110010100100011010111110110101010
01110111001011010000010

Following 85 functions of the model (4) were generated by the algorithm 6
which are represented in ANF.

f1 = 1⊕ x68 f2 = 1⊕ x1x2 ⊕ x69 f3 = 1⊕ x1 ⊕ x2x3 ⊕ x70 f4 = 1⊕ x2 ⊕ x3x4 ⊕ x71

f5 = 1⊕ x3 ⊕ x4x5 ⊕ x15 ⊕ x72 f6 = 1⊕ x4 ⊕ x5x6 ⊕ x16 ⊕ x73 f7 = 1⊕ x5 ⊕ x6x7 ⊕ x17 ⊕ x74

f8 = 1⊕ x6 ⊕ x7x8 ⊕ x18 ⊕ x75 f9 = 1⊕ x7 ⊕ x8x9 ⊕ x19 ⊕ x76 f10 = x8 ⊕ x9x10 ⊕ x20 ⊕ x77

f11 = 1⊕ x9 ⊕ x10x11 ⊕ x21 ⊕ x78 f12 = x10 ⊕ x11x12 ⊕ x22 ⊕ x79 f13 = 1⊕ x11 ⊕ x12x13 ⊕ x23 ⊕ x80

f14 = 1⊕ x13x14 ⊕ x24 f15 = 1⊕ x14x15 ⊕ x25 f16 = 1⊕ x15x16 ⊕ x26 f17 = 1⊕ x1x2 ⊕ x16x17 ⊕ x27

f18 = x1 ⊕ x2x3 ⊕ x17x18 ⊕ x28 f19 = x2 ⊕ x3x4 ⊕ x18x19 ⊕ x29 f20 = 1⊕ x3 ⊕ x4x5 ⊕ x19x20 ⊕ x30

f21 = 1⊕ x4 ⊕ x5x6 ⊕ x20x21 ⊕ x31 f22 = 1⊕ x5 ⊕ x6x7 ⊕ x21x22 ⊕ x32 f23 = x6 ⊕ x7x8 ⊕ x22x23 ⊕ x33

f24 = x7 ⊕ x8x9 ⊕ x23x24 ⊕ x34 f25 = 1⊕ x8 ⊕ x9x10 ⊕ x24x25 ⊕ x35

f26 = 1⊕ x9 ⊕ x10x11 ⊕ x25x26 ⊕ x36 f27 = x10 ⊕ x11x12 ⊕ x26x27 ⊕ x37

f28 = x11 ⊕ x12x13 ⊕ x27x28 ⊕ x38 f29 = x12 ⊕ x13x14 ⊕ x28x29 ⊕ x39 f30 = x13 ⊕ x14x15 ⊕ x29x30 ⊕ x40

f31 = 1⊕ x14 ⊕ x15x16 ⊕ x30x31 ⊕ x41 f32 = 1⊕ x15 ⊕ x16x17 ⊕ x31x32 ⊕ x42

f33 = x16 ⊕ x17x18 ⊕ x32x33 ⊕ x43 f34 = x17 ⊕ x18x19 ⊕ x33x34 ⊕ x44

f35 = 1⊕ x18 ⊕ x19x20 ⊕ x34x35 ⊕ x45 f36 = x19 ⊕ x20x21 ⊕ x35x36 ⊕ x46

f37 = 1⊕ x20 ⊕ x21x22 ⊕ x36x37 ⊕ x47 f38 = x21 ⊕ x22x23 ⊕ x37x38 ⊕ x48

f39 = x22 ⊕ x23x24 ⊕ x38x39 ⊕ x49 f40 = 1⊕ x23 ⊕ x24x25 ⊕ x39x40 ⊕ x50

f41 = x24 ⊕ x25x26 ⊕ x40x41 ⊕ x51 f42 = x25 ⊕ x26x27 ⊕ x41x42 ⊕ x52

f43 = x26 ⊕ x27x28 ⊕ x42x43 ⊕ x53 f44 = x27 ⊕ x28x29 ⊕ x43x44 ⊕ x54

f45 = x28 ⊕ x29x30 ⊕ x44x45 ⊕ x55 f46 = 1⊕ x29 ⊕ x30x31 ⊕ x45x46 ⊕ x56

f47 = 1⊕ x30 ⊕ x31x32 ⊕ x46x47 ⊕ x57 f48 = x31 ⊕ x32x33 ⊕ x47x48 ⊕ x58

19



f49 = 1⊕ x32 ⊕ x33x34 ⊕ x48x49 ⊕ x59 f50 = x33 ⊕ x34x35 ⊕ x49x50 ⊕ x60

f51 = 1⊕ x34 ⊕ x35x36 ⊕ x50x51 ⊕ x61 f52 = 1⊕ x35 ⊕ x36x37 ⊕ x51x52 ⊕ x62

f53 = 1⊕ x36 ⊕ x37x38 ⊕ x52x53 ⊕ x63 f54 = x37 ⊕ x38x39 ⊕ x53x54 ⊕ x64

f55 = 1⊕ x38 ⊕ x39x40 ⊕ x54x55 ⊕ x65 f56 = x15 ⊕ x39 ⊕ x40x41 ⊕ x55x56 ⊕ x66

f57 = x16 ⊕ x40 ⊕ x41x42 ⊕ x56x57 ⊕ x67 f58 = 1⊕ x17 ⊕ x41 ⊕ x42x43 ⊕ x57x58 ⊕ x68

f59 = 1⊕ x18 ⊕ x42 ⊕ x43x44 ⊕ x58x59 ⊕ x69 f60 = 1⊕ x19 ⊕ x43 ⊕ x44x45 ⊕ x59x60 ⊕ x70

f61 = x20 ⊕ x44 ⊕ x45x46 ⊕ x60x61 ⊕ x71 f62 = x21 ⊕ x45 ⊕ x46x47 ⊕ x61x62 ⊕ x72

f63 = 1⊕ x22 ⊕ x46 ⊕ x47x48 ⊕ x62x63 ⊕ x73 f64 = 1⊕ x23 ⊕ x47 ⊕ x48x49 ⊕ x63x64 ⊕ x74

f65 = 1⊕ x24 ⊕ x48 ⊕ x49x50 ⊕ x64x65 ⊕ x75 f66 = x25 ⊕ x49 ⊕ x50x51 ⊕ x65x66 ⊕ x76

f67 = 1⊕ x26 ⊕ x50 ⊕ x51x52 ⊕ x66x67 ⊕ x77 f68 = x1x2 ⊕ x15 ⊕ x27 ⊕ x51 ⊕ x52x53 ⊕ x67x68 ⊕ x78

f69 = x1 ⊕ x2x3 ⊕ x16 ⊕ x28 ⊕ x52 ⊕ x53x54 ⊕ x68x69 ⊕ x79

f70 = x2 ⊕ x3x4 ⊕ x15 ⊕ x15x16 ⊕ x17 ⊕ x29 ⊕ x53 ⊕ x54x55 ⊕ x69x70 ⊕ x80

f71 = x3 ⊕ x4x5 ⊕ x12 ⊕ x15 ⊕ x16 ⊕ x16x17 ⊕ x17 ⊕ x18 ⊕ x30 ⊕ x54 ⊕ x55x56 ⊕ x70x71

f72 = x4 ⊕ x5x6 ⊕ x13 ⊕ x16 ⊕ x17x18 ⊕ x18 ⊕ x19 ⊕ x31 ⊕ x55 ⊕ x56x57 ⊕ x71x72

f73 = 1⊕ x5 ⊕ x6x7 ⊕ x14 ⊕ x17 ⊕ x18x19 ⊕ x20 ⊕ x32 ⊕ x56 ⊕ x57x58 ⊕ x72x73

f74 = x6 ⊕ x7x8 ⊕ x15 ⊕ x18 ⊕ x19x20 ⊕ x21 ⊕ x33 ⊕ x57 ⊕ x58x59 ⊕ x73x74

f75 = 1⊕ x7 ⊕ x8x9 ⊕ x16 ⊕ x19 ⊕ x20 ⊕ x20x21 ⊕ x22 ⊕ x34 ⊕ x58 ⊕ x59x60 ⊕ x74x75

f76 = 1⊕ x8 ⊕ x9x10 ⊕ x17 ⊕ x20 ⊕ x21x22 ⊕ x22 ⊕ x23 ⊕ x35 ⊕ x59 ⊕ x60x61 ⊕ x75x76

f77 = 1⊕ x9 ⊕ x10x11 ⊕ x18 ⊕ x21 ⊕ x22 ⊕ x22x23 ⊕ x24 ⊕ x36 ⊕ x60 ⊕ x61x62 ⊕ x76x77

f78 = x10 ⊕ x11x12 ⊕ x19 ⊕ x22 ⊕ x23 ⊕ x23x24 ⊕ x24 ⊕ x25 ⊕ x37 ⊕ x61 ⊕ x62x63 ⊕ x77x78

f79 = x11 ⊕ x12x13 ⊕ x20 ⊕ x23 ⊕ x24x25 ⊕ x25 ⊕ x26 ⊕ x38 ⊕ x62 ⊕ x63x64 ⊕ x78x79

f80 = x1x2 ⊕ x12 ⊕ x13x14 ⊕ x21 ⊕ x24 ⊕ x25x26 ⊕ x27 ⊕ x39 ⊕ x63 ⊕ x64x65 ⊕ x79x80

f81 = x1 ⊕ x1x2x26 ⊕ x2x3 ⊕ x12x80 ⊕ x13 ⊕ x14x15 ⊕ x22 ⊕ x25 ⊕ x26x27 ⊕ x28 ⊕ x40 ⊕ x64 ⊕ x65x66 ⊕ x80

f82 = x1x2 ⊕ x1x2x3 ⊕ x1x2x28 ⊕ x1x27 ⊕ x2 ⊕ x2x3x27 ⊕ x3x4 ⊕ x12x13 ⊕ x13 ⊕ x14 ⊕ x15x16

⊕ x23 ⊕ x26 ⊕ x27x28 ⊕ x29 ⊕ x41 ⊕ x65 ⊕ x66x67

f83 = 1⊕ x1x3x4 ⊕ x1x29 ⊕ x2x3 ⊕ x2x3x4 ⊕ x2x3x29 ⊕ x2x28 ⊕ x3 ⊕ x3x4x28 ⊕ x4x5 ⊕ x13x14 ⊕ x15

⊕ x16x17 ⊕ x24 ⊕ x27 ⊕ x28x29 ⊕ x30 ⊕ x42 ⊕ x66 ⊕ x67x68

f84 = x1 ⊕ x2x4x5 ⊕ x2x30 ⊕ x3x4 ⊕ x3x4x5 ⊕ x3x4x30 ⊕ x3x29 ⊕ x4 ⊕ x4x5x29 ⊕ x5x6 ⊕ x14 ⊕ x14x15

⊕ x16 ⊕ x17x18 ⊕ x25 ⊕ x28 ⊕ x29x30 ⊕ x31 ⊕ x43 ⊕ x67 ⊕ x68x69

f85 = 1⊕ x2 ⊕ x3 ⊕ x3x5x6 ⊕ x3x31 ⊕ x4x5x6 ⊕ x4x5x31 ⊕ x4x30 ⊕ x5 ⊕ x5x6x30 ⊕ x6x7 ⊕ x15 ⊕ x15x16

⊕ x16 ⊕ x17 ⊕ x18x19 ⊕ x26 ⊕ x29 ⊕ x30 ⊕ x30x31 ⊕ x32 ⊕ x44 ⊕ x68 ⊕ x69x70

20



It can be noticed that as the clocking progresses, the terms in the func-
tions start differing in these two examples but often the variable terms are
same and the functions only differ by constants. On solving the equations
with algorithm Implicantalgo we end up with a single implicant. Converting
the implicant to bit string we obtain K1 which completely matches the Key
that was chosen initially. These are obtained as follows

Implicant = x1x
′
2x3x

′
4x5x

′
6x7x8x

′
9x

′
10x

′
11x12x13x

′
14x

′
15

x′16x17x18x
′
19x20x21x

′
22x23x

′
24x

′
25x

′
26x

′
27

x28x29x30x31x32x
′
33x

′
34x35x

′
36x37x

′
38x39

x40x41x42x
′
43x

′
44x45x

′
46x47x

′
48x49x

′
50x

′
51

x′52x53x
′
54x55x

′
56x

′
57x

′
58x59x60x

′
61x62x

′
63

x′64x65x66x67x
′
68x

′
69x70x

′
71x72x

′
73x

′
74x

′
75

x76x77x78x79x
′
80

K1 = 101010110001100011011010000111110010101111001010100010100
01101001110010100011110

In the algorithm for solution of these equations we chose the first and then
the second functions as pivots to compute the starting implicants. These
functions are f1 and f2 and their implicants are

I(f1) = {x′68}
I(f2) = {x1x2x′68x69, x1x

′
2x

′
68x

′
69, x′1x2x

′
68x

′
69, x′1x

′
2x

′
68x

′
69}

Substituting x68 in the second set of implicants the threads are defined by
the four implicants of f2/(x′68) i.e. with x68 = 0. The time taken for the
formation of the equations was 0.25 sec. Time taken to solve the equations
and obtain the results was 179 min (which is about 3 hrs). The second
implicant x1x

′
2x

′
69 started the thread that converged to the solution. The

number of threads that were spawned for the above implicants were recorded
as 1744628, 1609617, 1665674, 1391531 respectively. However all except one
thread finally gave a solution. This computation was run using a single core
of Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz processor with 8 GB of
RAM.

5.3 Example with 200 bits of keystream, starting index 110

In this example a key stream after 110 bits of clocking was considered.
Equations corresponding to last 90 bits of keystream were considered for

21



solving for the key. The key, IV and output stream are as follows

Key = 111011101110011110001010011001110100011011011010100011011110
01100110010011110010

IV = 000110000111010010101001100101110001010101101110011010010101
00111011100011001001

Output = 100100100100111001000000110000111101001110011010111001011011
111001000101001000100100001111

The 90 functions generated for output stream indices 110+k, k = 1, 2, . . . , 90
for this IV are far too complex to show here hence we omit the functions.
The time taken to solve these the equations to get the key was 2883 min
which is close to 48 hrs.

5.4 Time performances on formation of equations

Following time performances for formation for different number of ANF
equations for Key and IV chosen as in the example of 165 bit ketstream
above were obtained. (The table bellow summarizes the average time taken
by a pure python implementation of Algorithm 6 using PyPy 5.1.2, with
GCC 5.3.1 compiler. (The average time is computed after taking multiple
trials with same parameters).

Number of equations Avg. time (sec)

165 0.24
200 0.52
300 4.24
350 136.69
355 216.93
360 309.17
362 403.42

For formation of 365 equations however, the code ran for more then 24 hrs.
and still did not end up with the equations. This is due to the fact that,
formation of equation is highly RAM consuming process. After forming
362 equations the total RAM on the machine (8 GB) is full. The system
starts filling up the swap memory. This inherently makes the process run
much slower. But after a point the swap is also full and the system becomes
non responsive, crashing the system. For this simulation above machine
with 14 GB swap memory was used. Finally it was observed in all these
Cryptanalysis experiments that while memory usage of the algorithm 6 was
very heavy, the CPU usage was very light. On the other hand the memory

22



usage of the solver algorithm Implicantalgo was very light but its CPU usage
was very high. Since the equation solver is an inherently parallel algorithm
the overall Boolean cryptanalysis can be scaled up well by parallelization.

The solver implementation is done in Python. For optimization we used
PyPy (https://pypy.org/), a compiler for the python language. This pro-
vides minimum of 2x speed up than python interpreter for the solving the
equations. The solver is found to be light on RAM usage and heavy on CPU
usage.

6 Conclusions

Cryptanalysis of Bivium is shown to be approachable by forming an alge-
braic model of the algorithm and solving the model equations by a Boolean
system solver which does not utilize a CNF representation as in SAT solvers
nor algebraic methods of algebraic cryptanalysis. Assuming a known key
stream for clock indices upto 362 instants and known IV , the equation
formation is found to be feasible by the sequential implementation of the
algorithms proposed in 403 sec. The equations were shown to be solvable by
sequential implementation of the Boolean solver algorithm in approximately
48 hrs for last 90 equations of a known key stream of 200 instants. This
forms category 2 class cryptanalysis of Bivium. The success of the Boolean
solver can also be attributed to sparsity of the equations. The full scale
cryptanalysis of category 3 for key stream length greater than 4 ∗ 177 was
not feasible by the current implementation since this implementation results
in a memory crash at length 365 key stream for equation formation. Hence
cryptanalysis in category 3 is not likely to be feasible without parallel imple-
mentation and optimization of implementation for equation formation. It
was observed by load measurement that the equation formation algorithm is
heavy on memory storage and very light on CPU utilization while the solver
algorithm is very light on memory usage and heavy on CPU usage. The
solver algorithm has a potential to scale up for solving more complex sys-
tems for category 3 cryptanalysis by parallel implementation. Similarly the
equation formation algorithm can be improved by distributing the memory
and parallel computation. The algebraic model based cryptanalysis requires
symbolic computation involving formal algebraic and Boolean operations on
unknowns hence equation formation algorithm may be more efficiently im-
plemented in functional programming languages. These aspects are a topic
of further research.

23



First author acknowledges support for this work from the project
15DITIR009 of the center NCETIS at IIT Bombay, India

References

[1] Gregory Bard. Algebraic cryptanalysis. Springer 2009.

[2] Dudek P., Kurkowski M., Srebrny M. (2012) Towards Parallel Direct
SAT-Based Cryptanalysis. In: Wyrzykowski R., Dongarra J., Kar-
czewski K., Waśniewski J. (eds) Parallel Processing and Applied Math-
ematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203.
Springer, Berlin, Heidelberg

[3] Tobias Eibach , Enrico Pilz , Gunnar Völkel, Attacking Bivium using
SAT solvers, Proceedings of the 11th international conference on The-
ory and applications of satisfiability testing, p.63-76, May 12-15, 2008,
Guangzhou, China

[4] Virendra Sule. Implicant based parallel all solution solver for Boolean
satisfiability. arXiv.org/cs.DS/1611.09590v3, 6 Feb 2017.

[5] Yun Tian, Gongliang Chen, Jianhua Li: On the Design of Trivium.
IACR Cryptology ePrint Archive 2009.

[6] McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with Min-
isat. Technical Report 2007/040, ECRYPT Stream Cipher Project 2007

[7] Kenneth Koon-Ho Wong, Gregory V. Bard. Improved Algebraic Crypt-
analysis of QUAD, Bivium and Trivium via Graph Partitioning on
Equation Systems, Information Security and Privacy: 15th Aus-
tralasian Conference, ACISP 2010

[8] McDonald, C., Charnes, C., Pieprzyk, J.: An Algebraic Analy-
sis of Trivium Ciphers based on the Boolean Satisfiability Problem,
https://eprint.iacr.org/2007/129.pdf

[9] H. Raddum: Cryptanalytic results on TRIVIUM. eSTREAM,
ECRYPT Stream Cipher Project, Report 2006/039, 2006.
http://www.ecrypt.eu.org/stream

24



[10] C. De Cannière, B. Preneel: TRIVIUM – a stream ci-
pher construction inspired by block cipher design principles. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/030, 2005.
http://www.ecrypt.eu.org/stream/trivium.html

[11] F. M. Brown. Boolean reasoning. The logic of Boolean equations. Dover,
2006.

[12] Sergiu Rudeanu. Boolean functions and equations. North Holland, Am-
sterdam, 1974.

[13] Youssef Hammadi and C. M. Wintersteiger. Seven challenges in parallel
SAT solving. Challenge paper AAAI 2012 Sub-Area spotlights track.
Association of Advancement of Artificial Intelligence.

25


