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Abstract. Recently, Albrecht, Davidson, Larraia, and Pellet-Mary con-
structed a variant of the GGH13 without ideals and presented the dis-
tinguishing attacks in simplified branching program and obfuscation se-
curity models. However, it is not clear whether a variant of the CGH
annihilation attack can be used to break an IO candidate using this new
variant. This paper adaptively extends the CGH attack into the branch
program obfuscator based on GGH13 without ideals. To achieve this goal,
we introduce approximate eigenvalue of matrix and build a relationship
between the determinant and the rank of a matrix with perturbation.
Our result shows that the structural vulnerability of GGH13 encodings
are beyond the presence of ideal.
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1 Introduction

Program obfuscation in cryptography makes programs unintelligible and keeps
their functionality. All known construction of IO obfuscators [19,6,8,4,21,27,21]
are based on the three candidate (resp. GGH13, CLT13 and GGH15) of graded
encoding scheme (GES) [18,14,20,15,22]. Unfortunately, these GES have been
proven to be vulnerable to zero attacks [18,12,9,5,23,16,13], attacks on the over-
stretched NTRU [1,11,24], and annihilation attacks [26,10].

To immune the above attacks, Garg et al. [21] constructed a provably se-
cure obfuscation in a weak multilinear map model, whose aim is to prevent
the annihilation attack. However, Chen, Gentry and Halevi (CGH) [10] showed
that their immunization can not thwart the annihilation attack if the branch
program obfuscator is input partionable. In fact, there does not exist the input-
partition problem for the constructions in [21,17] since they respectively are used
the dual-input introduced by [6] and stamping functions that can prevent any
input partition [17]. On the other hand, Albrecht, Davidson, Larraia, and Pellet-
Mary (ADLP) [2] investigated a structural vulnerability of the GGH13 encoding
scheme. They constructed a variant of the GGH13 without ideals and presented
the distinguishing attacks in simplified branching program and obfuscation se-
curity models. However, it is not clear whether a variant of the CGH attack can
be used to break an IO candidate using this new variant.
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1.1 Owur work

Our main contribution is to adaptively extend the CGH attack into the branch
program obfuscator based on GGH13 without ideals. The framework of our
attack directly follows that of the CGH attack. The core step in the CGH attack
is to solve a basis of ideal, but we cannot perform this step since there are no
ideal in the ADLP variant. Moreover, we cannot also find some exact ratios
of the bundling scalars and distinguish the rank of a matrix because of the
noise. In order to implement the attack, we solve some approximate ratios of the
bundling scalars and build a relationship between the determinant and the rank
of a matrix with noise. So, our result shows that the structural vulnerability of
GGH13 encodings are beyond the presence of ideal.

Our second contribution is to introduce the approximate eigenvalues of ma-
trix to solve the approximate ratios of the bundling scalars. In the variant of
GGH13 without ideals [2], the multiplicative bundling scalars appear as an ap-
proximation factor. So, when solving the ratios of these bundling scalars in the
variant IO, the diagonal matrix of the elements obtained from zero-testing has
noisy. Consequently we can not directly apply the characteristic polynomial of
matrix to get the ratios of the bundling scalars, and also can no longer compute
their exact ratios. However, we observe that these matrices are diagonal domi-
nated matrix with noise and their inverses are also diagonal dominated matrix
with noise.

Our final contribution is to estimate the determinant of matrix with noise.
Since in the IO using GGH13 without ideals each term of the matrices has noise,
as a result these matrices are all full rank. So, we can no longer use the rank
of matrix to distinguish two equivalent branch program obfuscators. But we
observe that the magnitude of the noise of these matrices are “small” relative to
the main component of matrix, consequently the determinant of matrix is also
“small” if the matrix generated by these main components of the original matrix
is not full rank. To this end, we build the relationship between the determinant
and the rank of matrix.

Although in this paper the results on matrix apply only to the attack for the
IO using GGH13 without ideals, we think that the applications of these matrix
properties in other respects should also be possible.

Organization. In Section 2 we first recall some preliminaries. Then in Sec-
tion 3 we give branch program using GGH13 without ideals. Finally in Section 4
and 5, we respectively provide some matrix properties and describe cryptanalysis
of IO based on GGH13 without ideals.

2 Preliminaries

2.1 Notations

Let Z,Q,R denote the ring of integers, the field of rational numbers, and the
field of real numbers. Let n be a positive integer and power of 2. Notation
[n] denotes the set {1,2,...,n}. Let R = Z[z]/{z™ + 1), Ry = Z4[z]/{z™ + 1),
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and K = Qx]/(z™ + 1). Vectors are denoted in bold lowercase (e.g. a), and
matrices in bold uppercase (e.g. A). We denote by a[j] the j-th entry of a
vector a, and A[i,j] the element of the i-th row and j-th column of A. We
denote by ||a||z (abbreviated as ||a||) the Euclidian norm of a. For A € R¥*9,
we define ||A| = max{||A[4, j]||,¢,j € [d]}, where ||A[i, j]|| is the Euclidian norm
corresponding to the coefficient vector of A[i, j]. Throughout this paper we will
abuse notations on R and K, both as an element and as a norm, depending on
the context.

Let [a], denote the absolute minimum residual system, namely [a], = amod ¢ €
(—q/2,q/2]. Similarly, for a € Z™ (or a € R ), [a], denotes each entry (or each
coefficient) alj] € (—q/2,¢/2] of a (or a).

Given ¢ € R" | 0 > 0, the Gaussian distribution of a lattice L is defined
as D g.c = po.c(X)/poc(L) for x € L , where p,o(x) = exp(—n||x — c||*/0?)),
Poc(L) = erL Po.c(x). In the following, we will write Dy 50 as Dr, . We
denote a Gaussian sample as x <— Dp , (or d - Dy, ) over the lattice L (or
ideal lattice I ).

An element a € R is called n-bounded if ||a||loc < 7. Moreover, it is easy to ver-

k
ify that for any n-bounded elements ay,---ax € R, the element a = | I G is
=

(nk~1n)-bounded. By the work of [25], the element <~ Dzn ;¢ is o/n-bounded
with overwhelming probability. Therefore, we define the truncated Gaussian dis-
tribution Dzn ¢ by sampling elements from Dzn , . and repeating any samples
that are not o+/n-bounded.

2.2 Branching programs

Let A be the security parameter, kK = k(XA), I = I(\) and d = d(\). Let inp :
[k] — [I]% be some fixed ‘input’ function. All current obfuscators only consider
branching programs with d = 1 or d = 2 [19,6].

Definition 2.1. A matrix branching program BP of length «, input length
[ and arity d is defined as follows:

BP := (K/a lv da inpa {Ak,x;np(k) }ke[m],inp(k)e{o,l}d’))

where Ak 4, o € {0,1}** and [inp(k)| = d.
The branching program is associated with the function fgp : {0,1}} — {0,1},

defined as
0, if szl Aoy =L
Loif [T, Ay #1

A branching program BP is input partionable if its input bits can be parti-
tioned into two or more independent subsets. We need the following observation
in [10].

Lemma 2.2 [10]. Let BP be an input-partitioned branching program, [k] =
X||Y. If z,2" € {0,1}! are two zeros of fgp that differ only in bits that are

fep(z) =
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mapped to steps in X. Then the product of the matrices corresponding to
X generates the same result in the evaluation of BP on x and 2/, namely

At = | Ak -
erx K @inp (k) kex koo

Similarly, if z, 2 € {0,1}' are two zeros of fpp that differ only in bits that
are mapped to steps in Y, then ery Ak,a:;npm = ery Ak@fnp(k)‘

2.3 GGH13 without ideals

GGH13 overview. The encoding space of GGH13 is R, = R/qR where ¢
is some big integer, and its plaintext space Ry = R/gR such that g is a small
element in R and is kept secret. A GGH13 encoding takes the form y = (e+rg)/z
mod g, where z is a random secret element in R, e is the plaintext element and
r is some small random element.

The denominators z enable the levels of the GGH13 scheme. In this paper,
we only consider the asymmetric case of GGH13, that uses many different de-
nominators z;. We say the encoding y is encoded at level S; if the denominator
of y is z;. It is easy to see that additions and multiplications of encodings can be
carried out if they satisfy some level restriction. Namely, adding encodings in-
dexed at the same level S; generates an encoding at the level S;, and multiplying
two encodings, indexed at the level S;, S; respectively, generates an encoding at
level S; U S;.

The GGH13 scheme also provides a public zero-testing parameter p,; =
h - H:ﬁl zi/g, where h € R such that ||h| < ¢. Given a top-level encoding

u indexed at level [k], one can determine whether u encodes zero or not by
computing p,; - u and checking if the result is small.

However, a simplified candidate IO over GGH13 exists the annihilation attack

introduced by Miles, Sahai and Zhandry [26]. That is, their work constructs two
program that are functionally equivalent, and show how to efficiently distinguish
between the obfuscator of these two programs by heuristically computing a basis
of {g). Moreover, Chen, Gentry and Halevi [10] extend the annihilation attack
in [26] to break the GGHRSW obfuscator over GGH13 when the branching
program has input partitioning. These works are the first to construct a basis
for the secret element (g).
GGH13 without ideals We describe a variant of GGH13 without ideals in [?].
Let x = Dzn , be the error distribution. Let e € R be some non-zero element
with small coefficients, r <— x. We sample z; uniformly from R, for 1 <14 < &,
and sample 3; such that ~+/q < ||Bi[le < /4.

An encoding of e indexed at level S; takes the form y = (e+r/8;)/z; mod g,
where z;, 3; enables the level structure. Obviously, the encodings also supports
addition and multiplication operation. For addition, let y1, 72 be two encodings
indexed at same level S C [k], then their sum results in the encoding y = y1 + y
at the level S. For multiplication, given two encodings y1, y» at level S1,.Ss C [«]
respectively, their product generates y =y - y2 at the level S U Ss.
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K
In this variant, the zero-test parameter is defined as p,; = H . Biz;. Sim-
i=

ilarly, given a top-level encoding u at level [k], one can determine whether u
encodes zero or not by computing § = p,; -u and checking if the result § is small.

3 BP Obfuscator using GGH13 without Ideals

Let BP := (k,l,d,inp, {Agp}re[x]pefo,1}) be the branching program to be ob-

fuscated, where directly using d = 1 for notational simplicity. We obfuscate BP

by GGHRSW [19] using instantiation of GGH13 without ideals as follows:
Step 1: Dummy branch. We introduce a “dummy branching program”:

BP, = (57 l,d,inp, {A/k,b}ke[m],be{O,l})a

where every A;c_b = I is the identity matrix in {0, 1}%*™.

Step 2: Random diagonal entries and bookends. Let s = 2m + w,
where m = [ + 3 in the original GGHRSW scheme.

For k € [k], we extend w x w-dimensional matrices into s x s-dimensional

matrices
~ _ Ek,b 0 ~/ o E;c,b 0
Ak,b - ( 0 Ak;’b> 5 Ak),b = < 0 A;C’b y

where the diagonal matrices Ey ;, E;’b € R2m*2m are chosen uniformly at ran-
dom from the plaintext space.
We also choose four “bookend” vectors as follows:

AO = Oma €o, S) ’
~7

oo
A, 0™, e, s ) ,

—~ T

Ali+1 = (efi-‘rla 0m7 t’) )

~1 , , T

AnJrl = <em+1a 0m7t ) 9

where e, €, €.41,€),1 € R, and s,s, t,t' € RY such that s-t7 =s'-t'7.
Step 3: Kilian randomization and bundling scalars. We first sample

random scalars {€, €0, €411, €1, €k bs € < Ro 2 k € [6],0 € {0,1}} such that

A
TR | RCE |
J inp(k)=j inp(k)=j "’

!t
g = €0€x+1 = 606N+1.

We then choose randomly unimodular matrices Py, Pj,, Py, P}, € R;XS, k e

[+]

Finally we generate randomized matrices as follows:

- ~ ~ - - e
Ao =¢cAoPy, App = pPr 1 ArpPr, Axi1 =€ 1P A
~/ ~/ ~/ ~1 ~/ ~1/
! / 7 /—1 / 7 /—1

Ay = Ay Py, Ak,b = ek,bPk—lAk,bPk’ An—i—l =€xt1 Py An-i-l
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where k € [],b € {0,1}

Step 4: Encoding using GGH13 without ideals. For k =0, -- ,k+1, we
sample uniformly invertible random elements zy, z;, € Ry, and S; € R such that
~+y/q < ||Bell < ~+/q. We then choose at random vectors Ro, R, Rit1, Ry 41 €
Rs, and matrices Ry 5, R}, € RS*®, and set

{Ao = (Ao + Ro/Bo)/ 70
Ao = (Rg +Rp/fo)/24
{Ak,b = (Akb +Ris/Br)/ 2k
Ay = (R + Riy/Bu)/44

{An+1 == (;&r@+l + RK+1/6I{+1)/ZK,+1 * Pzt

k€ [k],b € {0,1},

— ~1

An-l—l = (Am-',-l + R;+1/5m+1)/zé+1 D

K+

1 k+1
/ !
where p,; = I |k—0 Brzk, and pl,, = I |k_0 Brzy,-

Step 5: Output the obfuscation of BP. The obfuscation BP consists of
the following matrices and vectors:

{A0, {Aks}rep)pefo,}, At }s
— —
{Ay, {A% bt keln) befo0,1} A}

Remark 1. (1) We can take z;, = zj, for all k and hence p.; = p’,.

(2) To perform Kilian randomization, we use the unimodular matrices Py, P
Because ||[P;;' mod By|| & B for k € [k] when choosing randomly Pj. That is,
by a change of variable transformation we cannot rewrite the encodings as

Asp = (rpPrl i Ay P+ Rio/Br) )2k = (ersPrty (Ans + R/ B1)Pr) /2

In this case, ||Rj ;|| = Bi. This point is different from the GGH13 encoding since
g is small and hence so [P, mod g].

(3) Alternatively, for choosing randomly Pj we can also use its adjugate
matrix adj(P},) instead of P, ".

Evaluation. Given the obfuscation BP and an arbitrary input x € {0, 1}/,
we compute an honest evaluation as follows:

d=Ao- Hk:l Kkvwinp(k) “Anq
= (50:&0 + RO) : szl(ﬂk*’&k,z;np(m + Rk,z;np(k)) . (Bn+1gn+1 + Rn+1)7
_ " T
=af-s szl Ak,mmp(mt +o(pB)
K K — =%
5 - AO Hk:] Aszinp(k) AI{Jrl
~/ ’ K
= (BoA¢ + Rg) - szl
=af-s't" +o(f)

rél ’ /

~1
(ﬁkAk,Tinp(k) + Rkaxinp(k)) ’ (*B"”"HAKH + Rn+1)>
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Kk+1

l
where a = szl @jz; and § = Hj:O B
K == BP
7If Hk:1 Agripiy = L then [0 — 0] < qTiz and BP(x) = 1. Otherwise,
BP(X) =0.

4 Matrix Properties

In this section, we give some matrix properties. Let ~,d be positive numbers
such that §/v = negl(\). For simplicity,we denote Ra[i] = Z » |Ali, 7]| in the
Ve
following. Similarly, we write Ra [i] = Z » |A; ;|| when A;; are matrices.
VE)

A permutation p = (p1,p2, -+ ,pn) of the numbers (1,2,--- ,n) is any re-
arrangement. The parity of a permutation p is the one of the number of inter-
changes to restore p to natural order. Consequently, the sign of a permutation p
is defined to be the number

) +1 if the parity of p is even,
i =
—1 if the parity of p is odd.

Given a n x n-dimensional matrix A = (A[s,j]), the determinant of A is
defined to be the scalar

n

det(A) = Z 7(p) H Ali, pi], (1)

P i=1

where the sum is taken over the n! permutations p of (1,2,--- ,n).

Lemma 4.1 Determinant Inequality. Suppose that A is an nxn-dimensional
matrix over Q such that v < |A[i, j]| < ey for 4, j € [n], where v > 2* and ¢ > 1.
Then with overwhelming probability

7" < [det(A)] < nl(ey)".

Proof. According to the definition of determinant (1),

|det(A)] =

:’Yn~

> #(p) H Ali-pi ‘

7y

n .

=7

where A,

|
—

=

5

«
Il
-
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By v < |A[i, j]| < ¢y, we obtain |22z 7’" >1land 1< |A4,] <" According to

Z A | > 1 with overwhelming probability.

Chernoff-Hoefding inequality,

On the other hand, |Z VA | < Z |7(p)|c™ = nlc™. 1

Definition 4.2 Matrlx Decomp051t10n (MD, 5). The decomposition
A =A; + A is called MD,, 5 if Ay, A are satisfied

|A1]2, j]| = ©(7),for all 4, j € [n]
|Asli, 7]| = O(9), for all 4, j € [n].

Lemma 4.3 Determinant Estimation I. Suppose that A = A; + A;
is MD,, 5 and rank(A;) < n. Then |det(A)| < O(n - n!-§y"~1). In particular,
|det(A)| = O(6y™ 1) when n is constant.

Proof. By the definition of determinant (1),

det(A) Z HAz pil = Z ) [Tl pi] =+ Asli, pi])

By rank(A;) < n, det(A;) = 0. That is, Zw(p) IT Axlé, pi] = 0.
. =~
We expand det(A) as follows:

n

det(A) = Y " m(p) [ [(Asli, pi] + Asli, pi))

i=1

= 7(p ZAaJpj [T Asli.pil +o(By))

i#]
BP

n
So, |det(A)| < Y 7(p) 2 O(14s[j,p,] ,Q,Al[i,pill) <O(n-nl-oy"1).
» J= i#£]

Furthermore, |det(A)| < O(6y™~1) when n is constant. 1

Remark 4.4. Lemma 4.1 and 4.3 are not contradictory. Because the matrix
A in Lemma 4.1 is randomly sampled, whereas the matrix A in Lemma 4.3
has a special structure such that the rank of the dominant matrix in its matrix
decomposition is less than n.

In Lemma 4.3, if we assume that the submatrix generated by the linearly
independent vectors of A satisfies the condition of Lemma 4.1. Namely, the
determinant of the square matrix obtained by this submatrix can be estimated
by applying Lemma 4.1. Accordingly, we can further improve the results in
Lemma 4.3. Note that the result of Lemma 4.5 is not used in this paper.

Lemma 4.5 Determinant Estimation II. Suppose that A = A; + A
is MD,, 5 and rank(A;) = k& < n. Then |det(A)| < n!(y 4+ §)*(8')*~*, where



Cryptanalysis of indistinguishability obfuscation using GGH13 without ideals 9

6 = nk!¢"§ and c is a constant that depends on A. Furthermore, |det(A)| <
O(6"~*~*) when n is constant.

Proof. Assume that the first k¥ rows of A; are linearly independent since
rank(A;) = k. So, the last n — k rows of A; are linearly dependent its first &k

k
rows. That is, for j € {k+1,--- ,n}, A1[j,-] = > y,[i]Asls, ]
i=1

For simplicity, we write this relationship as matrix-vector form
Ailj, ] = YjA1 = Yj(B17B2)7

where Al1 = A[1//k], and By = A/l[l k], By = A/l[k—&— 1:n].
Let By, = (Bi[1//i—1]//A1lj,"]//Bili +1//k]) for i € [k]. By Cramer’s

rule, we find y;[i] = d(fett((B];l”')) :
We have ¢1y < |A1]i, j]| < oy since |A4[i, j]| = ©(7), and then using Lemma
41,
(e17)® < |det(B1)] < kl(c2m)",
()" < |det(Bi)| < kl(eay)"
Hence, for j € {k+1,--- ,n},i € [k], o1r < y;li] < klc* where ¢ = ca/cy.

Now, we set

Yer1 1) Yp1(2] - yrra (K]
Ye+2(1] Ye+2[2] - yrro(K]

yn'[l] yn'[2} yn'[k]

(I, 0
P_<YIn_k)'

PA — PA, + PA; — <f’(‘)1) LAy,

Therefore,

By Ay = PA;, we get |Ay[i,j]] = |kzlP[i,k]A5[k,j]\ < nklc*§ and then

8 = nklcko.
By the definition of determinant (1),

det(A) = det(PA)

-ae( () +0)

k
:Z HAllpl‘i‘Aélpz HA(Ssz
p

=1 1=k+1
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Since |A1[i, pi]| < and Ay [i,p;] < S, thus
|det(A)] < nl(y+ 8 )F(3)"*.

Obviously, |det(A)| < O(6" *~*) when n is constant. 1

Definition 4.6 Approximate Eigenvalue. Let A = A; + A be a (v, 6)-
matrix decomposition. The eigenvalues of A is defined as the approximate eigen-
values of Aj.

Definition 4.7 Diagonally Dominant Matrix (DDM). An nxn-dimensional
matrix A is diagonally dominant if for all i € [k],

|Ali,1]] = Rald].

If using a strict inequality (>) instead (>) in the definition 4.1, then A is
called strict diagonally dominant matrix (SDDM).

Definition 4.8 (v,d)-Diagonally Dominant Matrix (DDM, s). A is a
(v, §)-diagonally dominant matrix if A is satisfied

TR 0(7)7 1fz:j
|A[Z’J]|_{O(5), if i # j.

Lemma 4.9. Suppose that A is a DDM, s matrix. Then A tisa DDM, -1 p5/4-2
matrix.
Proof. Since A is a DDM,, 5 matrix, we can write A = A; + A; such that

A= Dlag(A[l? 1]7 T ,A[TL, n])’
Ay = 0, ifi=j
Ali, jl, if 0 # j.
So, A7 = Diag(A~'[1,1],--- , A=[n, n]). Without loss of generality, assume
Tmax = max{A7!i, 1} = O(y7").
By [|AT Asll < AT [ As]| < O(n753:6) = O(ny~18) < 1, we have
AP =(A+A5)!
=(I+ATA;) AT
= (= AT A + (A A" — )AL

=A7'+ Ay

where Ay = (—A7 As + (AT'As)2 — )AL

Again,
|As | < AT Asll + [I(AT AP =) ATH|
= (O(my's)'ot™)
=1

_ O(my7'9) -1
C1- O(n’y—lé)o(’y )

= 0(néy™?).
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Consequently, |As i, j]| = O(ndy~2) for all 4,5 € [n], and hence

Ly fo6Th, =
A {0<mw2>, it # ]

Therefore A7! is a DDM,, -1 p5/4-2 matrix. |

Remark 4.10. Although the results of all lemmas above are given on the
rational number field Q, these results can be directly extended to the field K =
Q[z]/{f(x)). Note that in this case we require to use the norm of the elements
in K, instead of absolute value over Q.

5 Cryptanalysis

Since the ADLP variant no longer uses ideals, as a result we cannot obtain
a basis of the ideal §i as that of the CGH attack. Moreover, we cannot also
find some exact representatives of the bundling scalars. However, we can recover
some approximate ratios of the bundling scalars using some matrix properties in
the above section. Applying these approximate ratios, we can extend the CGH
attack to the ADLP variant.

5.1 Branching program with input partitioning

We first adaptively recall the branching program with input partitioning in [10].
Let X||Y||Z = [k] be a 3-partition of the branching program steps. For a 3-
partition input u = xyz, we use S, (resp. Sy, S.) to denote the plaintext product
matrix of function branch in the X (resp. Y, Z) interval, and S/, (resp. S;,S.)
the plaintext product matrix of dummy branch in the X (resp. Y, Z) interval.
That is, for the function branch we have

Sz = Ao erX Akauirxp(k) = azAg X erX Ak7uinp(k) x Py,

=a,Ag X Ay x Py,

~ o~

_ _ —1
Sy - ery Ak’“inp(k) - ayPyl x ery Ak7uinp(k) X PZl
_ -1 A
=P, XA, xXP,
B ~ ~ B 1 —~ —~
S. = erZ Akvuinp(k) X App1 = O‘szl X erZ Ak»uinp(k) X Agp

PPN ~
=a. P XA, XAy
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Similarly, for the dummy branch we have

~1/ !/

~1 ~1 ~
S =A | I A =al Ay x | | A x P!
x 0 kex Tk Uinp(k) x>0 kex ~ RsUinp(k) Y1

—~1 —~/
7 I
=a,Ag X A, x Py,

~/ ~1/
r I p/—1 /
Sy - erY Ak’uinP(M - ayPyl X erY Akvuinp(k) X PZ1

—a' P xA xP
Tyt y z1

rél rd ~1/ —~/
I _ Ipr—1
SZ o Hk’EZ Ak7ui“p(k) x AH+1 B aZPZl X HkEZ Ak:“inp(k) X ANJrl

—a' P71 x Al x A
_az z1 z r+1

where the scalars oy, oy, @, etc are the product of all the €y in the corre-
sponding branch, and y; = | X| and z; = |X||Y].

For these bundling scalars a,, o, o, etc, we require the following observa-
tion.

Lemma 5.1 (Lemma 2.3 [10]). Suppose that u(®/") = 20y ") are
some 3-partition inputs that are all zeros of the function. Then o a)/aya) =
OAI(2)/OLw/(2) =y, and similarly Oéy(l)/ay/(l) = Ozy(z) /Ozy/(z) =... and OLZ(1)/Oéz/(1) =
()LZ(Q)/OZZ/<2) =

5.2 Generating approximate ratios of the bundling scalars

Without loss of generality, we assume that the branching program is 3-partitioned.
Let u(®7) = 2(0y(®)2()) be a 3-partition input of the form X||Y||Z that is an
input of a zero of the function. Let ¢, j range over 2s inputs and for b € {0,1},
we first obtain the matrices:

W, = XY, Z
= [ BxS. + Ry, —BxSLey + Rl

By Syw + Ry, 0 L Bz8.0 + Ry,
0 By Syw +Ryw BzS.u + R, ’

where X, Yy, Z € R?$*2% are full rank with high probability, and Bx (resp. By
and [z ) is erX Br (resp. ery B and erz Br)-

Then we compute the characteristic polynomial of W{ W !in K that is equal
to the characteristic polynomial of Y1Y L
Now we analyze YY" in K as follows:

v.y-!— (S, + Ry, 0 By Sy + Ry, 0 -
teo 0 61/8;(1) + R;I(l) 0 BYS;(O) + R;/w)
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According to the ADLP encoding, we get ||R,u)|| = o(8y) and hence by
Lemma 4.9 we compute for the function branching part of Y; Y !

(BySym +Rym)(BySyo + Ryw)
= (ﬂYOéyu)P;llz&yu)le + Ryu))(5y0¢y<0>P;1111y<0>P21 +R,0)"

Q, (1) RN ~—1 _
= D A0 A 0Py, + O R
Y
—1
ay(l) 1 E (1) 0 E (0) 0 -1
=—P Y Y P o R
Qty(0) L& < 0 Ay(1) 0 Ay(o) nt (BY )

1
a0 g (EyoE o 0 -1
=P v _ P 0] R
Qty(0) v1 ( 0 Ay(l)Ay(})) n+O0By)

-1
O[y(l)P71 Eyu)Ey(o) 0 ) P

- Y1
a0 U 0 AynA o

Q

_ -1 -1 -1
where R =~ Ozyu)Pyl Ay(l)le Ry(o) +Ozy(o)Ry(1)Py1 Ay(o)le JrO(ﬂY )Ry(l)Ry(O) .

— @ (1 . .
By Lemma 2.2, Ay(l)Ay(}]) = I"*", hence a”—ioz € K is an approximate
Y
(e

eigenvalue of the function branch part of multiplicity at least w. Likewise, a',y(l
K is an approximate eigenvalue of the dummy branch of multiplicity at least w.

. a,m @
Again by Lemma 5.1, -+~ = —— therefore
ay(o) 0éy(U) O(y(o)

e
)

e
3

is the approximate eigenvalue

of Y, Y, ! of multiplicity at least 2w.
Thus, we can find all roots of the characteristic polynomial of W; W 'inK

z}lnd consider at least 2w approximately equal roots as the approximate value of
¥y

0

Remark 5.2. We observe that for two inputs x,x’ € {0,1}! that differ only
in z; =1 and 2 = 0, if the branching program evaluates to zero for them, that
is 0, = a,B-stT 4+ o(B) and 0, = a3 - st 4 o(B), then Z’; ~ (;Lm/ since
10211, [0z || < g. The advantage of this attack method is that it has no rggard to
the input-partition of the branch program. However, it is not difficult to avoid

this attack by setting ||3|| > ¢.

5.3 Annihilation attack

Chen, Gentry and Halevi have extended the annihilation attack in [26] to break
GGH13-based branching program obfuscators with the padded random diagonal
entries by using the ratios of the bundling scalars. Here we will further extend
the CGH attack to break the branching program obfuscators based on GGH13
without ideals by applying the approximate ratios of the bundling scalars.

To describe our attack, we also use the running example used by Chen,
Gentry and Halevi.
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Example 5.3 (Example 3.1 [10]). The two programs B, B” have the iden-
tity matrix for both 0 and 1 in all the steps except for the two steps u, w that are
a permutation matrix P and its inverse P! for B’. Here we require the steps
u, v, w belong to the interval Y such that v < v < w and the input bit jo does
not control any steps before u or after w. The programs B, B’ that compute the
constant-zero function concretely define as follows:

B= o: 1 -~ I I I I I I
1. I I 1T 1 I I I
B’= 0: I I I 1 1 I I
L 1 -~ I P I P! 1 ... I
Steps 0 X u v w Z
Input bits 1: * ... % 4 45 41 ¥ ook

In the above subsection, we can solve the approximate ratios aj/ag and
o /ag. Since these ratios are approximate, consequently we cannot compute
four scalars vy, v1, oo, 11 € R as that in [10]. However, we here are working on
K, not mod (g) and hence we can take

vg =1 = aj/og and (oo =1,(11 R anal/apag

We let uiuj, = 2 w20 an input for a zero of the function, where z(* is the
bits controlled in the step interval X, uv the two distinguished bits controlled
in the step interval Y, and z() the bits controlled in the step interval Z. We
denote by Eval(u/;]) the value returned by evaluating the obfuscated branching
program on the input uf“],

K

.. J— J— —_ — K — —
EV&I(“ZIJ/) =Ao- Hk:l Ak,ﬂiinp(k) “Apt1 — Ay Hk:l Akywinp(k) ’ AnJrl
= (BoAo + Ro) - Hk:l (ﬁkAkvminp(k) + Rkvminp(k)) “(Brt1Axs1 + Ryp1)

~/ K ~/ ~/
— (BoAg + RB) ’ H}c:1(ﬁkAk,xmp<k> + R;M?mp(m) C(Brt1Ap + R;H)

To perform our attack, we choose many different inputs uL,Jj that are all zeros
of the function and for each i, j we compute
Ali, j] = Eval(uyy) - Coo - v1ve — Eval(uiy) - oo - v1v1
— Eval(ugi) - ¢11 - vove — Eval(ugd) - ¢11 - vovr,
where all the computations are operated in K.
In the following, we will first analyze the rank of the submatrix corresponding
to the interval Y in the matrix A. Then we show that matrix A has non-full rank

matrix decomposition for the program B. Finally, we describe a distinguishing
attack between B and B’.

5.4 Analysis
5.4.1 The Matrix Dy
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Assume that the step interval Y only includes the steps u, v, w and pv € {0,1}2

are any two input bits corresponding to Y. For simplicity, let § = ?gxﬂ{ﬁk}

which means 3 is the maximum norm element of ;. Let |Y| be the number of
the elements of Y. We also denote by 8., = B.0y, and similarly for By, Byw-
Then the matrix in the function branch of Y has the form

Ay = erY(ﬂkAk*xinp(M + Rk’minp(k-))
= (BuBup +Rup) (BuAuy + Row) (BuAuu+ R )
_ ~ 1 -
i/ : Puil : (BuAu,,u + ?PuflRu,uPul ) (B'u v,V + —P R'u l/P )

Ut €u,v

N
~ 1
(BuBuwy+ —PRy P ) P
€w,p
—_—
=R,
= apa;, : P;il . (BY;&u,/A;&v,V;&w,u
=CL
+ (ﬁuw;&uwﬁv,u—gww + ﬁuv;&u,u;&v,uﬁw,u + vaﬁu,u;&v,u;&w,u )
=D~
L@ Ry P,
— oyl Pol <C*;” DY O(B)E‘{,") P,
where all the computations above are operated in K.
By D{” we define
Dy = D}! — DY’ — DY + DY?
= ( u 1Rv 1Aw 1+ ﬂuv u, 1AU 1Rw 1+ 61)11} ;&U 11&11;,1)
( ule OAwl +Buv ulAv ORwl +va ;& :&w,l)
(ﬁ ;& Av lAw0+Buv uOA'U lRw0+vaﬁ K lgw,O)
+ (6 ;&u Oﬁ'u OAw o+ Buv u, OAv ORw o+ vaﬁ ;& OKw,O)

Now it is completely analogous to the method in [10] to show Dy € <I OU’*X“’)

when evaluating B, but not whp when evaluating B’.
Similarly, we can define the matrix D} in the dummy branch for the step

interval Y, and use the same method to prove DY, € <I O“’*X“’) regardless of
whether the branch program is B or B’.
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5.4.2 The Matrix A

To analyze A, welet X = {z1,29, -+ , 2.}, Y = {u,v,w}, Z = {21,290, -, 2.},
and o, o/ ; (resp. ad, o’ jz ) be the product of the bundling scalars corresponding
to X (resp. Z). Moreover, we have a’ad = o/*a/) by Lemma 5.1 and denote
this product by a(; ;). We also write 8x, = Bx /B and Bz, = Bz/PBk-

Now we simplify Eval(u);}) as follows:

Eval(uz’i)

N a 3 i —|X|-2
= Qi )ty - <(50A0 +Ro) (Cx + D + o@™!

::Co

(cw + Dt + 0"

JEY)

JEX)(CL + DL + 0B 7 *)EL) (Ber1Anss +Rocs)
———

:=Crq1

7 —| X |—-2 7 v v —=|Y|—2

— (BoAy +Ry) (C' + D" + O(B

/

:=C,

JEY)

(€ + D% + O B (BB +R.))
N—_——

’
::CN_*_1

— agiyyapd, (co(cg( £ Diy)(C + D) (CL + DL)Cos
+R(C{CL'CL,C,i1 + CoCLCH CLR, 14
—Cy(C'y + D'y (CY + DY) (C%, +D)C.
— R, O CY,CL,, - ClC L CCLR, + O(ﬁ“))
= Qi) - <CO(C§(C*;,”DJ'Z + Cy DY Cl, + DY CY CL)Cria
+RyC4 CL C,Cpip1 + CoCy Cl CLR 11
(e DY + OADYEY s DA e el

- RICKCY CYCL, ~ GO Y CLR L, +0())

In the above simplification, except for the unspecified small noise matrix
EY,E'y,E/,E",, we also use the following notation

-~/

i A e
X — BX : H Ak:“inp(k,)’ X — BX : H Ak:fufinp(k,)
keX keX

~1

Jj o A 13
CZ - ﬂZ ’ H Akv”inp(}c)? Cy= 6Z : H Ak,ump(k)
kez keZ
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o~ o~

i —~ ~ —~
DX - E 5Xk ) Am17uinp(m1) T Akfl,uinp(k—mRk’uinp(k)Ak+1’uinp(k+1) T Azwwuinp(ml)
keX

. ~1 ~1 ~1/ ~1 ~1
"o
D'y = § :Bxk Axlvuinp(ml) Ak_lvuinp(k'fl)Rkvuinp(k)Ak+17uiup(k'+1) Ammvuinp(mz)
keX

o~

i ~ ~ ~ ~
DZ - E : sz : Azlvuinp(zl) T Ak—lyump(kq)Rk,ump(k)Ak-i-Lump(kH) T Azz’uinp(zz)
keZ

Wi _ —~/ —~1 —~/ —~1 —~1
Dz = Z ﬂzk ’ Azlauinp(zl) e Ak_17uinp(k—1)Rkauinp(k)Ak+1auinp(k+l) e AZZ7uinp(zZ).
keZ

To simplify As, j], we further define

11 10 01 00 / 111 110 /01 /00

_ i I~ o~ I I~
Xi—COCX, Xi—COC X Z]‘ —CZC,{+1, Zj 7CZCK,+1
_ i I~ R Ry _ I~
ei—Co X ei—COD X fj —DZCK+1, ft; _DZCnJrl
~ . ~1 . PN N
_ [ !’ /" _ I ! 17
ri—ROCX7 ri_ROC X, Wj —CzRK+1, Wj —CZRKJrl

By the definition of bundling scalars and their approximate ratios that we
solve in the above subsection, we have

! ~ l ~ / ~ /
ajon - Coo - V1vg = Qg - Coo - V11 = Qoay - C11 - Vovg = Qo * C11 - Vov1,

. . ——1
where the approximate accuracy is O(f ).
Thus, we can incorporate these approximate scalars into the matrices corre-
sponding to 2 and z() respectively and can rewrite Ali, j] as follows:

A[Z,]] = (XiCij =+ xiDyzj =+ eiCij + I‘iCij + XiCij )

=FYi.j]

— (X;;C'Yz; + x;D’Yz; + eéC'Yz; + x;C'Yz; + x;C/Yw; )+ 03",

::F/ [17-]]

In the following we first analyze the matrix F generated by the term F'[¢, j]
from the function branch with ¢, j € [¢], where £ > 2m + 1.

According to the construction structure of BP, for program B the vectors
Xi, X, €, €, = (Om gm $w), z;, 75, £}, f; = ($m om $w)T, and the matrices

$m><m gmxm gmxw $m><m $m><m $m><w
Cy, C/Y c Omxm $m><m Omxw , DYaD/Y c $m><m $m><m $m><w
Qmxm gmxm wXw $m><m $m><m Quwxw

Moreover, for the program B’ everything else is the same except that Dy is
arbitrary by the analysis of Dy in the previous subsection.
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Thus for B we can write F by the block form and simplify it to determine
its rank as follows:

F=XCyZ+ XDyZ+ECyZ+RCyZ + XCyW

Cii 00 Z, D;; D;2D;3 Z,

=(0X2X3) [ 0 Cy20 0 | +(0X2X3) (D21 Dy Do 0
0 0 0/ \Z3 D31 D;3o 0 Zs

Ci1 0 0\ [Z, Cii 0 0\ [Z,

+(0E;Es) [ 0 Co20| |0 |+(RiRaRs) | 0 Cy00] [0
0 0 0/ \Zs 0 0 0/ \Zs

0171 0 0 Wl
+(0X2X3)| 0 Cpp0] (W2
0 0 0/ \W;s

= (X2D2,1 + X3Ds 1 + R1C1,1)Z1 + X (D2,3Z3 + 02,2W2)

Since the rank of Z; and X5 is at most m, consequently the rank of F is at
most 2m.

However, the rank of F for B’ is at least 2m + 1 with high probability. Since
D3 3 is non-zero block matrix, as a result F with high probability can not be
decomposed into the sum of two matrices with rank m.

Furthermore, the rank of F’ for B and B’ is at most 2m. The analysis of F’
is exactly similar to the analysis of F for B.

Theorem 5.4. Let £ =4m + 1, v = EKH and 0 = BK. Suppose there exist
sufficiently many inputs uf“], that are all the zero of the function. Then when m
is constant, with high probability we have

.| B"if det(A) = O(»%)
the program is )
B if det(A) = O(y*716)

When m = poly(\), we heuristically have

"o — O(&) - ~£
the program is B 1_f det(A) = O(E! -~ )7
B if det(A) = O(&! - &45716)

Proof. According to the analysis of A, for B we have

A=F—-F +0(p")E
—— ~—
=Aq =Aj

Thus, for B there exists a (7, §)-matrix decomposition A = A; + Aj;. Since
for B the rank of A; is at most 4m < £, consequently for a constant m we have
det(A) = O(74~18) by Lemma 4.3.

However, for B’ with high probability there is no such (7, d)-matrix de-
composition with a non-full rank A;. Therefore when m is constant we get
det(A) = O(1%) for B’ by Lemma 4.1.
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For m = poly(\) we heuristically assume the determinant of A is equal to
O(&! - +%) if A has no (v,d)-matrix decomposition with a non-full rank. Note
that our experiment supports this heuristic assumption.

Therefore for B we have det(A) = O(¢! - €5716) by Lemma 4.3, and for B’
the result directly follows the heuristic assumption. |
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