
SCADPA: Side-Channel Assisted
Differential-Plaintext Attack on Bit Permutation

Based Ciphers
Jakub Breier, Dirmanto Jap and Shivam Bhasin

Physical Analysis and Cryptographic Engineering
Temasek Laboratories at Nanyang Technological University

Singapore
Email: {jbreier, djap, sbhasin}@ntu.edu.sg

Abstract—Bit permutations are a common choice for diffu-
sion function in lightweight block ciphers, owing to their low
implementation footprint. In this paper, we present a novel
Side-Channel Assisted Differential-Plaintext Attack (SCADPA),
exploiting specific vulnerabilities of bit permutations. SCADPA
is a chosen-plaintext attack, knowledge of the ciphertext is
not required. Unlike statistical methods, commonly used for
distinguisher in standard power analysis, the proposed method
is more differential in nature. The attack shows that diffusion
layer can play a significant role in distinguishing the internal
cipher state. We demonstrate how to practically exploit such
vulnerability to extract the secret key. Results on microcontroller-
based PRESENT-80 cipher lead to full key retrieval using as
low as 17 encryptions. It is possible to automate the attack
by using a thresholding method detailed in the paper. Several
case studies are presented, using various attacker models and
targeting different encryption modes (such as CTR and CBC). We
provide a discussion on how to avoid such attack from the design
point of view.

I. Introduction

Lightweight cryptography is an emerging branch of cryp-
tology that has gained importance with the rise of internet of
things. Algorithms for lightweight cryptography are designed
to work in resource-constrained environments like low area
footprint, low energy etc. More specifically, lightweight cryp-
tography is designed to address security concerns on low-cost
platforms. Recently, NIST has launched a call for proposal
to standardize lightweight crypto algorithms [1]. This work
focuses on lightweight block ciphers which use bit permutation
based diffusion layer to achieve efficient implementations.
Common examples of such block ciphers are PRESENT [2],
which is an ISO standard, GIFT [3], etc.

Bit permutation is an interesting design choice as it has neg-
ligible area footprint in hardware and can be implemented with
only wires [2]. Other ciphers, such as GIFT [3], with careful
permutation choices can be optimized for both hardware and
software implementations.

In this paper, we bring forward a specific vulnerability of bit
permutation based diffusion function, which can be simply ex-
ploited using side-channel. The exploit arises from the simple
structure of bit permutation and is not easily found in diffusion

functions of standard ciphers (like MixColumns in AES). The
proposed vulnerability is more serious in low-cost platforms
like 8-bit microcontrollers due to serialized execution of the
algorithm. Such design vulnerabilities further make the need
of countermeasures critical, however, lightweight and coun-
termeasures do not often go hand-in-hand. Cipher designers
generally add extra rounds to avoid vulnerabilities due to
simple diffusion layer. Since the proposed attack exploits all
the information in the first round, extra rounds will not add
any security.

A bit permutation layer diffuses the output bits of an
Sbox (non-linear Substitution layer) to multiple Sboxes. By
observing the numbers of affected Sboxes in a given round,
the (key-dependent) Sbox output in the previous round can be
determined, thus revealing information about the secret key.
In this paper, we present Side-Channel Assisted Differential-
Plaintext Attack (SCADPA) which exploits bit permutation
construction for secret key retrieval through observed side-
channel leakage. Here, SCADPA is chosen plaintext attack,
where the plaintexts are chosen to effectively exploit the bit-
permutation leakage. It observes the difference of propagation
through side-channel, thus revealing the differential of Sbox
output. With the knowledge of the plaintext, this differential
can be solved to reveal the corresponding key candidates.

Unlike usual side-channel attacks (SCA [4]), SCADPA is
not a statistical attack but rather a differential attack. For a
carefully chosen set of plaintexts, it observes differential on
an internal sensitive value. As we show later, these differen-
tials for bit permutation ciphers can be obtained by simply
subtracting the power measurements. Once the internal differ-
entials are known, the attack is similar to classical differential
cryptanalysis for secret key retrieval. While cryptanalysis can
be applied on a full cipher and handle high complexity, we
manage to restrict the attack to a single round, thus keeping the
complexity negligible. In some cases, multiple plaintext pairs
might be needed to determine a unique key candidate. With
the demonstrated experiments on PRESENT-80, SCADPA can
reveal the key in 17 encryptions for the best case and 65 in
the worst case.

A. Related Works

Chosen plaintext side-channel attacks have previously been
proposed in different context. A side-channel based collision
attack [5] was proposed under chosen plaintext setting. It
detects collision in some internal value of initial rounds of the
cipher to retrieve the key. This attack was extended to break
secret AES-like ciphers [6] and further generalised to SPN
structures [7]. Some proposed attacks also used chosen plain-
text setting to amplify power [8] or timing [9] side-channel
leakage. Apart from block ciphers, chosen plaintexts attack
were also applied to break public key cryptography [10] and
hash functions (HMAC [11]). To the best of our knowledge,
SCADPA is the first attack proposition to exploit the diffusion
function in a block cipher.

B. Our Contribution

The contributions of this paper are as follows:
• We identify a specific vulnerability in bit-permutation

based diffusion functions exploitable through side-
channel, and we propose a specific attack called
SCADPA, which exploits the identified vulnerability.

• We present a practical demonstration of SCADPA on a
low cost platform, using PRESENT-80 lightweight cipher
as a target algorithm.

• We analyze the efficiency of SCADPA for several sce-
narios, such as multiple nibbles retrieval, different block
cipher modes of operation, etc.

• We provide analysis of the best, average and worst case on
the recovered key and the number of encryptions required,
highlighting the effectiveness of the proposed method.

• We further explain why such vulnerabilities might be
absent in other diffusion layer construction.

C. Organization

The rest of the paper is organised as follows. Sec. II first
recalls basics of PRESENT-80 block cipher, and then describes
the key methodology of SCADPA. Experimental validation of
SCADPA on an 8-bit microcontroller is presented in Sec. III.
Some discussions are provided in Sec. IV, exploring attack
on cipher operation mode, vulnerability of other diffusion
function etc. Final conclusions are drawn in Sec. V.

II. Methodology

In this section, we first provide an overview of PRESENT
cipher, while detailing the properties of this algorithm that we
exploit. Later, we explain how the SCADPA method works and
finally, we present a simple example. Although the rest of the
paper is based on PRESENT-80, the techniques are generally
applicable on similar ciphers.

A. PRESENT Cipher

PRESENT is a lightweight block cipher based on
Substitution-Permutation Network (SPN) [2]. Therefore, it
consists of three operations: addRoundKey is a bit-wise xor
of the state with the round key; sBoxLayer is a nibble-
wise nonlinear substitution; pLayer is a bit permutation. The

structure of one round of the cipher is depicted in Fig. 1.
PRESENT consists of 31 rounds, followed by a post-whitening
addRoundKey at the end. The variant used in our experiments,
PRESENT-80, has a secret key of size 80 bits and a block size
of 64 bits. Tab. I shows PRESENT Sbox that is executed on all
16 nibbles of the PRESENT-80 state during the sBoxLayer.
The Sbox function is further denoted as S (.).

Fig. 1: Structure of one round of PRESENT-80 cipher.

TABLE I: PRESENT S-box.

x 0 1 2 3 4 5 6 7
S(x) C 5 6 B 9 0 A D

x 8 9 A B C D E F
S(x) 3 E F 8 4 7 1 2

B. Bit Permutation Properties of PRESENT-80

There are three main properties of the pLayer that are
exploited in the following:

1) Output of one nibble is distributed into four distinct
nibbles.

2) Input to one nibble consists of outputs from four distinct
nibbles.

3) In pLayer, the cipher state can be split into four different
groups of four nibbles, where one input group affects
exactly one output group.

Examining these properties, it can be seen that by changing
chosen four nibbles in the plaintext, it is possible to affect the
whole cipher state after the first permutation.

Fig. 2 shows this behavior by changing the first and the
eighth nibble of the plaintext. The underlying implementa-
tion computes sBoxLayer nibble-wise while addRoundKey
is computed byte-wise owing to the ALU support for bit-
wise xor. This is to achieve the best speed-memory trade-off.
Similarly, in 32-bit architectures, sBoxLayer would be im-
plemented as a 4-bit or 8-bit look-up table and addRoundKey
with pLayer would be done on 32-bit words, to achieve best
speed-memory trade-off.

By observing the changing nibbles in round 2, the change in
Sbox output at round 1 can be determined. This value directly
depends on the secret key which can be exploited for key
retrieval. In the following, we use side-channel measurements
to observe the changed nibbles.

Fig. 2: Bytes in round 2 that could be potentially affected by
changing the first and the eighth nibble of the plaintext.

C. SCADPA Methodology

Using the information from the previous part, we propose
SCADPA. SCADPA exploits the permutation properties to
observe changed nibbles and retrieve differential at Sbox
output in round 1. The differential can be solved for key
retrieval by using a standard differential attack on non-linear
layer.

The attack steps can be summarized as follows:
Step 1: Encrypt a chosen plaintext p, by using an unknown

secret key k, denoted as Ek(p).
Step 2: Capture the power/EM leakage of the Device Under

Test (DUT) during the second encryption round to get
the trace t.

Step 3: Choose another plaintext p′ , p that differs exactly
in one nibble at ith position. The nibble at position i
in plaintext p is denoted pi and xi = pi⊕ki. Similarly,
x′i = p′i ⊕ ki.

Step 4: Capture the leakage for Ek(p′) to get t′.
Step 5: Calculate ∆t = t − t′.
Step 6: By examining ∆t, get the Sbox output change ∆S i =

S (xi) ⊕ S (x′i) of round 1 in the position where the
plaintext had changed.

Step 7: From ∆S i and (pi, p′i), calculate all possible candi-
dates for key nibble ki (satisfying S (pi ⊕ ki) ⊕ S (p′i ⊕
ki) = ∆S i).

Step 8: Repeat steps 3-7 with another p′i , taking intersection
of all the calculated key candidates, until there is just
one candidate for ki.

Step 9: Repeat steps 3-8 for all i ∈ [1, 16] to recover the whole
round key.

Step 10: Compute the remaining 16 bits of the secret key by
exhaustive search or repeating SCADPA on the next
round.

D. SCADPA Acceleration by Optimal Plaintext Choice

In order to reduce the key complexity and retrieve the secret
key with fewer number of encryptions, it is possible to change
the value of multiple nibbles in the plaintext. Based on the
permutation layer, multiple nibbles can be changed without

affecting same locations in the next round and hence, can be
analyzed independently. The optimal methodology executes
the following steps:
Step 1: Keep the record of nibbles of key that have not been

recovered (I = {1, ..., 16})
Step 2: Start by choosing one nibble (ni ∈ I) and calculate all

possible affected nibbles at the beginning of the next
round (Ni).

Step 3: Choose another nibble (n j ∈ I, n j , ni) and check if
the affected nibbles interfere (check if Ni ∩ N j = ∅).
If true, keep n j, else, move to other nibble . Repeat,
until no nibble remaining, then update I \ {ni, n j, ...}.

Step 4: Choose plaintext set that changes only on these nibble
positions ({ni, n j, ...}).

Step 5: Repeat step 2-4, until I = ∅

Another option is to choose the pair difference in the plain-
text that could minimize the key candidate. This is dependent
on the Sbox used. In the case of PRESENT, as shown later in
Figure 5, for one plaintext pair, there could be either 2 or 4
key candidates. However, even with two plaintext pairs, there
is still slight chance on getting more than 1 key candidate.

A natural question would be – ‘how many nibbles of
PRESENT can we attack at once by using SCADPA?’ As
can be seen in Fig. 2, one nibble can affect up to half of the
state at the next round addRoundKey. Nibbles 0−7 (“group 1”)
affect bytes 0, 2, 4, 6, while nibbles 8−15 (“group 2”) affect the
remaining bytes 1, 3, 5, 7. Therefore, by combining one nibble
from each group, we can retrieve two nibbles at the same time
while avoiding the interference. This knowledge can help us
to reduce the number of encryptions to half. Parallelisation of
attack to two nibbles is limited by the byte-wise granularity
of addRoundKey. The following sBoxLayer with nibble-wise
granularity would allow up to 4 nibbles in parallel, however
at the cost of needed profiling.

E. Attack Example

We illustrate our method by a simple example that shows
how to recover one nibble of the round key i.e. i = 1. We fix
pi = 0x0 and p′i = 0xA. After observing the ∆t, we figure out
that ∆S i = 0x2. By knowing that ∆pi = 0xA, there can be two
candidates for ki: 0xF and 0x5. We make another experiment,
now with p′i = 0x3. By capturing another trace, we determine
∆S i = 0x6, giving us four different candidates for ki: 0xC,
0xD, 0xE, and 0xF. The only intersecting candidate is 0xF,
therefore we know that the key nibble has to be this value.
The retrieval of ∆S i from real power traces is explained in the
following section.

III. Experimental Results

In this section, we will show and discuss experimental
results obtained by performing SCADPA on a microcontroller
implementation of PRESENT-80 cipher [2].

A. Setup

As a DUT, we used a standard 8-bit microcontroller from
Atmel, ATmega328P, mounted on Arduino UNO development

board. We have measured an electromagnetic emanation with
a Langer RF-U 5-2 probe. Signal was captured with LeCroy
WaveRunner 610 Zi oscilloscope.

We have used an implementation of PRESENT-80 cipher,
where sBoxLayer is computed nibble-wise and the rest of
the operations are done byte-wise. Sampling rate was set at
500 MS/s, while the addRoundKey takes ≈7000 samples. A
difference introduced in the first round could be observed
during the second round. We chose to observe the difference at
the second addRoundKey as in our case the start of round was
easily identifiable by visual inspection of the trace. Choice of
observing the difference on addRoundKey has an advantage
and a disadvantage. The advantage being that precise profiling
was not needed as compared to locating time instants for
sBoxLayer. The disadvantage is that since addRoundKey is
done byte-wise, the observed differences are limited to byte
level. Observed differences on the following sBoxlayer can
be nibble precise, given appropriate profiling.

B. Results

To support our method, we have conducted experiments
showing the possibility of distinguishing ∆S .

Fig 3 shows differences in power consumption captured in
the second addRoundKey, by calculating ∆t. The implemen-
tation we used computes the addRoundKey in a reverse order,
therefore the difference peaks follow this order. In order to
improve signal-to-noise ratio and produce clear plots, both t
and t′ were averaged from multiple executions. Nevertheless, it
was possible to see the difference and raw traces. By observing
this difference, the output difference of sBoxLayer in round
1, i.e. ∆S i, can be clearly distinguished. Once ∆S i and ∆pi

are known, it can be used to solve the value of secret key ki,
as shown in the previous section.

C. Automatic Recognition of the Difference

If we look at Fig. 3, it is obvious that determination of
differences can be automated. For this purpose, one can use
a simple algorithm that sets the threshold, enabling the sepa-
ration of interesting areas from the random noise. Following
steps can be done in order to make the automatic difference
recognition:
Step 1: Calculate the mean (µ) and the standard deviation (σ)

from the difference trace ∆t, however both traces t
and t′ come from the same plaintext, i.e. there is no
difference in the Sbox output.

Step 2: Set the basic positive and negative threshold to be
r+ = µ + σ and r− = µ − σ, respectively.

Step 3: Choose n to be a multiplier of r+ and r− in a following
way: start from n = 1 and increment the value by
1 until all the points of the trace fall between the
positive and negative threshold.

Step 4: Use these values for all the measured traces to indicate
points where the difference traces cross the thresholds.

Step 5: By the density distribution of the crossing points,
together with the timing, determine ∆S .

Thresholds for ∆S =0x01 are stated in Fig. 4.

(a)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

−1

0

1

2
·10−2

∆S = 0x01

Time samples

A
m

pl
itu

de
(m

V
)

(b)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

−1

0

1

2
·10−2

∆S = 0x02

Time samples

A
m

pl
itu

de
(m

V
)

(c)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

−1

0

1

2
·10−2

∆S = 0x0A

Time samples
A

m
pl

itu
de

(m
V

)

(d)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
−2

−1

0

1

2
·10−2

∆S = 0x0F

Time samples

A
m

pl
itu

de
(m

V
)

Fig. 3: Difference traces ∆t showing addRoundKey of round
2, revealing the output difference of the Sbox at round 1.
Bytes are processed in a reversed order, therefore the pattern
showing the difference also has to be reversed. Difference
between the Sbox outputs for the plots (highlighted by the
blue background) is as follows: (a) 0x01, (b) 0x02, (c) 0x0A,
and (d) 0x0F.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

−1

0

1

2
·10−2

∆S = 0x01

Time samples

A
m

pl
itu

de
(m

V
)

Fig. 4: Threshold that enables determination of the ∆S . Values
used for thresholding were: µ = 3.452 × 10−5, σ = 1.453 ×
10−3, n = 4.

TABLE II: Probability of determining key candidates.

of plaintext pairs
of key candidates 1 2 3

1 0 0.94315 0.99557
2 0.59948 0 0
3 0 0 0
4 0.40052 0.05685 0.00443

D. Attack Complexity

In this section, we compute the attack complexity for single
key nibble retrieval and full round key retrieval.

The single nibble retrieval complexity depends on the un-
derlying Sbox function, being the only non-linear function in
the derived differential equation. As can be seen in Tab. II,
using a single plaintext pair ∆p′i for determining ∆S , it will
yield 2 key candidates in ≈ 60% of cases and 4 candidates for
the rest. By adding additional plaintext pair, the probability of
identifying a unique key candidate ki are 94.3%, 99.5% and
100% for 2, 3 and 4 plaintext pair respectively. Since, the same
reference plaintext can be used, with 5 encryptions a unique
key candidate can be identified in worst case. The numbers
would change for an Sbox other than PRESENT, but will stay
comparable.

Now we compute the number of encryptions required for
full key retrieval. In the best case, difference in two nibbles
in the plaintexts will results in 8 byte difference in the next
round, with no interference. With the appropriate plaintext
values, 3 values are sufficient to reduce the key complexity to
1, resulting to unique key solution. Thus, in the best case, only
17 encryptions are required for recovering the whole round
key, as indicated in Fig. 5. In case we can still choose the
optimal plaintexts but for some reason can only recover one
nibble at a time, it will require 33 encryptions. The worst case
only recovers one nibble at a time while using the conservative
reduction of candidates and not exploiting any specific Sbox
properties. In this case, it will require 4 values to reduce
the key candidate to 1 per nibble. Hence, it will require 65
encryptions.

Please note that it is also possible to make a search on
remaining candidates. For example, if we have 2 candidates
for each nibble, we can determine the value with a brute-force
search with complexity of 216. For such case, it would only
require 9 encryptions in case we target two nibbles at a time.
Similarly, operating at nibble wise granularity at the following
sBoxLayer can recover the key in 9 encryptions as well.

IV. Further Discussion

A. Attack on Different Modes of Operation

Few block cipher operation mode are well oriented towards
plaintext selection of SCADPA. When it comes to Counter
(CTR) mode (Fig. 6), the input to the encryption algorithm
consists of a nonce and a counter. While the nonce is a
random number, counter normally increases by 1 after each
block. While the nonce stays fixed, the incrementing counter
satisfies the chosen plaintext criteria of SCADPA as discussed
in Sec. II. The attack allows to recover few nibbles directly

10 20 30 40 50 60 70
0

5

10

15

Number of traces

N
ib

bl
es

re
co

ve
re

d

Best case (2 nibbles at a time)
Best case (1 nibble at a time)

Worst case (1 nibble at a time)

Fig. 5: Number of traces required for recovering key nibbles
of PRESENT.

Enc

Nonce, Ctr

C0

k

P0

Enc

Nonce, Ctr

C1

k

P1

Enc

Nonce, Ctr

C2

k

P2

· · · · · · Enc

Nonce, Ctr

Cn

k

Pn

Fig. 6: Counter (CTR) mode of operation (encryption) [12].

affected by the counter in the first round. For the remaining
nibbles, chosen nonce or attack on second round can be carried
out in a similar way.

On the other hand, when targeting Cipher Block Chaining
(CBC) mode, one has to aim at the decryption module (Fig. 7).
This comes from the property of CBC where the plaintext is
first xor-ed with the IV (first block) or with ciphertext from the
previous block. In this case, chosen-plaintext attack changes
to chosen-ciphertext, without the knowledge of plaintext. The
same hold for Propagating Cipher Block Chaining (PCBC)
mode.

B. Alternatives for Diffusion Layer

Certain diffusion function do not offer vulnerabilities that
are exploited by SCADPA in bit permutation. AES [13], the
NIST standard for symmetric key cryptography, is a relevant

Dec

P0

k

C0

Dec

P1

k

C1

Dec

P2

k

C2

IV

· · · · · · Dec

Pn

k

Cn

· · · · · · Dec

Pn

k

Cn

Fig. 7: Cipher Block Chaining (CBC) mode of operation
(decryption) [12].

SB SR MC ARK

Fig. 8: Difference Diffusion in AES.

example. AES encrypts 128-bit data block with a 128/192/256
bits secret key in 10/12/14 rounds. The data is organised in
a 4 × 4 matrix of bytes called state and the round function is
applied upon it. A round comprises of four operations i.e.
SubBytes (SB), ShiftRows (SR), MixColumns (MC) and
AddRoundKeys (ARK). SB is a 8 × 8 non-linear table look
up and ARK is the round key addition. We concentrate on
diffusion functions i.e. SR and MC. SR applies a cyclic shift on
the rows (1,2,3,4) with offsets (0,1,2,3). MC operates on four
bytes of each column of the state. The four bytes are combined
using an invertible linear transformation. When a difference is
inserted at the input, irrespective of the plaintext difference, the
difference is always propagated on all four bytes, preventing
∆S leakage. This is illustrated in Fig. 8.

Recent trends show that it is possible to design a lightweight
cipher with similar diffusion function and not only rely on
bit permutations. SKINNY [14], PRINCE [15] are common
examples. Other ultra-lightweight ciphers like SIMON and
SPECK [16], use several bit shifts applied to a partial interme-
diate state to provide the diffusion. Furthermore, only a binary
operation is used to provide non-linearity. Both operations
combined would prevent a successful application of SCADPA.

C. A Note on Countermeasures

As SCADPA exploits leakage of bit permutation through
side-channel, any countermeasure which prevents direct ob-
servation of side-channel information can protect against
such attacks. This includes both hiding [17] and masking
countermeasures [18]. However, any bias can still render the
attack possible. For instance, an imbalanced implementation
of hiding will still allow to observe the difference. Similarly
for masking, ∆S would depend upon pi⊕mi⊕ p′i ⊕m′i . If mask
mi,m′i are totally independent and uniformly distributed, the
attack is not possible, however with biases in the mask, the
attack can still be carried out with increased effort. Shuffling
of the order of the Sboxes and/or key additions would make
the attack harder since only the hamming weight could be
directly observed, instead of the difference value.

As previously discussed, countermeasures incur significant
overheads. When considering lightweight cryptography spe-
cially oriented for low-cost platforms, implementation weak-
nesses as shown in bit permutation can be avoided.

V. Conclusions

In this paper, we identify a vulnerability in bit permutation
based lightweight ciphers (PRESENT, GIFT, etc) and develop
a side-channel assisted methodology called SCADPA to ex-
ploit it. With a practical case study on low-cost microcontroller
running PRESENT-80, we were able to practically recover the
secret key with as low as 17 encryptions and an exhaustive

search with complexity of 216. Several attacker models are
presented, with different complexities of retrieving the key.
Use of more complex yet low-cost diffusion function are
encouraged to avoid such vulnerabilities.

In the future work, it would be interesting to look at pos-
sibilities of exploiting different side-channel countermeasures.
Especially, if randomness in masking is biased or the leakage
characteristics of hiding are not uniform.

References
[1] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report on

lightweight cryptography,” NIST DRAFT NISTIR, vol. 8114, 2016.
[2] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.

Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-lightweight
block cipher,” in CHES, vol. 4727. Springer, 2007, pp. 450–466.

[3] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
“GIFT: A Small Present,” Cryptographic Hardware and Embedded
Systems-CHES, pp. 25–28, 2017.

[4] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in cryptology - CRYPTO’99. Springer, 1999, pp. 789–789.

[5] K. Schramm, T. Wollinger, and C. Paar, “A new class of collision attacks
and its application to DES,” in FSE, vol. 2887. Springer, 2003, pp.
206–222.

[6] C. Clavier, Q. Isorez, and A. Wurcker, “Complete SCARE of AES-
Like Block Ciphers by Chosen Plaintext Collision Power Analysis,” in
INDOCRYPT, vol. 8250. Springer, 2013, pp. 116–135.

[7] M. Rivain and T. Roche, “SCARE of secret ciphers with SPN structures,”
in International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2013, pp. 526–544.

[8] N. Veyrat-Charvillon and F.-X. Standaert, “Adaptive chosen-message
side-channel attacks.” in ACNS, vol. 6123. Springer, 2010, pp. 186–199.

[9] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel cryptanal-
ysis of product ciphers,” Computer Security - ESORICS 98, pp. 97–110,
1998.

[10] B. den Boer, K. Lemke, and G. Wicke, “A DPA Attack against the
Modular Reduction within a CRT Implementation of RSA,” in CHES,
vol. 2523. Springer, 2002, pp. 228–243.

[11] L. Guo, L. Wang, D. Liu, W. Shan, Z. Zhang, Q. Li, and J. Yu, “A
chosen-plaintext differential power analysis attack on HMAC-SM3,” in
Computational Intelligence and Security (CIS), 2015 11th International
Conference on. IEEE, 2015, pp. 350–353.

[12] J. Jean, “TikZ for Cryptographers,” https://www.iacr.org/authors/tikz/,
2016.

[13] N. F. Pub, “197: Advanced encryption standard (AES),” Federal infor-
mation processing standards publication, vol. 197, no. 441, p. 0311,
2001.

[14] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim, “The SKINNY Family of Block Ciphers and
its Low-Latency Variant MANTIS,” Cryptology ePrint Archive, Report
2016/660, 2016, http://eprint.iacr.org/2016/660.

[15] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger et al., “PRINCE–
a low-latency block cipher for pervasive computing applications,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2012, pp. 208–225.

[16] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and
L. Wingers, “The SIMON and SPECK lightweight block ciphers,” in
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2015, pp. 1–6.

[17] P. Hoogvorst, J.-L. Danger, and G. Duc, “Software Implementation of
Dual-Rail Representation,” in COSADE, 2011, Darmstadt, Germany.

[18] E. Prouff and M. Rivain, “Masking against side-channel attacks: A
formal security proof,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2013,
pp. 142–159.

