
1

Faster key compression for isogeny-based
cryptosystems

Gustavo H. M. Zanon, Marcos A. Simplicio Jr,
Geovandro C. C. F. Pereira, Javad Doliskani, Paulo S. L. M. Barreto

Abstract—Supersingular isogeny-based cryptography is one of the more recent families of post-quantum proposals. An interesting feature is the
comparatively low bandwidth occupation in key agreement protocols, which stems from the possibility of key compression. However, compression and
decompression introduce a significant overhead to the overall processing cost despite recent progress. In this paper we address the main processing
bottlenecks involved in key compression and decompression, and suggest substantial improvements for each of them. Some of our techniques may have
an independent interest for other, more conventional areas of elliptic curve cryptography as well.

Index Terms—Post-quantum cryptography, Supersingular elliptic curves, Public-key compression, Pohlig-Hellman algorithm, Diffie-Hellman key
exchange

F

1 Introduction

I N the Supersingular Isogeny Diffie-Hellman (SIDH) protocol
[1], the two parties need to exchange a representation of

their public keys each consisting of an elliptic curve E together
with two points P,Q on E. The curve E is supersingular and is
defined over an extension field Fp2 for a prime of the form p =
`m

A `
n
B − 1 where `A,`B are small primes, usually equal to 2 and

3, respectively. Originally, this exchange was done using triples
of the form (E, xP , xQ) where E : y2 = x3 + ax + b and xP , xQ
are the abscissas of P and Q. Two extra bits were also needed
to recover the correct y-coordinates. Thus, the public keys are
transferred using essentially the four elements a, b, xP , xQ ∈ Fp2

which require 8 log p bits.
A different representation of the SIDH public keys was

proposed by [2] that reduced the size to 4 log p bits. The idea
was to first represent the curve E using its j-invariant, which
is an element of Fp2 , rather than the coefficients a, b. This way
E is represented using 2 log p bits. The isomorphism class of an
elliptic curve is uniquely determined by its j-invariant. Second,
since the points P,Q are always in the torsion subgroups E[`m

A]
or E[`n

B], they can be represented using elements of Zt ⊕ Zt
where either t = `m

A or t = `n
B. Since the parameters are such

that `m
A ≈ `

n
B, a pair (t1, t2) ∈ Zt⊕Zt is represented using 2 log p

bits. This reduction of size of the public keys, however, comes
with a rather high computational overhead. The conversion
between the coefficients a, b of a curve E and its j-invariant is
done efficiently; the expensive part is the conversion between
elements of Zt ⊕Zt and the points P,Q. As reported in [2], the
compression phase for each party was slower than a full round
of uncompressed key exchange by a factor of more than 10
times.

• Gustavo Zanon and Marcos Simplicio Jr are with Escola Politécnica,
University of São Paulo.
E-mail: {gzanon,msimplicio}@larc.usp.br

• Geovandro Pereira and Javad Doliskani are with Institute for Quantum
Computing, University of Waterloo.
E-mail: {geovandro.pereira,javad.doliskani}@uwaterloo.ca

• Paulo Barreto is with University of Washington Tacoma.
E-mail: pbarreto@uw.edu

Costello et al. [3] further improved the key compression
scheme by reducing the public key sizes to 3.5 log p bits and
decreasing the runtime by almost an order of magnitude. With
this improvement, the key compression phase for each party
is as fast as one full round of uncompressed key exchange.
This certainly motivates the idea of including the compression
and decompression phases as default parts of SIDH. However,
compared to the currently deployed (classical) schemes, the
compression/decompression runtime is unfavourable, requiring
further research on speed-up techniques.

Our contributions: We propose new algorithms that
further decrease the runtime of SIDH compression and de-
compression. In contrast to previous works that have deployed
“known” algorithms to optimize the performance of key com-
pression, some of the algorithms presented here are new and of
broader interest than isogeny-based crypto. A summary of the
improvements follows.

• Constructing torsion bases. Assuming the usual param-
eters `A = 2,`B = 3, we improve basis generation for
both E[2m] and E[3n]. To generate a basis for the 2m-
torsion, we propose an algorithm dubbed entangled
basis generation. This algorithm is around 15.9× faster
than the usual basis generation presented in [3] and has
applications not only in key agreement but also in hash
functions based on isogenies [4]. For the 3n-torsion, we
observed that the naive algorithm is more efficient (both
in theory and practice) than the explicit 3-descent of [5]
used by Costello et al. [3].

• In order to further speed up the torsion basis construc-
tion during decompression, we introduce the shared El-
ligator technique. This technique allows for a 1.5−2.8×
faster ternary basis generation compared to the previous
plain generation technique from [3]. When the new en-
tangled basis generation is coupled with shared Elligator,
the improvements are even more significant attaining
a 29.9× speed up. For example, our implementation
achieves 0.83M cycles for a 2m-torsion basis generation,
breaking the 1M cycles barrier for the first time for this

2

purpose. The previous 2-descent technique has a cost of
23.77M cycles according to our experiments.

• Computing discrete logarithms. Inspired by De Feo et
al.’s optimal strategy method to compute smooth-
degree isogenies [6], we propose an algorithm to com-
pute discrete logarithms in the group µ`n given an
efficient method to compute discrete logarithms in µ`
where ` is a small prime, or more generally, an algorithm
to compute discrete logarithms in the group µ(`w)n/w

when w | n, given an efficient method to compute
discrete logarithms in µ`w . For instance, for w = 6 our
algorithm is 3.9× and 4.6× faster than the algorithm
used by [3] for the groups µ2372 and µ3239 respectively.

• We further describe how to compute Pohlig-Hellman in
the group µ`n from an adaptation of the optimal strategy
traversal, given an efficient method to compute discrete
logarithms in the group µ`w when w - n.

• Pairing computation. We exploit the special shapes of
pairs of points generated as entangled bases and the
existence of a subfield dismissed by [3] to optimize
the Tate pairing. We achieve a speedup of 1.4× for the
pairing phase over the algorithms used by [3] for both
binary and ternary pairings.

• We evaluate the impact of our improved key compres-
sion on the Supersingular Isogeny Key Encapsulation
(SIKE) scheme [7], a recently submitted candidate to
NIST’s call for standardization of post-quantum cryptog-
raphy.

• Other improvements. We introduce reverse basis decom-
position, which combined with the previous improve-
ments, allows for further optimizations of compression
and decompression. For example each party only needs
to compute 4 pairings rather than 5. Also, two expensive
cofactor multiplications by 3n are saved during Bob’s
compression, and one cofactor multiplication by 3n is
saved during Alice’s decompression.

We have implemented the above improvements on top of (the
then-latest version of) the Microsoft SIDH library [8]. The
library is designed for the specific prime p = 23723239 − 1 of
size log p = 751 bits.

Our software can be found at https://github.com/
geovandro/PQCrypto-SIDH/releases/tag/1.1.0.

1.1 Notations and conventions

For simplicity, we assume that finite field arithmetic is carried
out in a base field Fp and its quadratic extension Fp2 for a prime
p of form p := 2m · 3n − 1 for some m > 2 and n > 1, so that
p ≡ 3 (mod 4). The quadratic extension Fp2/Fp is represented
as Fp2 = Fp[i]/〈i2 + 1〉, and arithmetic closely mimics that of
the complex numbers.

All curves are represented using the Montgomery model
unless otherwise specified. We follow the convention of using
subscripts A and B for Alice and Bob, respectively. For example,
the secret isogeny φA is computed by Alice and her public
parameters are denoted by the points PA,QA and the curve
EA. Similarly, Bob’s isogeny is denoted by φB, and his public
parameters are PB,QB, EB.

We denote by i, c, m, s, and a the costs of inverting, cubing,
multiplying, squaring, and adding/subtracting/shifting in Fp,

respectively, and by I, C, M, S, and A the costs of the corre-
sponding operations in Fp2 . We disregard the cost of changing
a sign (for instance, when handling the conjugate of a field
element). The costs of the Fp2 operations relative to the costs of
operations in Fp can be approximated by 1I= 1i+2m+2s+1a,
1C= 2m+1s+4a, 1M= 3m+5a, 1S= 2m+3a, and 1A= 2a,
by using the finite-field analogues to well-known Viète multiple-
angle trigonometric identities [9, Formulas 5.68 and 5.69].

2 Reverse basis decomposition

In this section, we use reverse basis decomposition to speed
up both Alice’s and Bob’s key compression by saving one
pairing computation. Later in Section 3.1 we show that, when
combined with an entangled basis generation, this technique
will allow for avoiding two cofactor multiplications by 3n in
Bob’s key compression and one in Alice’s key decompression.
We prove our results from Alice’s point of view. The proofs for
Bob are similar.

The main previous idea to achieve key compression
[2], [3] is the following: instead of transmitting points
φA(PB),φA(QB) ∈ EA[3n], which are represented by two abscis-
sas in Fp2 and consume 4 log p bits, Alice computes a canonical
basis R1, R2 ∈ EA[3n] and expresses the expanded public key in
that basis as φA(PB) = a0R1 + b0R2 and φA(QB) = a1R1 + b1R2.
In matrix notation,

�

φA(PB)
φA(QB)

�

=
�

a0 b0
a1 b1

��

R1
R2

�

. (1)

This representation consists of four smaller integers
(a0, b0, a1, b1) ∈ (Z/3nZ)4 of total size 2 log p bits as suggested
in [2]. This was improved in [3] by transmitting only the triple
(a−1

0 b0, a−1
0 a1, a−1

0 b1) ∈ (Z/3nZ)3 or (b−1
0 a0, b−1

0 a1, b−1
0 b1) ∈

(Z/3nZ)3 depending on whether a0 or b0 is invertible. There-
fore, only (3/2) log p, plus one bit indicating the invertibility
of a0 or b0 modulo 3n, is needed. In the above mentioned
techniques, the coefficients a0, b0, a1, b1 can be computed using
five Tate pairings given by

g0 = e3n(R1, R2)
g1 = e3n(R1,φA(PB)) = e3n(R1, a0R1 + b0R2) = g b0

0

g2 = e3n(R1,φA(QB)) = e3n(R1, a1R1 + b1R2) = g b1
0

g3 = e3n(R2,φA(PB)) = e3n(R2, a0R1 + b0R2) = g−a0
0

g4 = e3n(R2,φA(QB)) = e3n(R2, a1R1 + b1R2) = g−a1
0 .

(2)

From this, Alice can recover a0, b0, a1, and b1 by solving discrete
logs in a multiplicative subgroup of smooth order 3n using the
Pohlig-Hellman algorithm.

Now since φA(PB) and φA(QB) also form a basis for EA[3n],
we see that the coefficient matrix in (1) is invertible modulo 3n.
So, we can write

�

R1
R2

�

=
�

c0 d0
c1 d1

��

φA(PB)
φA(QB)

�

(3)

https://github.com/geovandro/PQCrypto-SIDH/releases/tag/1.1.0
https://github.com/geovandro/PQCrypto-SIDH/releases/tag/1.1.0

3

by inverting the matrix in (1). Changing the roles of the bases
{R1, R2} and {φA(PB),φA(QB)} in (2) we get

h0 = e3n(φA(PB),φA(QB))
h1 = e3n(φA(PB), R1)
= e3n(φA(PB), c0φA(PB) + d0φA(QB)) = hd0

0
h2 = e3n(φA(PB), R2)
= e3n(φA(PB), c1φA(PB) + d1φA(QB)) = hd1

0
h3 = e3n(φA(QB), R1)
= e3n(φA(QB), c0φA(PB) + d0φA(QB)) = h−c0

0
h4 = e3n(φA(QB), R2)
= e3n(φA(QB), c1φA(PB) + d1φA(QB)) = h−c1

0 .

(4)

The first pairing in (4) is computed as h0 = e3n(PB, φ̂A ◦
φA(QB)) = e3n(PB, [degφA]QB) = e3n(PB,QB)2

m
, which only

depends on the public parameters PB,QB and m. Therefore,
it can be computed once and for all and be included in the
public parameters. In particular, only the pairings h1, h2, h3
and h4 need to be computed at runtime. The discrete logs
are computed as before using Pohlig-Hellman, yielding c0 =
− logh0

h3, d0 = logh0
h1, c1 = − logh0

h4 and d1 = logh0
h2. Next,

Alice inverts the computed coefficients matrix of (3) to obtain
the coefficient matrix of (1). Explicitly,

�

a0 b0
a1 b1

�

=
1
D

�

d1 −d0
−c1 c0

�

where D = c0d1 − c1d0. Notice that the extra inversion of D−1

does not need to be carried out when using the technique in
[3]. More precisely, since at least one of d0 and d1, say d1, is
invertible modulo 3n, Alice transmits the tuple

(a−1
0 b0, a−1

0 a1, a−1
0 b1)

= (−d−1
1 DD−1d0,−d−1

1 DD−1c1, d−1
1 DD−1c0)

= (−d−1
1 d0,−d−1

1 c1, d−1
1 c0)

which is independent of D.

3 Entangled basis generation

We now introduce a technique to create a complete basis of
the 2m-torsion from a single (albeit specific) point of order
2m. In other words, the cost involved is essentially that of
creating a generator for a single subgroup of order 2m in E[2m]:
a generator for the linearly independent subgroup becomes
immediately available almost for free. Consequently, the linear
independence test consisting of two scalar multiplications by
2m−1 can be avoided. This is akin to distortion maps even
though none is typically available for the curves involved in
SIDH. We call the resulting bases “entangled” by analogy with
the quantum phenomenon whereby the properties of one entity
are entirely determined by the properties of another entity
despite their separation1.

In order to build an entangled basis 〈P,Q〉 = E[2m] for E :
y2 = x3+Ax2+ x , we somewhat “subvert” the original Elligator
2 formulas [10] under a different motivation than encoding
points to random strings: obtaining two linearly independent
points on E at once. Herein the value t := u0r, for u0 ∈ Fp2 \Fp
and r ∈ F∗p s.t. u := u2

0 ∈ Fp2 \Fp, will be a square rather than a
non-square. The new construction is proved in Theorem 1.

1. We stress, however, that here the naming is purely analogous: there is
no quantum process involved in the construction.

Remark. As in [10] we assume that A 6= 0 in the Montgomery
model. The case A= 0 corresponds to the curve E : y2 = x3+ x
which is used as the initial curve in most of the implemen-
tations. This does not pose a problem in our setting. This is
because first, runtime basis generation does not happen for the
initial curve E, and second, the probability that E is encountered
in the middle of the key exchange is negligible. So the parties
can avoid this issue by checking the j-invariant of their public
keys.

Theorem 1. Given a Montgomery supersingular elliptic curve
EA/Fp2 : y2 = x(x2 +Ax + 1) where p = 2m · 3n − 1, #EA(Fp2) =
(p + 1)2, and A 6= 0, let t ∈ Fp2 be a field element such that
t2 ∈ Fp2 \ Fp, and let x1 := −A/(1 + t2) be a quadratic non-
residue that defines the abscissa of a point P1 ∈ EA(Fp2). Then
x2 := −x1 − A defines the abscissa of another point P2 ∈ EA(Fp2)
such that 〈[h]P1, [h]P2〉 = EA[2m], where h := 3n is the cofactor
of the 2m-torsion group.

Proof. Since x2 = t2 x1, both abscissas are quadratic non-
residues and by [11, Chapter 1 (§4), Theorem 4.1] the two
points P1 = (x1, y1), P2 = (t2 x1, t y1), with x1 + t2 x1 + A = 0,
are not in [2]EA. So the points [h]P1 and [h]P2 are full 2m-
torsion points. To prove that h · P1, h · P2 generate EA[2m] we
have to prove that [h · 2m−1](P1 − P2) 6= 0, or equivalently that
(u, v) = P1 + (−P2) 6∈ [2]EA.

By the addition law [12, Algorithm 2.3] on EA we get

λ=
y2 − y1

x2 − x1
=
−t y1 − y1

t2 x1 − x1
=
−(t + 1)y1

(t2 − 1)x1
=

−y1

(t − 1)x1
,

µ=
y1 x2 − y2 x1

x2 − x1
=

t(t + 1)y1 x1

(t + 1)(t − 1)x1
= −λt x1,

u= λ2 − A− x1 − x2 = λ
2,

v = −λu−µ= −λu− (−λt x1) = −λ(u− t x1).

From the above equalities we see that v2 = λ2(u − t x1)2 =
u(u2 + Au + 1) and hence u2 + Au + 1 = (u − t x1)2. Let w :=
u − t x1 =

p
u2 + Au+ 1. Then 1 − (u − w)2 = 1 − t2 x2

1 = x2
1 +

Ax1 + 1, which is a quadratic non-residue because x1 is itself a
quadratic non-residue while their product is obviously a square,
x1(x2

1 +Ax1+1) = y2
1 . A straightforward calculation shows that

(1−(u+w)2)(1−(u−w)2) = u2(A2−4). But A2−4 is a quadratic
residue since EA has the full 2-torsion over Fp2 . Therefore, both
(u ± w)2 − 1 have the same quadratic residuosity, that is, they
are both quadratic non-residues by the above.

Now2 assume by contradiction that P1−P2 ∈ [2]EA, i.e. there
is a point (x , y) ∈ EA(Fp2) such that [2](x , y) = (u, v). From the
doubling formula on EA we get

u=
(x2 − 1)2

4x(x2 + Ax + 1)
.

From this we get a quartic equation (x2−1)2−4ux(x2+Ax+1) =
0. Since x 6= 0, we can divide both sides by x2 and rearrange
some terms to get

�

x +
1
x

�2

− 4u
�

x +
1
x

�

− 4(Au+ 1) = 0.

From this we obtain

x +
1
x
=

4u±
p

16(u2 + Au+ 1)
2

=
4u± 4w

2
= 2(u±w).

2. This part closely follows the idea behind [11, Chapter 1 (§4), Theorem
4.1].

4

In turn, from this we get x2 − 2(u ± w)x + 1 = 0. Again since
x ∈ Fp2 , the discriminant 4(u ± w)2 − 4, and hence at least
one of the (u ± w)2 − 1 must be a quadratic residue. But this
contradicts the earlier observation that (u ± w)2 − 1 are both
quadratic non-residues. Therefore P1 − P2 6∈ [2]E, yielding the
claim that 〈[h]P1, [h]P2〉= EA[2m].

In practice, one can efficiently implement entangled basis
generation as follows. Let u0 ∈ Fp2\Fp such that u := u2

0 ∈
Fp2\Fp, e.g. u0 = 1+ i and u= 2i. Define two separate tables of
pairs (r, v) with v := 1/(1+ ur2):

• table T1 contains pairs (r, v) in which v is quadratic non-
residue,

• table T2 contains pairs (r, v) in which v is quadratic
residue.

Performing one quadraticity test on A, only once per curve, and
restricting table lookup to the table of opposite quadraticity
ensures that x := −Av is a non-square. Repeating quadraticity
tests to ensure that a corresponding y exists, and completing
one square root extraction in Fp2 to obtain y , one gets 2 points
whose orders are multiples of 2m at once. This is detailed in
Algorithm 3.1.

Let us compare the number of operations required by the
entangled basis algorithm with the plain basis generation algo-
rithm used in Costello et al. [3].
Entangled basis: testing the quadraticity of A takes (m + n +

1)s + nm. The main loop runs twice on average at a cost
2(m+ n+ 1)s+ (2n+ 22)m. The last stage is to complete
a square root and costs (m+ n− 1)s+ (n+ 1)m+ 1i. The
total cost of the algorithm is then

(4m+ 4n+ 2)s+ (4n+ 23)m+ 1i.

Plain basis: To get the abscissa of a point on the curve takes
(2n+22)m+2(m+n+1)s. Clearing the cofactor 3n requires
n point triplings at a cost 32nm. We also need to compute
m− 1 point doublings for linear independence check that
is required in the next steps. So obtaining the first basis
point costs (34n+ 16m+ 6)m+ 2(m+ n+ 1)s. The second
basis point is obtained exactly the same way, except we
also need a linear independence check. This is done in loop
that runs twice on average. The expected cost of obtaining
the second point is then twice the cost of obtaining the
first point including the the m− 1 doublings step. The last
stage of the algorithm is to recover the y coordinates of the
points which costs (4m + 4n)s + (4n + 36)m + 2i. Adding
all these, the total cost of the algorithm is

(10m+ 10n+ 6)s+ (48m+ 106n+ 54)m+ 2i.

For the values m = 372 and n = 239, and assuming s = 0.8m
and i= 100m, we get the performance ratio of 15.92.

3.1 Avoiding cofactor multiplication

Combining reverse basis decomposition and entangled basis
generation enables us to further avoid two scalar multiplica-
tions by the large cofactor 3n during Bob’s public key com-
pression, and one during Alice’s decompression. First notice
that Algorithm 3.1 already incorporates the mentioned opti-
mization, i.e. the output points S1 and S2 satisfy (R1, R2) :=
([3n]S1, [3n]S2) such that 〈R1, R2〉 = E[2m]. This is only possi-
ble because in reverse basis decomposition the Tate pairings

Algorithm 3.1 Entangled basis generation for E[2m](Fp2) :
y2 = x3 + Ax2 + x

INPUT: A = a + bi ∈ Fp2 ; u0 ∈ Fp2 : u = u2
0 ∈ Fp2\Fp; tables

T1, T2 of pairs (r ∈ Fp, v = 1/(1+ ur2) ∈ Fp2) of QNR and
QR.

OUTPUT: {S1, S2} such that 〈[3n]S1, [3n]S2〉= E[2m](Fp2).

1: z← a2 + b2, s← z(p+1)/4

2: T ← (s2 ?
= z) T1 : T2 // select proper table by testing

quadraticity of A
3: repeat
4: lookup next entry (r, v) from T
5: x ←−A · v // NB: x nonsquare
6: t ← x · (x2+A · x +1) // test quadraticity of t = c+ di
7: z← c2 + d2, s← z(p+1)/4

8: until s2 = z // compute y ←
p

x3 + A · x2 + x
9: z← (c + s)/2, α← z(p+1)/4, β ← d · (2α)−1

10: y ← (α2 ?
= z) α+ β i : −β −αi // compute basis

11: return S1← (x , y), S2← (ur2 x , u0r y)

hi take the points Si in their second argument which does
not need to be necessarily cofactor-reduced. In this case, for
R1 = c0φB(PA) + d0φB(QA) and R2 = c1φB(PA) + d1φB(QA), the
respective pairing computations are

k0 = e2m(φB(PA),φB(QA))
k1 = e2m(φB(PA), S1)
= e2m(φB(PA), [3−n]R1) = k3−nd0

0
k2 = e2m(φB(PA), S2)
= e2m(φB(PA), [3−n]R2) = k3−nd1

0
k3 = e2m(φB(QA), S1)
= e2m(φB(QA), [3−n]R1) = k−3−nc0

0
k4 = e2m(φB(QA), S2)
= e2m(φB(QA), [3−n]R2) = h−3−nc1

0 .

Thus, the discrete logarithms are the desired ones up to a factor
3−n, and given by ĉ0 = − logk0

k3 = 3−nc0, d̂0 = logk0
k1 = 3−nd0,

ĉ1 = − logk0
k4 = 3−nc1, and d̂1 = logk0

k2 = 3−nd1. Notice
that 3−n mod 2m must be odd which implies that ĉ0 or d̂0
is invertible if and only if c0 or d0 is invertible. Similar to
the situation in Section 2, when using the compression with
only 3 coefficients as in [3] Bob transmits exactly the original
coefficients: assuming ĉ0 is invertible, then

(ĉ−1
0 d̂0, ĉ−1

0 ĉ1, ĉ−1
0 d̂1)

= (c−1
0 3n3−nd0, c−1

0 3n3−nc1, c−1
0 3n3−nd1)

= (c−1
0 d0, c−1

0 c1, c−1
0 d1)

The derivation when d0 is invertible is analogous.
To decompress Bob’s public key, Alice needs to perform

a single cofactor multiplication by 3n as follows. Assume
that a0 is invertible modulo 2m so that Alice receives the
triple (a−1

0 b0, a−1
0 a1, a−1

0 b1). She needs to compute the kernel
ker(φAB) = 〈φB(PA) + skA · φB(QA)〉 which can be written
as 〈a0R1 + b0R2 + skA · (a1R1 + b1R2)〉 = 〈(a0 + skAa1)R1 +
(b0 + skA b1)R2〉 As noted in [3], one computes ker(φAB) as
a−1

0 ker(φAB) = 〈(1+skAa−1
0 a1)R1+(a−1

0 b0+skAa−1
0 b1)R2〉, which

can be done with one scalar multiplication and one point
addition by writing ker(φAB) = 〈R1 + (1+ skAa−1

0 a1)−1(a−1
0 b0 +

skAa−1
0 b1)R2〉. Now if Alice uses Algorithm 3.1, she obtains an

entangled basis {S1, S2} such that (R1, R2) = ([3n]S1, [3n]S2).

5

She can then compute T = 〈S1 + (1 + skAa−1
0 a1)−1(a−1

0 b0 +
skAa−1

0 b1)S2 first and then recover the correct kernel ker(φAB) =
〈[3n]T 〉 by performing one cofactor scalar multiplication.

4 On basis generation for E[3n]
The entangled basis approach introduced in Section 3 does not
immediately generalize to the ternary case. There is no clear
way to simultaneously choose two linearly independent points.
As a consequence, to generate bases for E[3n] we adopted
the naïve approach of randomly picking candidate points and
testing them for the correct order and linear independence.

Costello et al. suggest the use of a 3-descent approach based
on a result by Schaefer and Stoll [5], and claim significant
performance gains. However, we were unable to reproduce and
thus verify their claims. On the contrary, the naïve method
is observed to be always faster than 3-descent, with a cost
ratio Cnaïve/C3-descent ≈ 0.89 that runs against their claim. The
following detailed analysis appears to corroborate this observed
cost ratio.

In Costello et al.’s 3-descent approach, the claimed gains
only apply to testing whether a point is in E \[3]E. We note that
the cost of generating candidates for testing has to be taken into
account as well.

Thus, on the one hand, naïve testing involves:

• one Elligator construction at a cost L per attempt,
• m doublings at a cost D each per attempt,
• n− 1 triplings at a cost T each per attempt,
• 9/8 attempts on average at a cost P each to get a point

of right order,
• 4/3 point constructions and checks at a cost C each on

average to get a second, linearly independent point.

Hence the naïve cost to get (the x-coordinates of) the
base points is (1+ 4/3)(9/8)P+ (4/3)C, complemented by two
curve equation solvings at a cost E each to complete the point
coordinates, or (1+ 4/3)(9/8)P+ (4/3)C+ 2E overall.

Estimating L= (0.8m+1.8n+9.8)m+20a, D= 13m+29a,
T= 27m+61a, C= 2(3m+5a), E= 1i+(1.6m+3.6n+27.6)m+
46a, and noticing that P= L+mD+(n−1)T, we conclude that
the naïve cost is Cnaïve ≈ 2i + (39.425m + 82.8n + 18.05)m +
(76.125m+ 160.125n− 3.708)a.

On the other hand, the 3-descent method initially involves:

• one Elligator construction at a cost L,
• m doublings at a cost D,
• n− 1 triplings at a cost T,
• one curve equation solving at a cost E,
• one filter function construction at a cost F to get a point

P3 of order 3 and possibly the first base point.

Note that a more expensive doubling formula at a cost D′ =
16m + 34a (instead of D = 13m + 29a) was employed by [3]
which takes the curve coeficients in projective form. This pro-
jective formula is useful for computing projective 2m-isogenies
but we note that it is not necessary in the context of basis
generation and one can simply stick to the usual more efficient
Montgomery doubling [13]. We consider the faster version in
our estimates.

The 3-descent method will require (with probability 1/9)
an extra, filtered point construction at a cost Z to get the first
base point, plus 4/3 filtered point constructions and checks on

average (since the probability of check success is 3/4) to get
the second base point, and finally two curve equation solvings.

Estimating F = 1i + 12.6m + 29a, Z = 3i + (17.8m +
37.8n+ 39.3)m+ (29m+ 61n+ 57.5)a, and keeping the same
remaining estimates as before, we conclude that the 3-descent
cost is C3-descent := (3(4/3) + 3(1/9) + 4)i+ ((17.8m+ 37.8n+
45.3)(4/3) + (17.8m + 37.8n + 39.3)(1/9) + 31.2m + 39.6n +
78.2)m+((29m+61n+67.5)(4/3)+(29m+61n+57.5)(1/9)+
29m+ 61n+ 126)a.

This yields a cost ratioCnaïve/C3-descent ≈ 0.89, which is what
we observe experimentally. This runs against the claim in [3] on
“the significant speed advantage that is obtained by the use of
the result of Schaefer and Stoll [i.e. the 3-descent method]:” the
naïve method is observed to be always faster than 3-descent.

4.1 Shared Elligator and faster decompression

Although shown to be faster than 3-descent in the previous
section, the naïve approach for basis generation of E[3n] incurs
a substantial cost that seems unavoidable at key compression.
Interestingly, the knowledge gained in the process (in the form
of the actual counters r that specify the points in the Elligator
2 construction) could be then shared between Alice and Bob,
speeding up the latter’s work at key decompression. For a very
modest increase in Alice’s public key size (for instance, a single
extra byte for each of the two basis points would provide space
that is only exceeded with probability well below 2−400), Bob’s
E[3n] basis generation would get about 32% faster, and his full
decompression of Alice’s key would become about 24% faster.

As discussed in Section 4, naïve E[3n] basis generation
requires 9/8 construction attempts on average to get each point
of right order individually, and the second point construction
and testing has to be repeated 4/3 times on average to ensure
the pair constitutes a basis. This means that, if the cost of
generating each point candidate is P, the actual expected cost
to obtain a basis is roughly (21/8)P+(4/3)C+2E . In case Alice
shares the actual Elligator 2 counters that lead to a basis, the
cost for Bob would become 2P+C+ 2E since both the Elligator
computation and the linear independence test would become
deterministic. This represents a speed up of about 1.47× (or
32% faster) on basis generation alone and 1.4× for the overall
decompression compared to the 3-descent method suggested in
[3].

Remark. Notice that if Bob trusts Alice, i.e., the Alice’s pub-
lic key is authenticated, then n − 1 triplings can be avoided
since linear independence test is not necessary (the Elligator
counters are supposed to give a genuine basis). In this case the
improvement is more drastic, the cost to generate a basis for
E[3n] becomes 2P′ + 2E where P′ = L+mD which represents a
speedup of 2.86× over the previous 3-descent approach. In this
case, the task of decompression would get about 2× faster.

Remark. Note that the public key encryption SIKE.PKE and the
key encapsulation mechanism SIKE.KEM use slightly different
settings with respect to processing the uncompressed public
key. However, this does not impact the compression and de-
compression process. More precisely, the public key is always
compressed in the key generation function and decompressed
before the key encapsulation function. Also, since the counter
in the shared Elligator is computed from public information, it
does not impact the security of the above two protocols.

6

Moreover, the Elligator 2 counters tend to be very small.
Specifically, if the probability that a point candidate is rejected
at a certain attempt is 1/t, then the expected number of
attempts is t/(t − 1) and the probability that the number of
attempts exceeds N is the probability of failing N times, i.e.,
t−N . For the first point, t = 9 (only one of the 9 points of 3-
torsion causes rejection when computing [3n−1]R), while for the
second point t = 3 (because the probability of a candidate being
accepted at a certain attempt is (8/9)(3/4) = 2/3, and hence
the probability of rejection is 1/3). Therefore, for the first point
the expected number of attempts is 9/8 and the probability
that the number of attempts exceeds N is 9−N , while for the
second point the expected number of attempts is 3/2 and the
probability that the number of attempts exceeds N is 3−N . If we
use one byte for each counter (interpreted as an index to a table
of squares or a table of non-squares), the probabilities that the
available counter space (N = 255) is exceeded are a whooping
2−811.5 and 2−404.2 respectively. This means that Alice needs to
transmit just two more bytes with her key.

This modest increase in Alice’s key size is compensated by
worthwhile speed-ups for Bob. For m= 372 and n= 239, Alice’s
extended key size becomes 330 bytes rather than 328 (see Table
3 in [3]), matching Bob’s plain key size. While the 3n-torsion
generation time for Alice is that indicated on Table 5, Bob’s
time decreases to about 13.63 Mcycles yielding a ratio 1.47
rather than 1.15. Furthermore, Alice’s compression ratio to the
previous state of the art stays the same as well, but Bob’s ratio
improves from 1.09 to 1.30.

4.2 The Shared Elligator on Entangled Bases

Interestingly, the binary entangled basis generation technique
not only allows for a shared Elligator decompression but in
addition requires less extra bandwidth compared to the ternary
case, i.e., 1 instead of 2 extra bytes. In addition, the result-
ing 50% faster decompression is considerably more noticeable
compared to the ternary counterpart. The reason for this bigger
improvement is that the Step 1 of the entangled basis Algorithm
3.1 consisting of a relatively expensive quadraticity test can be
avoided. In this case, Bob who is responsible for compressing
his key in the 2m-torsion can transmit the quadraticity of A
through a single bit b. Since Bob’s public key size is not an
exact multiple of 32 bytes for a 751-bit prime, a few unused
bits in the byte-oriented representation of the key are available
and one of those can be used for transmitting this information
about A.

The other information Bob can share with Alice is the
counter r computed in Step 4 that leads to a point on the curve
for the first candidate. This can be done with one single extra
byte. The probability of exceeding one byte is the probability of
the first abscissa failing to be on the curve N = 255 times, i.e.,
2−N = 2−255. Moreover, because the second point on an entan-
gled basis is determined by the first point, no second extra byte
is necessary in this case. Algorithm 4.1 describes the entangled
basis generation with shared Elligator for decompression.

Entangled basis + shared Elligator: The resulting operation
count for the entangled basis generation coupled with
shared Elligator involves only one single iteration of the
loop in Step 3 of Algorithm 3.1 amounting to (m + n +
1)s+(n+9)m and the final part (Steps 8 to 10) amounting

Algorithm 4.1 Entangled basis generation coupled with shared
Elligator for E[2m](Fp2) : y2 = x3 + Ax2 + x

INPUT: A = a + bi ∈ Fp2 ; u0 ∈ Fp2 : u = u2
0 ∈ Fp2\Fp; tables

T1, T2 of pairs (r ∈ Fp, v = 1/(1+ ur2) ∈ Fp2) of QNR and
QR. A bit bi t for A’s quadraticity and r ∈ Fp.

OUTPUT: {S1, S2} such that 〈[3n]S1, [3n]S2〉= E[2m](Fp2).

1: T ← (bi t
?
= 1) T1 : T2 // select proper table according to

A’s quadraticity
2: x ←−A · T[r] // NB: x nonsquare
3: t ← x · (x2 + A · x + 1) // test quadraticity of t = c + di
4: z← c2 + d2, s← z(p+1)/4

5: if s2 6= z then
6: Abort // incorrect parameters (b, r) received
7: end if // compute y ←

p

x3 + A · x2 + x
8: z← (c + s)/2, α← z(p+1)/4, β ← d · (2α)−1

9: y ← (α2 ?
= z) α+ β i : −β −αi // compute basis

10: return S1← (x , y), S2← (ur2 x , u0r y)

to (m+ n− 1)s+ (n+ 6)m+ i. Adding up the above costs,
the new basis generation will cost

2(m+ n)s+ (2n+ 15)m+ i.

Assuming i = 100m and s = 0.8m, this represents a speed
up of 29.9× faster basis generation compared to the plain basis
generation described in Section 3.1.

5 Pairing computation

The pairing computation techniques by Costello et al. [3] are
based on curves in a variant of the Montgomery model, with
projective coordinates (X 2, X Z , Z2, Y Z), which turned out to be
the best setting among several models they assessed. We will
argue that the older and today less favoured short Weierstraß
model leads to more efficient pairing algorithms.

Interestingly, Costello et al. dismiss the technique of denom-
inator elimination [14] and keep numerators and denominators
separate during pairing evaluation. We point out, however,
that pairing values are defined over Fp2 and the inverse of
a field element a + bi is (a − bi)/(a2 + b2). Hence, rather
than keeping a separate denominator a + bi one can simply
and immediately multiply the pairing value by the conjugate
a − bi instead; the result only differs from the original one by
a denominator consisting of the norm a2 + b2 ∈ Fp, and this
denominator does get eliminated by the final exponentiation
in the reduced Tate pairing computation. This leaves the cost
of pairing computation unchanged, but it simplifies the imple-
mentation as it entirely does away with separate numerators
and denominators.

Let r ≥ 0 be the pairing order. For embedding degree k = 1,
r | Φ1(p2) = p2 − 1 = 2m · 3n · (p − 1), and by construction r
is always either 2m or 3n. We will be interested in computing
reduced Tate pairings of order r, whose first argument must
have that order as well. In the case of compressed SIDH keys,
pairings of the following forms are computed together (recall
that a fifth pairing e0 := er(P,Q) = er(P0,Q0)degφ is readily
available through precomputation):

e1 := er(P, R1), e2 := er(P, R2),
e3 := er(Q, R1), e4 := er(Q, R2)

7

where the first two pairings share the same first argument P,
and next two pairings share the same first argument Q.

From now on, we will split the discussion into two cases:
binary-order pairings, r = 2m, and ternary-order pairings, r =
3n. The curve equation in the short Weierstraß model is EW :
v2 = u3 + au + b. Given a Montgomery curve EM : y2 = x3 +
Ax2 + x , the corresponding short Weierstraß model is obtained
via a = 1− A2/3, b = (2A3 − 9A)/27, and a point (x , y) ∈ EM
maps to a point (u, v) ∈ EW by setting u = x + A/3, v = y . For
convenience, we extend Jacobian coordinates [X : Y : Z] with
a fourth component, [X : Y : Z : T] with T = Z2.

5.1 Binary-order pairings

The computation of the reduced Tate pairing er(P,Q) of order
r = 2m proceeds as described in Algorithm 5.1, which requires
doubling a point V ∈ E(Fp2). The doubling formulas in Jacobian
coordinates have a single exception, that occurs when the point
being doubled has order 2. That is, when y = 0, since the
angular coefficient of the tangent to the curve at that point
becomes undefined. That exception, however, can only occur
deterministically in the scenario contemplated here, namely at
the last step of the Miller loop; since by definition the first
pairing argument is always a point of order 2m, chosen by the
very entity that is computing the pairing.

Besides, the difference in runtime reveals no private infor-
mation, since the pairing arguments are either already public
for being part of a conventional torsion basis, or else are about
to be made public for being part of a public key.

Algorithm 5.1 Tate2(P,Q): basic reduced Tate pairing of order
r = 2m:
INPUT: points P,Q.
OUTPUT: er(P,Q).

1: f ← 1, V ← P
2: for i← 0 to m− 1 do
3: f ← f 2 · gV,V (Q)/g[2]V (Q), V ← [2]V
4: end for
5: return er(P,Q)← f (p

2−1)/r

In Algorithm 5.1, the function gU ,V is defined to be the lines
through U and V . If U = V then gU ,V is the tangent at U , and
if either U =∞ or V =∞ then gU ,V is the vertical line at
the other point. Also we denote by gU the value gU ,−U . The
most efficient doubling algorithm for (either plain or modified)
Jacobian coordinates appears to be one devised by Bernstein
and Lange [15], which maintains an additional coordinate U :=
aZ4. However, that algorithm does not directly compute the
value of T = Z2 that will be needed for pairing calculation. We
will thus modify the Bernstein-Lange formulas so that the cost
of recovering T is less than that of squaring Z .

Let V = [X : Y : Z : U : T] and [2]V = [X ′ : Y ′ : Z ′ : U ′ :
T ′] in the extended coordinate system defined above. Then,
initializing T ← Z2 and U ← aT 2:

X2← X 2; Y2← Y 2; W ← 2Y2; W2←W 2;

M ← 3X2 + U; S← (X +W)2 − X2 −W2;

X ′← M2 − 2S; Y ′← M · (S − X ′)− 2W2;

Z ′← (Y + Z)2 − Y2 − T ; T ′← (Z ′)2; U ′← 4W2 · U;

The cost is 2M+ 7S+ 16A = 20m+ 63a. This is only 1m+ 5a
more than the cost 3M + 5S + 14A = 19m + 58a of doubling
without yielding Z2 as a by-product.

This algorithm yields the intermediate values λN := M ,
λD := Z ′ = 2Y Z , W , and Y2, besides the point coordinates.
These values, together with L ← Z ′ · T , R ← Z ′ · T̄ , are useful
in the calculation of a function equivalent to gV,V (Q)/g[2]V (Q),
namely g̃2(V,Q) := (M · (T · x − X) +W − L · y)·R·(T ′ · x−X ′)−

when V 6= O and [2]V 6= O (i.e. Z 6= 0 and Z ′ 6= 0),
g̃2(V,Q) := (T · x − X) · T̄ when V = −V 6= O (i.e. Z 6= 0 and
Z ′ = 0), or simply g̃2(V,Q) := 1 when Z = O. Denominators in
the base field, namely |Z2 · (T ′ · x − X ′)|2 ∈ Fp in the first case
and |Z2|2 ∈ Fp in the second case, are eliminated.

Since the scenario where the pairing computations take
place only involve bases of the 2m-torsion group, and hence
points of full order 2m, the exceptional formula is indeed never
invoked until the end of Miller’s loop. The difference in process-
ing time is irrelevant for security here, since the computations
only involve information that is meant to be public.

However, one can further optimize the computation of (a
function equivalent to) g̃2(V,Q). First, the expression (T ′·x−X ′)
that occurs at a certain step will play the role of (T · x − X) at
the next step, so one can simply store it from one step to the
next and thus save 1M. Second, one can show that all R and T̄
factors that appear in the definition of g̃2(V,Q) are irrelevant to
the pairing value, and can be omitted. We provide the details in
the Appendix B.

Consequently, initializing h← T · x − X before Miller’s loop
at a cost of 1M per pairing, the line function value g can be
evaluated as

g ← M · h+W − L · y; h← T ′ · x − X ′; g ← g · h̄

at a cost of 4M + 3A = 12m + 26a per step of Miller’s loop.
The cost of computing L ← Z ′ · T alone is 1M = 3m+ 5a. This
completes the construction of a line function ĝ2(V,Q) equivalent
to g̃2(V,Q).

The updating of f at each step as f ← f 2 · ĝ2(V,Q) incurs
2m + 3a to compute the complex square f 2 plus 3m + 5a to
compute f 2 · ĝ2(V,Q) from f 2 and ĝ2(V,Q), totaling 5m + 8a.
Therefore, the proposed variant has the following overall cost
per step:

• (shared) cost of point doubling and line function con-
struction: 20m+ 63a+ 3m+ 5a= 23m+ 68a;

• (individual) cost of line function evaluation and accu-
mulation: 12m+ 26a+ 5m+ 8a= 17m+ 34a.

By comparison, the Costello et al. [3] technique has the follow-
ing costs:

• (shared) cost of point doubling and line function con-
struction: 9M+ 5S+ 1s+ 7a= 37m+ 1s+ 67a;

• (individual) cost of line function evaluation and accu-
mulation: 5M+ 2S+ 2s+ 1a= 19m+ 2s+ 32a;

Therefore in the present case, where one has to compute
pairs of pairings that share the same first argument, our tech-
nique costs a fraction ≈ (23+2 ·17)/(37.8+2 ·20.6) = 57/79≈
72% of the Costello et al. method, assuming 1s ≈ 0.8m and
essentially ignoring a.

8

TABLE 1: Cost of the binary Miller loop (ratio assumes s≈ 0.8m
and ignores a).

pairings Costello et al. ours ratio

1 56m+ 3s+ 99a 40m+ 102a ≈ 0.685

2 75m+ 5s+ 131a 57m+ 136a ≈ 0.722

2† 75m+ 5s+ 131a 55m+ 126a ≈ 0.696
† Simultaneous pairings on entangled bases

5.1.1 Pairings on an entangled basis

If two pairings e(P, R1), e(P, R2) sharing the same first argu-
ment P are computed on an entangled basis R1 = (x1, y1),
R2 = (x2, y2) with x2 = t2 · x1, y2 = t · y1, one can slightly im-
prove the line function evaluation and accumulation, exploiting
the fact that multiplication by carefully chosen t or t2 given
the values of T ′ · x1 or L · y1 is less expensive than the full
multiplications T ′ · x2 or L · y2 for generic (x2, y2).

Specifically, for t = (1+ i)r and t2 = 2ir2 with some small
r ∈ Fp, the cost of a dedicated implementation of simultaneous
pairings on entangled bases drops by 2m+ 10a, thus becoming
only 55m + 126a, or less than 70% the cost of the Costello et
al. method. The performance improvements brought about by
the techniques we proposed are summarized on Table 1. Our
proposed variant of the simultaneous reduced Tate pairing is
shown in full detail as Algorithm A.1 in the Appendix A.

5.2 Ternary-order pairings

The computation of the reduced Tate pairing er(P,Q) of order
r = 3n proceeds as described in Algorithm 5.2. Again, the
tripling formulas in Jacobian coordinates have an exception
when y = 0, but this can be handled in a similar fashion to
the binary case. The difference in runtime reveals no private
information for the same reason, namely only public data is
involved in the pairing computations.

Algorithm 5.2 Tate3(P,Q): basic reduced Tate pairing of order
r = 3n:
INPUT: points P,Q.
OUTPUT: er(P,Q).

1: f ← 1, V ← P
2: for i← 0 to n− 1 do
3: f ← f 3 · gV,V (Q) · gV,[2]V (Q)/(g[2]V (Q) · g[3]V (Q)),
4: V ← [3]V
5: end for
6: return er(P,Q)← f (p

2−1)/r

The most efficient tripling algorithm known for Jacobian
coordinates appears to be one devised by Bernstein and
Lange [15]. Its cost is 6M + 10S + 25A = 38m + 110a for a
curve with generic equation coefficients. We present a variant
for the same modified Jacobian coordinates used in the binary
case, with cost 5M+ 11S+ 31A= 37m+ 120a.

Let V = [X : Y : Z : T : U] and [3]V = [X ′ : Y ′ : Z ′ : T ′ : U ′]
in the extended coordinate system as before. Then, initializing

T ← Z2 and U ← aT 2:

X2← X 2; Y2← Y 2; Y4← Y 2
2 ;

M ← 3X2 + U; M2← M2;

D← (X + Y2)
2 − X2 − Y4; F ← 6D−M2;

F2← F2; W ← 2Y2; W ′← 2W ; S← 16Y4;

G← (M + F)2 −M2 − F2 − S; G′← S − G;

H ← 2F2; H2← H2; H ′← 4G; F ′← 2F ;

X ′← (X +H)2 − X2 −H2 −W ′ ·H ′;
Y ′← 2Y · (H ′ · G′ − F ′ ·H); Z ′← (Z + F)2 − T − F2;

T ′← (Z ′)2; U ′← 4H2 · U

This algorithm yields intermediate values F , F ′, G′, W ,
W ′, and M , besides the point coordinates. These values, to-
gether with L ← ((Y + Z)2 − Y2 − T) · T and R ← F · T̄ ,
are useful in the calculation of a function equivalent to
gV,V (Q) · gV,[2]V (Q)/(g[2]V (Q) · g[3]V (Q)), namely g̃3(V,Q) :=
(M ·h+ d) · (G′ ·h+ F ′ · d) · (W ′ ·h+ F)− ·R · h̄3 when [3]V 6= O;
g̃3(V,Q) := (M · h+ d) · L̄ when [3]V = O but V 6= O; or simply
g̃3(V,Q) := 1 when V = O, where h := T · x − X , d :=W − L · y ,
h3 := T ′ · x − X ′.

One can further optimize the computation of a function
ĝ3(V,Q) equivalent to g̃3(V,Q) in a similar fashion to what was
done for the binary case. First, the expression T ′ · x − X ′ that
occurs at a certain step will play the role of T · x −X at the next
step, so one can simply store it from one step to the next and
thus save 1M. Second, one can show that all R and L̄ factors
that appear in the definition of g̃3(V,Q) are irrelevant to the
pairing value, and can be omitted. We give more details in the
Appendix B.

Consequently, the parabola function construction can be
completed by computing only L as above at a cost 1M+1S+3A.
After initializing h← T · x − X before Miller’s loop at a cost of
1M per pairing, the value g of the parabola function can be
evaluated as

d ← W − L · y;
g ← (M · h+ d) · (G′ · h+ F ′ · d) · (W ′ · h+ F);
h ← T ′ · x − X ′;
g ← g · h̄;

at a cost 9M + 5A per step of Miller’s loop, except at the
final step, when it is simply g ← M · h + d. This completes
the construction of a parabola function ĝ3(V,Q) equivalent to
g̃3(V,Q).

The updating of f at each step as f ← f 3 · ĝ3(V,Q) incurs a
cost 1C to compute the complex cube f 3, plus 1M to compute
f 3 · ĝ3(V,Q) from f 3 and ĝ3(V,Q). Therefore, the proposed
variant has the following overall cost per step, where again
the shared part is amortized among simultaneous pairings that
share the same first argument:

• (shared) cost of point tripling and parabola function
construction: 5M+ 11S+ 31A+ 1M+ 1S+ 3A = 40m+
134a;

• (individual) cost of parabola function evaluation and
accumulation: 9M+ 5A+ 1C= 32m+ 2s+ 66a.

By comparison, the Costello et al. [3] technique has the
following costs:

9

TABLE 2: Cost of the ternary Miller loop (ratio assumes s ≈
0.8m and ignores a).

pairings Costello et al. ours ratio

1 103m+ 6s+ 188a 72m+ 2s+ 200a ≈ 0.683

2 137m+ 6s+ 248a 104m+ 2s+ 266a ≈ 0.756

• (shared) cost of point tripling and construction of the
parabola functions: 19M+ 6S+ 6s+ 15a = 69m+ 6s+
128a;

• (individual) cost of evaluating the parabola functions
and accumulating the results: 10M + 2S + 4a = 34m +
60a.

Therefore in the present case, where one has to compute
pairs of pairings that share the same first argument, our
technique costs a fraction ≈ (40 + 2 · 33.6)/(73.8 + 2 · 34) =
107.2/141.8 ≈ 76% of the Costello et al. method, assuming
1s≈ 0.8m and essentially ignoring a.

The performance improvements brought about by the tech-
niques we propose are summarized on Table 2. Our proposed
variant of the simultaneous reduced Tate pairing is shown in
full detail in the Appendix as Algorithm A.2.

6 Discrete logarithm computation

Let L := `w for some integer w > 0, and let µLe ⊂ Fp2 be the
set of Le-th roots of unity in Fp2 , i.e. µLe := {v ∈ Fp2 | vLe

=
1}. Inverting in µLe is a mere conjugation, (a + bi)−1 = a − bi
since the norm is 1. The Pohlig-Hellman method (Algorithm
6.1) [16], which computes the discrete logarithm of c ∈ µLe ,
requires solving an equation of the form

r Le−1−k

k = sdk

where s = g Le−1
has order L and, for k = 0, . . . , e − 1, dk ∈

{0, . . . , L − 1} is an L-ary digit, r0 = c, and rk+1 depends on rk
and dk.

Algorithm 6.1 Basic Pohlig-Hellman discrete logarithm algo-
rithm
INPUT: generator g ∈ µLe , challenge c ∈ µLe .
OUTPUT: d := logg c, i.e. gd = c.

1: s← g Le−1
// NB: sL = 1

2: d ← 0, r0← c
3: for k← 0 to e− 1 do
4: vk ← r Le−1−k

k
5: find dk ∈ {0, . . . , L − 1} such that vk = sdk

6: d ← d + dk Lk, rk+1← rk · g−Lk dk

7: end for // NB: gd = c
8: return d

Assuming that g−Lk
is precomputed and stored for all k

as a by-product of the computation of s, the naive strategy
to obtain the discrete logarithm requires repeatedly computing
the exponential r Le−1−k

k at the cost of e− 1− k raisings to the L,
then solving a small discrete logarithm instance in a subgroup
of order L to get one L-ary digit, then clearing that digit in
the exponent of rk at a cost not exceeding L multiplications to
obtain rk+1. The overall cost is thus O(e2).

It turns out that this strategy is far from optimal, as pointed
out by Shoup [17, Chapter 11]. The crucial task is to obtain

the sequence r Le−1

0 , r Le−2

1 , r Le−3

2 , . . . , r L0

e−1 in this order, since each
rk depends on the previous one. We can visualize this task
using a directed acyclic graph ∆ strikingly similar to De Feo et
al.’s Tn graph, which they call a “discrete equilateral triangle”,
that models the construction of smooth-degree isogenies [6,
Section 4.2.2].

In our case, the set of vertices is {∆ j,k | j+ k ≤ e−1} where
∆ j,k := r L j

k . Each vertex has either two downward outgoing
edges, or no edges at all. Vertices ∆ j,k with j + k > e − 1 have
two edges: a left edge ∆ j,k → ∆ j+1,k that models raising the
source vertex to the L-th power to yield the destination vertex,
r L j+1

k ← (r L j

k)
L , and a right edge ∆ j,k → ∆ j,k+1 that models

clearing the (j+k)-th digit in the exponent of the source vertex,
r L j

k+1← r L j

k · g
−L(j+k)dk . Vertices ∆ j,k with j + k = e− 1 are leaves

since they have no outgoing edges.

De Feo et al. [6, Equation 5] describe an O(e2) dynamic
programming algorithm that computes the cost of an optimal
subtree of ∆ with root at ∆00 and covering all leaves. If the
cost of traversing a left or right edge is p or q respectively,
and the cost of an optimal subtree of k edges is Cp,q(k), their
algorithm is based on the relations Cp,q(1) = 0 and Cp,q(k) =
min1≤ j<k

�

Cp,q(j) + Cp,q(k− j) + (k− j)p+ jq
�

for k > 1.

The naive dynamic programming approach is to store the
values of Cp,q(k) for k = 1 . . . e, invoking the above relation
k−1 times at each step to find the corresponding minimum, for
a total e(e − 1)/2 invocations, hence the O(e2) cost. However,
because Cp,q(k) has no local minimum other than the single
global minimum (or two adjacent, equivalent copies of the
global minimum at worst), one can find that minimum with
a variant of binary search that compares two consecutive
values near the middle of the search interval [1 . . . k − 1] and
then halves that interval. This yields the O(e log e) Algorithm
6.2, which computes Cp,q(k) and the structure of the optimal
traversal strategy by storing the values of j above that attain
the minimum at each step.

Algorithm 6.2 OptPath(p, q, e): optimal subtree traversal path

INPUT: p, q: left and right edge traversal cost; e: number of
leaves of ∆.

OUTPUT: P: optimal traversal path

1: Define C[1 . . . e] as an array of costs and P[1 . . . e] as an
array of indices.

2: C[1]← 0, P[1]← 0
3: for k← 2 to e do
4: j← 1, z← k− 1
5: while j < z do
6: m← j + b(z − j)/2c, m← m+ 1
7: t1← C[m] + C[k−m] + (k−m) · p+m · q
8: t2← C[m] + C[k− m] + (k− m) · p+ m· q
9: if t1 ≤ t2 then

10: z← m
11: else
12: j← m

13: end if
14: end while
15: C[k]← C[j] + C[k− j] + (k− j) · p+ j · q, P[k]← j
16: end for
17: return P

10

6.1 Discrete logarithm computation cost

The cost of an optimal strategy depends on the individual costs
of traversing a left edge and a right edge. We now show that,
because of our proposed reverse basis decomposition technique,
the total cost of discrete logarithm computation is drastically
reduced. Recall that L := `w, where ` is a small prime and
w > 0 is a small integer. A left edge traversal represents the
computation r L j+1

k ← (r L j

k)
L at a cost wS ≈ 1.6wm in the binary

case and wC= w(2m+ 1s)≈ 2.8wm in the ternary case.
A right edge traversal represents the computation r L j

k+1 ←
r L j

k · g
−L(j+k)dk , which can be performed via table lookup r L j

k+1 ←
r L j

k ·T[j+k][dk] where T[u][d] := g−Lu·d . Since j+k ≤ e−1, the
table size is e · L field elements. This enables a tradeoff when
computing discrete logarithms in µ`m with w | m, namely, by
computing discrete logarithms in µ(`w)m/w , which coincides with
µLe for e = m/w. In that case the table size can be written
(m/w) · `w to show more clearly the size dependence on these
parameters.

However, no more than a single multiplication is incurred
regardless of `, e, or w, namely, 1M ≈ 3m. When w is very
small, avoiding the multiplication for dk = 1 noticeably reduces
the running time and requires fewer table entries. Moreover,
the table is fixed with the reverse basis decomposition tech-
nique, because g = e(PB,QB)degφA , or g = e(PA,QA)degφB , thus
incurring no table building cost at runtime for each newly
generated key. Even the simple discrete logarithm instances at
the leaves only incur O(L) lookups on the same table, since
sdk = T[e− 1][dk].

Algorithm 6.3 summarizes the proposed technique, com-
bining Shoup’s RDL algoritm [17, Section 11.2.3] with the
optimal divide-and-conquer strategy of De Feo et al. and the
efficient table lookup enabled by reverse basis decomposition.
Following Shoup’s analysis as indicated, and assuming that the
optimal strategy is close to balanced (a reasonable assumption,
according to De Feo et al.), we obtain an asymptotic cost
O(e log e) multiplications if Fp. This turns out to be quite close
to the experimentally observed costs (see below). Notice that,
contrary to Shoup, we do not need the baby-step giant-step
algorithm to compute elementary logarithms, since in our case
they correspond to groups of order 2 or 3.

Algorithm 6.3 Traverse(r, j, k, z, L, P, T, d)

INPUT: r: value of root vertex∆ jk, i.e. r := r L j

k ; j, k: coordinates
of root vertex ∆ jk; z: number of leaves in subtree rooted at
∆ jk; P: traversal path; T : lookup table.

OUTPUT: d: digits (base L) of logg r0.
REMARK: initial call is Traverse(r0, 0, 0, e, L, P, T, d).

1: if z > 1 then
2: t ← P[z] // z leaves: t to the left exp, z− t to the right
3: r ′← r Lz−t

// go left (z − t) times
4: Traverse(r ′, j + (z − t), k, t, L, P, T, d)
5: r ′← r ·

∏k+t−1
h=k T[j + h][dh] // go right t times

6: Traverse(r ′, j, k+ t, z − t, L, P, T, d)
7: else // leaf
8: find t ∈ {0, . . . , L − 1} such that r = T[e− 1][t]
9: dk ← t // recover k-th digit dk of the discrete logarithm

from r = sdk

10: end if

The resulting improvements are substantial. For discrete
logs in µ2372 , the optimal cost is ≈ 4958.4m for w = 1,
≈ 3127.9m for w = 3, and ≈ 2103.7m for w = 6. For discrete
logarithms in µ3239 , the optimal cost is ≈ 4507.6m for w = 1,
≈ 2638.1m for w= 3, and ≈ 1739.8m for w= 6.

Tradeoffs are also possible. Instead of being a matrix of size
(m/w) ·`w, the lookup table could be restricted to a single array
T1[u] := g−`

wu
of (m/w) entries, by computing T1[u]d = g−`

wu·d

on demand using an optimal multiplication chain for cyclotomic
exponentiation. For instance, discrete logs in µ2372 with w = 3
would require a table of size 124 at an average cost ≈ 4453.9m.
For comparison, the best results reported in [3, Section 5]
are 2150m + 7652s ≈ 8271.6m for discrete logs in µ2372 and
5320m+ 3349s ≈ 7999.2m for discrete logs in µ3239 , both with
w = 3, which is optimal in that technique; increasing w is
observed to actually cause a cost increase.

Table 3 summarizes the gains our technique makes possible
and compares them against the results of [3], in terms of both
the raw number of multiplications in the base field and the
ratio between our results and theirs. We recall that no side-
channel security concern arises from this technique, since all
information involved in the processing is public.

6.2 Improved Pohlig-Hellman for generic w

Rewriting the Pohlig-Hellman algorithm 6.1 to compute discrete
logarithms in µ`m while representing the exponent d in base
`w with d =

∑dm/we
i=0 di`

wi , thus recovering more bits of the
exponent per digit, is straightforward when w | m. On the other
hand, the case where w - m requires special handling. The worst
case happens when m is a prime number and hence not divisible
by any 1 < w < m. This is the case for the SIDH prime in our
implementation where the ternary discrete logarithm is defined
over a subgroup of order 3239, since 239 is a prime.

An algorithm that deals with the cases where w - m will be
derived next. Denote the challenge by r0 := gd ∈ µ`m where
d =

∑dm/we−1
i=0 di`

wi and let r0 be the root ∆00 := r0 of the graph
∆. Note that ∆ here is a discrete equilateral triangle of side s =
dm/we vertices. In the usual divisible-exponent version, a left
edge traversal is equivalent to raising the current element ∆ jk

to the `w-power, i.e., r`
jw+w

k ← r`
jw

k . When w | m, the value rk is
raised to the `w-power (s−k)−1 times so that the resulting leaf
element∆ j,k = r`

(s−k−1)w

k for j+k = s−1 belongs to a subgroup of
order `w. The corresponding k-th digit is then simply recovered
by solving the logarithm dk := loggm−w∆ j,k.

When w - m, a crucial observation is that when the element
rk is raised to the `(s−k−1)w-th power, the corresponding leaf
element ∆ j,k belongs to a subgroup of order `m mod w (instead
of `w) since by construction rk has order `m−kw and

∆ j,k = r`
(s−k−1)w

k

= r`
sw−kw−w

k

= r`
(m−m mod w+w)−kw−w

k

= r`
m−kw−m mod w

k .

Thus, solving this smaller logarithm would only allow for
recovering partial information of the digit and it would not
be possible to retrieve the full exponent in the end of the
process. In order to correct the orders of the leaf elements
a few modifications of the traversal strategy (Algorithm 6.3)
are needed. The key idea for obtaining leaves of desired order

11

TABLE 3: Discrete logarithm computation costs (assuming s≈ 0.8m)

group Costello et al. [3] ours, w= 1 (ratio) ours, w= 3 (ratio) ours, w= 6 (ratio)

µ2372 8271.6m 4958.4m (0.60) 3127.9m (0.39) 2103.7m (0.25)
µ3239 7999.2m 4507.6m (0.56) 2638.1m (0.33) 1739.8m (0.22)

`w consists of modifying the first left edge traversal from
each rightmost vertex ∆0,k. The first left traversals will be
given by ∆1,k ← ∆`

m mod w

0,k and ∆ j+1,k ← ∆`
w

j,k for j > 0, or
equivalently, the traversal from ∆ j,k to ∆ j+1,k is defined as
r`

m mod w+ jw

k ← r`
m mod w+(j−1)w

k . This leads to the following redefinition
of ∆ j,k. Let the set of vertices be {∆ j,k | j + k ≤ dm/we − 1},
then ∆ j,k := rk for j = 0 and ∆ j,k := r`

m mod w+(j−1)w

k for j > 0.
By applying this modification, all the leaves will have order `w

except the rightmost one which has order `m mod w as proven by
Lemma 2 in the Appendix C.

The right edge traversals that are responsible for removing
the digits of the exponent are also modified. They are given by
∆ j,k+1←∆ j,k · g−dk ·`m mod w+(j−1)w

. Since the non-rightmost vertices
∆ j,k are computed as ∆`

m mod w+(j−1)w

0,k , the digits in the exponent
will have coefficients displaced by `w−m mod w, and therefore a
suitable digit-removal table can be defined by T2[0][di] := g−di

for 0 ≤ di < `w − 1 and T2[u][di] := g−di ·`m mod w+(u−1)w
for

0< u< s. This table is also used to compute discrete logarithms
at leaves 0,1, · · · , s−2 because its last row will have elements of
order `w. A distinct table will be needed for dealing with both
non-rightmost right edge traversals and discrete log computa-
tion through the rightmost edges ∆0,k. This table is defined by
T1[v][di] := g−di ·`vw

for 0≤ v < s.
The TraverseW Algorithm 6.4 details the full procedure to

compute the version of Pohlig-Hellman for general w combined
with an optimal traversal strategy.

The optimal path P is retrieved by invoking OptPath(w ·
p, q, dm/we) where p is the cost of raising to ` and q is the cost
of a multiplication in the quadratic extension field.

7 Point tripling on Montgomery curves

Multiplication by 3n, be it as a cofactor in the case of the
2m torsion or as a tool to test linear independence in the 3n

torsion, is a computationally expensive operation. We describe
in Algorithm 7.1 an improved method for point tripling on
Montgomery curves that, though modest, directly addresses this
bottleneck.

The cost of our tripling is 5M + 6S + 7A (or one less
multiplication in scenarios where the curve coefficient A can
be carefully chosen and fixed) with 4 ancillary variables, not
counting the left shift (multiplication by 2) which costs no more
than an addition but can be precomputed for a given curve. It
is less expensive than the previously best tripling algorithm in
the literature, which only attains 6M+ 5S+ 7A with 8 ancillary
variables [18, Appendix B]. Note that this tripling algorithm can
be employed in the key (de)compression operations since they
do not require the curve coefficient A to be in projective form.
The projective version is only required in the computation of 3n-
isogenies, where field inversions can be avoided if the projective
form is adopted. That is the case of the tripling formula by Faz
et al. [19], which costs 7M+ 5S+ 9A.

Algorithm 6.4 TraverseW(r, j, k, z,`, w, P, T1, T2, d)

INPUT: r: value of root vertex ∆ j,k, i.e. r := r`
m mod w+(j−1)w

k ; j, k:
coordinates of root vertex ∆ j,k; z: number of leaves in
subtree rooted at ∆ j,k; P: traversal path; T1, T2: lookup
tables; w: base power not dividing m.

OUTPUT: d: digits (base `w) of logg r0.
REMARK: initial call is TraverseW(r0, 0, 0, m,`, w, P, T1, T2, d).

1: if z > 1 then
2: t ← P[z] // z leaves
3: if j > 0 then // go left (z − t) times
4: r ′← r`

w(z−t)

5: else
6: r ′← r`

m mod w+w(z−t−1)

7: end if
8: TraverseW(r ′, j + (z − t), k, t,`, w, P, T1, T2, d)
9: if j = 0 then // go right t times

10: r ′← r ·
∏k+t−1

h=k T1[j + h][dh]
11: else
12: r ′← r ·

∏k+t−1
h=k T2[j + h][dh]

13: end if
14: TraverseW(r ′, j, k+ t, z − t,`, w, P, T1, T2, d)
15: else // leaf
16: if j = 0 and k = dm/we − 1 then
17: find 0≤ t < `m mod w s.t. r = T1[dm/we − 1][t]
18: else
19: find 0≤ t < `w s.t. r = T2[dm/we − 1][t]
20: end if
21: dk ← t // recover the k-th digit dk from r = sdk

22: end if

Algorithm 7.1 Improved tripling on the Montgomery curve
B y2 = x3 + Ax2 + x

INPUT: P = (x , z): a point in xz representation.
OUTPUT: [3]P = (x ′, z′).

1: t1← x2; t2← z2;
2: t3← t1 + t2
3: t4← 2A · ((x + z)2 − t3) + t3
4: t3← (t1 − t2)2;
5: t1← (t1 · t4 − t3)2; t2← (t2 · t4 − t3)2;
6: x ′← x · t2; z′← z · t1;
7: return (x ′, z′)

8 Implementation and experimental results

Our improved key compression and decompression techniques
have been implemented on top of the SIDH C library [8] to
make a full-fledge key exchange available. We left the previous
(de)compression functions in the new version so that the
experiments can be replicated for comparisons.

Since we only process public information (compression and
decompression of public keys), side-channel attacks are not an
issue. This enabled, for instance, the adoption of a simple, fast
version of the extended Euclidean algorithm.

12

TABLE 4: Benchmarks in Mcycles on an Intel Core i5-6267U clocked at 2.9 GHz
(clang compiler with -O3 flag, and s=m in this implementation).

Note also that decompression incorporates the shared Elligator optimization.

2m -torsion (w = 2) 3n -torsion (w = 6)

operation SIDH v2.0 [3] ours ratio SIDH v2.0 [3] ours ratio

one discrete logarithm 5.88 2.57 2.3 4.71 1.17 4.0

pairing phase 33.23 25.37 1.3 37.72 29.04 1.3

compression 75.49 37.07 2.0 79.33 54.14 1.5

decompression 28.76 8.97 3.2 25.95 12.91 2.0

The benchmark methodology consisted of taking the av-
erage of individual operations in key (de)compression such
as basis generation, discrete log and pairing on 20 thousand
executions for random inputs and 800 executions for more
expensive operations as key (de)compression.

The initial public curve is the usual supersingular curve
E0 : y2 = x3 + x defined over Fp2 where p = 23723239 − 1. It
is worth mentioning that before applying our (de)compression
techniques, the SIDH v2.0 library was first modified to perform
Alice’s key generation with both points PA and QA defined
over the extension E0(Fp2)\E0(Fp) instead of defining PA in
the base field as suggested in [3]. The approach in [3] starts
with point PA = (x , y) ∈ E0(Fp) over the base field and then
applies the distortion map τ to get a linearly independent point
QA = τ(PA) = (−x , i y) lying in the trace zero group. This
optimization cannot be combined with our techniques because
using distortion maps on binary torsions only gives a basis
〈PA,τ(PA)〉 = E0[2m−1] of a smaller group of order 22(m−1),
and in this case the images of PA and QA = τ(PA) under Bob’s
isogeny consequently generate a smaller torsion as well, i.e.
〈φB(PA),φB(QA)〉 = EB[2m−1]. In particular, the reverse basis
decomposition technique combined with entangled basis would
not work since an entangled basis generates the full 2m-torsion,
and this basis cannot be converted to a basis of a smaller
torsion, i.e. the change of basis matrix in Equation 3 would
not exist. Therefore, the points

PA := 3239 · (5+ i,
Æ

(5+ i)3 + 5+ i) ∈ E0(Fp2)\E0(Fp)

and QA := τ(PA) ∈ E0(Fp2)\E0(Fp) are selected. Points PB and
QB are the ones in [3] since for `n torsions with ` odd, distortion
maps do generate the full group E0[`n] and PB can be kept over
the base field. For the discrete logarithms we set w = 2 for the
binary case and w = 6 for the ternary one. The latter decision
is to compensate the fact that we still do not have an entangled
basis for the ternary torsion.

The experiments for the 3n-torsion basis generation are
shown in Table 5. The three improvements against the previous
3-descent from SIDH library v2.0 are given. They consist of the
naive (although faster than 3-descent), naive + shared Elligator
and the naive + shared Elligator without linear independence
test basis generation techniques.

Regarding the 2m-torsion basis generation coupled with
the shared Elligator for decompression, our benchmark results
show that the 1M cycles barrier could be broken for the first
time, requiring only 0.83M cycles to generate a basis which
compares extremely well against the previous 2-descent with
cost 23.77M cycles in the SIDH v2.0 library. Note that in

TABLE 5: Benchmark of the 3n-torsion basis generation in
Mcycles on an Intel Core i5-6267U clocked at 2.9 GHz (clang
compiler with -O3 flag, and s=m in this implementation).

technique source Mcycles ratio
3-descent SIDH v2.0 [3] 19.98 –
naive basis generation this work 17.33 1.2
shared Elligator this work 13.63 1.5
shared ell. + no LI check this work 7.26 2.8

this case linear independence check is implicitly given (due to
Theorem 1). The results are shown in Table 6.

TABLE 6: Benchmark of the 2m-torsion basis generation in
Mcycles on an Intel Core i5-6267U clocked at 2.9 GHz (clang
compiler with -O3 flag, and s=m in this implementation).

technique source Mcycles ratio
2-descent SIDH v2.0 [3] 23.77 –
entangled basis this work 1.60 14.9
ent. basis + shared ell. this work 0.83 28.6

Table 4 summarizes our experimental results for the high-
level operations of key (de)compression. The small differences
between the theoretical estimates and the practical results are
basically due to the cost of squaring in the base field Fp that
is implemented in SIDH v2.0 library by reusing the modular
multiplication instead of adopting an optimized Montgomery
squaring in lower level. In this case, the finite field squaring
does not take a cost of 0.6 to 0.8m although this is possible to
be obtained in practice.

Table 7 illustrates the impact of (de)compression algorithms
on SIKE. Incorporating key compression and decompression
into SIKE.KEM is straightforward; the compression is only done
during key generation which is based on the 2m-torsion of the
curves. The upside of the choice of 2m-torsion is that we have
much faster algorithms such as entangled basis generation.
The decompression is done immediately before encapsulation.
Note that there is no (de)compression on the 3n-torsion. The
much smaller overhead for the prime p964 is because the
same compression algorithm is used along with a non-optimized
implementation (the only available option) for this prime. For
example, for p964 the isogeny computation is a multiplication-
based algorithm with quadratic complexity while it is a quasi-
linear time algorithm for the other primes.

9 Conclusion
In this paper we have proposed a range of new algorithms
and techniques to speed up the supersingular isogeny Diffie-

13

TABLE 7: Benchmark for the Supersingular Isogeny Key Encapsulation in Mcycles on an Intel Core i5-6267U clocked at 2.9 GHz
(clang compiler with -O3 flag, and s =m in this implementation). The entries marked with * denote the runtimes on an actual
machine while the ones marked with ** denote estimated runtimes based on operation counts over Fp.

prime SIKE KeyGen SIKE encaps. 2m compression 2m decompression overhead on KeyGen overhead on encaps.
p503 9.1 * 15.1 * 10.2 (w= 6) ** 3.06 ** 112% 20%
p751 27.5 * 44.5 * 31.7 (w= 6) * 8.97 * 115% 20%
p964 13570.8 * 19406.8 * 294.7 (w= 6) ** 84.45 ** 2.2% 0.4%

Hellman. For example, in the 2m-torsion using w = 2 for the
discrete logarithms, the key compression is about 2× faster
than the SIDH library and decompression achieves a factor
of 3×, while the basis generation itself is nearly 15× faster
during compression and about 29× faster in decompression.
The main bottleneck now, by far, is the pairing phase, that
takes about 25.4M cycles against 1.6M for basis generation and
4× 2.57≈ 10.3M for the discrete logarithm phase.

Moreover, the combination of the entangled basis genera-
tion and the shared Elligator techniques allowed for a basis
generation algorithm that runs in less than the 1M cycles barrier
for the first time, where the best previous known algorithm
takes 23.77M cycles for the same task.

It is worthwhile to point out that the techniques of en-
tangled basis generation, and the optimal strategy applied to
solve smooth-order discrete logarithms, not only set up new
speed records for those tasks, but might find new applications
in different contexts in cryptography. We leave the possibility
of extending the new entangled basis generation technique to
non-binary torsions as an open problem.

Acknowledgement

The authors thank the anonymous reviewers for their valuable
and enriching comments. J. Doliskani and G. Pereira were
supported by NSERC, CryptoWorks21, and Public Works and
Government Services Canada. M. Simplicio was supported by
Brazilian National Council for Scientific and Technological De-
velopment (CNPq) under grant 301198/2017-9. M. Simplicio,
P. Barreto and G. Zanon were partially supported by the joint
São Paulo Research Foundation (FAPESP) / Intel Research
grant 2015/50520-6 “Efficient Post-Quantum Cryptography for
Building Advanced Security Applications.”

References

[1] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,” in Post-Quantum Cryptography
– PQCrypto 2011, ser. Lecture Notes in Computer Science, no. 7071.
Taipei, Taiwan: Springer, 2011, pp. 19–34.

[2] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, “Key
compression for isogeny-based cryptosystems,” in Proceedings of the
3rd ACM International Workshop on ASIA Public-Key Cryptography.
ACM, 2016, pp. 1–10.

[3] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik,
“Efficient compression of SIDH public keys,” in Advances in Cryptology
– Eurocrypt 2017, ser. Lecture Notes in Computer Science, no. 10210.
Paris, France: Springer, 2017, pp. 679–706.

[4] J. Doliskani, G. C. C. F. Pereira, and P. S. L. M. Barreto, “Faster
cryptographic hash function from supersingular isogeny graphs,”
Cryptology ePrint Archive, Report 2017/1202, 2017, http://eprint.
iacr.org/2017/1202.

[5] E. Schaefer and M. Stoll, “How to do a p-descent on an elliptic curve,”
Transactions of the American Mathematical Society, vol. 356, no. 3, pp.
1209–1231, 2004.

[6] L. De Feo, D. Jao, and J. Plût, “Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies,” Journal of
Mathematical Cryptology, vol. 8, no. 3, pp. 209–247, 2014.

[7] S. team, “Supersingular isogeny key encapsulation,” 2017, https://
sike.org.

[8] Microsoft SIDH team, “SIDH v2.0,” 2017, https://www.microsoft.
com/en-us/research/project/sidh-library/.

[9] M. R. Spiegel and J. Liu, Mathematical Handbook of Formulas and
Tables, 2nd ed., ser. Schaum’s Outline Series. New York, USA:
McGraw-Hill, 1999.

[10] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator:
Elliptic-curve points indistinguishable from uniform random strings,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 967–980.

[11] D. Husemöller, Elliptic Curves, 2nd ed., ser. Graduate Texts in Mathe-
matics. New York, USA: Springer, 2004, vol. 111.

[12] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., ser. Grad-
uate Texts in Mathematics. New York, USA: Springer, 2009, vol.
106.

[13] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods
of factorization,” Mathematics of computation, vol. 48, no. 177, pp.
243–264, 1987.

[14] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient
algorithms for pairing-based cryptosystems,” in Advances in Cryptology
– Crypto 2002, ser. Lecture Notes in Computer Science, no. 2442.
Santa Barbara (CA), USA: Springer, 2002, pp. 354–368.

[15] D. J. Bernstein and T. Lange, “Analysis and optimization of elliptic-
curve single-scalar multiplication,” in Finite Fields and Applications:
Proceedings of Fq8, no. 461. Providence (RI), USA: American
Mathematical Society, 2008, pp. 1–18.

[16] S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance function,”
IEEE Transactions on information Theory, vol. 24, no. 1, pp. 106–110,
1978.

[17] V. Shoup, A computational introduction to number theory and algebra.
Cambridge University Press, 2005.

[18] S. R. S. Rao, “Three dimensional Montgomery ladder, differential
point tripling on Montgomery curves and point quintupling on Weier-
strass and Edwards curves,” in Progress in Cryptology – AfricaCrypt
2016, ser. Lecture Notes in Computer Science, no. 9646. Fes,
Morocco: Springer, 2016, pp. 84–106.

[19] A. Faz-Hernández, J. López, E. Ochoa-Jiménez, and F. Rodríguez-
Henríquez, “A faster software implementation of the supersingular
isogeny diffie-hellman key exchange protocol,” IEEE Transactions on
Computers, 2017.

http://eprint.iacr.org/2017/1202
http://eprint.iacr.org/2017/1202
https://sike.org
https://sike.org
https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.microsoft.com/en-us/research/project/sidh-library/

14

Appendix A
Pairing algorithms

Algorithm A.1 Tate2(P, [Q j], m): reduced Tate pairing of order
r = 2m

INPUT: Curve E : y2 = x3 + ax + b
− Point P = [XP : YP : ZP] on E of order 2m

− t points Q j = [XQ j
: YQ j

: ZQ j
] on E, ZQ j

∈ {0,1}
OUTPUT: List of t values e2m(P,Q j)

1: X ← XP ; Y ← YP ; Z ← ZP ; T ← Z2; U ← a · T 2

. NB: the following operations are in Fp2

2: for j← 0 to t − 1 do
3: f j ← 1; h j ← T · XQ j

− X
4: end for
5: for k← 0 to m− 1 do
. point doubling and line function construction:
6: X2← X 2; Y2← Y 2; W ← 2Y2; W2←W 2

7: M ← 3X2 + U; S← (X +W)2 − X2 −W2
8: X ′← M2 − 2S; Y ′← M · (S − X ′)− 2W2
9: Z ′← (Y + Z)2 − Y2 − T ; T ′← (Z ′)2

10: U ′← 4W2 · U; L← Z ′ · T
11: if Z ′ = 0 then // exception for points in [2]E
12: X ′← 1; Y ′← 1
13: end if
. line function evaluation and accumulation:

14: for j← 0 to t − 1 do
15: if Z ′ 6= 0 then
16: g ← M · h j +W − L · YQ j

17: h j ← T ′ · XQ j
− X ′

18: g ← g · h̄ j
19: else // exception for points in [2]E
20: g ← h j
21: end if
22: f j ← f 2

j ; f j ← f j · g
23: end for
24: X ← X ′; Y ← Y ′; Z ← Z ′; T ← T ′; U ← U ′

25: end for
. a dedicated final exponentiation should be used next:

26: return [(ZQ j

?
6= 0) f (p

2−1)/r
j : 1 | j = 0 . . . t − 1]

Appendix B
Irrelevant factors in pairing computation

Consider the function g̃2(V,Q) defined in Section 5.1. Let Z j
denote the computed z-coordinate of [2 j]P, let T j := Z2

j and
let R j := Z j+1 · T̄ j = Z j+1 · (Z̄ j)2 denote the contribution of the
R factor above at the j-th step in Miller’s loop for 0 ≤ j <
m− 1, with Rm−1 := 1, rather than 0 as the general expression
would yield, for convenience. One can show by induction that
the contribution of all R factors to the pairing value before the
final exponentiation is

R̂ :=
m−1
∏

j=0

R2m−1− j

j =
m−1
∏

j=0

�

Z j+1 · T̄ j

�2m−1− j

,

Algorithm A.2 Tate3(P, [Q j], n): reduced Tate pairing of order
r = 3n

INPUT: Curve E : y2 = x3 + ax + b
− Point P = [XP : YP : ZP] on E of order 3n

− t points Q j = [XQ j
: YQ j

: ZQ j
] on E, ZQ j

∈ {0,1}
OUTPUT: List of t values e3n(P,Q j)

1: X ← XP ; Y ← YP ; Z ← ZP ; T ← Z2; U ← a · T 2

. NB: the following operations are in Fp2

2: for j← 0 to t − 1 do
3: f j ← 1; h j ← T · XQ j

− X
4: end for
5: for k← 0 to n− 1 do
. point tripling and parabola function construction:
6: X2← X 2; Y2← Y 2; Y4← Y 2

2
7: M ← 3X2 + U; M2← M2

8: D← (X + Y2)2 − X2 − Y4; F ← 6D−M2
9: F2← F2; W ← 2Y2; W ′← 2W ; S← 16Y4

10: G← (M + F)2 −M2 − F2 − S; G′← S − G
11: H ← 2F2; H2← H2; H ′← 4G; F ′← 2F
12: X ′← (X +H)2 − X2 −H2 −W ′ ·H ′
13: Y ′← 2Y · (H ′ · G′ − F ′ ·H)
14: Z ′← (Z + F)2 − T − F2
15: T ′← (Z ′)2; U ′← 4H2 · U
16: L← ((Y + Z)2 − Y2 − T) · T
17: if Z ′ = 0 then // exception for points in [3]E
18: X ′← 1; Y ′← 1
19: end if
. parabola function evaluation and accumulation:

20: for j← 0 to t − 1 do
21: d ←W − L · YQ j

22: if Z ′ 6= 0 then
23: g ← (M · h j + d)(G′ · h j + F ′ · d)(W ′ · h j + F)−

24: h j ← T ′ · XQ j
− X ′; g ← g · h̄ j

25: else // exception for points in [3]E
26: g ← (M · h j + d)
27: end if
28: f ← f 3; f ← f · g
29: end for
30: X ← X ′; Y ← Y ′; Z ← Z ′; T ← T ′; U ← U ′

31: end for
. a dedicated final exponentiation should be used next:

32: return [(ZQ j

?
6= 0) f (p

2−1)/r
j : 1 | j = 0 . . . t − 1]

which can be rearranged as

R̂= (T̄0)
2m−1

Z2
m−1

m−2
∏

j=1

�

Z2m− j

j (T̄ j)
2m−1− j

�

= (Z̄0)
2m

Tm−1

m−2
∏

j=1

�

Z j Z̄ j

�2m− j

.

But the final exponentiation will erase the first factor as
((Z̄0)2

m
)(p

2−1)/2m
= (Z̄0)(p

2−1) = 1, and also the last product
above, which only involves norms in Fp. Hence the actual con-

tribution is simply R̂(p
2−1)/2m

= T (p
2−1)/2m

m−1 , but the line function
at the last step of Miller’s loop contributes a factor (T · x−X) · T̄
to the pairing value before the final exponentiation, so R̂ could
be incorporated there as (T · x − X) · T̄m−1 · Tm−1 ∼ T · x − X .

An analogous situation arises for the ternary case. Consider
the function g̃3(V,Q) defined in Section 5.2. Let Z j denote

15

the computed z-coordinate of [3 j]P, let T j := Z2
j , and let

R j := 2|Z j |2 · R j = (2F j · Z j) · (Z̄ j · T̄ j) = Z j+1 · (Z̄ j)3 denote a
contribution equivalent to that of the R factor above at the j-th
step in Miller’s loop for 0 ≤ j < n− 1, with Rn−1 := 1 for con-
venience. One can show by induction and term rearrangement
that the contribution of all R factors to the pairing value before
the final exponentiation is

R̂ := (Z̄0)
3n
· Z3

n−1 ·
n−2
∏

j=1

�

Z j · Z̄ j

�3n− j

.

Therefore, the actual contribution after the final exponentiation
is simply R̂(p

2−1)/3n
= (Z3

n−1)
(p2−1)/3n

, but the parabola function
at the last step of Miller’s loop contributes a factor ((M ·h+ d) ·
L̄)3 to the pairing value before the final exponentiation, so R̂
could be incorporated to that expression as (M · h+ d)3 · (L̄)3 ·
Z3

n−1 = ((M · h+ d) · Ȳ)3 · (2Z̄n−1 · Zn−1)3 ∼ ((M · h+ d) · Ȳ)3.
Yet, the remaining factor (Ȳ)3, or indeed Y itself by virtue

of the tripling algorithm is a 2m-th root of an element from
the base field, Y0. This means that the final exponentiation
will erase it, since (p2 − 1)/3n = (p − 1) · 2m and Y (p

2−1)/3n
=

(Y 2m
)p−1 = Y p−1

0 = 1. Hence, it can be simply omitted, leaving
only M · h+ d.

In both the binary and the ternary case, a corresponding
simplified formula can be used without making any reference
at all to the R factors.

Appendix C
Proof for the discrete log traversal when w does not
divide m

We prove the following lemma about the order of the leaf
elements in the graph ∆ as defined in Section 6.2.

Lemma 2. Let ∆ be the acyclic graph defined in Section 6 with
root ∆00 := r0 where r0 = gd ∈ µ`m and d =

∑dm/we−1
i=0 di`

iw

where 0 ≤ di < `
w. Let w be an integer that does not divide m.

Then, if the first left walk from the elements ∆0,k for 0 ≤ k <
dm/we − 1 is defined by raising to the power of `m (mod w) and the
subsequent left walks by raising to `w, then all the leaves except
the rightmost one will have order `w. In addition, the rightmost
dm/we-th leaf has order `m mod w.

Proof. By construction, the leaves of ∆ can be computed
as ∆ j,k := r`

(dm/we−1−(k+1))w+m mod w

k for j + k = dm/we − 1 and
k < dm/we − 1 by simply using the raise-based strategy, i.e.,
leaves are reached by always traversing to the left, except the
rightmost leaf which is reached by a sequence of dm/we − 1
walks to the right. Let u be the integral part of the division
e/w and t := m mod w the respective remainder. Thus, we have
dm/we= u+ 1. Rewrite ∆ j,k as

∆ j,k = r`
(dm/we−1−(k+1))w+t

k

= r`
(u−1−k)w+t

k

= r`
uw−kw−w+t

k

= r`
(m−t)−kw−w+t

k

= r`
m−w−kw

k

Recall that rk has order `m−kw for 0≤ k < u−1 by construction
and therefore ∆ j,k has the promised order `w.

With respect to the order of the rightmost leaf, notice that it
can be defined as the first root of r0 followed by the elimination
of the first (dm/we − 1)-th digits. Therefore it is explicitly given
by

r0 · g−
∑dm/we−2

i=0 di`
iw
= r

ddm/we−1·`(dm/we−1)w

0

= r
ddm/we−1·`wdm/we−w

0

= r
ddm/we−1·`(m−t+w)−w

0

= r
ddm/we−1·`m−t

0

which has the desired order since r0 has order `m.

	Introduction
	Notations and conventions

	Reverse basis decomposition
	Entangled basis generation
	Avoiding cofactor multiplication

	On basis generation for E[3n]
	Shared Elligator and faster decompression
	The Shared Elligator on Entangled Bases

	Pairing computation
	Binary-order pairings
	Pairings on an entangled basis

	Ternary-order pairings

	Discrete logarithm computation
	Discrete logarithm computation cost
	Improved Pohlig-Hellman for generic w

	Point tripling on Montgomery curves
	Implementation and experimental results
	Conclusion
	References
	Appendix A: Pairing algorithms
	Appendix B: Irrelevant factors in pairing computation
	Appendix C: Proof for the discrete log traversal when w does not divide m

