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Abstract. Recently, Albrecht, Davidson, Larraia, and Pellet-Mary con-
structed a variant of the GGH13 without ideals and presented the dis-
tinguishing attacks in simplified branching program and obfuscation se-
curity models. However, it is not clear whether a variant of the CGH
annihilation attack can be used to break an IO candidate using this new
variant. This paper adaptively extends the CGH attack into the branch
program obfuscator based on GGH13 without ideals. To achieve this goal,
we introduce approximate eigenvalue of matrix and build a relationship
between the determinant and the rank of a matrix with perturbation.
Our result shows that the structural vulnerability of GGH13 encodings
are beyond the presence of ideal.
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1 Introduction

Program obfuscation in cryptography makes programs unintelligible and keeps
their functionality. All known construction of IO obfuscators [19,6,8,4,21,27,21]
are based on the three candidate (resp. GGH13, CLT13 and GGH15) of graded
encoding scheme (GES) [18,14,20,15,22]. Unfortunately, these GES have been
proven to be vulnerable to zero attacks [18,12,9,5,23,16,13], attacks on the over-
stretched NTRU [1,11,24], and annihilation attacks [26,10].

To immune the above attacks, Garg et al. [21] constructed a provably se-
cure obfuscation in a weak multilinear map model, whose aim is to prevent
the annihilation attack. However, Chen, Gentry and Halevi (CGH) [10] showed
that their immunization can not thwart the annihilation attack if the branch
program obfuscator is input partionable. In fact, there does not exist the input-
partition problem for the constructions in [21,17] since they respectively are used
the dual-input introduced by [6] and stamping functions that can prevent any
input partition [17]. On the other hand, Albrecht, Davidson, Larraia, and Pellet-
Mary (ADLP) [2] investigated a structural vulnerability of the GGH13 encoding
scheme. They constructed a variant of the GGH13 without ideals and presented
the distinguishing attacks in simplified branching program and obfuscation se-
curity models. However, it is not clear whether a variant of the CGH attack can
be used to break an IO candidate using this new variant.



2 Gu Chunsheng

1.1 Our work

Our main contribution is to adaptively extend the CGH attack into the branch
program obfuscator based on GGH13 without ideals. The framework of our
attack directly follows that of the CGH attack. The core step in the CGH attack
is to solve a basis of ideal, but we cannot perform this step since there are no
ideal in the ADLP variant. Moreover, we cannot also find some exact ratios
of the bundling scalars and distinguish the rank of a matrix because of the
noise. In order to implement the attack, we solve some approximate ratios of the
bundling scalars and build a relationship between the determinant and the rank
of a matrix with noise. So, our result shows that the structural vulnerability of
GGH13 encodings are beyond the presence of ideal.

Our second contribution is to introduce the approximate eigenvalues of ma-
trix to solve the approximate ratios of the bundling scalars. In the variant of
GGH13 without ideals [2], the multiplicative bundling scalars appear as an ap-
proximation factor. So, when solving the ratios of these bundling scalars in the
variant IO, the diagonal matrix of the elements obtained from zero-testing has
noisy. Consequently we can not directly apply the characteristic polynomial of
matrix to get the ratios of the bundling scalars, and also can no longer compute
their exact ratios. However, we observe that these matrices are diagonal domi-
nated matrix with noise and their inverses are also diagonal dominated matrix
with noise.

Our final contribution is to estimate the determinant of matrix with noise.
Since in the IO using GGH13 without ideals each term of the matrices has noise,
as a result these matrices are all full rank. So, we can no longer use the rank
of matrix to distinguish two equivalent branch program obfuscators. But we
observe that the magnitude of the noise of these matrices are “small” relative to
the main component of matrix, consequently the determinant of matrix is also
“small” if the matrix generated by these main components of the original matrix
is not full rank. To this end, we build the relationship between the determinant
and the rank of matrix.

Although in this paper the results on matrix apply only to the attack for the
IO using GGH13 without ideals, we think that the applications of these matrix
properties in other respects should also be possible.

Organization. In Section 2 we first recall some preliminaries. Then in Sec-
tion 3 we give branch program using GGH13 without ideals. Finally in Section 4
and 5, we respectively provide some matrix properties and describe cryptanalysis
of IO based on GGH13 without ideals.

2 Preliminaries

2.1 Notations

Let Z,Q,R denote the ring of integers, the field of rational numbers, and the
field of real numbers. Let n be a positive integer and power of 2. Notation
[n] denotes the set {1, 2, ..., n}. Let R = Z[x]/〈xn + 1〉, Rq = Zq[x]/〈xn + 1〉,
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and K = Q[x]/〈xn + 1〉. Vectors are denoted in bold lowercase (e.g. a), and
matrices in bold uppercase (e.g. A). We denote by a[j] the j-th entry of a
vector a, and A[i, j] the element of the i-th row and j-th column of A. We
denote by ‖a‖2 (abbreviated as ‖a‖) the Euclidian norm of a. For A ∈ Rd×d,
we define ‖A‖ = max{‖A[i, j]‖, i, j ∈ [d]}, where ‖A[i, j]‖ is the Euclidian norm
corresponding to the coefficient vector of A[i, j]. Throughout this paper we will
abuse notations on R and K, both as an element and as a norm, depending on
the context.

Let [a]q denote the absolute minimum residual system, namely [a]q = a mod q ∈
(−q/2, q/2]. Similarly, for a ∈ Zn (or a ∈ R ), [a]q denotes each entry (or each
coefficient) a[j] ∈ (−q/2, q/2] of a (or a).

Given c ∈ Rn , σ > 0, the Gaussian distribution of a lattice L is defined
as DL,σ,c = ρσ,c(x)/ρσ,c(L) for x ∈ L , where ρσ,c(x) = exp(−π‖x − c‖2/σ2)),

ρσ,c(L) =
∑

x∈L
ρσ,c(x). In the following, we will write DL,σ,0 as DL,σ . We

denote a Gaussian sample as x ← DL,σ (or d ← DI,σ ) over the lattice L (or
ideal lattice I ).

An element a ∈ R is called η-bounded if ‖a‖∞ ≤ η. Moreover, it is easy to ver-

ify that for any η-bounded elements a1, · · · ak ∈ R, the element a =
∏k

i=1
ai is

(nk−1η)-bounded. By the work of [25], the element x← DZn,σ,c is σ
√
n-bounded

with overwhelming probability. Therefore, we define the truncated Gaussian dis-
tribution DZn,σ,c by sampling elements from DZn,σ,c and repeating any samples
that are not σ

√
n-bounded.

2.2 Branching programs

Let λ be the security parameter, κ = κ(λ), l = l(λ) and d = d(λ). Let inp :
[κ] → [l]d be some fixed ‘input’ function. All current obfuscators only consider
branching programs with d = 1 or d = 2 [19,6].

Definition 2.1. A matrix branching program BP of length κ, input length
l and arity d is defined as follows:

BP := (κ, l, d, inp, {Ak,xinp(k)
}k∈[κ],inp(k)∈{0,1}d),

where Ak,xinp(k)
∈ {0, 1}w×w and |inp(k)| = d.

The branching program is associated with the function fBP : {0, 1}l → {0, 1},
defined as

fBP(x) =

0, if
∏κ

k=1
Axk,inp(k) = I;

1, if
∏κ

k=1
Axk,inp(k) 6= I.

A branching program BP is input partionable if its input bits can be parti-
tioned into two or more independent subsets. We need the following observation
in [10].

Lemma 2.2 [10]. Let BP be an input-partitioned branching program, [κ] =
X||Y . If x, x′ ∈ {0, 1}l are two zeros of fBP that differ only in bits that are
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mapped to steps in X. Then the product of the matrices corresponding to
X generates the same result in the evaluation of BP on x and x′, namely∏

k∈X
Ak,xinp(k)

=
∏

k∈X
Ak,x′

inp(k)
.

Similarly, if x, x′ ∈ {0, 1}l are two zeros of fBP that differ only in bits that

are mapped to steps in Y , then
∏

k∈Y
Ak,xinp(k)

=
∏

k∈Y
Ak,x′

inp(k)
.

2.3 GGH13 without ideals

GGH13 overview. The encoding space of GGH13 is Rq = R/qR where q
is some big integer, and its plaintext space Rg = R/gR such that g is a small
element in R and is kept secret. A GGH13 encoding takes the form y = (e+rg)/z
mod q, where z is a random secret element in Rq, e is the plaintext element and
r is some small random element.

The denominators z enable the levels of the GGH13 scheme. In this paper,
we only consider the asymmetric case of GGH13, that uses many different de-
nominators zi. We say the encoding y is encoded at level Si if the denominator
of y is zi. It is easy to see that additions and multiplications of encodings can be
carried out if they satisfy some level restriction. Namely, adding encodings in-
dexed at the same level Si generates an encoding at the level Si, and multiplying
two encodings, indexed at the level Si, Sj respectively, generates an encoding at
level Si ∪ Sj .

The GGH13 scheme also provides a public zero-testing parameter pzt =

h ·
∏κ

i=1
zi/g, where h ∈ R such that ‖h‖ � q. Given a top-level encoding

u indexed at level [κ], one can determine whether u encodes zero or not by
computing pzt · u and checking if the result is small.

However, a simplified candidate IO over GGH13 exists the annihilation attack
introduced by Miles, Sahai and Zhandry [26]. That is, their work constructs two
program that are functionally equivalent, and show how to efficiently distinguish
between the obfuscator of these two programs by heuristically computing a basis
of 〈g〉. Moreover, Chen, Gentry and Halevi [10] extend the annihilation attack
in [26] to break the GGHRSW obfuscator over GGH13 when the branching
program has input partitioning. These works are the first to construct a basis
for the secret element 〈g〉.
GGH13 without ideals We describe a variant of GGH13 without ideals in [?].
Let χ = DZn,σ be the error distribution. Let e ∈ R be some non-zero element
with small coefficients, r ← χ. We sample zi uniformly from Rq for 1 ≤ i ≤ κ,
and sample βi such that κ+1

√
q < ‖βi‖∞ < κ

√
q.

An encoding of e indexed at level Si takes the form y = (e+r/βi)/zi mod q,
where zi, βi enables the level structure. Obviously, the encodings also supports
addition and multiplication operation. For addition, let y1, y2 be two encodings
indexed at same level S ⊂ [κ], then their sum results in the encoding y = y1 +y2
at the level S. For multiplication, given two encodings y1, y2 at level S1, S2 ⊂ [κ]
respectively, their product generates y = y1 · y2 at the level S1 ∪ S2.
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In this variant, the zero-test parameter is defined as pzt =
∏κ

i=1
βizi. Sim-

ilarly, given a top-level encoding u at level [κ], one can determine whether u
encodes zero or not by computing δ = pzt ·u and checking if the result δ is small.

3 BP Obfuscator using GGH13 without Ideals

Let BP := (κ, l, d, inp, {Ak,b}k∈[κ],b∈{0,1}) be the branching program to be ob-
fuscated, where directly using d = 1 for notational simplicity. We obfuscate BP
by GGHRSW [19] using instantiation of GGH13 without ideals as follows:

Step 1: Dummy branch. We introduce a “dummy branching program”:

BP
′

:= (κ, l, d, inp, {A
′

k,b}k∈[κ],b∈{0,1}),

where every A
′

k,b = I is the identity matrix in {0, 1}w×w.
Step 2: Random diagonal entries and bookends. Let s = 2m + w,

where m = l + 3 in the original GGHRSW scheme.
For k ∈ [κ], we extend w × w-dimensional matrices into s × s-dimensional

matrices

Âk,b =

(
Ek,b 0

0 Ak,b

)
, Â

′
k,b =

(
E′k,b 0

0 A′k,b

)
,

where the diagonal matrices Ek,b,E
′
k,b ∈ R2m×2m

σ are chosen uniformly at ran-
dom from the plaintext space.

We also choose four “bookend” vectors as follows:Â0 =
(

0m, e0, s
)
,

Â
′
0 =

(
0m, e′0, s

′
)
,Âκ+1 =

(
eκ+1, 0

m, t
)T

,

Â
′
κ+1 =

(
e′κ+1, 0

m, t′
)T

,

where e0, e
′
0, eκ+1, e

′
κ+1 ∈ Rmσ , and s, s′, t, t′ ∈ Rwσ such that s · tT = s′ · t′T .

Step 3: Kilian randomization and bundling scalars. We first sample
random scalars {ε0, ε′0, εκ+1, ε

′
κ+1, εk,b, ε

′
k,b ← Rσ : k ∈ [κ], b ∈ {0, 1}} such that

αj,b =
∏

inp(k)=j
εk,b =

∏
inp(k)=j

ε′k,b,

α0 = ε0εκ+1 = ε′0ε
′
κ+1.

We then choose randomly unimodular matrices P0,P
′
0,Pk,P

′
k ∈ Rs×sq , k ∈

[κ].
Finally we generate randomized matrices as follows:

Ã0 = ε0Â0P0, Ãk,b = εk,bP
−1
k−1Âk,bPk, Ãκ+1 = εκ+1P

−1
κ Âκ+1

Ã
′
0 = ε′0Â

′
0P
′
0, Ã

′
k,b = ε′k,bP

′−1
k−1Â

′
k,bP

′
k, Ã

′
κ+1 = ε′κ+1P

′−1
κ Â

′
κ+1
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where k ∈ [κ], b ∈ {0, 1}
Step 4: Encoding using GGH13 without ideals. For k = 0, · · · , κ+1, we

sample uniformly invertible random elements zk, z
′
k ∈ Rq, and βk ∈ R such that

κ+3
√
q < ‖βk‖ < κ+2

√
q. We then choose at random vectors R0,R

′
0,Rκ+1,R

′
κ+1 ∈

Rsσ, and matrices Rk,b,R
′
k,b ∈ Rs×sσ , and set{

A0 = (Ã0 + R0/β0)/z0

A
′
0 = (Ã

′
0 + R′0/β0)/z′0

,{
Ak,b = (Ãk,b + Rk,b/βk)/zk

A
′
k,b = (Ã

′
k,b + R′k,b/βk)/z′k

, k ∈ [κ], b ∈ {0, 1},{
Aκ+1 = (Ãκ+1 + Rκ+1/βκ+1)/zκ+1 · pzt
A
′
κ+1 = (Ã

′
κ+1 + R′κ+1/βκ+1)/z′κ+1 · p′zt

.

where pzt =
∏κ+1

k=0
βkzk, and p′zt =

∏κ+1

k=0
βkz
′
k.

Step 5: Output the obfuscation of BP. The obfuscation BP consists of
the following matrices and vectors:{ {

A0, {Ak,b}k∈[κ],b∈{0,1},Aκ+1

}
,{

A
′
0, {A

′
k,b}k∈[κ],b∈{0,1},A

′
κ+1

}
.

Remark 1. (1) We can take zk = z′k for all k and hence pzt = p′zt.
(2) To perform Kilian randomization, we use the unimodular matrices Pk,P

′
k.

Because ‖P−1k mod βk‖ ≈ βk for k ∈ [κ] when choosing randomly Pk. That is,
by a change of variable transformation we cannot rewrite the encodings as

Ak,b = (εk,bP
−1
k−1Âk,bPk + Rk,b/βk)/zk = (εk,bP

−1
k−1(Âk,b + R′k,b/βk)Pk)/zk

In this case, ‖R′k,b‖ ≈ βk. This point is different from the GGH13 encoding since

g is small and hence so ‖P−1k mod g‖.
(3) Alternatively, for choosing randomly Pk we can also use its adjugate

matrix adj(Pk) instead of P−1k .
Evaluation. Given the obfuscation BP and an arbitrary input x ∈ {0, 1}l,

we compute an honest evaluation as follows:

δ = A0 ·
∏κ

k=1
Ak,xinp(k)

·Aκ+1

= (β0Ã0 + R0) ·
∏κ

k=1
(βkÃk,xinp(k)

+ Rk,xinp(k)
) · (βκ+1Ãκ+1 + Rκ+1),

= αβ · s
∏κ

k=1
Ak,xinp(k)t

T + o(β)

δ′ = A
′
0 ·
∏κ

k=1
A
′
k,xinp(k)

·A′κ+1

= (β0Ã
′
0 + R′0) ·

∏κ

k=1
(βkÃ

′
k,xinp(k)

+ R′k,xinp(k)
) · (βκ+1Ã

′
κ+1 + R′κ+1),

= αβ · s′t′T + o(β)
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where α =
∏l

j=1
αj,xj and β =

∏κ+1

j=0
βj .

If
∏κ

k=1
Ak,xinp(k) = I, then ‖δ − δ′‖ < q

κ+1
κ+2 and BP(x) = 1. Otherwise,

BP(x) = 0.

4 Matrix Properties

In this section, we give some matrix properties. Let γ, δ be positive numbers

such that δ/γ = negl(λ). For simplicity,we denote RA[i] =
∑

j 6=i
|A[i, j]| in the

following. Similarly, we write RA[i] =
∑

j 6=i
‖Ai,j‖ when Ai,j are matrices.

A permutation p = (p1, p2, · · · , pn) of the numbers (1, 2, · · · , n) is any re-
arrangement. The parity of a permutation p is the one of the number of inter-
changes to restore p to natural order. Consequently, the sign of a permutation p
is defined to be the number

π(p) =

{
+1 if the parity of p is even,

−1 if the parity of p is odd.

Given a n × n-dimensional matrix A = (A[i, j]), the determinant of A is
defined to be the scalar

det(A) =
∑
p

π(p)

n∏
i=1

A[i, pi], (1)

where the sum is taken over the n! permutations p of (1, 2, · · · , n).
Lemma 4.1 Determinant Inequality. Suppose that A is an n×n-dimensional

matrix over Q such that γ ≤ |A[i, j]| ≤ cγ for i, j ∈ [n], where γ > 2λ and c > 1.
Then with overwhelming probability

γn ≤ |det(A)| ≤ n!(cγ)n.

Proof. According to the definition of determinant (1),

|det(A)| =
∣∣∣∣∑
p

π(p)

n∏
i=1

A[i, pi]

∣∣∣∣
= γn ·

∣∣∣∣∑
p

π(p)

n∏
i=1

A[i, pi]

γ

∣∣∣∣
= γn ·

∣∣∣∣∑
p

π(p)Ap

∣∣∣∣,
where Ap =

n∏
i=1

A[i,pi]
γ .
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By γ ≤ |A[i, j]| ≤ cγ, we obtain |A[i,pi]
γ | ≥ 1 and 1 ≤ |Ap| ≤ cn. According to

Chernoff-Hoefding inequality,
∣∣∑
p

π(p)Ap
∣∣ ≥ 1 with overwhelming probability.

On the other hand,
∣∣∑
p

π(p)Ap
∣∣ ≤ ∑

p

|π(p)|cn = n!cn.

Definition 4.2 Matrix Decomposition (MDγ,δ). The decomposition
A = A1 + Aδ is called MDγ,δ if A1,Aδ are satisfied

|A1[i, j]| = Θ(γ), for all i, j ∈ [n]

|Aδ[i, j]| = O(δ), for all i, j ∈ [n].

Lemma 4.3 Determinant Estimation I. Suppose that A = A1 + Aδ

is MDγ,δ and rank(A1) < n. Then |det(A)| ≤ O(n · n! · δγn−1). In particular,
|det(A)| = O(δγn−1) when n is constant.

Proof. By the definition of determinant (1),

det(A) =
∑
p

π(p)

n∏
i=1

A[i, pi] =
∑
p

π(p)

n∏
i=1

(A1[i, pi] +Aδ[i, pi])

By rank(A1) < n, det(A1) = 0. That is,
∑
p

π(p)
n∏
i=1

A1[i, pi] = 0.

We expand det(A) as follows:

det(A) =
∑
p

π(p)

n∏
i=1

(A1[i, pi] +Aδ[i, pi])

=
∑
p

π(p)(

n∑
j=1

Aδ[j, pj ]
∏
i 6=j

A1[i, pi]︸ ︷︷ ︸
Bp

+o(Bp))

So, |det(A)| ≤
∑
p

π(p)
n∑
j=1

O(|Aδ[j, pj ]
∏
i 6=j

A1[i, pi]|) ≤ O(n · n! · δγn−1).

Furthermore, |det(A)| ≤ O(δγn−1) when n is constant.
Remark 4.4. Lemma 4.1 and 4.3 are not contradictory. Because the matrix

A in Lemma 4.1 is randomly sampled, whereas the matrix A in Lemma 4.3
has a special structure such that the rank of the dominant matrix in its matrix
decomposition is less than n.

In Lemma 4.3, if we assume that the submatrix generated by the linearly
independent vectors of A1 satisfies the condition of Lemma 4.1. Namely, the
determinant of the square matrix obtained by this submatrix can be estimated
by applying Lemma 4.1. Accordingly, we can further improve the results in
Lemma 4.3. Note that the result of Lemma 4.5 is not used in this paper.

Lemma 4.5 Determinant Estimation II. Suppose that A = A1 + Aδ

is MDγ,δ and rank(A1) = k < n. Then |det(A)| ≤ n!(γ + δ
′
)k(δ

′
)n−k, where
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δ
′

= nk!ckδ and c is a constant that depends on A. Furthermore, |det(A)| ≤
O(δn−kγk) when n is constant.

Proof. Assume that the first k rows of A1 are linearly independent since
rank(A1) = k. So, the last n − k rows of A1 are linearly dependent its first k

rows. That is, for j ∈ {k + 1, · · · , n}, A1[j, ·] =
k∑
i=1

yj [i]A1[i, ·].

For simplicity, we write this relationship as matrix-vector form

A1[j, ·] = yjA
′

1 = yj(B1,B2),

where A
′

1 = A1[1//k], and B1 = A
′

1[1 : k], B2 = A
′

1[k + 1 : n].
Let B1,i =

(
B1[1//i− 1]//A1[j, ·]//B1[i+ 1//k]

)
for i ∈ [k]. By Cramer’s

rule, we find yj [i] =
det(B1,i)
det(B1)

.

We have c1γ ≤ |A1[i, j]| ≤ c2γ since |A1[i, j]| = Θ(γ), and then using Lemma
4.1,

(c1γ)k ≤ |det(B1)| ≤ k!(c2γ)k,

(c1γ)k ≤ |det(B1,i)| ≤ k!(c2γ)k.

Hence, for j ∈ {k + 1, · · · , n}, i ∈ [k], 1
k!ck

< yj [i] < k!ck where c = c2/c1.
Now, we set

Y =


yk+1[1] yk+1[2] · · · yk+1[k]
yk+2[1] yk+2[2] · · · yk+2[k]

...
... · · ·

...
yn[1] yn[2] · · · yn[k]

 ,

P =

(
Ik 0
−Y In−k

)
.

Therefore,

PA = PA1 + PAδ =

(
A
′

1

0

)
+ Aδ′ ,

By Aδ′ = PAδ, we get |Aδ′ [i, j]| = |
n∑
k=1

P [i, k]Aδ[k, j]| ≤ nk!ckδ and then

δ
′

= nk!ckδ.
By the definition of determinant (1),

det(A) = det(PA)

= det

((
A
′

1

0

)
+ Aδ′

)

=
∑
p

π(p)

k∏
i=1

(A1[i, pi] +Aδ′ [i, pi])

n∏
i=k+1

Aδ′ [i, pi]
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Since |A1[i, pi]| ≤ γ and Aδ′ [i, pi] ≤ δ
′
, thus

|det(A)| ≤ n!(γ + δ
′
)k(δ

′
)n−k.

Obviously, |det(A)| ≤ O(δn−kγk) when n is constant.
Definition 4.6 Approximate Eigenvalue. Let A = A1 + Aδ be a (γ, δ)-

matrix decomposition. The eigenvalues of A is defined as the approximate eigen-
values of A1.

Definition 4.7 Diagonally Dominant Matrix (DDM). An n×n-dimensional
matrix A is diagonally dominant if for all i ∈ [k],

|A[i, i]| ≥ RA[i].

If using a strict inequality (>) instead (≥) in the definition 4.1, then A is
called strict diagonally dominant matrix (SDDM).

Definition 4.8 (γ, δ)-Diagonally Dominant Matrix (DDMγ,δ). A is a
(γ, δ)-diagonally dominant matrix if A is satisfied

|A[i, j]| =

{
O(γ), if i = j

O(δ), if i 6= j.

Lemma 4.9. Suppose that A is a DDMγ,δ matrix. Then A−1 is a DDMγ−1,nδ/γ−2

matrix.
Proof. Since A is a DDMγ,δ matrix, we can write A = A1 + Aδ such that

A1 = Diag(A[1, 1], · · · , A[n, n]),

Aδ =

{
0, if i = j

A[i, j], if i 6= j.

So, A−11 = Diag(A−1[1, 1], · · · , A−1[n, n]). Without loss of generality, assume
γ−1max = max

i∈[n]
{A−1[i, i]} = O(γ−1).

By ‖A−11 Aδ‖ ≤ ‖A−11 ‖‖Aδ‖ ≤ O(nγ−1maxδ) = O(nγ−1δ)� 1, we have

A−1 = (A1 + Aδ)
−1

= (I + A−11 Aδ)
−1A−11

= (I−A−11 Aδ + (A−11 Aδ)
2 − · · · )A−11

= A−11 + Aδ′

where Aδ′ = (−A−11 Aδ + (A−11 Aδ)
2 − · · · )A−11 .

Again,

‖Aδ′‖ ≤ ‖A−11 Aδ‖+ ‖(A−11 Aδ)
2‖ − · · · )‖A−11 ‖

=

∞∑
i=1

(O(nγ−1δ))iO(γ−1)

=
O(nγ−1δ)

1−O(nγ−1δ)
O(γ−1)

= O(nδγ−2).
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Consequently, |Aδ′ [i, j]| = O(nδγ−2) for all i, j ∈ [n], and hence

|A−1[i, j]| =

{
O(γ−1), if i = j

O(nδγ−2), if i 6= j
.

Therefore A−1 is a DDMγ−1,nδ/γ−2 matrix.

Remark 4.10. Although the results of all lemmas above are given on the
rational number field Q, these results can be directly extended to the field K =
Q[x]/〈f(x)〉. Note that in this case we require to use the norm of the elements
in K, instead of absolute value over Q.

5 Cryptanalysis

Since the ADLP variant no longer uses ideals, as a result we cannot obtain
a basis of the ideal βk as that of the CGH attack. Moreover, we cannot also
find some exact representatives of the bundling scalars. However, we can recover
some approximate ratios of the bundling scalars using some matrix properties in
the above section. Applying these approximate ratios, we can extend the CGH
attack to the ADLP variant.

5.1 Branching program with input partitioning

We first adaptively recall the branching program with input partitioning in [10].
Let X||Y ||Z = [κ] be a 3-partition of the branching program steps. For a 3-
partition input u = xyz, we use Sx (resp. Sy,Sz) to denote the plaintext product
matrix of function branch in the X (resp. Y, Z) interval, and S′x (resp. S′y,S

′
z)

the plaintext product matrix of dummy branch in the X (resp. Y, Z) interval.
That is, for the function branch we have

Sx = Ã0

∏
k∈X

Ãk,uinp(k)
= αxÂ0 ×

∏
k∈X

Âk,uinp(k)
×Py1

= αxÂ0 × Âx ×Py1

Sy =
∏

k∈Y
Ãk,uinp(k)

= αyP
−1
y1 ×

∏
k∈Y

Âk,uinp(k)
×Pz1

= αyP
−1
y1 × Ây ×Pz1

Sz =
∏

k∈Z
Ãk,uinp(k)

× Ãκ+1 = αzP
−1
z1 ×

∏
k∈Z

Âk,uinp(k)
× Âκ+1

= αzP
−1
z1 × Âz × Âκ+1
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Similarly, for the dummy branch we have

S′x = Ã
′
0

∏
k∈X

Ã
′
k,uinp(k)

= α′xÂ
′
0 ×

∏
k∈X

Â
′
k,uinp(k)

×P′y1

= α′xÂ
′
0 × Â

′
x ×P′y1

S′y =
∏

k∈Y
Ã
′
k,uinp(k)

= α′yP
′−1
y1 ×

∏
k∈Y

Â
′
k,uinp(k)

×P′z1

= α′yP
′−1
y1 × Â

′
y ×P′z1

S′z =
∏

k∈Z
Ã
′
k,uinp(k)

× Ã
′
κ+1 = α′zP

′−1
z1 ×

∏
k∈Z

Â
′
k,uinp(k)

× Â
′
κ+1

= α′zP
′−1
z1 × Â

′
z × Â

′
κ+1

where the scalars αx, αy, αz, etc are the product of all the εk,b in the corre-
sponding branch, and y1 = |X| and z1 = |X||Y |.

For these bundling scalars αx, αy, αz, etc, we require the following observa-
tion.

Lemma 5.1 (Lemma 2.3 [10]). Suppose that u(i,j,t) = x(i)y(j)z(t) are
some 3-partition inputs that are all zeros of the function. Then αx(1)/αx′(1) =
αx(2)/αx′(2) = · · · , and similarly αy(1)/αy′(1) = αy(2)/αy′(2) = · · · and αz(1)/αz′(1) =
αz(2)/αz′(2) = · · · .

5.2 Generating approximate ratios of the bundling scalars

Without loss of generality, we assume that the branching program is 3-partitioned.
Let u(i,b,j) = x(i)y(b)z(j) be a 3-partition input of the form X||Y ||Z that is an
input of a zero of the function. Let i, j range over 2s inputs and for b ∈ {0, 1},
we first obtain the matrices:

Wb = XYbZ

=

 · · ·
βXSx(i) + Rx(i) ,−βXS′x(i) + R′x(i)

· · ·


(
βY Sy(b) + Ry(b) , 0

0 βY S′y(b) + R′y(b)

)(
· · · , βZSz(j) + Rz(j) , · · ·

βZS′z(j) + R′z(j) ,

)
,

where X,Yb,Z ∈ R2s×2s are full rank with high probability, and βX (resp. βY

and βZ ) is
∏

k∈X
βk (resp.

∏
k∈Y

βk and
∏

k∈Z
βk).

Then we compute the characteristic polynomial of W1W
−1
0 in K that is equal

to the characteristic polynomial of Y1Y
−1
0 .

Now we analyze Y1Y
−1
0 in K as follows:

Y1Y
−1
0 =

(
βY Sy(1) + Ry(1) , 0

0 βY S′y(1) + R′y(1)

)(
βY Sy(0) + Ry(0) , 0

0 βY S′y(0) + R′y(0)

)−1
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According to the ADLP encoding, we get ‖Ry(1)‖ = o(βY ) and hence by

Lemma 4.9 we compute for the function branching part of Y1Y
−1
0

(βY Sy(1) + Ry(1))(βY Sy(0) + Ry(0))
−1

= (βY αy(1)P
−1
y1 Ây(1)Pz1 + Ry(1))(βY αy(0)P

−1
y1 Ây(0)Pz1 + Ry(0))

−1

=
αy(1)

αy(0)
P−1y1 (Ây(1)Â

−1
y(0))Py1 +O(β−1Y )R

=
αy(1)

αy(0)
P−1y1

(
Ey(1) 0

0 Ay(1)

)(
Ey(0) 0

0 Ay(0)

)−1
Py1 +O(β−1Y )R

=
αy(1)

αy(0)
P−1y1

(
Ey(1)E

−1
y(0)

0

0 Ay(1)A
−1
y(0)

)
Py1 +O(β−1Y )R

≈
αy(1)

αy(0)
P−1y1

(
Ey(1)E

−1
y(0)

0

0 Ay(1)A
−1
y(0)

)
Py1 ,

where R ≈ αy(1)P−1y1 Ây(1)Pz1Ry(0)+αy(0)Ry(1)P
−1
y1 Ây(0)Pz1+O(β−1Y )Ry(1)Ry(0) .

By Lemma 2.2, Ay(1)A
−1
y(0)

= Iw×w, hence
α
y(1)

α
y(0)

∈ K is an approximate

eigenvalue of the function branch part of multiplicity at least w. Likewise,
α′
y(1)

α′
y(0)
∈

K is an approximate eigenvalue of the dummy branch of multiplicity at least w.

Again by Lemma 5.1,
α
y(1)

α
y(0)

=
α′
y(1)

α′
y(0)

, therefore
α
y(1)

α
y(0)

is the approximate eigenvalue

of Y1Y
−1
0 of multiplicity at least 2w.

Thus, we can find all roots of the characteristic polynomial of W1W
−1
0 in K

and consider at least 2w approximately equal roots as the approximate value of
α
y(1)

α
y(0)

.

Remark 5.2. We observe that for two inputs x,x′ ∈ {0, 1}l that differ only
in xi = 1 and x′i = 0, if the branching program evaluates to zero for them, that
is δx = αxβ · stT + o(β) and δx′ = αx′β · stT + o(β), then

αi,1
αi,0
≈ δx

δx′
since

‖δx‖, ‖δx′‖ < q. The advantage of this attack method is that it has no regard to
the input-partition of the branch program. However, it is not difficult to avoid
this attack by setting ‖β‖ ≥ q.

5.3 Annihilation attack

Chen, Gentry and Halevi have extended the annihilation attack in [26] to break
GGH13-based branching program obfuscators with the padded random diagonal
entries by using the ratios of the bundling scalars. Here we will further extend
the CGH attack to break the branching program obfuscators based on GGH13
without ideals by applying the approximate ratios of the bundling scalars.

To describe our attack, we also use the running example used by Chen,
Gentry and Halevi.
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Example 5.3 (Example 3.1 [10]). The two programs B,B′ have the iden-
tity matrix for both 0 and 1 in all the steps except for the two steps u,w that are
a permutation matrix P and its inverse P−1 for B′. Here we require the steps
u, v, w belong to the interval Y such that u < v < w and the input bit j2 does
not control any steps before u or after w. The programs B,B′ that compute the
constant-zero function concretely define as follows:

B= 0: I · · · I I I I I · · · I
1: I · · · I I I I I · · · I

B’= 0: I · · · I I I I I · · · I

1: I · · · I P I P−1 I · · · I
Steps 0: X u v w Z

Input bits 1: * · · · * j1 j2 j1 * · · · *

In the above subsection, we can solve the approximate ratios α1/α0 and
α′1/α

′
0. Since these ratios are approximate, consequently we cannot compute

four scalars v0, v1, ζ00, ζ11 ∈ R as that in [10]. However, we here are working on
K, not mod 〈g〉 and hence we can take

v0 = 1, v1 ≈ α′1/α′0 and ζ00 = 1, ζ11 ≈ α1α
′
1/α0α

′
0

We let ui,jµν = x(i)µνz(j) an input for a zero of the function, where x(i) is the
bits controlled in the step interval X, µν the two distinguished bits controlled
in the step interval Y , and z(j) the bits controlled in the step interval Z. We
denote by Eval(ui,jµν) the value returned by evaluating the obfuscated branching

program on the input ui,jµν :

Eval(ui,jµν) = A0 ·
∏κ

k=1
Ak,xinp(k)

·Aκ+1 −A
′
0 ·
∏κ

k=1
A
′
k,xinp(k)

·A′κ+1

= (β0Ã0 + R0) ·
∏κ

k=1
(βkÃk,xinp(k)

+ Rk,xinp(k)
) · (βκ+1Ãκ+1 + Rκ+1)

− (β0Ã
′
0 + R′0) ·

∏κ

k=1
(βkÃ

′
k,xinp(k)

+ R′k,xinp(k)
) · (βκ+1Ã

′
κ+1 + R′κ+1)

To perform our attack, we choose many different inputs ui,jµν that are all zeros
of the function and for each i, j we compute

A[i, j] = Eval(ui,j11 ) · ζ00 · v1v0 − Eval(ui,j10 ) · ζ00 · v1v1
− Eval(ui,j01 ) · ζ11 · v0v0 − Eval(ui,j00 ) · ζ11 · v0v1,

where all the computations are operated in K.
In the following, we will first analyze the rank of the submatrix corresponding

to the interval Y in the matrix A. Then we show that matrix A has non-full rank
matrix decomposition for the program B. Finally, we describe a distinguishing
attack between B and B′.

5.4 Analysis

5.4.1 The Matrix DY
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Assume that the step interval Y only includes the steps u, v, w and µν ∈ {0, 1}2
are any two input bits corresponding to Y . For simplicity, let β = max

0≤k≤κ+1
{βk},

which means β is the maximum norm element of βk. Let |Y | be the number of
the elements of Y . We also denote by βuv = βuβv, and similarly for βuw, βvw.

Then the matrix in the function branch of Y has the form

AY =
∏

k∈Y
(βkÃk,xinp(k)

+ Rk,xinp(k)
)

= (βuÃu,µ + Ru,µ)(βvÃv,ν + Rv,ν)(βwÃw,µ + Rw,µ)

= αµα
′
ν ·P

−1
u−1 ·

(
βuÂu,µ +

1

εu,µ
Pu−1Ru,µP−1u︸ ︷︷ ︸

:=R̂u,µ

)(
βvÂv,ν +

1

εv,ν
PuRv,νP

−1
v︸ ︷︷ ︸

:=R̂v,ν

)
(
βwÂw,µ +

1

εw,µ
PvRw,µP−1w︸ ︷︷ ︸
:=R̂w,µ

)
·P−1w

= αµα
′
ν ·P

−1
u−1 ·

(
βY Âu,µÂv,νÂw,µ︸ ︷︷ ︸

:=CµνY

+
(
βuwÂu,µR̂v,νÂw,µ + βuvÂu,µÂv,νR̂w,µ + βvwR̂u,µÂv,νÂw,µ︸ ︷︷ ︸

:=Dµν
Y

)

+O(β
|Y |−2

)Eµν
Y

)
·Pw

= αµα
′
ν ·P

−1
u−1 ·

(
Cµν
Y + Dµν

Y +O(β)Eµν
Y

)
·Pw,

where all the computations above are operated in K.
By Dµν

Y we define

DY = D11
Y −D10

Y −D01
Y + D00

Y

=
(
βuwÂu,1R̂v,1Âw,1 + βuvÂu,1Âv,1R̂w,1 + βvwR̂u,1Âv,1Âw,1

)
−
(
βuwÂu,1R̂v,0Âw,1 + βuvÂu,1Âv,0R̂w,1 + βvwR̂u,1Âv,0Âw,1

)
−
(
βuwÂu,0R̂v,1Âw,0 + βuvÂu,0Âv,1R̂w,0 + βvwR̂u,0Âv,1Âw,0

)
+
(
βuwÂu,0R̂v,0Âw,0 + βuvÂu,0Âv,0R̂w,0 + βvwR̂u,0Âv,0Âw,0

)
.

Now it is completely analogous to the method in [10] to show DY ∈
(
∗ ∗
∗ 0w×w

)
when evaluating B, but not whp when evaluating B′.

Similarly, we can define the matrix D′Y in the dummy branch for the step

interval Y , and use the same method to prove D′Y ∈
(
∗ ∗
∗ 0w×w

)
regardless of

whether the branch program is B or B′.



16 Gu Chunsheng

5.4.2 The Matrix A

To analyze A, we letX = {x1, x2, · · · , xx}, Y = {u, v, w}, Z = {z1, z2, · · · , zz},
and αix, α

′i
x (resp. αjz, α

′j
z ) be the product of the bundling scalars corresponding

to X (resp. Z). Moreover, we have αixα
j
z = α′

i
xα
′j
z by Lemma 5.1 and denote

this product by α(i,j). We also write βXk = βX/βk and βZk = βZ/βk.

Now we simplify Eval(ui,jµν) as follows:

Eval(ui,jµν)

= α(i,j)αµα
′
ν ·
((

β0Â0︸ ︷︷ ︸
:=C0

+R̂0

)(
Ci
X + Di

X +O(β
|X|−2

)Ei
X

)
(
Cµν
Y + Dµν

Y +O(β
|Y |−2

)Eµν
Y

)(
Cj
Z + Dj

Z +O(β
|Z|−2

)Ej
Z

)(
βκ+1Âκ+1︸ ︷︷ ︸

:=Cκ+1

+R̂κ+1

)
−
(
β0Â

′
0︸ ︷︷ ︸

:=C
′
0

+R̂
′
0

)(
C′

i
X + D′

i
X +O(β

|X|−2
)E′

i
X

)(
C′

µν
Y + D′

µν
Y +O(β

|Y |−2
)E′

µν
Y

)
(
C′

j
Z + D′

j
Z +O(β

|Z|−2
)E′

j
Z

)(
βκ+1Â

′
κ+1︸ ︷︷ ︸

:=C
′
κ+1

+R̂
′
κ+1

))

= α(i,j)αµα
′
ν ·
(

C0

(
Ci
X + Di

X

)(
Cµν
Y + Dµν

Y

)(
Cj
Z + Dj

Z

)
Cκ+1

+ R̂0C
i
XCµν

Y Cj
ZCκ+1 + C0C

i
XCµν

Y Cj
ZR̂κ+1

−C
′

0

(
C′

i
X + D′

i
X

)(
C′

µν
Y + D′

µν
Y

)(
C′

j
Z + D′

j
Z

)
C
′

κ+1

− R̂
′
0C
′i
XC′

µν
Y C′

j
ZC′κ+1 −C′0C

′i
XC′

µν
Y C′

j
ZR̂
′
κ+1 +O(β

κ
)

)
= α(i,j)αµα

′
ν ·
(

C0

(
Ci
XCµν

Y Dj
Z + Ci

XDµν
Y Cj

Z + Di
XCµν

Y Cj
Z

)
Cκ+1

+ R̂0C
i
XCµν

Y Cj
ZCκ+1 + C0C

i
XCµν

Y Cj
ZR̂κ+1

−C
′

0

(
C′

i
XC′

µν
Y D′

j
Z + C′

i
XD′

µν
Y C′

j
Z + D′

i
XC′

µν
Y C′

j
Z

)
C
′

κ+1

− R̂
′
0C
′i
XC′

µν
Y C′

j
ZC′κ+1 −C′0C

′i
XC′

µν
Y C′

j
ZR̂
′
κ+1 +O(β

κ
)

)
In the above simplification, except for the unspecified small noise matrix

Ei
X ,E

′i
X ,E

j
Z ,E

′j
Z , we also use the following notation

Ci
X = βX ·

∏
k∈X

Âk,uinp(k)
, C′

i
X = βX ·

∏
k∈X

Â
′
k,uinp(k)

Cj
Z = βZ ·

∏
k∈Z

Âk,uinp(k)
, C′

j
Z = βZ ·

∏
k∈Z

Â
′
k,uinp(k)
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Di
X =

∑
k∈X

βXk · Âx1,uinp(x1)
· · · Âk−1,uinp(k−1)

R̂k,uinp(k)
Âk+1,uinp(k+1)

· · · Âxx,uinp(xx)

D′
i
X =

∑
k∈X

βXk · Â
′
x1,uinp(x1)

· · · Â
′
k−1,uinp(k−1)

R̂
′
k,uinp(k)

Â
′
k+1,uinp(k+1)

· · · Â
′
xx,uinp(xx)

Dj
Z =

∑
k∈Z

βZk · Âz1,uinp(z1)
· · · Âk−1,uinp(k−1)

R̂k,uinp(k)
Âk+1,uinp(k+1)

· · · Âzz,uinp(zz)

D′
j
Z =

∑
k∈Z

βZk · Â
′
z1,uinp(z1)

· · · Â
′
k−1,uinp(k−1)

R̂
′
k,uinp(k)

Â
′
k+1,uinp(k+1)

· · · Â
′
zz,uinp(zz)

.

To simplify A[i, j], we further define

CY = C11
Y −C10

Y −C01
Y + C00

Y , C′Y = C′
11
Y −C′

10
Y −C′

01
Y + C′

00
Y

xi = C0C
i
X , x′i = C

′

0C
′i
X , zj = Cj

ZCκ+1, z′j = C′
j
ZC

′

κ+1

ei = C0D
i
X , e′i = C

′

0D
′i
X , fj = Dj

ZCκ+1, f′j = D′
j
ZC

′

κ+1

ri = R̂0C
i
X , r′i = R̂

′
0C
′i
X , wj = Cj

ZR̂κ+1, w′j = C′
j
ZR̂
′
κ+1

By the definition of bundling scalars and their approximate ratios that we
solve in the above subsection, we have

α1α
′
1 · ζ00 · v1v0 ≈ α1α

′
0 · ζ00 · v1v1 ≈ α0α

′
1 · ζ11 · v0v0 ≈ α0α

′
0 · ζ11 · v0v1,

where the approximate accuracy is O(β
−1

).
Thus, we can incorporate these approximate scalars into the matrices corre-

sponding to x(i) and z(j) respectively and can rewrite A[i, j] as follows:

A[i, j] =
(
xiCY zj + xiDY zj + eiCY zj + riCY zj + xiCY wj︸ ︷︷ ︸

:=F [i,j]

)
−
(
x′iC

′
Y z′j + x′iD

′
Y z′j + e′iC

′
Y z′j + x′iC

′
Y z′j + x′iC

′
Y w′j︸ ︷︷ ︸

:=F ′[i,j]

)
+O(β

κ
),

In the following we first analyze the matrix F generated by the term F [i, j]
from the function branch with i, j ∈ [ξ], where ξ ≥ 2m+ 1.

According to the construction structure of BP, for program B the vectors

xi,x
′
i, ei, e

′
i =

(
0m $m $w

)
, zj , z

′
j , fj , f

′
j =

(
$m 0m $w

)T
, and the matrices

CY ,C
′
Y ∈

$m×m 0m×m 0m×w

0m×m $m×m 0m×w

0m×m 0m×m 0w×w

 , DY ,D
′
Y ∈

$m×m $m×m $m×w

$m×m $m×m $m×w

$m×m $m×m 0w×w

 .

Moreover, for the program B′ everything else is the same except that DY is
arbitrary by the analysis of DY in the previous subsection.
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Thus for B we can write F by the block form and simplify it to determine
its rank as follows:

F = XCY Z + XDY Z + ECY Z + RCY Z + XCY W

=
(
0 X2 X3

)C1,1 0 0
0 C2,2 0
0 0 0

Z1

0
Z3

+
(
0 X2 X3

)D1,1 D1,2 D1,3

D2,1 D2,2 D2,3

D3,1 D3,2 0

Z1

0
Z3


+
(
0 E2 E3

)C1,1 0 0
0 C2,2 0
0 0 0

Z1

0
Z3

+
(
R1 R2 R3

)C1,1 0 0
0 C2,2 0
0 0 0

Z1

0
Z3


+
(
0 X2 X3

)C1,1 0 0
0 C2,2 0
0 0 0

W1

W2

W3


=
(
X2D2,1 + X3D3,1 + R1C1,1

)
Z1 + X2

(
D2,3Z3 + C2,2W2

)
Since the rank of Z1 and X2 is at most m, consequently the rank of F is at

most 2m.
However, the rank of F for B′ is at least 2m+ 1 with high probability. Since

D3,3 is non-zero block matrix, as a result F with high probability can not be
decomposed into the sum of two matrices with rank m.

Furthermore, the rank of F′ for B and B′ is at most 2m. The analysis of F′

is exactly similar to the analysis of F for B.

Theorem 5.4. Let ξ = 4m + 1, γ = β
κ+1

and δ = β
κ
. Suppose there exist

sufficiently many inputs ui,jµν that are all the zero of the function. Then when m
is constant, with high probability we have

the program is

{
B′ if det(A) = O(γξ)

B if det(A) = O(γξ−1δ)

When m = poly(λ), we heuristically have

the program is

{
B′ if det(A) = O(ξ! · γξ)
B if det(A) = O(ξ! · ξγξ−1δ)

Proof. According to the analysis of A, for B we have

A = F− F′︸ ︷︷ ︸
:=A1

+O(β
κ
)E︸ ︷︷ ︸

:=Aδ

Thus, for B there exists a (γ, δ)-matrix decomposition A = A1 + Aδ. Since
for B the rank of A1 is at most 4m < ξ, consequently for a constant m we have
det(A) = O(γξ−1δ) by Lemma 4.3.

However, for B′ with high probability there is no such (γ, δ)-matrix de-
composition with a non-full rank A1. Therefore when m is constant we get
det(A) = O(γξ) for B′ by Lemma 4.1.
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For m = poly(λ) we heuristically assume the determinant of A is equal to
O(ξ! · γξ) if A has no (γ, δ)-matrix decomposition with a non-full rank. Note
that our experiment supports this heuristic assumption.

Therefore for B we have det(A) = O(ξ! · ξγξ−1δ) by Lemma 4.3, and for B′

the result directly follows the heuristic assumption.
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