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ABSTRACT
We propose Tesseract, a secure real-time cryptocurrency ex-
change service. Centralized exchange designs are vulnerable
to theft of funds, while decentralized exchanges cannot offer
real-time cross-chain trades. All the existing exchanges are
also vulnerable frontrunning attacks. Tesseract overcomes
these flaws by using a trusted execution environment, specif-
ically Intel SGX.

The task of committing the recent trades data to inde-
pendent cryptocurrency systems presents an all-or-nothing
fairness problem, that can be solved by means of SPV proofs
or multiple SGX-enabled servers. Tesseract also mitigates
denial-of-service attacks by running a consensus protocol
among SGX-enabled servers.

Tesseract supports not only real-time cross-chain cryp-
tocurrency trading, but also a secure method to tokenize
assets pegged to various cryptocurrencies. For instance,
Tesseract-tokenized bitcoins can circulate on the Ethereum
blockchain for use in smart contracts.

We provide a reference implementation of Tesseract that
supports Bitcoin, Ethereum, and similar cryptocurrencies.

1. INTRODUCTION
Bitcoin [63, 35, 67] and similar cryptocurrencies derive

their security from two assumptions:

1. The majority of the participants follow the consensus
protocol. The relative power of each participant is
determined according to certain scarce resources that
she possesses (cf. Section 1.1).

2. Standard cryptographic assumptions regarding the se-
curity of hash functions and digital signatures.

Since these kinds of permissionless consensus protocols do
not rely on privileged entities and do not have any single
point of failure, it is conceivable that an exchange between
various cryptocurrencies can operate without the need to
trust one entity (or a fixed-size set of entities). For example,
one could imagine a trust-free exchange between the Bitcoin
(BTC), Ethereum (ETH) [86, 21], and Litecoin (LTC) [52]
cryptocurrencies, that is at least as secure as the weakest of
these three systems.

Indeed, a trust-free cryptocurrency exchange can be real-
ized in the form of atomic cross-chain swaps (ACCS) [23],
though it would require the users to wait for many minutes
(in fact, hours) for each trade to execute. Since it serves as
a useful reference point, we elaborate on the concept and
limitations of ACCS in Section 2.

A challenge that is much more far reaching is to build a
trust-free cryptocurrency exchange where the participants
can respond to price fluctuations in a rapid manner, i.e., by
altering their trading positions within seconds. In fact, some
traders may choose to utilize automated programs for high
frequency trading and arbitrage (cf. [6]), and would therefore
prefer to modify their trading positions within milliseconds.
Such a real-time exchange enables price discovery: traders
observe the alterations in the buy (a.k.a. “bid”) and sell
(a.k.a. “ask”) orders on the exchange, as well as external
events (e.g., [89]), then modify their trading positions, and
in this process the price converges so that the gap (a.k.a.
“spread”) between the bids and asks is small.

As discussed in Section 3.1, centralized cryptocurrency
exchanges can facilitate real-time trades and price discovery,
but they also entail a systemic risk as all of the traders’ funds
can be stolen. Since ACCS do not provide price discovery,
traders who wish to engage in ACCS would have to resort to
other means in order to set their desired price for each swap.
This implies that the trust-free nature of ACCS cannot in
itself be a fully secure solution: many traders will continue
to use centralized exchanges for real-time trades, and thus
the systemic risk remains.

In this work we remedy the risks of cryptocurrency trad-
ing by presenting Tesseract, a real-time cryptocurrency ex-
change that utilizes Intel SGX in order to ensure that the
traders’ funds can never be stolen. To this end, our assump-
tions will be quite conservative: we allow a potential thief to
gain complete physical access to the machine in which the
funds are stored, and assume that the constant-time and
constant-memory code that we run inside the SGX enclave
is secure against side-channel attacks. Our design also pro-
vides mitigation to denial-of-service (DoS) attacks.

In a sense, the Tesseract exchange still relies on a trusted
party in the form of the hardware manufacturer, because the
asymmetric secret key that resides inside CPU (and gener-
ates signatures for remote attestation) must be known to
the manufacturer. It can be argued that a weaker yet sim-
ilar form of trust is required in a practical instantiation of
any cryptographic protocol, since the manufacturer may be
able to attack the protocol by embedding malicious logic
into the hardware (see also Section 4.3). Thus, Tesseract
still requires trust, but to a significantly lesser degree than
centralized exchanges and other possible real-time exchange
schemes (cf. Section 3).

Additionally, different types of valuable assets can circu-
late within a single cryptocurrency system (cf. [73, 22, 69,
24, 17]), hence a secure exchange service can be useful even



if it interacts with only one cryptocurrency. Since real-time
response to price fluctuations can be highly important for
asset trading, a variant of Tesseract (that is in fact signifi-
cantly simpler) can be deployed in this case too.

1.1 Cryptocurrency Systems
Bitcoin is the first decentralized cryptocurrency that has

gained popularity, and it remains the most popular cryp-
tocurrency in terms of value transfers per timeframe. In
proof-of-work (PoW) based cryptocurrencies such as Bit-
coin, each participant possesses machines (that perform the
PoW computations) as the scarce resources that determine
the participant’s relative power in the consensus protocol.

Cryptocurrency protocols can also be based on other kinds
of scarce resources. In particular, in a proof-of-stake [16,
33, 12, 45, 37, 27, 40] based cryptocurrency the scarce re-
sources are the coins that circulate in the system, and in a
proof-of-space [66] based cryptocurrency the scarce resource
is storage space.

While our reference implementation of Tesseract (cf. Ap-
pendix B) currently supports only PoW based cryptocurren-
cies, we note that blockchain based proof-of-stake cryptocur-
rencies can be supported in a similar manner. Typically,
the blocks of a PoW blockchain are validated by inspect-
ing a hash digest, and blocks in a proof-of-stake blockchain
are validated by inspecting the UTXO set (i.e., the current
unspent outputs) and verifying digital signatures. Hence,
the enclave code can maintain the UTXO set and verify the
needed signatures for the new blocks. In fact, if the proof-
of-stake protocol requires blocks to contain a commitment
to the UTXO set, then the complexity of the enclave code
will be quite minimal.

1.2 Related Works
Trusted hardware has been proposed as an effective tool

for different kinds of cryptocurrency use-cases, such as off-
chain payment channels [56, 55], reputable data feed ser-
vice [90], and a mixing service [84]. These schemes offer
better efficiency and features by placing more trust in the
hardware manufacturer, in particular off-chain channels and
mixers can also be accomplished without secure processors
(see, e.g., [60, 15, 75, 42]). By contrast, Tesseract reduces
the amount of trust that needs to be placed in the exchange
service, relative to all other real-time exchange schemes (to
the best of our knowledge). In Section 3 we provide a com-
parison between Tesseract and various other cryptocurrency
exchange schemes.

Trusted hardware can also be used to achieve significant
efficiency gains for well-known cryptographic primitives such
as functional encryption [34], secure MPC [71], and NIZK
in the presence of side-channel attacks [83]. Pass, Shi, and
Tramèr give a formal modeling of trusted hardware and re-
mote attestation [68].

Several works achieve fair exchange and secure cash distri-
bution via interaction with a cryptocurrency system, cf. [3,
2, 14, 15, 47, 49]. However, these works enable fair exchange
(with penalties) by using a single cryptocurrency system,
while Tesseract has to provide all-or-nothing fairness among
multiple cryptocurrency systems.

2. ATOMIC CROSS-CHAIN SWAPS
A secure protocol for ACCS was given in [23]. We specify

an intuitive description of the protocol in Fig. 1, demon-

Protocol Πaccs

1. Alice samples a random x ∈ {0, 1}λ, computes a
hash commitment Y = hash(x), and broadcasts
a transaction TXA that spends n1 BTC into an
output script that dictates:

• Alice can gain back possession of her n1 BTC
after c0 + t0 + s0 blocks.

• Bob can redeem the n1 BTC by supplying a
preimage of Y and signing with his secret key.

2. After TXA is buried under c0 extra blocks and
therefore becomes irreversible w.h.p., Bob broad-
casts a transaction TXB that spends his n2 LTC
into an output script that dictates:

• Bob can gain back possession of his n2 LTC
after 4t0 blocks.

• Alice can redeem the n2 LTC by supplying a
preimage of Y and signing with her secret key.

3. After TXB is buried under f(c0) extra blocks and
therefore becomes irreversible w.h.p., Alice re-
deems the n2 LTC of Bob by revealing x.

4. Bob redeems the n1 BTC of Alice by supplying x.

Figure 1: Protocol for an atomic cross-chain swap.

strating a swap of bitcoins for litecoins as an example. The
main thrust of the protocol Πaccs is that Alice can redeem
Bob’s coins only by publicly revealing her decommitment x
on a blockchain, thereby allowing Bob to use x to redeem
Alice’s coins on the other blockchain. To avoid a race con-
dition, Alice’s coins remain locked for s0 more time than
Bob’s coins, which should give Bob enough time to learn x
and claim Alice’s coins. The reason behind the time limits is
that an honest party should be able to gain back possession
of her money in the case that the other party aborted. We
provide a proof of security for Πaccs in Appendix A.

The first two steps of Πaccs terminate after c0 and f(c0)
confirmations on the Bitcoin and Litecoin blockchains, so
that the transactions will become irreversible with a high
enough probability. Per the related details that we discuss
in Section 3.1, a reasonable choice for the function f(·) can
be e.g. f(n) = 3n. Combined with a sensible choice for the
parameters t0, s0 (see Appendix A), Alice and Bob will need
to wait for hours (or perhaps minutes with faster cryptocur-
rency systems) until the Πaccs protocol completes.

In the accompanying illustration (Fig. 2), Alice trades
n1 = 2 BTC for Bob’s n2 = 600 LTC. The last block of
the Bitcoin blockschain is T1, and the last block of the Lite-
coin blockchain is T2. The time limit t0 is set to about two
weeks into the future (i.e., 2000 more blocks in Bitcoin, and
8000 more blocks in Litecoin, as the block creation rate is 4
times faster in Litecoin than in Bitcoin). The extra safety
time s0 is set to 100 Bitcoin blocks, which is ≈ 16 hours on
average. Note that both Bitcoin and Litecoin allow to spec-
ify the time limit in seconds rather than blocks (since valid
blocks need to specify a timestamp that is within certain
leniency bounds), which adds convenience but not security.



Alice:

  if block# > T1+2100
     sigverify PKA
  else
     (sigverify PKB) AND (x: hash(x)=Y)
---------------------------------------
  amount: 2

  sigverify PKA

--------------------
  amount: 2

TXA

Bitcoin:
T1Genesis

Litecoin:
T2Genesis

 Bob:

  if block# > T2+8000
     sigverify PKB
  else
     (sigverify PKA) AND (x: hash(x)=Y)
---------------------------------------
  amount: 600

  sigverify PKB

--------------------
  amount: 600

TXB

Figure 2: Illustration of an atomic cross-chain swap.

Step 1
(Alice)

  if block# > T2 + 40·(2000+100)
     sigverify PKB
  else
     (sigverify PKC) AND (x: hash(x)=Y)
---------------------------------------
  amount: 50 ETH

  sigverify PKB

--------------------
  amount: 50 ETH

TXB

Ethereum:
T2Genesis

Bitcoin:
T1Genesis

Step 2
(Bob)

  if block# > T1+2000+100+100
     sigverify PKA
  else
     (sigverify PKB) AND (x: hash(x)=Y)
---------------------------------------
  amount: 2 BTC

  sigverify PKA

--------------------
  amount: 2 BTC

TXA

Litecoin:
T3Genesis

Step 3
(Carol)

  if block# > T3 + 4·(2000+0)
     sigverify PKC
  else
     (sigverify PKA) AND (x: hash(x)=Y)
---------------------------------------
  amount: 600 LTC

  sigverify PKC

--------------------
  amount: 600 LTC

TXC

Figure 3: Atomic cross-chain swap among 3 parties.

Since the long confirmation time in decentralized networks
makes Πaccs slow, it is likely that the agreed upon price (in
the example, n2/n1 = 300 LTC per BTC) was decided by
observing the prices in real-time exchanges. This implies
that the parties cannot respond to price fluctuations in a
fair manner: if Bob is rational then he may cancel the trade
after the first step (if the market price of LTC went up), and
if Alice is rational then she may cancel the trade after the
second step (if the market price of BTC went up). Another
implication is that Πaccs by itself is not a complete trading
solution, because real-time exchanges are still needed for
price discovery.

Can ACCS be generalized? Suppose that Alice wants to
trade her 2 BTC for 600 LTC, Bob wants to trade his 50
ETH for 2 BTC, and Carol wants to trade her 600 LTC for
50 ETH. In Fig. 3, we show how an atomic swap among
Alice, Bob, and Carol can be accomplished. Similarly to
the 2-party swap protocol Πaccs, Alice picks a random se-
cret x that would allow both Bob and Carol to redeem their
desired cryptocurrency amounts. It is detrimental for Al-
ice to reveal x before the third step: Bob will claim her 2
BTC, and neither Bob nor Carol will be damaged. Since the
timeouts give each party enough time to redeem her desired
output (after her input was claimed by another party), the
3-party atomic swap is secure. Note that the 15 seconds
block interval of Ethereum implies a multiplicative factor of
40, relative to the 600 seconds interval of Bitcoin. As with
Πaccs, the 3-party protocol is slow, because each of the first
three steps requires blockchain confirmations. By contrast,
a liquid real-time exchange only needs to support 2-party

swaps, since the traded amounts are determined according
to the current market price.

A matching service for ACCS was established in 2015, but
it became defunct due to lack of popularity [57].

3. CRYPTOCURRENCY EXCHANGES
We describe several alternative designs for a real-time

cryptocurrency exchange, and also survey the non-real-time
designs. See Table 1 for a summary comparison between
Tesseract and the alternatives.

3.1 Centralized Exchange
In a centralized cryptocurrency exchange, users transfer

ownership of their funds to the sole control of the exchange
administrator. This transfer of ownership (a.k.a. deposit)
is done via an on-chain transaction that may take a long
time to be confirmed, according to a confidence parame-
ter that the exchange administrator set. Most exchanges
accept a Bitcoin transfer by waiting 1 hour on average (6
PoW confirmations), which implies that an attacker with
1/10 of the total computational power can double-spend her
deposit with less than 0.1% probability (cf. [74, Table 1]).
To take another example, most exchanges accept a Litecoin
deposit after 12 PoW confirmations that take 30 minutes on
average (see [13, Appendix A] and [53, Section 4] regarding
the disadvantages of a faster confirmation time in blockchain
protocols). Once a deposit is confirmed, the exchange cred-
its the user with the extra balance, and allows the user to
engage in real-time trades. This done by letting the user
connect to the exchange server and place bid and ask or-
ders, in accord with the current balance that the user has
in the exchange server’s database. When the user wishes to
take ownership of her funds, she issue a withdrawal request
to the exchange server, and waits for an on-chain transfer to
be confirmed.

The business model of a centralized exchange can be de-
scribed as a “goose that lays golden eggs”. That is to say,
the exchange administrator may run away with all the funds
that the users deposited (usually by claiming“I was hacked”),
and the disincentive to doing so is that the exchange collects
a fee from each trade between the users. Most exchanges
also charge a withdrawal fee, and some exchanges collect
fees even when the users place bid and ask orders.

Still, there have been many thefts of funds that users
deposited to centralized exchanges (cf. [31]). In particu-
lar, about 650000 bitcoins were lost when the MtGox ex-
change shut down in February 2014 [48], and the users of the
Bitfinex exchange lost 120000 bitcoins in August 2016 [5].

Let us note that many centralized exchanges also allow
users to trade fiat currencies (such as U.S. dollar and Chi-
nese yuan) in exchange for cryptocurrencies, by accepting
fiat deposits through the traditional banking system. In
Section 7 we describe how fiat currencies can be supported
by Tesseract.

3.2 Exchange Based on Multisig with TTP
An exchange design under which the traders’ funds can-

not be stolen is described in [17, Appendix A]. The idea is
that each trader will deposit her assets into a script that
is controlled both by her and by a semi trusted third party
(TTP). Traders will then communicate their trades in real-
time to the TTP, and the TTP is supposed to keep honest
accounting off-chain. Periodically, the traders and the TTP



will cooperate to sign the new state after all the trades that
have been made, and broadcast the result to the blockchain.

This process is highly susceptible to DoS by malicious
traders who would abort instead of signing the new state.
Therefore, the exchange may require splitting the traders
into smaller factions, or impose penalties on misbehaving
traders who refuse to sign a new state. However, such penal-
ties would require additional collateral from traders who
wish to trade with a relatively modest amount of funds (since
a malicious trader can perform an abort attack by sacrificing
her funds), which makes the exchange service less attractive.

As with all of the TTP-based designs, this exchange is sus-
ceptible to frontrunning attacks by a dishonest TTP (cf. Sec-
tion 4.2).

3.3 Exchange with Off-chain Channels and TTP
In this design, each user establishes off-chain bi-directional

payment channels [70, 28, 60] with a semi-TTP server S,
one channel for each cryptocurrency that the user wishes to
trade in. This produces a hub and spoke network structure,
see Fig. 4 for an illustration of trading among the Bitcoin,
Ethereum, and Litecoin cryptocurrencies.

The traders will then communicate their bid and ask or-
ders to S. Whenever the orders of two traders match, they
will send an instant off-chain payment to S, and S will route
the funds of one trader to the other.

It is better for each individual to trade in small amounts,
because the TTP can always steal the most recent amount
that was funneled through S. However, this recommenda-
tion is in conflict with the common behavior of large traders,
who frequently create big bid/ask “walls”.

In any case, even if the amount in each trade is small, the
risk of theft by a corrupt TTP remains high. This is because
the aggregate amount that all the traders funnel through S
at a particular point in time can be substantial. As an ex-
ample that does not involve an exchange but demonstrates
this point, the online wallet service Inputs.io made it attrac-
tive for users to deposit small amounts, and then ran away
with more than 4000 bitcoins [62].

Another major drawback of this approach is that the TTP
has to lock matching collateral for each off-chain payment
channel of each trader, due to nature of off-chain bi-directional
channels. It is therefore likely that the exchange service
would need to impose high fees on its users.

3.4 Non-real-time Exchanges
Hallex [41] is a trust-free exchange that relies on a smart

contract to ensure that users’ funds cannot be stolen. How-
ever, Hallex does not offer real-time trades, since its cen-
tralized exchange server should broadcast successful trades
to the blockchain as they occur. Moreover, Hallex does not
support cross-chain trades, and is exposed to frontrunning
attacks by the operator of its centralized server (cf. Sec-
tion 4.2).

Bitsquare [19] is a non-real-time exchange with a decen-
tralized order book, that relies on escrows (cf. [38]), security
deposits, and arbitration. BitBay [18] is a decentralized non-
real-time exchange in which each of trading parties provides
a security deposit, and the deposits will be destroyed un-
less the parties come to an agreement (hence one party may
attempt to extort the other by demanding a side payment).

EtherDelta is a non-real-time non-cross-chain decentral-
ized exchange that has been operational since July 2016,

Bob
ETH

Bob
BTC

Carol
BTC LTC

Carol

Alice
ETH

Alice
LTC

Alice
BTC

S

Figure 4: Exchange via off-chain channels.

with quite a significant amount of popularity. However,
EtherDelta is vulnerable to frontrunning attacks, see [11].

3.4.1 Exchange Based on Mutual Distrust
Instead of relying on trusted hardware, it is possible to

operate an exchange service (similar to Tesseract) as a logi-
cal server that is implemented via multiple physical servers
that are distrustful of each other.

Traders will need to send their bid/ask requests using
threshold encryption [29] in order to avoid frontrunning at-
tacks (see Section 4.2), and the physical servers will run a
Byzantine consensus protocol and sign the settlement trans-
actions (cf. Section 4) with a threshold signature scheme [36].

While an honest majority among the physical servers can
guarantee protection from theft, attempting to provide re-
siliency against a dishonest majority is problematic because
all-or-nothing fairness is crucial for security (as explained in
Section 5). For instance, a naive protocol that forces 80%
of the physical servers to sign the settlement transactions
will allow a malicious coalition of 21% of the servers to com-
mit only one of the settlements. Another possibility is to
emulate the Πprac protocol of Section 5.2 by using multiple
logical servers, but this approach is likely to be detrimental
because a hostile takeover of just one of the logical servers
will violate the all-or-nothing fairness requirement.

Since the physical servers better reside in different ge-
ographical locations, and since Byzantine agreement with
threshold decryption has to be performed for each of the
users’ orders, the latency of a mutual distrust based ex-
change should probably be measured in seconds (depending
on the number of physical servers). By contrast, the respon-
siveness of Tesseract can be measured in milliseconds.

3.4.2 ShapeShift
ShapeShift [78] is a centralized matching service that miti-

gates the risks associated with a full-fledged exchange by ne-
cessitating that each trader will deposit only a small amount
of cryptocurrency for a short period of time. If a quick match
is available then ShapeShift will execute the trade, otherwise
it will immediately refund the cryptocurrency to the trader



Table 1: Comparison of Cryptocurrency Exchanges

Trust DoS Collateral
Front-

running
Price

Discovery

Centralized yes minor no yes yes

TTP/multisig
(Section 3.2)

minor yes from users yes yes

TTP/channels
(Section 3.3)

semi minor from TTP yes yes

ShapeShift semi minor no yes no

Tesseract SGX minor no no yes

(i.e., via a transaction on the blockchain). Since ShapeShift
is rather popular, the aggregated amount of funds that can
be stolen is likely to be substantial.

Moreover, since ShapeShift does not support real-time
trades and price discovery, it fetches the current prices from
centralized exchanges. If ShapeShift allowed traders to play
with their deposits for longer periods of time, it could per-
haps support price discovery, but it would then bear a re-
semblance to a standard centralized exchange. In this sense,
ShapeShift does not offer a solution to the systemic risk that
centralized exchanges entail.

3.4.3 BitShares
BitShares [76] offers a cryptocurrency exchange that does

not rely on trusted parties. It is not real-time, but relatively
fast due to a delegated proof-of-stake consensus protocol in
which blocks are created every few seconds by central com-
mittee members (who may engage in frontrunning attacks,
see Section 4.2).

Traders first convert their cryptocurrency to IOUs in the
BitShares system, and later convert these IOUs to the native
BitShares cryptocurrency (BTS) according to an up-to-date
exchange rate that is set by elected representatives that the
BitShares stakeholders voted for. The representatives deter-
mine the BTS price by observing centralized exchanges that
are external to the BitShares system. The IOUs are required
to lock extra BTS collateral that should be high enough to
cover a short squeeze. See [76, Section 2] and [81] regarding
the potential for market manipulations with this IOU-based
approach.

The BTS cryptocurrency that traders ultimately obtain
can be exchanged for other cryptocurrencies by means that
are again external to the BitShares system — centralized ex-
changes (a.k.a. gateways) are commonly used for this task.

4. THE Tesseract DESIGN
The Tesseract exchange achieves its security and perfor-

mance goals by relying on a trusted execution environment,
specifically SGX. Intel Software Guard Extensions (SGX) is
a hardware architecture that enables code execution in an
isolated, tamper-free environment. Intel SGX can also attest
that an output represents the result of such an execution,
and allows remote users to make sure that the attestation
is correct. The remote attestation feature is essential for
Tesseract, for reasons that will soon become clear (cf. Sec-
tion 4.3 for further discussion). For more information on the

SGX architecture, see [1, 44, 43, 61].
The operation of Tesseract is illustrated in Fig. 5. The

enclave code is hardcoded with the hash of the Bitcoin gen-
esis block, or a more recent “checkpoint” block of the Bitcoin
blockchain. When the execution starts, the enclave receives
the latest block headers from an untrusted Bitcoin client
that runs on the same server machine. Each header has
its PoW validated against the difficulty rule of the Bitcoin
protocol, and is then added to a FIFO queue that is stored
inside the enclave. The size of the queue is set according to a
parameter that specifies the maximal time window that the
enclave maintains. For instance, 8064 Bitcoin block headers
would correspond to a 2 months window (when header 8065
is added the first header will be removed, and so on). The
enclave will also maintain the same kind of queue for ev-
ery other cryptocurrency that is supported by the Tesseract
exchange service. We note that Bitcoin and Litecoin block
headers are 80 bytes each, and Ethereum block header is
≈ 512 bytes.

After initialization, the enclave invokes a key generation
procedure to create a keypair (sk, pk) for each supported
cryptocurrency. The randomness that we feed to the key
generator is obtained by concatenating several sources: the
RDRAND instruction that sgx_read_rand() uses for hardware-
based randomness, the hashes of the latest blockchain blocks,
OS provided randomness via /dev/random, and the SGX
trusted clock. Each of these sources increases the entropy of
the random data, and therefore reduces the likelihood that
an adversary will have knowledge of the secret key sk.

The enclave will then attest [44] that the public key pk is
its deposit address, and the attestation of pk should be pub-
lished through multiple services (such as websites, IPFS [10],
and even Bitcoin and other blockchains). As an example,
Fig. 5 shows two such deposits addresses PKSGXBTC,PKSGXLTC,
for Bitcoin and Litecoin. The anti-DoS component that we
describe in Section 8 is also useful for making sure that the
attested deposit addresses will be publicly known.

In fact, the deposit address better be a hash of the pub-
lic key, as this increases the security and reduces the size
of unspent outputs on the public ledger. For example, 257-
bit compressed ECDSA public key gives 128 bits of security
at the most, while 160-bit hash digest of the 257-bit pub-
lic key will give 160 bits of security (if the hash function is
preimage-resistant). Note that there is no point to mount a
collision attack on a scriptless address [4]. The settlement
transaction (see next) will expose the public key, but po-
tential attacks would then have a short timeframe until the
transaction becomes irreversible. Hence, for maximal secu-
rity the enclave will generate and attest to a fresh deposit
address after each settlement.

When a new user wishes to open a Tesseract account, she
first needs to deposit a significant enough amount into a de-
posit address of the exchange. After deposit transaction was
confirmed on the blockchain, the (GUI client of the) user will
transform the confirmed deposit into evidence that will be
sent to the enclave. This evidence consists of the transaction
that spends the coins into a deposit address of Tesseract, as
well as an authentication path that consists of the sibling
nodes in the Merkle tree whose root is stored in a block
header (see Fig. 20), and the index of that block. Tesseract
will credit the user’s account (in the enclave) after verifying
that the deposit transaction is valid, that the block B that
contains the deposit belongs to the enclave’s headers queue,



Alice

  if block# > T0+2000
    sigverify PKA
  else
    sigverify PKSGXBTC
----------------------
  amount: 5

  sigverify PKA

--------------------
  amount: 5

TXA

  if block# > T1+8000
    sigverify PKB
  else
    sigverify PKSGXLTC
----------------------
  amount: 600

  sigverify PKB

--------------------
  amount: 600

TXB

Bitcoin:
T0

Litecoin:

Bob

SGX real-time exchange

Deposit(TXA)

Bid(3 BTC, price=310:1) 

Bid(1 BTC, price=305:1) 

Deposit(TXB)

Ask(500 LTC, price=299:1) 

Genesis T1Genesis

1 12 3 2

Figure 5: Illustration of deposits that are followed by bidding/asking.

and that B is buried under enough additional confirmations
(see Section 4.1 for security analysis). Tesseract also pro-
tects against replay attacks, by requiring strictly increasing
block indices for the user’s deposits. In Fig. 5, the evidence
that Alice provides is Deposit(TXA).

As shown in Fig. 5, the output of a valid deposit transac-
tion needs to specify a time limit (e.g., two weeks). Before
the limit is reached, only the enclave can spend the deposit
amount (for a Bitcoin deposit, this public key PKSGXBTC is
hardcoded in the output and the spending is done by creat-
ing a signature with the corresponding secret key SKSGXBTC).
After the time limit, the user can gain back control of her
money by signing with a secret key that only she knows.
In cryptocurrencies such as Bitcoin and Litecoin, the time
limit can be expressed in the output script via the CHECK-

LOCKTIMEVERIFY instruction [82]. Technically, SKSGXBTC

can still spend the output after the time limit (since Bit-
coin transactions should be reorg consistent [64, 82]), but is
not guaranteed because the user may also spend the output
then. This deposit format ensures that the funds will safely
be restored to the user in the case that the Tesseract server
becomes unavailable.

We note that the enclave is hardcoded with the current
difficulty parameter of each PoW-based blockchain. At the
beginning of the execution, the enclave will fetch blocks
from genesis (or the more recent checkpoint), and verify that
the chain reaches a block of the hardcoded difficulty level.
This prevents an adversary (who has physical control of the
Tesseract server) from feeding a low-difficulty fake chain to
the enclave. The users of the Tesseract exchange can gain
extra security by inspecting the latest block of each traded
cryptocurrency and verifying (via remote attestation) that
the enclave has the latest blocks, see Section 4.1 for details.

Malicious users may try to carry out a DoS attack on the
Tesseract server, by attempting to open many new accounts

while providing fake deposits as evidence. Currently, Bit-
coin blocks contain less than 4000 transactions, which im-
plies that the authentication path requires 12 or less sibling
nodes of the Merkle tree, and hence 12 invocations of a hash
function. Thus, the time complexity of verifying the validity
of a deposit is quite low. To further mitigate the prospects
of a DoS attack, the enclave may require a moderate PoW
done on the entire evidence data of the deposit (that the
user will compute on her own), or simply limit the number
of new account requests per timeframe.

One reason that the enclave maintains a queue of head-
ers and fetches the additional block confirmations from the
queue — as opposed to asking the user to concatenate the
extra confirmations as part of the evidence of the deposit —
is that the queue provides an undisputed point of reference
in the form of the genesis (or checkpoint) block. That is
to say, if there are two blockchains that use the same hash
function for PoW and have a similar difficulty level, then a
malicious user could deceive the enclave to accept a deposit
transaction that was confirmed on an incorrect blockchain.
This approach also reduces the communication complexity
between the Tesseract server and remote users.

After the user registers with Tesseract, her deposited amount
is credited into her account entry in the array of users that
is stored inside the enclave. Next, the user will be able to
trade in real-time with other users who opened a Tesseract
account, by sending bid/ask orders to the Tesseract server
via a secure channel (see Section 4.2). If the user wishes to
deposit other currencies into her account, she can then send
similar authentication paths as evidence.

In Fig. 5, Bob opens an account with Deposit(TXB), and
then asks to sell 500 LTC for the price of 299 LTC per BTC.
Since Alice’s bid are with a price of 305 LTC per BTC and
higher, there is no match yet, and the requests of Alice and
Bob are recorded into the order book that is kept inside



the enclave. The Tesseract server publishes an anonymized
version of the order book (i.e., price and volume of each
order, without usernames) with remote attestation, hence
anyone can observe the price spread of the exchange. Each
user can request her recent trades history via the secure
channel, and cancel her pending orders.

The real-time trading among the users will cause frequent
updates to the balances of their accounts inside the enclave,
but these updates are not reflected on the actual cryptocur-
rency systems yet. If nothing else were to happen, the entire
process would just be a sandbox playground, as the users
will simply claim their original money after the time limit of
their deposits is reached. Therefore, from time to time (e.g.,
once a day) Tesseract will broadcast to the cryptocurrency
networks “settlement” transactions that commit the current
account balances of the users. See Fig. 7 for an illustration,
and Section 5 regarding a secure settlement protocol.

The user can request an early withdrawal of some of her
funds. This is done by directing the enclave to prepare an
output that is controlled only by the user, in the next set-
tlement transaction. The enclave will extend the time limit
of each user’s output in the settlement transactions that it
constructs, thereby allowing uninterrupted trading by active
traders. To minimize the size of the settlement transactions,
users who did not trade are not included in the inputs and
outputs. When some of a user’s funds are in an output
whose time limit is about to expire, the user will be disal-
lowed from trading. The user is permitted to send a renewal
request before the expiration, in case she was unlucky and
none of her trade orders were matched (renewal after the
expiration can be exploited by malicious users who would
create conflicting transactions near the time limit).

The Tesseract exchange collects a proportional fee for each
successful trade (e.g., 0.1% from both ends of a trade), and
a flat fee for early withdrawal and renewal requests. The
exchange limits the total number of pending orders that a
user may have in the order book, and users who flood the
exchange with an excessive number of orders may be penal-
ized (by confiscating some of their funds) or blacklisted for
a period of time. The fees that Tesseract collects are needed
in order to pay the miners for the settlement transactions.

A forthcoming Bitcoin support for aggregated Schnorr sig-
natures [87] will enable Tesseract to attach a single signa-
ture to the settlement transaction, instead of one signature
for every input. This implies that the settlement transac-
tion can be more than twice smaller, which is significant
for large transactions (e.g., with 1000 traders the transac-
tion size will 64 kilobytes smaller). It is also likely that
miners will impose a considerably lower fee for a large set-
tlement transaction with a single aggregated signature. Let
us note that signature aggregation is required in principle
if the enclave refreshes its deposit address after each settle-
ment, since the aggregated signature will need to be verified
against different public keys.

In case of a forthcoming hardfork of the kind of Ethereum
Classic or Bitcoin Cash, users should secure themselves against
replay attacks (cf. [59, Section 2.4]) by withdrawing their
coins from the Tesseract exchange. The users may switch to
a new version of Tesseract with updated code that supports
the hardfork (or completely new cryptocurrencies), that can
be deployed at a later time. Our implementation has dy-
namic support for ERC20 tokens, hence no switch is needed
when new ERC20 tokens are introduced (a user can create

new order book pairs, for a fee).
In Appendix B we provide excerpts of our reference code,

that corresponds to the above description.

4.1 Eclipse Attacks
Suppose that a malicious user Pi succeeds to deceive the

enclave into accepting a fake Bitcoin deposit, and the ac-
count of Pi inside the enclave is credited with the extra
money. Suppose that Pi then sends an order bid to trade
the BTC that she deposited for LTC, and an honest user Pj
matches that bid. The next Bitcoin settlement transaction
that the enclave constructs will not be confirmed, since the
Bitcoin network will regard the fake deposit input as invalid.
However, the next Litecoin settlement transaction should be
valid, hence Pi will profit at the expense of Pj .

Let us assume that an adversary A has p fraction of the
computational power of the Bitcoin network, and also has
physical access to the Tesseract server. Thus, A can cut the
communication between the enclave and the Bitcoin net-
work, feed the enclave with dummy blocks that that include
her fake deposit, and wait for the enclave to construct and
release the Litecoin settlement transaction.

Since p < 1
2
, the rate at which A feeds blocks to the en-

clave is at least twice slower than in the case that there is
no attack. By relying on the SGX trusted clock, the enclave
can impose a rule that requires waiting for additional con-
firmations if the blocks arrive too slowly. We note that the
Tesseract enclave is assumed to be running without interrup-
tions, since our enclave code disallows rollbacks [80, 58] by
design (cf. Section 8 regarding our approach to resiliency).

The time between every two consecutive Bitcoin blocks is
an exponential random variable. Hence, for a rule that dic-
tates whether blocks arrive too slowly we should consider the
sum of exponential random variables, known as the Erlang
distribution. We define n to be the number of blocks that a
deposit needs to be buried under, before it is credited by the
enclave. We define δ as the multiplicative slowness factor by
which blocks are allowed to arrive. E.g., δ = 3 means that
blocks that arrive 3 times slower than the expected time (or
more slowly than that) will trigger the enclave to wait for n
extra block confirmations before accepting any deposits.

Setting δ to a high value reduces the probability of a false
positive (i.e., a rejected deposit when no attack is taking
place and the honest chain growth was unluckily slow dur-
ing some timeframe). However, a high δ also increases the
prospects of an attack. For any δ > 1, it is possible to set a
large enough n so that the probability of a successful attack
becomes negligible. However, a large n implies that hon-
est users need to wait for a long time before their deposit
is confirmed, which makes the Tesseract exchange service
unattractive.

In Table 2 we provide exemplary concrete parameters for
n and δ. For example, the third row of Table 2 shows that
with n = 120 (which is 20 hours on average in Bitcoin) and
δ = 1.5:

• An adversary with p ≤ 1
5

of the computational power
can mount a successful eclipse attack on the enclave
with probability 2−92 or smaller.

• In expectation, an honest user will need to wait for
extra confirmations once in every ≈ 2 million deposits
that she makes.

While the concrete parameters that can be obtained are



Table 2: Deposit confidence vs false positives

p δ n Pr[Erlang(n, p) ≤ δn] Pr[Erlang(n, 1) > δn]
1
10

2 60 2−75 2−31

1
10

2 120 2−145 2−58

1
5

1.5 120 2−92 2−21

1
4

1.3 120 2−82 2−10

already quite reasonable, let us stress that prudent users of
the Tesseract exchange will not be exposed to eclipse at-
tacks at all. Any user can simply compare the latest blocks
in the actual cryptocurrency networks with the latest blocks
that Tesseract enclave publishes (with remote attestation),
and refuse to trade in case of a discrepancy. In the example
above, the honest Pj will avoid Pi’s attack by observing that
the latest Bitcoin blocks that Tesseract published are incon-
sistent with the real Bitcoin network, and refuse to trade her
LTC for BTC. Our practical instantiation of Tesseract has
another layer of security that further protects (incautious)
users from eclipse attacks, see Section 5.2.

4.2 Secure Communication
For each user who has already opened an account with

Tesseract, we establish a secure channel (TLS) when the user
wishes to communicate with the enclave. The reasons for a
channel with authenticated encryption are the following:

• Fast identification: the authenticated messages are com-
puted via symmetric-key operations, after the initial
key exchange (done via public-key operations) that es-
tablished the channel. This form of communication is
suitable for real-time trades, since symmetric-key oper-
ations are an order of magnitude faster than public-key
operations.

• Frontrunning prevention: an adversary can try to in-
spect the entire communication flow that arrives at the
Tesseract server, learn information regarding real-time
actions of other users, and perform trades that would
be advantageous to her. The encrypted communica-
tion avoid such attacks.

An example of a frontrunning attack is shown in Fig. 6.
There, Alice believes that the BTC price is going to rise.
Therefore, she places an order to buy 10 BTC at $870 each,
so that any of the current sellers will match her order first.
On the other hand, Bob believes that the price of BTC is
going to drop, and he therefore places an order to sell his
10 BTC for a price that is as low as $820. Given the pub-
lic order book, Bob’s intention is thus to sell 2 BTC for
$850, 5 BTC for $840, and 3 BTC for $820. If the trades
will be executed in this order, it will be to the benefit of
Bob, because he will actually sell 10 BTC to Alice for $870
each. However, an adversary with this knowledge can per-
mute the orders and insert new orders with her account.
In this scenario, the adversary would be guaranteed to gain
$10 · (870− 851) = $190, by buying Bob’s 10 BTC for cheap
and then selling it to Alice.

Since all the users send encrypted messages through their
secure channels, an adversary with a physical control of the
Tesseract server cannot frontrun other users. To the best of

Price    Volume
 $850       2
 $840       5
 $820       5

Buying
           Order Book (BTC/USD)

Arrival of new orders:
1. Alice:  buy($870, 10)
2.   Bob: sell($820, 10)

Frontrunning:
1. Adversary:  buy($851, 10)
2.       Bob: sell($820, 10)
3.     Alice:  buy($870, 10)
4. Adversary: sell($870, 10)

Selling
Price    Volume
 $890       3
 $906       5
 $945       4

Figure 6: Example of frontrunning.

our knowledge, all the other designs of cryptocurrency ex-
changes are exposed to these kinds of frontrunning attacks.

We note that an adversary may still observe patterns of
communication at the IP-level and try to learn information
about the traders. An IP-level anonymizer (e.g., Tor [30])
is inapplicable as a mitigation technique against such adver-
saries, since users wish to perform real-time trades. How-
ever, the user’s client can randomly inject dummy data into
the TLS channel (which would be ignored on arrival), thereby
making it more difficult to track communication patterns.
Furthermore, in future versions of Tesseract we plan to allow
users to upload an algorithmic trading program to their en-
clave account (for a fee), that will enable them to issue mul-
tiple trading orders without communication with the server.
The use of automated trading programs is quite popular in
centralized exchanges (cf. [6]), but these automated traders
do communicate each of their orders to the server.

4.3 Double Attestation
It may be the case that several reputable providers would

offer different variants of the Tesseract service (perhaps with
their own tokenized coins and fiat assets, see Sections 6
and 7). This raises the following question: does a single en-
tity (i.e., the hardware manufacturer) has the power to com-
promise the security of all the Tesseract-based platforms,
simultaneously?

No such single entity exists with regard to centralized ex-
changes (cf. Section 3.1), because these exchanges are in-
dependent of one another. That is to say, a security breach
of one centralized exchange will not have a direct impact on
the users of the other centralized exchanges.

For trusted hardware with remote attestation support, the
plain way that the manufacturer can break the security is by
attesting to fraudulent data. In our context, suppose for ex-
ample that there are two Tesseract-based exchanges X1, X2

that invite users to deposit their funds to PKSGXBTC1 and
PKSGXBTC2, respectively. If Intel has knowledge of the se-
cret signing keys sk1, sk2 that are embedded into the CPUs
ofX1 andX2, then it can forge signatures that attest to fresh
ephemeral public keys PK′SGXBTC1,PK′SGXBTC2 that Intel



would generate together with the corresponding secret keys
SK′SGXBTC1, SK′SGXBTC2. Thus, Intel will be able deceive
users into sending their deposits to PK′SGXBTC1,PK′SGXBTC2,
and then steal funds that users wished to deposit to X1, X2.

The manufacturer may also break the security by embed-
ding malicious logic into the hardware. For instance, when-
ever an application executes code that generates a (suppos-
edly) random secret key, the key will actually be generated
in a way that can be predicted by the manufacturer. While
this attack would be easy enough if there was one assembly
opcode that generates a random key (using a randomness
source with low entropy), it is far more difficult to achieve
predictable behavior for any application-level code that is
executed by a general-purpose CPU (as in the case of SGX
and Tesseract).

Another attack vector that the hardware manufacturer
may attempt is simply to send the data that a CPU gener-
ates over the network (to the manufacturer’s address), with-
out consent or knowledge of the administrator of the server
computer. This is indeed a concern with Intel’s Manage-
ment Engine (see [72]), but it is not an inherent defect of
the trusted hardware model (and hopefully the Management
Engine will have an opt-out option in the future).

Similarly to [77, Section V.A], the Tesseract platform pro-
tects against false remote attestation by attaching a sec-
ondary signature – created by the administrator of the plat-
form – to the attested data. Following the above exam-
ple, the users of X1 (resp. X2) will take into consideration
the reputation of the administrator of X1 (resp. X2), and
reject the attested data unless it was signed both by the
SGX CPU and by the reputable administrator. This means
that the hardware manufacturer alone cannot attack all the
Tesseract-based exchanges, since the manufacturer has to
collude with the administrator of an exchange in order to
create a fraudulent attestation. This implies that Tesseract
is strictly more secure than centralized exchanges.

The double attestation mechanism is also efficient, since
the secondary signature is rarely needed. Specifically, the
secondary signature is required only once for the identity
public key of the enclave (which is the hardware-associated
public key of Section 8.1), and this identity can then estab-
lish the TLS channel with each user. All further communica-
tion in a TLS channel (e.g., bid/ask orders) is done without
attestation. For non-user-specific data such as the real-time
updates to the public order book, the secondary signature is
already implied in case HTTPS is used to view this data.

5. ATOMIC CROSS-CHAIN SETTLEMENTS
Assume first that Tesseract only supports the trading of

digital assets (cf. Section 7) that circulate within a single
cryptocurrency. In this case, the publication of each settle-
ment transaction — that reflects the account balances of the
users after trading in a time period — does not entail the
risk of an adversary stealing funds from honest users. The
reason is that an invalid deposit (see Section 4.1) or blockage
of the settlement will amount just to a DoS attack, since all
the users will claim their prior funds after the time limit in
the output of their original deposit (or the last settlement
transaction) expires.

On the other hand, trading among multiple cryptocur-
rency systems (that are independent of one another) may
allow the adversary to steal funds from honest users. We
provide an illustration of the risk in Fig. 7. Suppose for

Bob
300000 LTC

Bob
1000 BTC

Carol
2 BTC

Dave
1 BTC

Dave
300 LTC

Alice
300000 LTC

Carol
300 LTC

TX1 TX2

Bitcoin transaction Litecoin transaction

Alice
1000 BTC

Carol
3 BTC

Figure 7: The cross-chain settlement problem.

instance that 1 BTC is worth $2000, and also that the mar-
ket price of 1 BTC is 300 LTC. In the illustration, Alice
and Bob traded 1000 BTC (i.e., $2 million worth of BTC)
for 300000 LTC (i.e., $2 million worth of LTC), while Carol
and Dave traded 1 BTC for 300 LTC. Thus, the enclave
will construct and sign the Bitcoin and Litecoin settlement
transactions, and attempt to broadcast the settlements to
the Bitcoin and Litecoin networks. An adversary with phys-
ical access to the Tesseract server can collude with Alice and
intercept the Bitcoin settlement transaction when it leaves
the CPU but before it is broadcasted to the Bitcoin network,
and let the Litecoin settlement transaction go through and
reach the Litecoin network. The result is that the transfer
of ownership of $2 million worth of LTC from Bob to Alice
will be committed on the Litecoin system, while the transfer
of ownership of $2 million worth of BTC will never occur.
In effect, Bob lost $2 million worth of funds to Alice.

Let us provide security definitions that capture the above
fairness problem.

Definition 1 (All-or-nothing settlement). Given
the transaction tx1 for system CA and the transaction tx2
for system CB, an all-or-nothing cross-chain settlement is a
protocol that guarantees that

1. Both tx1 will become confirmed on system CA and tx2
will become confirmed on system CB, or

2. Neither tx1 will become confirmed on system CA nor
will tx2 become confirmed on system CB.

In our context, CA and CB are cryptocurrencies. We stress
that the parties that execute the consensus protocol for CA
may be unaware of the existence of CB , and vice versa.

Notice that Definition 1 does not imply that honest users
are fully protected against financial loss. Specifically, an
adversary A that prevents both tx1 and tx2 from being con-
firmed may benefit at the expense of honest users: A may
wish to renege on a trade after observing some external
events and/or price fluctuations that worked to her disad-
vantage. Still, Definition 1 implies better security in compar-
ison to the popular centralized exchanges (cf. Section 3.1),
because the users of such centralized exchanges run not only
the risk that their trades will be reversed but also the risk
that their initial funds will be stolen.

Definition 2 (Unprivileged settlement). Let U in
1 , U

in
2

denote the sets of users in the inputs of the transactions



tx1, tx2, and let Uout
1 , Uout

2 denote the sets of users in the
outputs of tx1, tx2. Let U = U in

1 ∪ U in
2 ∪ Uout

1 ∪ Uout
2 . An

unprivileged cross-chain settlement is a protocol that satis-
fies Definition 1 in the presence of an adversary A who can
obtain any information that every user P ∈ U accesses, at
the moment that the information was accessed.

In essence, Definition 2 implies that honest traders cannot
utilize secret data during the settlement protocol (such as
picking a secret x ∈ {0, 1}λ in the first step of the ACCS
protocol in Section 2), because A could break the security
by gaining access to any sensitive data that honest traders
attempt to use. Thus, Definition 2 captures a rushing ad-
versary who has physical control over the SGX server and
can intercept all the data the leaves the CPU, before hon-
est users have an opportunity to make use of this data in a
secure fashion. Notice that Definition 2 does not permit A
to observe the secret keys that enable honest users to spend
their funds, as long as honest users do not access their secret
keys during the settlement protocol.

In fact, Definition 2 gives A more power than a real-world
adversary with physical control over the SGX server. Con-
sider for instance a protocol where in the first step the en-
clave encrypts data using Carol’s public key, and attempts
to send the encrypted data to Carol over the network. In
that case, A will not be able to obtain the data that Carol
accesses; the only action available to A is to mount a DoS
attack and not let the protocol make progress. The moti-
vation for the more conservative definition is that we wish
to support settlement transactions among a large number
of users (e.g., thousands) and multiple cryptocurrency sys-
tems, where the users can be anonymous and can create
Sybil accounts. In this setting, it is difficult to design a
secure protocol that sends sensitive data to rational users
(with the expectation that they will act in their own self-
interest), due to the possibility of malicious coalitions with
Sybils who would be willing to sacrifice some of their funds.
For this reason, Definition 2 denies the enclave from having
the power to communicate privately with individual users.

Thus, intricate solutions to the all-or-nothing settlement
problem are needed mainly because our goal is to support
many anonymous traders. Let us in fact demonstrate that
with a few users, the all-or-nothing settlement problem can
become easy. In Fig. 8, Alice and Bob again wish to trade
$2 million worth of BTC for LTC, but they are the only
users of the Tesseract exchange. Here, the enclave prepares
the settlement transactions TX1,TX2 that keep the enclave
in control in the next two weeks (2000 blocks where T1 is
the head of the Bitcoin blockchain, and 8000 blocks where
T2 is the head of the Litecoin blockchain). This enables
Alice and Bob to continue to trade, if they wish to. The
secret data x ∈ {0, 1}λ is generated inside the enclave. After
the enclave receives evidence that TX1 and TX2 are both
confirmed, it sends x in encrypted form only to Alice, by
using a secure channel. After the two weeks, the outputs can
be redeemed using x, otherwise the timeouts allow the funds
to be returned to each user. As with the ACCS protocol
(cf. Section 2), the timeout in TX1 is longer, so that Bob
will have enough time to redeem the 1000 BTC after Alice
reveals x and thereby spends the 300000 LTC.

Let us note that Definition 2 does not give A the power
to observe secret information that is inside the enclave. In
the Tesseract implementation, this is justified because we
use a constant-time constant-memory library for the crypto-

Bob
300000 LTC

TX1 TX2

Bitcoin transaction Litecoin transaction

Alice
1000 BTC

   if block# > T1 + 2000 + 200
     sigverify PKA
   else if block# > T1 + 2000
     (sigverify PKB) AND (x: hash(x)=Y)
   else
     sigverify PKSGXBTC
---------------------------------------
   amount: 1000 BTC

   if block# > T2 + 4·(2000 + 100)
     sigverify PKB
   else if block# > T2 + 4·2000
     (sigverify PKA) AND (x: hash(x)=Y)
   else
     sigverify PKSGXLTC
---------------------------------------
   amount: 300000 LTC

Figure 8: Settlement with two parties.

Protocol Πsimp

1. The enclave picks a symmetric key K ∈ {0, 1}λ.

2. The enclave embeds K into TX1,TX2.

3. The enclave sends ct = encryptK(TX1,TX2) to
S1, S2, . . . , SN .

4. The enclave waits for acknowledgements from
S1, S2, . . . , SN .

5. The enclave broadcasts TX1 to C1 and TX2 to C2.

6. Each Si that sees TXi but not TX3−i will fetch K
from TXi, decrypt ct, and broadcast TX3−i to C3−i.

Figure 9: Naive protocol for fair settlement.

graphic operations [88], hence the potential for side-channel
attacks is greatly reduced.

We now present solutions to the all-or-nothing settlement
problem, in a setting that involves many anonymous traders.

5.1 Theoretical Solution
To clarify why an intricate protocol is needed, we first de-

scribe a simple protocol Πsimp that relies on N extra servers
S1, S2, . . . , SN that are supposedly reputable. See Fig. 9.

The cryptocurrency systems C1 and C2 can be for example
Bitcoin and Litecoin as in Fig. 7. The embedding of K into
TX1 and TX2 can be done with the OP_RETURN script instruc-
tion [7], that allows storing arbitrary data on the blockchain
as an unspendable output (for a small fee). It is not pos-
sible to mount a malleability attack that removes K from
TX1 or TX2, because the signatures for TX1 and TX2 are
done on the entire transaction data (i.e., data that includes
the OP_RETURN output).

Since information that is published on a blockchain be-
comes publicly available, the idea behind Πsimp is that any
non-corrupt server Si will be able to impose fairness by fetch-
ing K from a public blockchain and decrypting the cipher-
text ct, because ct is already in Si’s possession.

Unfortunately, Πsimp is insecure, due to a race condi-
tion. The adversary A can intercept both TX1 and TX2,
but broadcast neither of them initially. Since the users’ out-
puts must have a time limit (see Section 4), A will wait until
an input (that belongs to a corrupt user Pj) in TXi is about



Functionality RMIT (refundable multi-input transaction)

Notation: let C be a cryptocurrency system.

Upon receiving tx = ({in1, . . . , ink}, {out1, . . . , outn}, φ1, φ2)

1. Verify ∀j ∈ [k] : inj is unspent in C.

• If the verification failed then abort.

2. Verify
∑k
j=1 amount(inj) ≥

∑n
j=1 amount(outj).

• If the verification failed then abort.

3. Make {in1, . . . , ink} unspendable in C.
4. Wait to receive a witness w

(a) If φ1(w) = 1 then commit {out1, . . . , outn} to C,
and terminate.

(b) If φ2(w) = 1 then make {in1, . . . , ink} spendable
in C, and terminate.

(c) Otherwise, return to Step 4.

Figure 10: The ideal functionality RMIT.

to expire, and then broadcast TX3−i. Then, A will instruct
Pj to spend that input, thereby invalidating TXi. Hence,
even if all of the servers S1, S2, . . . , SN are honest, they may
not have enough time to fetch K from TX3−i and broadcast
their decrypted TXi.

If the cryptocurrency systems C1,C2 allow transactions to
embed large arbitrary data, then it would have also been
possible to eliminate the reliance on S1, S2, . . . , SN . Briefly,
each TXi will embed the TX3−i data in a designated out-
put, the enclave will broadcast both TX1 and TX2, and any
user would then have the opportunity to enforce fairness.
This would bloat Ci with the entire TX3−i data, which is
undesirable — there are risks associated with a popular de-
centralized cryptocurrency that allows embedding of large
data (e.g., illegal content). In any event, this approach is
insecure due to the same race condition that Πsimp exhibits.

Let us therefore present a theoretical solution that avoids
the race condition. Our strategy is to condition the second
settlement transaction TX2 on the result of the first settle-
ment transaction TX1, by constraining TX2 with PoW-based
predicates that verify whether certain events occurred on an-
other blockchain.

As we will see, this approach is problematic with the cur-
rent Bitcoin protocol. Thus, we first describe the settlement
protocol in an hybrid world that has an ideal “refundable
multi-input transaction” (RMIT) functionality, defined in
Fig. 10.

The description of TX1,TX2 is outlined is Fig. 11. We use
the notation TXi,j to denote that TXi was updated by sup-
plying w that satisfied φj . The secrets x1 ∈ {0, 1}λ, x2 ∈
{0, 1}λ are generated inside the enclave. The predicates
φ′1, φ

′
2 are specified in Fig. 12. To elaborate, the hardcoded

parameter D0 specifies a difficulty level for PoW mining,
`1 is an upper bound on the length of an authentication
path of a Merkle tree, and `2 is a PoW confidence parame-
ter. The input witness w for φ′1 consists of up to `1 sibling
hash values vj for the authentication path (with direction
dj ∈ {’L’,’R’}), together with exactly `2 header values. The
predicate φ′1 will verify that TX1,1 is in a leaf that reaches
some root value r, and that r is extended by valid proofs of
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φ1 ={x1: hash(x1)=Y1}

φ2 ={block# > T0}

φ'1={TX1,1 is confirmed}
       OR
       {x2: hash(x2)=Y2}

φ'2={TX1,2 is confirmed}

RMIT: RMIT:

Figure 11: Theoretical fair settlement transactions.

Predicate φ′1

Hardcoded parameters: TX1, D0, `1, `2
Input: w = ((v1, d1), (v2, d2), . . . , (vk, dk), H1, H2, . . . , H`2 )

1. Embed hash(TX1,1) into y

2. For j = 1 to min(k, `1)

• If dj=’L’ then y := hash(y, vj) else y := hash(vj , y)

3. For j = 1 to `2

• y := hash(y,Hj)

• If y > D0 then return false

4. return true

Predicate φ′2

Hardcoded parameters: TX1, D0, `1, `2, `3, b1
Input: w = (G1, . . . , Gn, (v1, d1), . . . , (vk, dk), H1, . . . , H`2 )

1. z := b1

2. For j = 1 to max(n, `3)

• z := hash(z,Gj)

• If z > D0 then return false

3. Embed hash(TX1,2) into y

4. For j = 1 to min(k, `1)

• If dj=’L’ then y := hash(y, vj) else y := hash(vj , y)

5. If y 6= z then return false

6. For j = 1 to `2

• y := hash(y,Hj)

• If y > D0 then return false

7. return true

Figure 12: The cryptocurrency scripts φ′1, φ
′
2.

work H1, H2, . . . , H`2 that meet the difficulty level D0. The
input witness w for φ′2 does the same, but also verifies that
there is a chain of at least `3 blocks between the hardcoded
b1 and TX1,2.

We describe the theoretical protocol Πtheo for all-or-nothing
settlement in Fig. 13. Note that the enclave constructs TX2

only after it receives the evidence that TX1 was confirmed
in the end of Step 1, by hardcoding b1 as the hash of the



Protocol Πtheo

1. The enclave releases TX1 and waits for evidence
that it was confirmed on the system C1.

2. The enclave releases TX2 and waits for evidence
that it was confirmed on the system C2.

3. The enclave releases x1 and waits for evidence that
TX1,1 was confirmed on the system C1.

4. The enclave releases x2.

Figure 13: Theoretical protocol for fair settlement.

block in which TX1 resides.
Essentially, Πtheo avoids the race condition by first making

sure that TX1 was resolved on the cryptocurrency system C1
either by committing the output or by committing the in-
puts, and then allowing TX2 to commit accordingly in the
cryptocurrency system C2. If A carries out a DoS attack
before x1 is released in Step 3, then the users will gain pos-
session of their inputs in the C1 after block T0 is reached
(see Fig. 11), which would be followed by the miners of C1
helping to create a witness w that satisfies φ′2(w) = 1 and
thus allowing the users to gain possession of their inputs in
C2. If the enclave exposes x1 in Step 3, then it is still the
case that the miners of C1 will help to resolve TX1 in one of
the two possible ways.

In the case that no attack is taking place, the enclave will
release x2 in Step 4, thereby allowing the settlement to com-
plete quickly and without asking the miners of C2 to evaluate
a complex condition that relates to another blockchain.

However, the assumption regarding the computational power
of A has to be slightly less conservative in comparison to the
power that is needed to mount a classical double-spending
attack [74], because Πtheo enables A to gain a minor head
start that depends on the parameter T0. Specifically, A can
intercept x1 in Step 3 and use her own computational power
(and x1) to create a hidden chain w1 that spends TX1 into
TX1,1. The miners of C1 will create the witness w2 in which
TX1 is spent into TX1,2, but they will only begin to work on
w2 after block T0 is reached.

The success probability of an attack with a duration of T1

blocks for the head start is

∞∑
k=0

(
Pr[NegBin(T1, p) = k] · Pr[NegBin(`2, p) ≥ `2 − k]

)
.

The first negative binomial variable counts the number of
blocks that A creates during the time that the honest miners
are creating T1 blocks. This corresponds to the head start,
because these T1 blocks will not contribute to the witness
that the predicate φ′2 requires. The second negative binomial
variable count the number of blocks that A creates while
the honest miners are creating `2 blocks. If A can extend
her head start to reach `2 or more blocks before the honest
miners, then the attack succeeds.

In Table 3, we give exemplary figures for the attack on
Πtheo. For easy comparison, we also include the success
probability without a head start (i.e., T1 = 0), which is
simply the probability Pr[NegBin(`2, p) ≥ `2].

Table 3: Breaking the security of Πtheo

p T1 `2 with head start with T1 = 0
1
3

6 50 0.0016 0.0003

1
5

10 50 2−30 2−37

1
5

6 50 2−33 2−37

1
5

6 100 2−65 2−69

1
10

20 50 2−64 2−79

1
10

10 50 2−71 2−79

1
10

10 100 2−145 2−153

For the opposite attack, A may intercept x1 in Step 3
and then create a hidden chain w2 that excludes x1. With
this attack strategy, A will broadcast x1 to C1 right before
the timeout T0 is reached, in hope that her hidden chain
w2 will outcompete the chain that the miners of C1 begin
to create. This attack vector is mitigated by disallowing a
precomputation of w2. Specifically, the enclave hardcodes
b1 into TX2, and the predicate φ′2 verifies that b1 is buried
under at least `3 PoW blocks.

The parameter `3 should be set to 2`2 + T1. This gives a
time span of T1 blocks to update TX1 into TX1,1, after the
enclave received the evidence that TX1,TX2 were confirmed
and thus revealed x1. The parameter T1 should not be too
low, to avoid the cancellation of the settlements in case of a
short network outage or a slow chain growth in C2 relative
to C1.

In the current Bitcoin network, `1 = 12 suffices, hence the
predicates φ′1, φ

′
2 require ≤ 12 + `2 + `3 hash invocations for

confidence level `2. Given that the complexity of ECDSA
signature verification is an order of magnitude higher than
that of invoking a hash function, moderate values such as
`2 = 50, T1 = 10, `3 = 2`2 + T1 = 110 imply that Bitcoin
miners can validate the scripts φ′1, φ

′
2 for a mild fee. These

parameters for PoW-based SPV proofs can be even better if
the cryptocurrency system supports NIPoPoW [46].

It is unlikely that Πtheo will be vulnerable to an attack
that embeds a transaction that spends TX1 into TX1,1 or
TX1,2 in another cryptocurrency system C3, where C3 has the
same PoW hash function and the same difficulty level. The
reason is that the txid hash of TX1 in the leaf of the Merkle
tree is determined according to the prior history that goes
back to the genesis block of C1. Unless C3 allows the input
of a transaction to consist of arbitrary data, A will need to
mount a preimage attack that creates valid transaction in
C3 with a particular value (i.e., the txid of TX1) as its hash.

The main obstacle to an implementation of Πtheo in Bit-
coin is the RMIT functionality. It is possible to implement
the specific RMIT that Πtheo requires by creating a transac-
tion txinit that spends the inputs into a single output that is
controlled by the secret signing key of Tesseract, and creat-
ing a refund transaction txrefund that has locktime [85] of T0

and spends the output of txinit back into the inputs. After
the enclave receives evidence that txrefund is publicly avail-
able, it will broadcast txinit to the Bitcoin network. When
the execution of Πtheo reaches Step 3 and the enclaves needs
to release x1, it will broadcast a transaction txcommit that
spends the output of txinit into the desired outputs. The
only problem with this procedure is that there is no good
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Figure 14: Practical fair settlement.

way to make txrefund publicly available while relying on the
security of Bitcoin alone. In a purely theoretical sense, it
is possible to make txrefund available by storing it as arbi-
trary data on the Bitcoin blockchain using OP_RETURN, but
this will be very costly because the size of txrefund can be
dozens of kilobytes and the capacity of an OP_RETURN out-
put is only 80 bytes. An efficient version of RMIT can be
done via a Bitcoin protocol fork: an initial transaction will
mark both the inputs and the new outputs as unspendable
in the UTXO set, and a subsequent transaction will supply
a witness to φ1 or φ2 and thereby ask the miners to make
either the inputs or the outputs spendable (for a fee). An
Ethereum implementation of a RMIT contract is possible,
but it should be noted that Πtheo (and its generalization to
more than two systems) requires RMIT support by all the
cryptocurrency systems that are involved in the settlement.

5.2 Practical Solution
The theoretical protocol Πtheo of Section 5.1 is resilient

against an adversary who has total access to the server ma-
chine, except for the data that is inside the SGX CPU. Here,
we present a practical protocol Πprac for the all-or-nothing
settlement problem that relaxes this resiliency aspect, but
in fact offers better security in other respects.

Our strategy is to distribute the trust among N additional
servers that are all running SGX enclaves (see Fig. 14), and
ensure that Πprac satisfies Definition 2 if there exists at least
one server Si ∈ {S1, S2, . . . , SN} that is beyond the physical
reach of the adversary A. That is to say, we assume that
Si can communicate with the cryptocurrency systems C1,C2
without interference.

The main idea of Πprac is to emulate the essential char-
acteristic of the theoretical protocol Πtheo, which is to wait
for a proof that the settlement transaction TX1 was either
committed to C1 or cancelled, and then do the same for the
settlement transaction TX2.

The settlement protocol Πprac that Tesseract and the servers
S1, S2, . . . , SN execute is specified in Fig. 15. As a prerequi-
site, the Tesseract server and S1, S2, . . . , SN need to share a
symmetric secret key K that is known only to their enclaves.
The transactions TXc

1,TX
c
2 are “cancellation” transactions

that invalidate the settlement transactions TX1,TX2, re-
spectively. In Bitcoin, TXc

i can be implemented simply by
spending one of the inputs of TXi into a new output that is
identical to that input (this will cause TXi,TX

c
i to conflict

with each other).
Thus, the protocol Πprac seeks to preserve the property

that TX2 remains confidential inside the enclaves for as long
as TX1 is not yet confirmed. This property avoids the risk
that TXi,TX

c
3−i will compete for confirmations at the same

time, as that can easily violate to the all-or-nothing require-
ment.

In the case that at least one server Si is not under physical

Protocol Πprac

1. Tesseract sends ct = encryptK(TX1,TX2,TX
c
1,TX

c
2)

to S1, S2, . . . , SN .

2. For every i ∈ [N ], Tesseract waits for acknowledge-
ment from Si that it received ct.

3. Tesseract broadcasts TX1 to the system C1.

4. Starting from the time at which it received ct in
Step 1, each server Si ∈ {S1, S2, . . . , SN} inspects
the next blocks of the system C1

• If Si does not see TX1 on C1 within T1 blocks,
then it broadcasts TXc

1 to C1.

• If Si sees that TX1 is confirmed on C1, then it
broadcasts TX2 to the system C2.

• If Si sees that TXc
1 is confirmed on C1, then it

broadcasts TXc
2 to the system C2.

Figure 15: Practical protocol for fair settlement.

attack, we have that either TX1 or TXc
1 will be broadcasted

to C1 within T1 blocks. As a consequence, either TX1 or TXc
1

will be confirmed after T1 + `2 blocks. This would allow Si
or one of the other non-adversarial servers to broadcast the
appropriate transaction (i.e., TX2 or TXc

2) to the cryptocur-
rency system C2, causing it to be confirmed too.

The adversaryAmay attempt to mount a race attack with
a head start of T1 blocks, by eclipsing one of the servers Sj .
The attack can proceed as follows:

1. A will intercept the data TX1 that Tesseract reveals in
Step 3 of Πprac, and deactivate the Tesseract server.

2. A will eclipse the server Sj , and feed it with a fake
blockchain (generated by A herself) that contains TX1.

3. When the enclave of Sj becomes convinced that TX1

was confirmed, it will release TX2.

4. A will wait until TXc
1 is confirmed on C1, and then

broadcast TX2 to C2.

As in Section 5.1, the reason that A obtains a head start is
that the honest participants wait for a duration of T1 blocks
before they attempt to invalidate TX1, whereas A begins to
create her fake chain immediately. Note that the purpose
of the cancellation transaction TXc

2 is to defeat this race
attack, in the case that A fails to generate `2 blocks while
the honest network generates T1 + `2 blocks.

In fact, it is more difficult for A to exploit the head start
and attack Πprac, than it is to attack Πtheo. This is because
Πprac can specify the precise duration T1, and Πtheo has to
estimate T1 by setting T0 in the predicate φ2. This esti-
mation should use a lenient bound (that will likely give A
a larger head start), as otherwise the variance of the block
generation process can cause φ2 to be triggered and thus
abort the settlement.

Notice thatA cannot mount an eclipse attack before Step 3
of Πprac is reached. The reason is that only the Tesseract
enclave can produce the data TX1, and it will do so only af-
ter receiving all the acknowledgements from S1, S2, . . . , SN



in Step 2. Therefore, an eclipse attack will be thwarted if
at least one non-adversarial server Si ∈ {S1, S2, . . . , SN} is
present, because Si will broadcast the invalidation trans-
actions TXc

1,TX
c
2 to ensure the all-or-nothing guarantee of

Definition 1.
In practice, it is preferable that the Tesseract enclave will

wait for acknowledgements from only a constant fraction of
the servers Si ∈ {S1, S2, . . . , SN}, so that A will not be able
to deny service by preventing a single acknowledgement from
reaching Tesseract in Step 2 of the settlement procedure.
Our practical approach can in fact make Tesseract resistant
to DoS attacks in a broader sense, see Section 8.

Another advantage of Πprac is that it can support other
cryptocurrency systems besides a PoW blockchain. This is
because the servers S1, S2, . . . , SN can run a full node inside
their enclave, whereas the predicates φ′1, φ

′
2 lack the power

to express the irreversibility condition of a more complex
cryptocurrency system. See Section 1.1 for further details.

Irrespective of the settlement procedure, the Tesseract ex-
change server can fetch from S1, S2, . . . , SN the heights of
their longest chains (e.g., once every 30 minutes), and refuse
to confirm users’ deposits if less than N/2 of the servers re-
spond. This would avert fake deposits from being confirmed
due to an eclipse attack, without relying on the prudence of
the users.

5.3 Solution with One Secure Processor
Is it possible to devise a workable protocol for all-or-

nothing settlement that utilizes servers S1, S2, . . . , SN that
do not have SGX processors, such that the protocol is secure
if at least one of the servers is isolated from the adversary?
If the round complexity can depend on a security parameter,
then protocols that accomplish this task are indeed possible.

The basic idea is to rely on the gradual release tech-
nique [8, 39] to reveal TX1,TX2 simultaneously. The Tesser-
act enclave can generate a fresh symmetric key K ∈ {0, 1}λ,
send the ciphertext ct = encryptK(TX1,TX2) to S1, S2, . . . , SN ,
and wait for acknowledgements from S1, S2, . . . , SN that they
received ct. Then, Tesseract can send each of the λ bits of
K, and wait for acknowledgements from S1, S2, . . . , SN after
each bit is received.

We can improve upon the basic idea by letting the SGX
enclave assume the role of a trusted dealer, and combine a
fair secret sharing protocol with the gradual release tech-
nique. To this end, we employ the fair secret reconstruc-
tion protocol of Lin and Harn [54]. The combined protocol
Πgrad is parameterized according to a decoys amount d ≥ 2,
batching value m ≥ 1, and a timeout τ (for example τ = 10
minutes). See Fig. 16 for the description of Πgrad.

It is inherently the case that the adversary A can recog-
nize whether a potential secret key K′ is equal to K, by
attempting to decrypt the structured ciphertext ct. Thus,
if A can brute-force the unrevealed bits of K, she does not
need to let Step 6 of Πgrad progress until an indicator value∑N
j=1 x

α+1,j
i = 0 becomes known. The adversary A may try

to guess α and learn an m-bit value of
∑N
j=1 x

α,j
i 6= 0 that

the honest servers do not know, but the success probability
of guessing α correctly is 1

d−1
. Furthermore, under the as-

sumption that A cannot breaks K within τ time in order to
verify whether her guess was correct, she must execute Step
6 honestly if she wishes that the other servers will help to
reveal the next bits of K. Note that this is the case even if
A corrupts N − 1 of the servers.

Protocol Πgrad

1. The enclave picks a random symmetric key K ∈ {0, 1}λ
such that K = (w1, w2, . . . , wq), wi ∈ {0, 1}m, λ = q ·m.

2. The enclave creates ct = encryptK(TX1,TX2).

3. For wi ∈ {w1, w2, . . . , wq}, the enclave createsN -out-of-N
additive secret shares of wi, including dummy secrets:

• The enclave picks a random α ∈ [s− 1].

• For ` ∈ [d] \ {α, α+1}
– For each j ∈ [N ], the enclave picks random shares

x`,ji ∈ GF(2λ) conditioned upon
∑N
j=1 x

`,j
i 6= 0.

• For ` = α+ 1

– For each j ∈ [N ], the enclave picks random shares

x`,ji ∈ GF(2λ) conditioned upon
∑N
j=1 x

`,j
i = 0.

• For ` = α

– For each j ∈ [N ], the enclave picks random shares

x`,ji ∈ GF(2λ) conditioned upon the m least sig-

nificant bits of
∑N
j=1 x

`,j
i being equal to wi and∑N

j=1 x
`,j
i 6= 0.

4. For every i ∈ [q], ` ∈ [d], j ∈ [N ]

• The enclave creates a signature σ`,ji for the share x`,ji .

5. For each j ∈ [N ]

• The enclave sends (ct, {x`,ji , σ`,ji }i∈[q],`∈[d]) to Sj via
a secure channel.

6. For each i ∈ [q]

• The servers S1, S2, . . . , SN reconstruct wi by send-
ing their signed shares in the sequential order

(x1,1i , σ1,1
i ), . . . , (x1,Ni , σ1,N

i ), (x2,1i , σ2,1
i ), . . . , until

the indicator
∑N
j=1 x

α+1,j
i = 0 is found.

• If some corrupt server Sj does not send (x`,ji , σ`,ji )
within τ time, then the honest servers begin an ex-
haustive search for the key K.

7. Any server that decrypts ct will broadcast TX1 to C1 and
TX2 to C2.

Figure 16: Gradual protocol for fair settlement.

Therefore, Πgrad is more secure when the timeout param-
eter τ is smaller, when the amount of dummy secrets d is
larger, and when the batching size m is smaller. In partic-
ular, if m = λ then Πgrad is completely insecure: A will
be able to corrupt the last server SN and verify for each `
whether

∑N
j=1 x

`,j
1 = K, without revealing x`,N1 to the other

servers.
If m = 1 and d > 2 then Πgrad is strictly more secure

than the basic gradual release protocol. Another advan-
tage over the basic protocol is that Πgrad requires only one
round of communication between Tesseract and the servers
S1, S2, . . . , SN . However, the number of rounds of commu-
nication among S1, S2, . . . , SN themselves is Ω( λ

m
·d), hence

larger d or smaller m make Πgrad less efficient.
The major disadvantage of Πgrad is that the computa-

tional power of A must not be significantly greater than that
of the honest servers. By contrast, Πprac does not require
such an assumption.
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6. FUNGIBLE TOKENIZED COINS
The Tesseract platform also allows its users to withdraw

and circulate tokenized coins that are pegged to some spe-
cific cryptocurrency, with no need to trust a human element
and no exposure to markets fluctuations. Essentially, this is
done by maintaining a reserve of the pegged cryptocurrency
within the SGX enclave, and employing the all-or-nothing
fairness protocol (cf. Sections 5 and 8) to ensure that the
enclave remains solvent.

Thus, for example, Carol can deposit 600 LTC to the
Tesseract exchange, trade the 600 LTC for 2 BTC, and with-
draw 2 tokenized BTC (tBTC) into the Ethereum blockchain.
Then, Carol could deposit her 2 tBTC to any smart con-
tract that recognizes the assets that Tesseract issues. For
instance, Carol may wish to play a trust-free poker game in
which the pot is denominated in tBTC instead of ETH (it is
impractical to play poker directly on the Bitcoin blockchain
and instead Ethereum’s stateful contracts need to utilized,
see [15]). Another example is a crowdfunding contract that
raises money denominated in both tBTC and ETH, but re-
turns all the funds to the investors if the target amount was
not reached before a deadline.

The issuance of tokenized coins is illustrated in Fig. 17.
When a user requests to withdraw tokenized coins, the en-
clave will move the coins to a reserve address, and mint
the same amount of new tokens (using ERC20 contract, see
next). In the illustration:

• Alice withdraws 5 tBTC out of her 30 BTC,

• Bob trades 2 BTC in exchange for Carol’s 600 LTC,

• Bob withdraws 8 tBTC and 200 tLTC,

• Carol keeps 1 BTC and withdraws 1 tBTC,

• Dave uses all of his 5 LTC to withdraw 5 tLTC.

The enclave updates its reserve outputs (14 BTC and 205
LTC in the illustration) by adding coin amounts that match
the amounts of tokenized coins that the users withdrew.

Unlike the native coin deposits, reserve outputs and the
tokenized coins are not constrained by a timeout, and there-
fore the tokenized coins are fungible. Any holder of tok-
enized coins (e.g., tBTC) can later deposit her tokens into
the enclave (she can create an account on the Tesseract ex-
change if she does not have one yet), and receive native coins
(e.g., BTC) upon doing so. The enclave will simply discard
the tokenized coins that were deposited. Hence, the tok-
enized coins can circulate freely on the blockchain in which
they are issued (the Ethereum blockchain in our implemen-
tation), without the involvement of the Tesseract exchange.

For the exchange to remain solvent, we must guarantee
all-or-nothing fairness with respect to Definition 1 for the
transaction that moves native coins (from the users to the
reserve output) and the transaction that mints tokenized
coins. In Fig. 17 for example, if TX1 is not committed to the
Bitcoin blockchain but TX3 is committed to the Ethereum
blockchain, then the eventual holders of the 14 tBTC will
not be able to deposit their tokens in order to convert them
to native BTC, because the reserve output (of 14 BTC) does
not exist. Likewise, if TX3 is not committed to the Ethereum
blockchain but TX1 is committed to the Bitcoin blockchain,
then the Bitcoin holders will be damaged (e.g., Alice will
lose 5 BTC).

As described in Sections 4 and 5, the all-or-nothing set-
tlement should occur after an interval that is longer than
the time that it takes for the all-or-nothing protocol execu-
tion to complete (e.g., an interval of 24 hours can be sen-
sible). This means that when a user requests to withdraw
tokenized coins, there will be a waiting period (say, some-
where between 1 hour and 25 hours) before she receives the
tokens. This also implies good scalability, since all the na-
tive coins (that are kept in reserve) are accumulated into a
single output that is updated on-chain only after a lengthy
time interval.

In our implementation, the tokenized coins are issued on
the Ethereum blockchain in the form of an ERC20 con-
tract [79]. It is also possible to mint the tokenized coins
as colored coins [73] on the Bitcoin blockchain, though that
is problematic for two reasons. First, tagging-based colored
coins have not been implemented yet in cryptocurrencies
such as Bitcoin and Litecoin (cf. Section 7). More impor-
tantly, the principal reason for having tokenized coins is to
use them in smart contracts, and Ethereum is better suited
for this purpose.

Since the tokenized coins are issued by the Tesseract ex-
change and are fungible, the holders of these tokens will be
unable to convert them to native coins in the case that the
Tesseract platform is destroyed. In Section 8 we give the full
version of Tesseract, which is distributed and hence highly
unlikely to fail. It is also possible to incorporate a timeout
to the reserve outputs that specifies that the coins will be
controlled by (say) a multisig of several reputable parties if
Tesseract stops updating the reserve outputs and thus the
time expiration is reached. However, this gives an incentive
to these several parties to destroy the Tesseract platform
and collect the reserve coins.

7. FIAT CURRENCIES
For fiat currency transactions that are done via the tradi-

tional banking system, it is problematic to offer integration
with a protocol that is based on cryptographic assumptions.
One reason for this is that fiat transactions can be reversed
as a result of human intervention (e.g., in the course of in-
vestigating a complaint by a customer of a bank).

The problem can be outsourced by relying on a counter-
party that provides recognizable tokens that can be trans-
ferred via the underlying cryptocurrency system, and are
supposed to represent an equivalent amount of fiat currency.
This approach enables fiat currency transfers that become
irreversible just like the cryptocurrency payments, and de-
pends on the reputation of the counterparty to redeem the
token for the actual fiat currency. See for example [24, Sec-
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tion 5.2] and [73] in this regard. One instantiation of this
idea that enjoys a relatively high degree of popularity is
Tether [26, 22], which circulates tokens that are pegged to
the U.S. dollar (involving proof-of-reserve) using the Omni
layer [65] on top of Bitcoin. The Tesseract service provider
may even issue its own fiat tokens (by accepting traditional
wire transfers of fiat currency), and other platforms and
users may assign value to the tokens if they consider this
Tesseract service provider to be trustworthy.

The SGX enclave of Tesseract can thus support assets
that are redeemable for fiat currencies, by recognizing cer-
tain predefined types of tokens in the deposit transactions.
In the case that the cryptocurrency (in which such an as-
set circulates) supports tagging-based colored coins [73, 51],
the validation predicate for the deposit is easy to imple-
ment. This is because the predicate would inspect only cur-
rent deposit transaction, rather than also inspecting prior
transfers of ownership that ended up as this deposit. For
non-tagging-based colored coin, Tesseract would need to run
a full node inside an SGX enclave, which is far more de-
manding than running an SPV [63] client (the Tesseract en-
clave operation that we specify in Section 4 is essentially
an SPV client). Tagging-based colored coins require min-
ers and full nodes to perform a moderate amount of extra
work (only for colored transactions), which is not supported
on cryptocurrencies such as Bitcoin and Litecoin yet (see
[51] for a proposed implementation and [69] regarding fu-
ture ideas). However, Ethereum already supports the equiv-
alent of tagging-based colored coins, in the form of an ERC20
smart contract (cf. [79]). Our reference implementation of
Tesseract already supports ERC20 assets as well, see Ap-
pendix B.

Hence, other than just allowing cryptocurrencies to be
traded for one another, Tesseract can also let the users trade
cryptocurrencies for traditional assets that have a digital
representation (in particular fiat currencies), though this ca-
pability involves trust in the reputation of the issuers of the
assets.

8. AVAILABILITY
The Tesseract exchange service can be initialized with

the SGX server S1 as its current leader, and execute the
Paxos [50] consensus protocol together with the other SGX
servers S2, S3, . . . , SN . See Fig. 18 for an illustration.

The requirements that the Paxos Synod protocol relies
upon are satisfied in our setting, because of the following
reasons:

1. Authenticated channels exist as the messages that each
SGX server sends are signed via remote attestation.

2. Byzantine faults may not occur (unless the SGX sign-
ing key is compromised), since the servers are running
correct code.

The complete Tesseract protocol ΠRTExch is outlined in
Fig. 19. To accomplish all-or-nothing settlements, ΠRTExch

uses Πprac as a subroutine. As with Πprac, the SGX servers
S1, S2, . . . , SN need to share a symmetric secret key sk that
is known only to their enclaves. The exemplary parameters
d0 = 5, n0 = 288 mean that the all-or-nothing settlements
are done once every 24 hours (288 ·5 minutes). In the case of
a DoS attack on ΠRTExch, d0 = 5 implies that trades in the
last 5 minutes (or less) will be lost when the newly elected
leader resumes the trading service for the users.

ΠRTExch can be regarded as a composition of two compo-
nents, one is the Paxos protocol that guarantees consistency
among the servers, and the other is the all-or-nothing fair-
ness protocol that interacts with cryptocurrency systems.

Since H > 2 and only non-Byzantine faults are possi-
ble (due to SGX), all-or-nothing fairness holds if at least
d 1
H
e of the servers not under adversarial control, even if

the network is asynchronous. For example, parametrizing
ΠRTExch according to H = 4 would imply that the adver-
sary A must corrupt more than 75% of the servers to vi-
olate all-or-nothing fairness (and by corrupting 25% of the
servers A can mount a DoS attack). This follows because
ΠRTExch ensures that there will never be two servers that act
as leaders of different epochs at the same time: a majority is
required to elect a new leader (via the Synod algorithm) in
any non-settlement epoch, and the leader SL needs acknowl-
edgements from dn(1 − 1

H
)e > n

2
servers before proceeding

to Step 3 of Πprac. However, if A controls the communica-
tion traffic of dn(1− 1

H
)e servers, then A can let SL receive

dn(1− 1
H

)e acknowledgments and release TX1 to C1, without
ever releasing TX2 to C2 (Πprac can be attacked in the same
manner only if all the servers are under adversarial control).

In non-settlement epochs, the first component of ΠRTExch

ensures liveness if the network is synchronous and there is a
majority of non-faulty servers. This is simply because Paxos
guarantees liveness in a synchronous network.

It is also critical to protect against DoS during the all-or-
nothing settlement procedure, since the “nothing” outcome
implies that Tesseract has to shut down and start afresh.
To minimize the shutdown probability, ΠRTExch attempts to
restart an all-or-nothing epoch with a new leader, immedi-
ately after the last all-or-nothing settlement epoch failed.
The enclave of each Si will use a random perturbation be-
fore proposing itself as the leader, to make it difficult for
an adversary to mount DoS attacks on consecutive leaders.
Each enclave should also copy dat from servers that already
received the latest trade data that the last leader sent. Thus,
ΠRTExch has to ensure that a failed all-or-nothing epoch ter-
minates as quickly as possible, so that the following epoch
will have enough time to succeed before the expiration of
the timeouts that allow users to claim their refunds. This
is done by letting each Si construct and broadcast the can-
cellation transactions TXc

1,TX
c
2 on its own — for example

by spending the reserve output (cf. Section 6) into a new
output with the same amount (cancellation of an Ethereum
settlement transaction is accomplished even more easily by
using the current nonce with a noop transaction). This way,
each Si can starts its T1 timer at the beginning of the epoch,
and therefore the adversary cannot target the first server
that receives ct by intercepting TXc

1 and releasing it after an



Protocol ΠRTExch

Let S1, S2, . . . , SN be SGX-enabled servers, and let H > 2.
Exemplary parameters: d0 = 5, n0 = 288.

• For every i ∈ [N ]:

– The server Si initializes Li := 1 as the leader index
and Ji := 0 as the first epoch.

• Let L denote the index of the server with Li = i.

• Communication with traders.

– The server SL accepts trade requests from new and
existing users, and updates their account balances in
the data structures that are inside its SGX enclave.

• Synchronization with the other servers: JL mod n0 6= 0.

– After each epoch of d0 minutes:

∗ SL sets JL := JL + 1.

∗ SL creates m = (JL, encryptsk(dat)), where dat
is its entire enclave data.

∗ SL sends m to the servers {Si}i 6=L.

∗ Any server Si that received m will set Ji := JL.

∗ Servers that did not receive m will invoke the
Synod algorithm to update L to a new leader.

– If a new leader was elected, aware servers
will inform the users by publishing the index
of the new leader (with remote attestation).

• All-or-nothing settlement: JL mod n0 = 0.

– SL invokes Πprac with the following modifications:

∗ In Step 1 of Πprac, SL sends m = (JL, ct), where
ct = encryptsk(dat,TX1,TX2).

∗ In Step 2 of Πprac, SL waits for acknowledge-

ments from dn(1− 1
H

)e or more servers.

– For every i ∈ [N ]:

∗ Si starts the timer T1 at the beginning of the
epoch JL, and constructs TXc

1,TX
c
2 on its own.

∗ If Si sees that TX1 was confirmed on C1 and TX2

was confirmed on C2, it updates Ji := JL+1 and
proceeds to the next epoch.

∗ If Si sees that TXc
1 was confirmed on C1 and TXc

2
was confirmed on C2, it invokes Synod to elect a
new leader, and then updates Ji := JL + n0 to
attempt another all-or-nothing settlement.

Figure 19: Outline of the Tesseract protocol.

arbitrarily long delay.
Let us note that if the leader or any other server Si crashes

and does not recover quickly enough, another server Sj will
be the leader in the case that Si comes back online later
(without any saved data except for the hardware keys that
the other servers expect, cf. Section 8.1). Then, Si will syn-
chronize with the enclave datam and the clock of the current
leader Sj , and will be able to continue its participation in
the execution of the ΠRTExch protocol.

8.1 Setup of the Servers
To achieve maximum security, we design the initialization

procedure for ΠRTExch as follows. Our enclave program code
PRTExch contains a hardcoded list of N endorsement public
keys RPK1,RPK2, . . . ,RPKN, corresponding to the reputable
owners of the N servers (e.g., S1 is located at Cornell Uni-
versity, S2 is located at MIT, and so on). When the enclave
of Si is loaded with PRTExch, the code first acquires entropy
(cf. Section 4) and generates a fresh keypair (tpki, tski), and
then output tpki together with an encryption encrypt(tski)
that is created using the symmetric hardware key of the
SGX CPU of Si. The owner keeps a backup of encrypt(tski),
sends tpki to {Sj}j 6=i, waits to receive {tpkj}j 6=i, signs m =
(tpk1, tpk2, . . . , tpkN ) with RSKi, and sends the signature esi
to {Sj}j 6=i. The enclave of Si waits to receive the endorsed
list of fresh keys (m, es1, es2, . . . , esN ), and stores this list
as immutable data. Following that, the enclave of Si estab-
lishes secure channels (TLS) with each other server Sj via
the identities tpki and tpkj .

If the enclave of Si is re-initialized to create a different
identity tpk′i, it will not be able to communicate with the
enclaves of {Sj}j 6=i that are still running. However, Si can
recover from a crash failure by restarting the enclave pro-
gram PRTExch with m, encrypt(tski) and otherwise a blank
slate, then re-establish the TLS channels {Sj}j 6=i and wait
to receive the latest data (including the trusted clock offset
since the start of the round) from the current leader.

This way, when the Tesseract platform is launched, the
sensitive reputation key RSKi is used only once to endorse
the physical machine that hosts the ith enclave in order to
avoid man-in-the-middle attacks, and Si can continue to be
part of the platform as long as its SGX CPU is undamaged.
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APPENDIX
A. PROOF OF SECURITY FOR ACCS

Per Definition 1, let us prove that the all-or-nothing re-
quirement holds for the Πaccs protocol that we described in
Section 2.

We use TXOUTA,TXOUTB to denote the outputs of the
transactions TXA,TXB, respectively. We denote by TXS

A,TX
S
B

the transactions that spend TXOUTA and TXOUTB in steps
3 and 4 of Πaccs, respectively.

Proposition 1. Assume that s0 = Ω(
√
t0), and that any

Bitcoin client that wishes to submit a valid transaction will
be able to broadcast the transaction and have it included in

one of the next s0 blocks. Assume that the probability of
reversing c0 Bitcoin blocks or 4c0 Litecoin blocks is negligi-
ble. Let E0 denote the event that the all-or-nothing property
holds w.r.t. the transactions TXS

A and TXS
B. If hash(·) is

preimage-resistant and the signature scheme is existentially
unforgeable, then ¬E0 occurs with negligible probability.

Proof sketch. We define the following events:

• E1 = {TXA was reversed after Bob broadcasted TXB}

• E2 = {TXB was reversed after Alice revealed x}

• E3 = {Bob spent TXOUTA before Alice revealed x}

• E4 = {Alice spent both TXOUTA and TXOUTB

without forging a signature}

• EF = {The adversary forged a signature}

• EA = {TXS
A was confirmed by the Bitcoin network}

• EB = {TXS
B was confirmed by the Litecoin network}

It is enough to prove that Pr[¬E0 ∩ ¬EF ] is negligible,
because Pr[EF ] is negligible by assumption and

Pr[¬E0] = Pr[(¬E0 ∩ EF ) ∪ (¬E0 ∩ ¬EF )]

≤ Pr[EF ] + Pr[¬E0 ∩ ¬EF ] .

Assume that EF did not occur. If Alice redeems TXOUTB

then Bob will be able to redeem TXOUTA unless either
the block that contains TXA was reversed on the Bitcoin
blockchain (event E1), or TXOUTA was spent after the c0 +
t0 + s0 timeout expired (event E4). More formally, we have
EA ∩ ¬EB ∩ ¬EF ⊆ E1 ∪ E4.

Assume again that EF did not occur. If Bob redeems
TXOUTA then Alice will be able to redeem TXOUTB un-
less either the block that contains TXB was reversed on the
Litecoin blockchain (event E2), or TXOUTB never appeared
on the Litecoin blockchain (event E3). More formally, we
have EB ∩ ¬EA ∩ ¬EF ⊆ E2 ∪ E3.

Therefore, we obtain

Pr[¬E0 ∩ ¬EF ]

= Pr
[(

(EA ∩ ¬EB) ∪ (EB ∩ ¬EA)
)
∩ ¬EF

]
≤ Pr[EA ∩ ¬EB ∩ ¬EF ]+Pr[EB ∩ ¬EA ∩ ¬EF ]

≤ Pr[E1 ∪ E4] + Pr[E2 ∪ E3]

≤ Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4] .

By assumption, Pr[E1] and Pr[E2] are negligible since c0 is
large enough. Furthermore, Pr[E3] = negl(λ) because the
event E3 implies that Bob computed a preimage of hash(Y ).

To bound Pr[E4], we need to consider the event that the
Bitcoin chain grew by t0+s0 blocks before the Litecoin chain
grew by 4t0 blocks. If this event occurs, then Alice will be
able to redeem TXOUTA first, and still have enough time
to redeem TXOUTB too. Note that the Bitcoin network is
expected to generate only t0 blocks by the time that the
Litecoin network generated 4t0 blocks.

Let Z = Z(t0 + s0,
1
5
) be a random variable with negative

binomial distribution that counts the total number of blocks
that both the Bitcoin and Litecoin networks generated by
the time that the Bitcoin network generated t0 + s0 blocks,
hence E[Z] = 5(t0 + s0). By using a standard tail inequal-
ity [20, 32] for the binomial distribution B(µ · E[Z], 1

5
) with
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µ , t0
t0+s0

, we obtain

Pr[E4] = Pr[Z < 5t0] = Pr[Z < µ · E[Z]]

= Pr

[
B(µ · E[Z],

1

5
) > t0 + s0

]
< e

− 1
3
( 1
µ
−1)2µ(t0+s0)

= e−
1
3
(s0/t0)

2·t0 = e−
1
3
s0

2/t0 .

Thus, s0 = λ
√
t0 implies Pr[E4] < e−λ

2/3 = negl(λ).

Proposition 1 makes the assumption that clients cannot be
denied from communicating with the Bitcoin network during
a long enough time period. While DoS attack on clients has
been suggested as a possible vulnerability of Bitcoin based
protocols [9], our assumption is quite reasonable as it is far
more difficult to mount a DoS attack on a client (that can
connect to the internet from various endpoints) in compari-
son to a DoS attack on a server. However, in case the Bitcoin
blocks approach their full capacity due to a high transaction
volume, the client may indeed find it difficult to incorporate
the desired transaction in one of the next s0 blocks (see for
example [25] regarding the scalability prospects of Bitcoin).
Still, the client should be able to include her transaction
by attaching a high enough fee and thus signal the Bitcoin
miners to prioritize the transaction.

Notice that the chain growth ratio between Litecoin and
Bitcoin (i.e., the constant 4) does not influence the proof,
because the extra s0 confirmations in TXOUTA correspond
to 4s0 expected growth that TXOUTB precludes.

Let us also note that the above proof makes the implicit
supposition that the computational power that is devoted
to the Bitcoin and Litecoin networks remains constant. It
is possible to generalize Proposition 1 by assuming that the
computational power may not fluctuate beyond a certain
bound.

B. IMPLEMENTATION
We highlight parts of our reference implementation of the

Tesseract protocol ΠRTExch in Figs. 20 to 22. The full source
code of our demo will be made public at a later time.

typedef unsigned char byte;

bool verifyMerklePath(const byte* root, const byte* leaf,
const byte** branch, int dirvec) {

byte curr[SHA256_DIGEST_LENGTH];

memcpy(curr, leaf, SHA256_DIGEST_LENGTH);
byte_swap(curr, SHA256_DIGEST_LENGTH);

for(int i=0; dirvec>1; ++i,dirvec>>=1) {
if( (branch[i]).empty() ) {

sha256double(curr, curr, curr);
continue;

}
if(dirvec & 1)

sha256double(curr, branch[i], curr);
else

sha256double(branch[i], curr, curr);
}

byte_swap(curr, SHA256_DIGEST_LENGTH);
return memcmp(curr, root, SHA256_DIGEST_LENGTH);

}

Figure 20: Verify authentication path of a deposit.

typedef byte digest[SHA256_DIGEST_LENGTH];

void recursiveMerk(const digest* level, int size, int path) {
int k = (size + (size & 1))/2;
digest * next = new digest[k];

for(int i=0; i<k; ++i){
const byte * left_node = level[2*i];
const byte * right_node =

((2*i + 1) == size ? left_node : level[2*i+1]);
sha256double(left_node, right_node, next[i]);
if(path == (2*i+1)) {

cout << "L: ";
hexdump(left_node, SHA256_DIGEST_LENGTH);
continue;

}
if(path == (2*i)) {

cout << "R: ";
if(left_node != right_node)

hexdump(right_node, SHA256_DIGEST_LENGTH);
else

cout << endl;
}

}
if (k>1)

recursiveMerk(next,k,path/2);
else {

byte_swap(next[0], SHA256_DIGEST_LENGTH);
hexdump(next[0], SHA256_DIGEST_LENGTH);

}
delete[] next;

}

Figure 21: Build authentication path of a deposit.

typedef unsigned long long cointype;

time_t renew(time_t timestamp, long user_id, cointype fee) {
if (book.find(user_id) == book.end()

|| timestamp + RENEW_PERIOD > book[user_id].timeout
|| book[user_id].left < fee) {
return -1;

} else {
book[user_id].volume -= fee;
book[user_id].left -= fee;

timestamp = max(book[user_id].timeout,
timestamp + DEPOSIT_PERIOD);

book[user_id].timeout = timestamp;
return timestamp;

}
}

Figure 22: Renewal order.
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