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1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany.
2 ICTEAM - Crypto Group, Université catholique de Louvain, Belgium.

Abstract. Evaluating the security level of a leaking implementation
against side-channel attacks is a challenging task. This is especially true
when countermeasures such as masking are implemented since in this
case: (i) the amount of measurements to perform a key recovery may be-
come prohibitive for certification laboratories, and (ii) applying optimal
(multivariate) attacks may be computationally intensive and technically
challenging. In this paper, we show that by taking advantage of the
tightness of masking security proofs, we can significantly simplify this
evaluation task in a very general manner. More precisely, we show that
the evaluation of a masked implementation can essentially be reduced
to the one of an unprotected implementation. In addition, we show that
despite optimal attacks against masking schemes are computationally in-
tensive for large number of shares, heuristic (soft analytical side-channel)
attacks can approach optimality very efficiently. As part of this second
contribution, we also improve over the recent multivariate (aka horizon-
tal) side-channel attacks proposed at CHES 2016 by Battistello et al.

1 Introduction

Say you design a new block cipher and want to argue about its resistance against
linear cryptanalysis [39]. One naive approach for this purpose would be to launch
many experimental attacks. Yet, such a naive approach rapidly turns out to be
unsuccessful if the goal is to argue about security levels beyond the computa-
tional power of the designer (e.g., 80-bit or 128-bit security for current stan-
dards). Hence, symmetric cryptographers have developed a variety of tools al-
lowing them to bound the security of a block cipher against linear cryptanalysis,
under sound and well-defined assumptions. As a typical example of these tools,
one can cite the wide-trail strategy that has been used in the design of the AES
Rijndael [16]. Its main idea is to minimize the bias (i.e., the informativeness) of
the best linear characteristics within the cipher, which can be estimated under
some independence assumptions thanks to the piling-up lemma.

Interestingly, the last years have shown a similar trend in the field of side-
channel security evaluations. That is, while certification practices are still heav-
ily dominated by “attack-based evaluations”, solutions have emerged in order
to both extend the guarantees and reduce the cost of these evaluations. More



precisely, current certification practices focus either on the automatic verifica-
tion of some minimum (non-quantitative) properties based on so-called leakage
detection tools (e.g., [28, 13, 37, 49, 21]), or on the exhibition of concrete attack
paths exploiting the detected leakages (typically taking advantages of standard
distinguishers such as [11, 9, 48, 26]). But they are anyway unable to claim secu-
rity levels beyond the measurement efforts of the evaluation laboratory. In order
to mitigate this limitation, one first intuitive line of papers proposed tools al-
lowing to easily predict the success rate of some specialized distinguishers, based
on parameters such as the noise level of the implementation [46, 25, 17, 34]. In
parallel, and following a more standard cryptographic approach trying to be
independent of the adversarial strategy, significant progresses have been made
in the mathematical treatment of physical security. In particular the masking
countermeasure, which is one of the most common methods to improve the se-
curity of leaking cryptographic implementations, has been analyzed in several
more or less formal models [10, 32, 51, 45, 18]. These works suggest that physical
security via masking has strong analogies with the case of linear cryptanalysis.
That is, while security against linear cryptanalysis is obtained by ensuring that
the XOR of many (local) linear approximations has low bias, masking ensures
that every sensitive variable within an implementation is split (e.g., XORed)
into several shares that the adversary has to recombine. So intuitively, masking
security proofs can be viewed as a noisy version of the piling-up lemma.

Following these advances, the integration of masking proofs as a part of
concrete security evaluation practices, undertaken in [19], appears as a necessary
next step. And this is especially true when envisioning future cryptographic
implementations with high (e.g., > 80-bit) security levels, for which an attack-
based certification process is unlikely to bring any meaningful conclusion. So
the main objective of this paper is to follow such an approach and to show how
masking security proofs can be used to gradually simplify side-channel security
evaluations, at the cost of some conservative assumptions, but also some more
critical ones (e.g., related to the independence of the shares’ leakages).

More precisely, we start from the observation that a so far under-discussed
issue in physical security evaluations is the case of attacks taking advantage
of multiple leaking intermediate variables (e.g., see [38, 52, 31] for recent refer-
ences).1 As put forward in a recent CHES 2016 paper, this issue gains relevance in
the context of masked implementations, in view of the (quadratic) cost overheads
those implementations generally imply [7]. In this respect, our first contribution
is to extend the analysis of masking security proofs from [19] and to show that
these proofs remain essentially tight also for multi-target attacks.

Next, and since we aim to discuss the cost of side-channel security evalua-
tions, we propose a simple metric for the evaluation complexity, and use it to
extensively discuss the tradeoff between the time needed for a security evaluation
and the risks related to the (e.g., independence) assumptions it exploits. As our

1 Which is an orthogonal concern to the more studied one of exploiting multiple leakage
samples per intermediate variable (e.g., see [1] and follow up works).



investigations suggest that the time complexity of optimal side-channel attacks
can become a bottleneck when the security levels of masked implementations
increase, we additionally study efficient (heuristic) multi-target attacks against
masked implementations. Our best attack significantly improves the multivari-
ate (aka horizontal) iterative attack proposed at CHES 2016 by Battistello et
al., that we re-frame as a Soft Analytical Side-Channel Attack [52, 31]. Note
that our results also provide a complementary view to those of Battistello et al.,
since they typically fix the masking noise parameter and look for the number of
masking shares such that their attack is feasible, while we rather fix the number
of shares and estimate the resulting security level in function of the noise.

Eventually, our results show that the security evaluation of a leaking imple-
mentation against worst-case attacks taking advantage of all the target interme-
diate variables that can be enumerated by an adversary (so still limited to the
first/last cipher rounds) boils down to the information theoretic analysis of a cou-
ple of its samples, for which good tools exist to guarantee a sound treatment [23,
22]. By combining information theoretic evaluations with metric-based bounds
for the complexity of key enumeration [43], we can even obtain security graphs
for optimal attacks, plotting the success rate in function of the measurement and
time complexity, within seconds of computation on a desktop computer.

2 Cautionary remarks

Admittedly, the more efficient evaluations we discuss next are based on a number
of simplifying assumptions. In this respect, we first recall that secure masking
depends on two conditions: sufficient noise and independent leakages. This paper
is about the first condition only. That is, we assume that the independence
condition is fulfilled (to a sufficient extent), and study how exploiting all the
leakage samples in an implementation allows reducing its noise.

Yet, we note that tools to test/ensure the independence condition are already
widely discussed in the literature. Concretely, there are two main issues that can
break this assumption. First, imperfect refreshing schemes can cause d′-tuples
of leakage samples to be key-dependent with d′ lower than the number of shares
used in the masking scheme d. A typical example of such an issue was put forward
in [15]. The natural solution to avoid it is to use “composable” (e.g., SNI [4])
gadgets and to test the security of the masking description code (i.e., all the
instructions defining a masked algorithm) thanks to formal methods [3].

Second, and more critically, different case studies have shown that actual
leakage functions can break the independence assumption and recombine (a part
of) the shares, e.g., because of transitions in software implementations [14] or
glitches in hardware implementations [36]. Nevertheless, in practice such (par-
tial) recombinations typically reduce the (statistical) “security order” of the
implementations, captured by the lowest statistical moment of the leakage dis-
tribution that is key-dependent (minus one) [5], to some value d′′ below the
optimal (d − 1), while leaving security margins (i.e., d′′ > 1). As a result, by



increasing the number of shares d, one can generally mitigate these physical de-
faults to a good extent [41, 2]. Furthermore, simple leakage detection tools such
as [28, 13, 37, 49, 21] can be used to test what is the security order of an im-
plementation, and these non-independence issues can be reflected in information
theoretic evaluations (see [19], Section 4.2). So overall, ensuring the independence
of the shares’ leakages in a masked implementation is an orthogonal concern to
ours. And while non-independence issues may indeed increase the information
leakage of the tuples of samples exploited in an high-order side-channel attack,
it does not affect the importance/relevance of taking all the exploitable tuples
into account in a (worst-case) security evaluation, which is our main concern.

Besides, we also insist that this work is prospective in the sense that our
typical targets are masked implementations with (very) large number of shares,
aimed at (very) high security levels (e.g., no key recovery with less than 240

measurements). In this respect, we refer to two recently accepted papers (to
Eurocrypt 2017) as an excellent motivation for our purposes [29, 5]. In partic-
ular, [29] describes AES implementations masked with 5 to 10 shares, that are
typical targets for which attack-based evaluations are unlikely to bring meaning-
ful conclusions. Our following discussions describe theoretical tools allowing one
to state sound security claims for such implementations. The important message
they carry is that even when the independent shares’ leakage assumption is guar-
anteed, one also needs to pay attention to noise. Simple univariate tests are not
enough for this purpose. Performing highly multivariate attacks is (very) expen-
sive. We introduce an intermediate path that we believe will become increasingly
relevant in the future. Quite naturally, this intermediate path also comes with
limitations. Namely, since we focus on (very) high security levels, the bounds we
provide are also less accurate, and reported as log-scaled plots for convenience
(i.e., we typically ignore the impact of small constants as a first step).

3 Background

3.1 S-box implementations

Our investigations will consider both the unprotected and the masked imple-
mentation of an n-bit S-box S taking place in the first round of a block cipher.

For the unprotected case, we denote the input plaintext with x and the secret
key with k. We define ya = x⊕k as the result of a key addition between x and k,
and yb = S(ya) as the S-box output. The vector of the target intermediate vari-
ables is further denoted with y = [ya, yb] and the leakage vector corresponding to
these variables with L = [La, Lb] + N , where N is a bivariate random variable
representing an additive Gaussian noise. We make the usual assumption that
the noise covariance matrix is diagonal and each sample Li has a similar noise
variance σ2

n.2 Eventually, the deterministic part of the leakage samples are the
output of a leakage function L such that Li = Li(yi), ∀i ∈ {a, b}. For simplicity,

2 The impact of this noise assumption is specifically discussed in Section 5.3.



Fig. 1. Multiplication chain for the inversion in GF(28) from [47].

our experiments will consider Li to be the Hamming weight function ∀i’s. As
discussed in Section 3.2 this choice does not affect our conclusions.

For the masked case, we will focus on the secure inversion in GF(28) proposed
in [47], which is the core of the AES S-box and illustrated in Figure 1. More
precisely, we use a slightly modified version of the algorithms of [47], with the
secure refreshing from [32, 4], in order to avoid the attack put forward in [15].3

Next, we define the notations y1 = ya = x ⊕ k, y2 = (y1)2, y3 = y1 ⊗ y2 =
(y1)3, y4 = (y3)4 = (y1)12, y5 = y3 ⊗ y4 = (y1)15, y6 = (y5)16 = (y1)240,
y7 = y4 ⊗ y6 = (y1)252, y8 = y2 ⊗ y7 = (y1)254, with ⊗ the field multiplication.
This leads to a vector of target intermediate variables y = [y1, y2, . . . , y8]. For an
implementation masked with d shares, we additionally have a vector of shares
ȳ = [ȳ1, ȳ2, . . . , ȳ8] such that ȳi = [yi(1), yi(2), . . . , yi(d)] ∀i ∈ {1, 2, . . . , 8}. This
leads to a leakage vector L̄ = [L̄1, L̄2, . . . , L̄8]+N , where each leakage d-tuple is
denoted as L̄i = [Li(1), Li(2), . . . , Li(d)] and made of d samples, the multivariate
noise variable is defined as in the unprotected case (but with more dimensions)
and Li(j) = Li,j(yi(j)) ∀i ∈ {1, 2, . . . , 8}, j ∈ {1, 2, . . . , d}. Such a masking
scheme has security order (d − 1), meaning that any (d − 1)-tuple of leakage
samples is independent of k, given that the leakage of each share is independent.
We call this assumption the Independent Shares’ Leakage (ISL) assumption.

Concretely, the multiplication chain of Figure 1 is made of squarings, that
are GF(2)-linear, and multiplications. In order to evaluate them securely, we use
Algorithms 1 and 2 given in Appendix A. For the squarings, the operations are
applied to each share independently and therefore can be tabulized. For the mul-
tiplications, the different shares need to interact and the algorithm has quadratic
overheads that correspond to the computation of all the partial products and
their refreshing. For example, for x = x1 ⊕ · · · ⊕ xd and y = y1 ⊕ · · · ⊕ yd,
producing the shares of x⊗ y requires to compute (for d = 3): x1 ⊗ y1 x1 ⊗ y2 x1 ⊗ y3

x2 ⊗ y1 x2 ⊗ y2 x2 ⊗ y3

x3 ⊗ y1 x3 ⊗ y2 x3 ⊗ y3

⊕
 0 r1,2 r1,3

−r1,2 0 r2,3

−r1,3 − r2,3 0

 · (1)

This directly implies that whenever such a multiplication is targeted by the ad-
versary, we need to add d leakage d-tuples to the leakage vector L̄ he is provided
with, that we next denote as [L̄1

i , L̄
2
i , . . . , L̄

d
i ], with i ∈ {3, 5, 7, 8}.

3 Note that more efficient solutions for this secure inversion exist, such as [30]. We
kept the chain of Rivain and Prouff because for its simpler description.



Eventually, the GF(28) field multiplication is usually implemented using
log/alog tables, as described in Appendix A, Algorithm 3. In case the adversary
additionally targets these operations, another set of d leakage d-tuples must be
added to L̄, next denoted as [L̄d+1

i , L̄d+2
i , . . . , L̄2d

i ], with i ∈ {3, 5, 7, 8}.

In the following, we will consider different (more or less powerful) attacks cases:

C1. The adversary targets only a single d-tuple (e.g.,, the S-box output one).
C2. The adversary exploits the eight d-tuples of the multiplication chain.
C3. The adversary additionally exploits the leakage of the four secure multipli-

cations (i.e., Algorithm 2), leading to a total of 8 d-tuples and 4 d2-tuples.
C4. The adversary additionally exploits the leakage of the field multiplications

(i.e., Algorithm 3), leading to a total of 8 d-tuples and 8 d2-tuples.

Furthermore, since a number of these d-tuples contain fresh randomness (e.g.,
the ones corresponding to multiplications algorithms) while other ones are de-
terministically related to each other, we will denote with δ = λ+ ` the number
of d-tuples exploited, such that we have λ fresh ones and ` deterministic ones.4

Note that our notations describe serial implementations where the adversary
can observe the noisy leakage of each share in his d-tuples separately. This is
a relevant choice since serial implementations are typically very expensive to
analyze due to their large number of dimensions / leakage samples to consider.
Yet, as recently discussed in [5], side-channel security for a serial implementation
generally implies side-channel security for its parallel counterpart (as long as the
ISL assumption remains fulfilled). So our conclusions apply in this case too.

3.2 Mutual information metric

In order to evaluate the worst-case security level of our different (unprotected and
masked) simulated implementations, we will use the mutual information metric
first put forward in [50]. The motivation of this choice is twofold. First, it was
shown recently that this metric is proportional to the measurement complexity of
the corresponding (worst-case) Bayesian adversary [19]. Second, it is significantly
faster to estimate than the success rate, which is specially important/relevant in
our context where we aim to minimize the evaluator’s workload. We illustrate
this fact with a simple example. Say an evaluator has 1000,000 measurements
to estimate the security of an implementation with a worst-case Bayesian attack
that is roughly successful after the collection of 1000 traces. In this case, it means
that he can repeat 1000 independent experiments to estimate the success rate
with 1000 traces (with good confidence). But say now that the implementation
to evaluate can only be broken after (roughly) 1000,000 traces. Then it means
that from his set of traces, the evaluator can only estimate the success rate
based on a single experiment (which will not lead to any statistical confidence).
By contrast, as discussed in [23], cross-validation allows him to exploit most of

4 The black squares in Figure 1 correspond to additional refreshings needed for the
secure multiplication of intermediate variables that are dependent.



his 1000,000 evaluation traces to estimate the mutual information metric, which
will then be correlated with the success rate (for any number of traces).5

Concretely, computing the mutual information for an unprotected implemen-
tation simply requires to estimate the following sum of log probabilities:

MI(K;X,L) = H[K] +
∑
k∈K

Pr[k] ·
∑
x∈X

Pr[x] ·
∑
l∈Lδ

Pr[l|k, x] · log2 Pr[k|x, l]︸ ︷︷ ︸
δ−dimension integral

, (2)

where the conditional probability Pr[k|x, l] is computed from the Probability

Density Function (PDF) f[l|x, k] thanks to Bayes’ theorem as: f[l|x,k]∑
k∗ f[l|x,k∗] · This

corresponds to performing δ-dimensional integrals over the leakage samples, for
each combination of the key k and plaintext x, or each bitwise XOR between k
and x if taking advantage of the Equivalence under Independent Subkeys (EIS)
assumption formalized in [48]. There are numerous publications where this metric
has been computed, via numerical integrals or sampling (e.g., [19] provides an
open source code for it), so we do not detail its derivation further.

When moving to masked implementations, the computation of the metric
remains essentially similar. The only difference is that we need to sum over
the randomness vector ȳ (which may become computationally intensive as the
number of shares increases, as discussed in the next sections):

MI(K;X, L̄) = H[K] +
∑
k∈K

Pr[k] ·
∑
x∈X

Pr[x] ·∑
ȳ∈Y(d−1)·λ

Pr[ȳ] ·
∑

l̄∈Ld·δ
Pr[l|k, x, ȳ] · log2 Pr[k|x, l̄]

︸ ︷︷ ︸
δ−dimension integral

. (3)

The computation of the conditional probability Pr[k|x, l] follows similar guide-
lines as in the unprotected case, where the PDF of masked implementations
becomes a mixture that can be written as f[l|x, k] =

∑
ȳ f[l|x, k, ȳ] [33, 51].

Remark. In our experiments where the (simulated) noise is Gaussian, we will use
a Gaussian PDF in the unprotected case, and a Gaussian mixture PDF in the
masked case. Since we know the PDF exactly in these cases, we can compute
the MI metric exactly and perform worst-case security evaluations. However,
we insist that our discussions relate to the complexity of side-channel security
evaluations, not their optimality. More precisely, our goal is to show that we
can significantly simplify the evaluation of a highly protected implementation.

5 Note that the mutual information metric is not the only one allowing to simplify the
estimation of a security level for a leaking cryptographic implementation. However,
it is the most generic one since it does not require assumptions on the leakage
distribution, nor on the choice of concrete distinguisher chosen by the adversary.
More specialized (and sometimes more efficient) solutions include [46, 25, 17, 34].



These efficiency gains are independent of the leakage function and model used
by a concrete adversary. The main difference, if a concrete adversarial model
was used in place of the perfect one, is that the log probabilities in Equations 2
and 3 would be evaluated based on it. This implies that less information would
be extracted in case of model estimation or assumption errors, which is again an
orthogonal concern to ours. Furthermore, leakage certification could then be used
to test whether estimation and assumption errors are small enough [23, 22].

4 Unprotected implementations

Evaluation complexity. Since our goal is to make side-channel security evalu-
ations more efficient, a first question is to specify how we will evaluate complex-
ity. Eventually we are interested in the measurement complexity of the attacks,
which masking is expected to increase exponentially (in the number of shares).
But of course, we also want to be able to evaluate the security of implementa-
tions of which the security is beyond what we can actually measure as evaluators.
As just mentioned, computing the mutual information metric is an interesting
tool for this purpose. But it means that we still have to compute Equations 2
and 3, which are essentially made of a sum of δ-dimension integrals. Concretely,
the complexity of computing the integrals is highly dependent on the choice of
PDF estimation tool chosen by the adversary/evaluator. So this suggests the
number of integrals to perform as a natural candidate for the complexity of a
side-channel evaluation, which we will denote with E$ in the following.

In the case of an unprotected S-box implementation in GF(2m), this leads
to E$ = 22m in general (since we sum over 2m key bytes and 2m plaintext
bytes). This complexity is reduced to E$ = 2m if we take advantage of the EIS
assumption. Since the latter assumption is generally correct in the “standard
DPA” attack context we consider in this paper [35], we will always consider the
complexity of evaluations taking advantage of EIS in the following (ignoring this
simplification implies an additional 2m factor in the evaluation complexities).

Practical evaluation results. As suggested by the previous formula, evaluat-
ing the security of an unprotected (8-bit) S-box is cheap. We now report on some
exemplary results which we use to introduce an important assumption regarding
our following simplifications. We consider different attack cases:

– Univariate, no repetition: the adversary observes the S-box output leakage.
– Univariate, with repetitions: the adversary observes the S-box output leakage

several times with independent noise samples (e.g., 2 times, 4 times).
– Bivariate: the adversary observes the S-box input and output leakage.

Additionally, we consider a “bivariate attack bound” which is just the sum of
two “univariate, no repetition” curves. In order to allow an easier interpretation
of the results, we use the Signal-to-Noise Ratio (SNR) as X axis, defined as the
variance of the noise-free traces (i.e., m/4 for a Hamming weight model) divided
by the variance of the noise. It better reflects the fact that the impact of the noise
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Fig. 2. Unprotected AES S-box evaluation results.

depends on the scaling of the signal. The results of these information evaluations
are given in Figure 2 from which two main observations can be extracted.

First, we observe the difference between the impact of repeated observations,
which just reduce the noise and therefore translate the information curves on the
left, and bivariate attacks which (may) add information and shift these curves
vertically. Interestingly, the latter observation is dependent on the S-boxes [44]:
an identity S-box would lead to a repetition without information gain; a truly
random one would lead to independent information for the two observations.

Second, we observe that the bivariate attack bound is tight. This suggests
that the AES S-box leads to quite independent information for the leakage sam-
ples La and Lb of our case study, which is consistent with the conclusions in [44].
Formally, we will say that this bound is tight if the Independent Operations’
Leakages (IOL) assumption holds, which considers that the inputs/outputs of
an operation (i.e., the AES S-box in our case study) are independent.

Note that as for the ISL assumption, the latter does not mean that the
noise of the leakage samples has to be independent (which will be discussed in
Section 5.2). Note also that the impact of a deviation from this IOL assumption
is very different than with the ISL assumption. Namely, if the share’s leakages
are not independent, then the formal security guarantees of masking vanish. By
contrast, if the operation leakages are not independent, this will lead to less
information and therefore less effective attacks. So the IOL assumption is not
critical for the conclusion of a security evaluation: overstating IOL may only lead
to less tight security bounds. Note finally that in our AES case study, assuming
IOL (also for the multiplicative chain of Figure 1) led to tight bounds.



5 Masked implementations

We now move to the context of masked implementations which is the main
contribution of this paper. We start by arguing that an exhaustive security eval-
uation is rapidly unreachable as the number of shares in masking increases. We
then gradually simplify the evaluations, first without critical assumptions on the
leakage distributions, second by exploiting the ISL assumption.

5.1 Exhaustive approach

By visual inspection of Equation 3, we directly find that the evaluation complex-
ity E$ = 2dmλ+ ` ·2dm, where we recall that λ is the number of fresh dimensions
and ` the number of deterministic ones. For the case C1 in Section 3.1 with
d = 2 shares, where the adversary targets only one 2-tuple of leakage samples
corresponding to the masked S-box output y8 in Figure 1, this means a reachable
22m integrals. But as soon as we move to a (slightly) more powerful adversary,
the complexity explodes. For example, the adversary of case C2 (who is still not
optimal) with m = 8, d = 2, λ = 4 (due to the four multiplications in Figure 1)
and ` = 4 (due to the key addition and squarings), already leads to E$ > 264

integrals which is by far too expensive for evaluation laboratories.6

5.2 Reducing dimensionality with the IOL assumption

The first factor in cause in the complexity explosion of the exhaustive approach
is the number of fresh dimensions. In this respect, a natural simplification is
to exploit the IOL assumption. Indeed, by considering the operations in the
multiplication chain of Figure 1 as independent, the evaluation complexity of
the previous (C2) adversary can be reduced to E$ = δ · (2dm) = 8 · 216 integrals.
This is an interesting simplification since it in fact directly corresponds to the
strategy of an adversary willing to perform a multivariate attack against such
a leaking masked implementation. Namely, he will identify the eight d-tuples
of interest and combine their results via a maximum likelihood approach. We
report the result of an information theoretic evaluation of this C2 adversary
in Figure 3, where we also plot the IOL bound provided by multiplying the
information theoretic curve of the C1 adversary by eight. As for the case of
unprotected implementations, the bound is tight, confirming its relevance.

Nevertheless, this simplification also implies two important technical ques-
tions. First, and since we assume the leakage of independent operations to be
independent, what would be the impact of a dependent noise? Second, how to
generalize this simplification to the adversaries C3 and C4 which imply the need
of considering d2-tuples jointly (rather than d-tuples jointly in the C2 case)?

6 Still ignoring the additional refreshings mentioned in Footnote 1.
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Fig. 3. Masked AES S-box evaluation results: cases C1 & C2 (d = 2).

5.3 The dependent noise issue

To the best of our knowledge, this noise dependency issue has not been specifi-
cally discussed in the literature on masking, although the existence of correlated
noise has been put forward in other contexts (e.g., see the discussion in [12],
Chapter 6). We therefore launched an information theoretic evaluation of our
masked S-box (case C1) with d = 2 and the covariance matrix such that the
correlation between the noise samples of the two shares equals 0, 0.25, 0.5 and
0.75. The results of these evaluations are in Figure 4. As expected, a correlated
noise does not impact the security order of the countermeasure, defined as the
lowest key-dependent moment in the leakage distribution Pr[k|x, l̄] minus one,
and reflected by the slope of the information theoretic curves in the high-noise
region (i.e., where the curves are linear) minus one. By contrast, correlated noise
implies a shift of the curves by a factor that can be significant (e.g., ×2 for cor-
relation 0.5 and ×8 for correlation 0.75). Such large correlations typically vanish
after a couple of clock cycles. Yet, our results highlight that estimating the non-
diagonal elements of the noise covariance matrices in masked implementations
is an important sanity check that should be part of a certification process.

5.4 Secure multiplication leakages

When also considering the leakages of the d2 cross products involved in a secure
multiplications (such as the ones of Equation 1 in Section 3.1 for d = 3), and ad-
ditional problem is that computing an integral of d2 dimensions rapidly becomes
computationally intensive. This is particularly true if one considers an optimal
Gaussian mixture model for the PDF since in this case the computation of the



−3 −2 −1 0 1 2
−7

−6

−5

−4

−3

−2

−1

0

log
10

(SNR)

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

 

 

correlation = 0
correlation = 0.25
correlation = 0.5
correlation = 0.75

Fig. 4. Masked AES S-box evaluation results: case C1 with correlated noise (d = 2).

integral requires summing over the randomness vector. In fact, already for small
field sizes and number of shares, the problem is hard. For example, for d = 2 and
m = 8, the multiplication between two dependent values such as required in the
multiplication chain of Figure 1 requires performing 224 integrals (corresponding
to 8 bits of secret and twice 8 bits of randomness) of a 9-dimensional PDF.7

In order to deal with this limitation, a solution is to look at masking proofs.
In particular, Theorem 3 in [45] and Theorem 2 in [18] both provide bounds on
the amount of information leaked by the multiplication of two secrets shared
with Boolean masking, roughly corresponding to (1.72d + 2.72) and (28d + 16)
times the information leakage of a single d-tuple. In this respect, there are again
two important questions. First, are these bounds (and in particular the first
one) tight? Second, given that the evaluation with an optimal attack becomes
computationally intensive for large d values as just argued, does it mean that
these bounds are unreachable by adversaries with realistic computing power?

We answer these questions in two steps. First, we investigate a simplified con-
text with small d andm values such that the optimal attack is applicable. Second,
we discuss heuristic attacks which approach the optimal attack efficiently.

Simplified case study. Figure 5 shows the information theoretic evaluation of
a secure multiplication with d = 3 and m = 2.8 We can clearly observe the larger
leakage of optimal attack exploiting the δ = 9 dimensions of the multiplication

7 And as aforementioned, the latter integral itself requires to sum over 224 values if
an optimal Gaussian mixture model is used by the adversary/evaluator.

8 Due to the large number of dimensions, the integrals were computed via sampling in
this case, which also explains the lower noise variances that we could reach. However,



−1.5 −1 −0.5 0 0.5 1 1.5
−5

−4

−3

−2

−1

0

1

log
10

(SNR)

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

 

 

δ=3, C1 adv.
δ=9, optimal attack
δ=9, PR bound
multi−tuple attack, t=1
multi−tuple attack, t=18

Fig. 5. Secure multiplication evaluation results (d = 3, m = 2).

jointly, compared to the information provided by the encoding (i.e., the C1
adversary). As for the bounds, we first note that a simple (intuitive) bound is
to assume that given two dependent values that are multiplied together, one
leaks d horizontal d-tuples corresponding to one value (assuming the other to be
known) and another d vertical d-tuples corresponding to the other value (under
the same assumption). This leads to an estimation of the multiplication matrix
leakage as 2d times the one of a single d-tuple, which is close to the 1.72d factor
given by Prouff and Rivain in [45]. Hence, we added the latter bound on the
figure (under the name PR bound). Concretely, it simply consists in multiplying
the information of the encoding by 1.72d and turns out to be remarkably tight
as soon as a sufficient amount of noise affects the measurements.9

Heuristic attacks. As the optimal attack in the previous paragraph becomes
computationally intensive for large d and m values, we now consider alternatives
that allow an adversary to exploit the information leakage of the multiplication
matrix without summing over all the randomness and considering all the dimen-
sions jointly. A first candidate is the recursive attack proposed by Battistello et
al. at CHES 2016 [7]. In the following, we revisit and improve this attack by
framing it as a Soft Analytical Side-Channel Attack (SASCA) [52, 31].

In a SASCA, the adversary essentially describes all the leaking operations
in his target implementation as a “factor graph” and then decodes the leakage
information by exploiting the Belief Propagation (BP) algorithm. The main in-

we note that these lower noise levels were sufficient to reach the asymptotic (i.e.,
linear) regions of the information theoretic curves supporting our conclusions.

9 Note that a parallel implementation would lead to a slightly better bound of ≈ d
since reducing the amount of observable leakage samples by a factor d [5].



Fig. 6. Factor graph of a secure multiplication (d = 3).

terest of this approach is that it allows combining the information of multiple
leaking instructions (e.g., the cross products in a secure multiplication) locally,
without the need to consider them jointly. Its time complexity depends on the
diameter of the factor graph (which is constant when all target intermediate
variables are directly connected as in the secure multiplication), the cost of the
probabilities’ updates (which is constant and depends on the bit size of the oper-
ations considered) and the number of these updates (which depends on the size
of the factor graph and grows quadratically in d). The factor graph of a secure
multiplication with d = 3 shares is pictured in Figure 6. Its only specificity is
that for the BP algorithm to succeed, we need to initialize the leakage on the
shares x0, x1, x2 and y0, y1, y2, which means that a SASCA must consider the
target operations more globally. In our experiments, we just add the leakage of
these shares which can be obtained, e.g., when loading them into a register.

An alternative (and conceptually simple) approach allowing to get rid of the
need of initialization is to always target d-tuples of informative leakage samples
jointly. Such a “multi-tuple attack” can be viewed as an intermediate between the



optimal attack targeting d2 samples jointly and the previous SASCA targeting
samples one by one, as illustrated in Figure 6. More precisely, the optimal attack
outlined in Section 3.2 exploits a leakage PDF Pr[ld2 |k, x, ȳd2 ], where the d2

subscripts of the vectors ld2 and ȳd2 now highlight their number of dimensions.
In a multi-tuple attack, we simply select a number of d-tuples of which the
combination depends on the target secret and approximate:

Pr
[
ld2 |k, x, ȳd2

]
≈ Pr

[
l
1

d|k, x, ȳ1
d

]
· Pr

[
l
2

d|k, x, ȳ2
d

]
· . . . · Pr

[
l
t

d|k, x, ȳtd
]
,

where t is the number of tuples exploited.10 As illustrated in Figure 5, an attack
using a single d-tuple (e.g., here a matrix line) only leads to little exploitable
information, which is consistent with the observations in [7]. By contrast, in-
creasing t rapidly allows reaching a close-to-optimal attack.

Note that the multi-tuples attack still does not scale well since the total
number of informative d-tuples in the matrix multiplications grows following a
binomial rule. So the most appealing attacks to target the secure multiplica-
tion algorithm are the CHES 2016 iterative and the SASCA. Unfortunately, in
these cases we face the problem that the heuristic nature of the decoding algo-
rithms (which both propagate information locally without formal guarantees of
convergence) does not formally lead them to output probabilities. Typically, by
iterating the CHES 2016 and BP algorithms more, it is possible to artificially
crush the probabilities of the variable nodes in the factor graph. So formally,
we cannot evaluate the mutual information metric in this case. As a result, and
for this part of our experiments only, we directly evaluated the success rate of
an optimal attack, a SASCA and the CHES 2016 iterative attack (using exactly
the same leaking operations as the SASCA) for various noise levels. Figure 7
contains the result of one such experiments (for σ2

n = 10) where we observe that
(i) the SASCA leads to attack efficiencies that approach the optimal one, and
(ii) the SASCA outperforms the CHES 2016 iterative attack. The latter obser-
vation is easily explained since the CHES 2016 iterative attack can in fact be
viewed as a modified version of SASCA. Namely, the main difference between
the SASCA and the CHES 2016 iterative attack is the fact we take advantage
of the relation between the two secrets that are multiplied (i.e., the g function
in Figure 6), which allows the BP algorithm to extract more information (while
the factor graph of the CHES 2016 iterative attack ignores this connection).11

Remark. As previously mentioned, extending these experiments to larger d and
m values is not possible because the optimal attack becomes too expensive (com-
putationally). By contrast, we could check that the success rate curves of the
SASCA consistently outperform the ones of the CHES 2016 iterative attack by

10 Note that whenever an imperfect model is used by the adversary/evaluator, the
estimation of Equations 2 and 3 does not strictly converge towards the mutual in-
formation, but only to the so-called perceived information discussed in [23].

11 Technically, the rules used for updating the probabilities in the CHES 2016 attack
are also presented slightly differently than in SASCA, where the BP algorithm is
explicitly invoked with variable to factors and factors to variable message passing.
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an approximate factor > 2 in measurement complexity, for larger m values. For
example, we report the result of such a comparison for the relevant m = 8-bit
case corresponding to the AES S-box in Appendix B, Figure 12.

Overall, we conclude from this section that the IOL assumption and the PR
bound for secure multiplications give rise to quite tight estimations of the infor-
mation leakage of a masked implementation (at least for the leakage functions
and noise levels considered). Furthermore, this leakage can generally be exploited
quite efficiently using heuristics such as the BP algorithm. We conjecture that
this observation generally remains correct for most leakage functions, especially
when the number of shares in the masking schemes increases.

5.5 Reducing cardinality with the ISL assumption

Eventually, the previous experiments suggest that the evaluation of a masked
implementation against multivariate attacks can boil down to the evaluation of
the information leakage of a d-tuple. Yet, this still has evaluation cost propor-
tional to 2dm. Fortunately, at this stage we can use the ISL assumption and the
bound discussed at Eurocrypt 2015 showing that this information can be (very
efficiently) computed based on the information of a single share (essentially by
raising this information to the security order), which has (now minimal) evalua-
tion cost E$ = δ · 2m (or even 2m if one assumes that the leakage function of the
target implementation is similar for all operations, or if we bound the overall
leakage based on the most informative d-tuple found) [19]. For completeness,
we illustrate such a result in Figure 8, where we compare the bound (denoted
as DFS) and the true information leakage for d = 2, and only plot the bound
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Fig. 8. Masked AES S-box evaluation results: case C1 with ISL assumption.

for larger d’s. As already mentioned, the big conceptual change at this step of
our simplifications is that the ISL assumption is no longer a conservative one.
If it turns out to be incorrect, then the security order of higher-order masking
schemes may be less than predicted by the number of shares. Yet, as discussed
in Section 2, this does not decrease the relevance of our method and bounds: it
simply implies that applying them first requires to assess the security order.

Note also that as carefully discussed in [19], the DFS bound is only conjec-
tured and ignores a square root loss in the reduction from the mutual information
to the statistical distance used in the proofs. Yet, this square root loss vanishes
when the noise increases (as per the upper bound in [45]), which was also con-
firmed experimentally in previous works such as [51]. In this respect, we recall
that masking proofs are anyway only relevant for large enough noises (or low
enough SNRs), which corresponds to the linear (left) parts of the information
theoretic curves of Figure 8 (i.e., where the DFS bound is tight).12

6 Fast and sound leakage assessment

6.1 Putting things together

By combining the IOL assumption, the PR bound for evaluating the leakage of a
secure multiplication, the ISL assumption and the DFS bound for evaluating the
leakage of an encoding with large number of shares, all evaluated and discussed in

12 Technically, this is reflected by a mutual information that can go beyond the maxi-
mum m when the noise is too low, which corresponds to the fact that the bound then
raises the information of a single share that is larger than one to a certain power.
For convenience, the following plots will limit the mutual information to m.
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Fig. 9. Masked AES S-box evaluation results: cases C1 & C4 (with all assumptions).

the previous section, we can now easily obtain the results of a security evaluation
for the four adversaries outlined in Section 3.1. For example, Figure 9 plots
them for d = 3, 5 and 7 shares, for various noise levels. For readability, we only
provide the results of the extreme attacks (C1 and C4). These curves are simply
obtained by performing powers and sums of the information theoretic curve for
the simplest possible case d = 1. In other words, we can evaluate the leakage
of a masked implementation against optimal (highly multivariate) side-channel
attacks at the cost of the evaluation of an unprotected implementation.

Note that the curves clearly highlight the need of a higher noise level when
implementing higher-order masking schemes, in order to mitigate the noise re-
duction that is caused by the possibility to perform highly multivariate attacks
(reflected by a shift of the curves towards the left of the figure). And quite nat-
urally, they directly allow one to quantify the increasing impact of such attacks
when the security order increases. For example, the factor between the measure-
ment complexity of the adversary C1 (exploiting one tuple of leakage samples)
and the optimal C4 ranges from 50 (for d = 3) to 100 (for d = 7).

In this respect, there is one final remark. In concrete implementations, it
frequently happens that some of the target intermediate values appear several
times (e.g., because they need to be reloaded for performing the cross products
in a secure multiplication). In this case, the adversary can additionally average
the noise for these target intermediate values, as proposed in [7]. As mentioned
in Section 4, such an effect is also easy to integrate into our evaluations since
it only corresponds to a shift of the information theoretic curves. However, it
is worth emphasizing that this averaging process is applied to the shares (i.e.,
before their combination provides noise amplification), which implies that it is
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Fig. 10. Masked AES S-box evaluation results: cases C1 & C4 (with all assumptions
& d-times averaging applied to the shares of the secure multiplications).

extremely damaging for the security of masking. Concretely, this means that
averaging the leakage samples of a masked implementation with d shares by a
factor d (because these shares are loaded d times to perform cross products) may
lead to a reduction of the security level by a factor dd. For illustration, Figure 10
shows the result of such a security evaluation in a context similar to Figure 9,
where the shares of each the masked multiplication are averaged d times, this
times causing reductions of the security level by several orders of magnitude.

6.2 Exploiting computational power

Eventually, and given some mutual information value extracted from the pre-
vious plots, we mention that one can easily insert this value in a metric-based
bound in order to build a security graph, such as suggested in [43, 20] and illus-
trated in Figure 11. While such metric-based bounds only provide a conservative
estimation of the impact of key enumeration in a side-channel attack, they are
again obtained withing seconds of computation on a desktop computer. We detail
how to build such a graph and the heuristics we rely on in Appendix C.

6.3 Conclusions

1. On too simple evaluation methodologies. Looking at the power of multi-
variate (aka horizontal) side-channel attacks taking advantage of all the leaking
operations in the multiplicative chain of a masked AES S-box, an important
conclusion is that simple (univariate) evaluation strategies become increasingly
irrelevant as the number of shares in a masked implementation increases.



Fig. 11. Exemplary metric-based bound for a security graph (with MI = 10−7).

2. On the need of formal methods and security order detection. As
made clear in Section 2, the tools we provide in this paper only solve the “noise”
part of the security evaluation problem for masked implementations. Hence,
their combination with formal methods and security order detection techniques
is an interesting scope for further research. Typically, one could extend the tools
put forward in [3] in order to detect all the leaking operations in an assembly
code (possibly with repetitions), then use leakage detection methods such as [28,
13, 37, 49, 21] to assess the security order of actual measurements, and finally
evaluate their informativeness as we suggest in this paper, in order to obtain a
fast assessment of the worst-case security level of an implementation.

3. On how to reach high security levels. Eventually, our results show that
ensuring high security levels against optimal adversaries taking advantage of all
the information provided by a masked implementation is very challenging. It typ-
ically requires many shares, high noise levels and independence. In this respect,
the application of our theoretical progresses to the aforementioned implemen-
tations [29, 5], to alternative multiplication chains [15, 30], to the optimized al-
gorithms in [8], or even to new primitives allowing more efficient masking (e.g.,
the proposal in [24] of which the complexity scales linearly in the number of
shares and is well suited to guarantee the ISL assumption), and the combination
of these ideas with parallel implementations (which inherently improve security
against multivariate attacks), is another interesting scope for further research.
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Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of
Lecture Notes in Computer Science, pages 240–262. Springer, 2016.

22. François Durvaux, François-Xavier Standaert, and Santos Merino Del Pozo. To-
wards easy leakage certification. In Gierlichs and Poschmann [27], pages 40–60.

23. François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. How
to certify the leakage of a chip? In Nguyen and Oswald [40], pages 459–476.

24. Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Journault,
Daniel Masny, and François-Xavier Standaert. Towards sound fresh re-keying with



hard (physical) learning problems. In Matthew Robshaw and Jonathan Katz, edi-
tors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II, volume 9815 of Lecture Notes in Computer Science, pages 272–301. Springer,
2016.

25. Yunsi Fei, Qiasi Luo, and A. Adam Ding. A statistical model for DPA with novel al-
gorithmic confusion analysis. In Emmanuel Prouff and Patrick Schaumont, editors,
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428 of
Lecture Notes in Computer Science, pages 233–250. Springer, 2012.

26. Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual information
analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2008, 10th International Workshop, Wash-
ington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of Lecture Notes
in Computer Science, pages 426–442. Springer, 2008.

27. Benedikt Gierlichs and Axel Y. Poschmann, editors. Cryptographic Hardware and
Embedded Systems - CHES 2016 - 18th International Conference, Santa Barbara,
CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture Notes in Com-
puter Science. Springer, 2016.

28. Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A
testing methodology for side channel resistance validation. NIST non-
invasive attack testing workshop, 2011. http://csrc.nist.gov/news_events/

non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf.
29. Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be in

software? IACR Cryptology ePrint Archive, 2016:264, 2016.
30. Vincent Grosso, Emmanuel Prouff, and François-Xavier Standaert. Efficient

masked S-Boxes processing - A step forward -. In David Pointcheval and Damien
Vergnaud, editors, Progress in Cryptology - AFRICACRYPT 2014 - 7th Interna-
tional Conference on Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014.
Proceedings, volume 8469 of Lecture Notes in Computer Science, pages 251–266.
Springer, 2014.

31. Vincent Grosso and François-Xavier Standaert. ASCA, SASCA and DPA with
enumeration: Which one beats the other and when? In Tetsu Iwata and Jung Hee
Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II,
volume 9453 of Lecture Notes in Computer Science, pages 291–312. Springer, 2015.

32. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Com-
puter Science, pages 463–481. Springer, 2003.

33. Kerstin Lemke-Rust and Christof Paar. Gaussian mixture models for higher-order
side channel analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2007, 9th International Work-
shop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 14–27. Springer, 2007.
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52. Nicolas Veyrat-Charvillon, Benôıt Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In Advances in Cryptology - ASIACRYPT 2014
- 20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceed-
ings, Part I, pages 282–296, 2014.



A Algorithms for the masked S-box

Algorithm 1 Secure evaluation of a GF(2)-linear function g.

Require: Shares xi such that x = x1 ⊕ · · · ⊕ xd.
Ensure: Shares yi such that g(x) = y = y1 ⊕ · · · ⊕ yd.
1: for i from 1 to d do
2: yi ← g(xi)
3: end for

Algorithm 2 Multiplication of two masked secrets ∈ GF(2m).

Require: Shares xi and yi such that x = x1 ⊕ · · · ⊕ xd and y = y1 ⊕ · · · ⊕ yd.
Ensure: Shares zi such that x⊗ y = z = z1 ⊕ · · · ⊕ zd.
1: for i from 1 to d do
2: for j from i+ 1 to d do
3: ri,j

r← GF(2m)
4: rj,i ← (ri,j ⊕ xi ⊗ yj)⊕ xj ⊗ yi
5: end for
6: end for
7: for i from 1 to d do
8: zi ← xi ⊗ yi
9: for j from 1 to d, j 6= i do

10: zi ← wi ⊕ ri,j
11: end for
12: end for
13: return (z1, ..., zd)

Algorithm 3 Field multiplication of two elements ∈ GF(2m).

Require: x, y ∈ GF(2m).
Ensure: z such that z = x⊗ y.
1: x′ ← LogTab[x]
2: y′ ← LogTab[y]
3: z′ ← x′ + y′ mod 2m − 1
4: z ← (x 6= 0 ∧ y 6= 0) aLogTab[z′]
5: return z



B Additional figures
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Fig. 12. Efficient heuristic attacks (d = 3, m = 8, σ2
n = 1).



C Metric-based bound for the key rank

Very summarized, the two core ideas used in [20] to take the computational
(enumeration) power of a divide-and-conquer adversary into account in a side-
channel evaluation are: (i) to bound the success rate per S-box in function of
the adversary’s computational power thanks to the mutual information of an ag-
gregated key variable Kc

agg, where c is an aggregation parameter (corresponding
to the computational power), and (ii) to plug these success rate bounds into the
metric-based rank-estimation algorithm of [43]. So technically, the only ingredi-
ent needed to exploit the same tools is the mutual information of the aggregated
key variable (i.e., the so-called NAMI, for Normalized Aggregated Mutual Infor-
mation). Unfortunately, the exact computation of the NAMI is impossible in our
case, since we do not have access to the probabilities of all the key candidates
(that are combined during the aggregation process). So we need a way to bound
the NAMI based on its first value NAMI(c = 1) = MI(K;X, L̄).

For this purpose, a simple observation is that for c ≤ 2m−1, aggregating c =
2q key candidates together can at most multiply the NAMI by q+1. The behavior
of the NAMI for c > 2m−1 is less intuitive (since in general, the definition of
the NAMI is most intuitive when c is a power of two). Yet, as illustrated by the
example in Figure 13, a simple heuristic to bound it is then to connect the value
of the NAMI at c = 2m−1 and the maximum value of 1 that is reached at c = 2m

by a straight line (which is obviously conservative as well, since the figure is in
log-lin scale). Alternatively, when MI(K;X, L̄) < 1

2m , an even simpler bound is
to connect log(NAMI(c = 1)) = log(MI(K;X, L̄)) and log(NAMI(c = 2m)) = 0
by a straight line. More accurate bounds are certainly reachable, yet not useful
here since the general focus of the paper is on providing fast intuitions regarding
the computational security of a key manipulated by a leaking device,
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Fig. 13. Bound on the Normalized Aggregated Mutual Information.


